summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_fork.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/kern_fork.c')
-rw-r--r--sys/kern/kern_fork.c833
1 files changed, 833 insertions, 0 deletions
diff --git a/sys/kern/kern_fork.c b/sys/kern/kern_fork.c
new file mode 100644
index 0000000..226a42c
--- /dev/null
+++ b/sys/kern/kern_fork.c
@@ -0,0 +1,833 @@
+/*
+ * Copyright (c) 1982, 1986, 1989, 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "opt_ktrace.h"
+#include "opt_mac.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sysproto.h>
+#include <sys/eventhandler.h>
+#include <sys/filedesc.h>
+#include <sys/kernel.h>
+#include <sys/sysctl.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/pioctl.h>
+#include <sys/resourcevar.h>
+#include <sys/sched.h>
+#include <sys/syscall.h>
+#include <sys/vnode.h>
+#include <sys/acct.h>
+#include <sys/mac.h>
+#include <sys/ktr.h>
+#include <sys/ktrace.h>
+#include <sys/kthread.h>
+#include <sys/unistd.h>
+#include <sys/jail.h>
+#include <sys/sx.h>
+
+#include <vm/vm.h>
+#include <vm/pmap.h>
+#include <vm/vm_map.h>
+#include <vm/vm_extern.h>
+#include <vm/uma.h>
+
+#include <sys/vmmeter.h>
+#include <sys/user.h>
+#include <machine/critical.h>
+
+#ifndef _SYS_SYSPROTO_H_
+struct fork_args {
+ int dummy;
+};
+#endif
+
+static int forksleep; /* Place for fork1() to sleep on. */
+
+/*
+ * MPSAFE
+ */
+/* ARGSUSED */
+int
+fork(td, uap)
+ struct thread *td;
+ struct fork_args *uap;
+{
+ int error;
+ struct proc *p2;
+
+ error = fork1(td, RFFDG | RFPROC, 0, &p2);
+ if (error == 0) {
+ td->td_retval[0] = p2->p_pid;
+ td->td_retval[1] = 0;
+ }
+ return error;
+}
+
+/*
+ * MPSAFE
+ */
+/* ARGSUSED */
+int
+vfork(td, uap)
+ struct thread *td;
+ struct vfork_args *uap;
+{
+ int error;
+ struct proc *p2;
+
+ error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
+ if (error == 0) {
+ td->td_retval[0] = p2->p_pid;
+ td->td_retval[1] = 0;
+ }
+ return error;
+}
+
+/*
+ * MPSAFE
+ */
+int
+rfork(td, uap)
+ struct thread *td;
+ struct rfork_args *uap;
+{
+ int error;
+ struct proc *p2;
+
+ /* Don't allow kernel only flags. */
+ if ((uap->flags & RFKERNELONLY) != 0)
+ return (EINVAL);
+ error = fork1(td, uap->flags, 0, &p2);
+ if (error == 0) {
+ td->td_retval[0] = p2 ? p2->p_pid : 0;
+ td->td_retval[1] = 0;
+ }
+ return error;
+}
+
+
+int nprocs = 1; /* process 0 */
+int lastpid = 0;
+SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
+ "Last used PID");
+
+/*
+ * Random component to lastpid generation. We mix in a random factor to make
+ * it a little harder to predict. We sanity check the modulus value to avoid
+ * doing it in critical paths. Don't let it be too small or we pointlessly
+ * waste randomness entropy, and don't let it be impossibly large. Using a
+ * modulus that is too big causes a LOT more process table scans and slows
+ * down fork processing as the pidchecked caching is defeated.
+ */
+static int randompid = 0;
+
+static int
+sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
+{
+ int error, pid;
+
+ sysctl_wire_old_buffer(req, sizeof(int));
+ sx_xlock(&allproc_lock);
+ pid = randompid;
+ error = sysctl_handle_int(oidp, &pid, 0, req);
+ if (error == 0 && req->newptr != NULL) {
+ if (pid < 0 || pid > PID_MAX - 100) /* out of range */
+ pid = PID_MAX - 100;
+ else if (pid < 2) /* NOP */
+ pid = 0;
+ else if (pid < 100) /* Make it reasonable */
+ pid = 100;
+ randompid = pid;
+ }
+ sx_xunlock(&allproc_lock);
+ return (error);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
+ 0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
+
+int
+fork1(td, flags, pages, procp)
+ struct thread *td; /* parent proc */
+ int flags;
+ int pages;
+ struct proc **procp; /* child proc */
+{
+ struct proc *p2, *pptr;
+ uid_t uid;
+ struct proc *newproc;
+ int trypid;
+ int ok;
+ static int curfail, pidchecked = 0;
+ static struct timeval lastfail;
+ struct filedesc *fd;
+ struct filedesc_to_leader *fdtol;
+ struct proc *p1 = td->td_proc;
+ struct thread *td2;
+ struct kse *ke2;
+ struct ksegrp *kg2;
+ struct sigacts *newsigacts;
+ int error;
+
+ /* Can't copy and clear */
+ if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
+ return (EINVAL);
+
+ mtx_lock(&Giant);
+ /*
+ * Here we don't create a new process, but we divorce
+ * certain parts of a process from itself.
+ */
+ if ((flags & RFPROC) == 0) {
+ vm_forkproc(td, NULL, NULL, flags);
+
+ /*
+ * Close all file descriptors.
+ */
+ if (flags & RFCFDG) {
+ struct filedesc *fdtmp;
+ fdtmp = fdinit(td->td_proc->p_fd);
+ fdfree(td);
+ p1->p_fd = fdtmp;
+ }
+
+ /*
+ * Unshare file descriptors (from parent.)
+ */
+ if (flags & RFFDG) {
+ FILEDESC_LOCK(p1->p_fd);
+ if (p1->p_fd->fd_refcnt > 1) {
+ struct filedesc *newfd;
+
+ newfd = fdcopy(td->td_proc->p_fd);
+ FILEDESC_UNLOCK(p1->p_fd);
+ fdfree(td);
+ p1->p_fd = newfd;
+ } else
+ FILEDESC_UNLOCK(p1->p_fd);
+ }
+ mtx_unlock(&Giant);
+ *procp = NULL;
+ return (0);
+ }
+
+ /*
+ * Note 1:1 allows for forking with one thread coming out on the
+ * other side with the expectation that the process is about to
+ * exec.
+ */
+ if (p1->p_flag & P_SA) {
+ /*
+ * Idle the other threads for a second.
+ * Since the user space is copied, it must remain stable.
+ * In addition, all threads (from the user perspective)
+ * need to either be suspended or in the kernel,
+ * where they will try restart in the parent and will
+ * be aborted in the child.
+ */
+ PROC_LOCK(p1);
+ if (thread_single(SINGLE_NO_EXIT)) {
+ /* Abort.. someone else is single threading before us */
+ PROC_UNLOCK(p1);
+ mtx_unlock(&Giant);
+ return (ERESTART);
+ }
+ PROC_UNLOCK(p1);
+ /*
+ * All other activity in this process
+ * is now suspended at the user boundary,
+ * (or other safe places if we think of any).
+ */
+ }
+
+ /* Allocate new proc. */
+ newproc = uma_zalloc(proc_zone, M_WAITOK);
+#ifdef MAC
+ mac_init_proc(newproc);
+#endif
+
+ /*
+ * Although process entries are dynamically created, we still keep
+ * a global limit on the maximum number we will create. Don't allow
+ * a nonprivileged user to use the last ten processes; don't let root
+ * exceed the limit. The variable nprocs is the current number of
+ * processes, maxproc is the limit.
+ */
+ sx_xlock(&allproc_lock);
+ uid = td->td_ucred->cr_ruid;
+ if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
+ error = EAGAIN;
+ goto fail;
+ }
+
+ /*
+ * Increment the count of procs running with this uid. Don't allow
+ * a nonprivileged user to exceed their current limit.
+ */
+ PROC_LOCK(p1);
+ ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
+ (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
+ PROC_UNLOCK(p1);
+ if (!ok) {
+ error = EAGAIN;
+ goto fail;
+ }
+
+ /*
+ * Increment the nprocs resource before blocking can occur. There
+ * are hard-limits as to the number of processes that can run.
+ */
+ nprocs++;
+
+ /*
+ * Find an unused process ID. We remember a range of unused IDs
+ * ready to use (from lastpid+1 through pidchecked-1).
+ *
+ * If RFHIGHPID is set (used during system boot), do not allocate
+ * low-numbered pids.
+ */
+ trypid = lastpid + 1;
+ if (flags & RFHIGHPID) {
+ if (trypid < 10) {
+ trypid = 10;
+ }
+ } else {
+ if (randompid)
+ trypid += arc4random() % randompid;
+ }
+retry:
+ /*
+ * If the process ID prototype has wrapped around,
+ * restart somewhat above 0, as the low-numbered procs
+ * tend to include daemons that don't exit.
+ */
+ if (trypid >= PID_MAX) {
+ trypid = trypid % PID_MAX;
+ if (trypid < 100)
+ trypid += 100;
+ pidchecked = 0;
+ }
+ if (trypid >= pidchecked) {
+ int doingzomb = 0;
+
+ pidchecked = PID_MAX;
+ /*
+ * Scan the active and zombie procs to check whether this pid
+ * is in use. Remember the lowest pid that's greater
+ * than trypid, so we can avoid checking for a while.
+ */
+ p2 = LIST_FIRST(&allproc);
+again:
+ for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
+ PROC_LOCK(p2);
+ while (p2->p_pid == trypid ||
+ p2->p_pgrp->pg_id == trypid ||
+ p2->p_session->s_sid == trypid) {
+ trypid++;
+ if (trypid >= pidchecked) {
+ PROC_UNLOCK(p2);
+ goto retry;
+ }
+ }
+ if (p2->p_pid > trypid && pidchecked > p2->p_pid)
+ pidchecked = p2->p_pid;
+ if (p2->p_pgrp->pg_id > trypid &&
+ pidchecked > p2->p_pgrp->pg_id)
+ pidchecked = p2->p_pgrp->pg_id;
+ if (p2->p_session->s_sid > trypid &&
+ pidchecked > p2->p_session->s_sid)
+ pidchecked = p2->p_session->s_sid;
+ PROC_UNLOCK(p2);
+ }
+ if (!doingzomb) {
+ doingzomb = 1;
+ p2 = LIST_FIRST(&zombproc);
+ goto again;
+ }
+ }
+
+ /*
+ * RFHIGHPID does not mess with the lastpid counter during boot.
+ */
+ if (flags & RFHIGHPID)
+ pidchecked = 0;
+ else
+ lastpid = trypid;
+
+ p2 = newproc;
+ p2->p_state = PRS_NEW; /* protect against others */
+ p2->p_pid = trypid;
+ LIST_INSERT_HEAD(&allproc, p2, p_list);
+ LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
+ sx_xunlock(&allproc_lock);
+
+ /*
+ * Malloc things while we don't hold any locks.
+ */
+ if (flags & RFSIGSHARE)
+ newsigacts = NULL;
+ else
+ newsigacts = sigacts_alloc();
+
+ /*
+ * Copy filedesc.
+ */
+ if (flags & RFCFDG) {
+ fd = fdinit(td->td_proc->p_fd);
+ fdtol = NULL;
+ } else if (flags & RFFDG) {
+ FILEDESC_LOCK(p1->p_fd);
+ fd = fdcopy(td->td_proc->p_fd);
+ FILEDESC_UNLOCK(p1->p_fd);
+ fdtol = NULL;
+ } else {
+ fd = fdshare(p1->p_fd);
+ if (p1->p_fdtol == NULL)
+ p1->p_fdtol =
+ filedesc_to_leader_alloc(NULL,
+ NULL,
+ p1->p_leader);
+ if ((flags & RFTHREAD) != 0) {
+ /*
+ * Shared file descriptor table and
+ * shared process leaders.
+ */
+ fdtol = p1->p_fdtol;
+ FILEDESC_LOCK(p1->p_fd);
+ fdtol->fdl_refcount++;
+ FILEDESC_UNLOCK(p1->p_fd);
+ } else {
+ /*
+ * Shared file descriptor table, and
+ * different process leaders
+ */
+ fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
+ p1->p_fd,
+ p2);
+ }
+ }
+ /*
+ * Make a proc table entry for the new process.
+ * Start by zeroing the section of proc that is zero-initialized,
+ * then copy the section that is copied directly from the parent.
+ */
+ td2 = FIRST_THREAD_IN_PROC(p2);
+ kg2 = FIRST_KSEGRP_IN_PROC(p2);
+ ke2 = FIRST_KSE_IN_KSEGRP(kg2);
+
+ /* Allocate and switch to an alternate kstack if specified */
+ if (pages != 0)
+ vm_thread_new_altkstack(td2, pages);
+
+ PROC_LOCK(p2);
+ PROC_LOCK(p1);
+
+#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
+
+ bzero(&p2->p_startzero,
+ (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
+ bzero(&ke2->ke_startzero,
+ (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
+ bzero(&td2->td_startzero,
+ (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
+ bzero(&kg2->kg_startzero,
+ (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
+
+ bcopy(&p1->p_startcopy, &p2->p_startcopy,
+ (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
+ bcopy(&td->td_startcopy, &td2->td_startcopy,
+ (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
+ bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
+ (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
+#undef RANGEOF
+
+ /* Set up the thread as an active thread (as if runnable). */
+ ke2->ke_state = KES_THREAD;
+ ke2->ke_thread = td2;
+ td2->td_kse = ke2;
+
+ /*
+ * Duplicate sub-structures as needed.
+ * Increase reference counts on shared objects.
+ * The p_stats substruct is set in vm_forkproc.
+ */
+ p2->p_flag = 0;
+ if (p1->p_flag & P_PROFIL)
+ startprofclock(p2);
+ mtx_lock_spin(&sched_lock);
+ p2->p_sflag = PS_INMEM;
+ /*
+ * Allow the scheduler to adjust the priority of the child and
+ * parent while we hold the sched_lock.
+ */
+ sched_fork(p1, p2);
+
+ mtx_unlock_spin(&sched_lock);
+ p2->p_ucred = crhold(td->td_ucred);
+ td2->td_ucred = crhold(p2->p_ucred); /* XXXKSE */
+
+ pargs_hold(p2->p_args);
+
+ if (flags & RFSIGSHARE) {
+ p2->p_sigacts = sigacts_hold(p1->p_sigacts);
+ } else {
+ sigacts_copy(newsigacts, p1->p_sigacts);
+ p2->p_sigacts = newsigacts;
+ }
+ if (flags & RFLINUXTHPN)
+ p2->p_sigparent = SIGUSR1;
+ else
+ p2->p_sigparent = SIGCHLD;
+
+ /* Bump references to the text vnode (for procfs) */
+ p2->p_textvp = p1->p_textvp;
+ if (p2->p_textvp)
+ VREF(p2->p_textvp);
+ p2->p_fd = fd;
+ p2->p_fdtol = fdtol;
+ PROC_UNLOCK(p1);
+ PROC_UNLOCK(p2);
+
+ /*
+ * p_limit is copy-on-write, bump refcnt,
+ */
+ p2->p_limit = p1->p_limit;
+ p2->p_limit->p_refcnt++;
+
+ /*
+ * Setup linkage for kernel based threading
+ */
+ if((flags & RFTHREAD) != 0) {
+ mtx_lock(&ppeers_lock);
+ p2->p_peers = p1->p_peers;
+ p1->p_peers = p2;
+ p2->p_leader = p1->p_leader;
+ mtx_unlock(&ppeers_lock);
+ PROC_LOCK(p1->p_leader);
+ if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
+ PROC_UNLOCK(p1->p_leader);
+ /*
+ * The task leader is exiting, so process p1 is
+ * going to be killed shortly. Since p1 obviously
+ * isn't dead yet, we know that the leader is either
+ * sending SIGKILL's to all the processes in this
+ * task or is sleeping waiting for all the peers to
+ * exit. We let p1 complete the fork, but we need
+ * to go ahead and kill the new process p2 since
+ * the task leader may not get a chance to send
+ * SIGKILL to it. We leave it on the list so that
+ * the task leader will wait for this new process
+ * to commit suicide.
+ */
+ PROC_LOCK(p2);
+ psignal(p2, SIGKILL);
+ PROC_UNLOCK(p2);
+ } else
+ PROC_UNLOCK(p1->p_leader);
+ } else {
+ p2->p_peers = NULL;
+ p2->p_leader = p2;
+ }
+
+ sx_xlock(&proctree_lock);
+ PGRP_LOCK(p1->p_pgrp);
+ PROC_LOCK(p2);
+ PROC_LOCK(p1);
+
+ /*
+ * Preserve some more flags in subprocess. P_PROFIL has already
+ * been preserved.
+ */
+ p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
+ SESS_LOCK(p1->p_session);
+ if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
+ p2->p_flag |= P_CONTROLT;
+ SESS_UNLOCK(p1->p_session);
+ if (flags & RFPPWAIT)
+ p2->p_flag |= P_PPWAIT;
+
+ LIST_INSERT_AFTER(p1, p2, p_pglist);
+ PGRP_UNLOCK(p1->p_pgrp);
+ LIST_INIT(&p2->p_children);
+
+ callout_init(&p2->p_itcallout, 1);
+
+#ifdef KTRACE
+ /*
+ * Copy traceflag and tracefile if enabled.
+ */
+ mtx_lock(&ktrace_mtx);
+ KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
+ if (p1->p_traceflag & KTRFAC_INHERIT) {
+ p2->p_traceflag = p1->p_traceflag;
+ if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
+ VREF(p2->p_tracevp);
+ KASSERT(p1->p_tracecred != NULL,
+ ("ktrace vnode with no cred"));
+ p2->p_tracecred = crhold(p1->p_tracecred);
+ }
+ }
+ mtx_unlock(&ktrace_mtx);
+#endif
+
+ /*
+ * If PF_FORK is set, the child process inherits the
+ * procfs ioctl flags from its parent.
+ */
+ if (p1->p_pfsflags & PF_FORK) {
+ p2->p_stops = p1->p_stops;
+ p2->p_pfsflags = p1->p_pfsflags;
+ }
+
+ /*
+ * This begins the section where we must prevent the parent
+ * from being swapped.
+ */
+ _PHOLD(p1);
+ PROC_UNLOCK(p1);
+
+ /*
+ * Attach the new process to its parent.
+ *
+ * If RFNOWAIT is set, the newly created process becomes a child
+ * of init. This effectively disassociates the child from the
+ * parent.
+ */
+ if (flags & RFNOWAIT)
+ pptr = initproc;
+ else
+ pptr = p1;
+ p2->p_pptr = pptr;
+ LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
+ sx_xunlock(&proctree_lock);
+
+ /* Inform accounting that we have forked. */
+ p2->p_acflag = AFORK;
+ PROC_UNLOCK(p2);
+
+ /*
+ * Finish creating the child process. It will return via a different
+ * execution path later. (ie: directly into user mode)
+ */
+ vm_forkproc(td, p2, td2, flags);
+
+ if (flags == (RFFDG | RFPROC)) {
+ cnt.v_forks++;
+ cnt.v_forkpages += p2->p_vmspace->vm_dsize +
+ p2->p_vmspace->vm_ssize;
+ } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
+ cnt.v_vforks++;
+ cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
+ p2->p_vmspace->vm_ssize;
+ } else if (p1 == &proc0) {
+ cnt.v_kthreads++;
+ cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
+ p2->p_vmspace->vm_ssize;
+ } else {
+ cnt.v_rforks++;
+ cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
+ p2->p_vmspace->vm_ssize;
+ }
+
+ /*
+ * Both processes are set up, now check if any loadable modules want
+ * to adjust anything.
+ * What if they have an error? XXX
+ */
+ EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
+
+ /*
+ * If RFSTOPPED not requested, make child runnable and add to
+ * run queue.
+ */
+ microuptime(&p2->p_stats->p_start);
+ if ((flags & RFSTOPPED) == 0) {
+ mtx_lock_spin(&sched_lock);
+ p2->p_state = PRS_NORMAL;
+ TD_SET_CAN_RUN(td2);
+ setrunqueue(td2);
+ mtx_unlock_spin(&sched_lock);
+ }
+
+ /*
+ * Now can be swapped.
+ */
+ PROC_LOCK(p1);
+ _PRELE(p1);
+
+ /*
+ * tell any interested parties about the new process
+ */
+ KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
+ PROC_UNLOCK(p1);
+
+ /*
+ * Preserve synchronization semantics of vfork. If waiting for
+ * child to exec or exit, set P_PPWAIT on child, and sleep on our
+ * proc (in case of exit).
+ */
+ PROC_LOCK(p2);
+ while (p2->p_flag & P_PPWAIT)
+ msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
+ PROC_UNLOCK(p2);
+
+ /*
+ * If other threads are waiting, let them continue now
+ */
+ if (p1->p_flag & P_SA) {
+ PROC_LOCK(p1);
+ thread_single_end();
+ PROC_UNLOCK(p1);
+ }
+
+ /*
+ * Return child proc pointer to parent.
+ */
+ mtx_unlock(&Giant);
+ *procp = p2;
+ return (0);
+fail:
+ if (ppsratecheck(&lastfail, &curfail, 1))
+ printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
+ uid);
+ sx_xunlock(&allproc_lock);
+ uma_zfree(proc_zone, newproc);
+ if (p1->p_flag & P_SA) {
+ PROC_LOCK(p1);
+ thread_single_end();
+ PROC_UNLOCK(p1);
+ }
+ tsleep(&forksleep, PUSER, "fork", hz / 2);
+ mtx_unlock(&Giant);
+ return (error);
+}
+
+/*
+ * Handle the return of a child process from fork1(). This function
+ * is called from the MD fork_trampoline() entry point.
+ */
+void
+fork_exit(callout, arg, frame)
+ void (*callout)(void *, struct trapframe *);
+ void *arg;
+ struct trapframe *frame;
+{
+ struct thread *td;
+ struct proc *p;
+
+ if ((td = PCPU_GET(deadthread))) {
+ PCPU_SET(deadthread, NULL);
+ thread_stash(td);
+ }
+ td = curthread;
+ p = td->td_proc;
+ td->td_oncpu = PCPU_GET(cpuid);
+ p->p_state = PRS_NORMAL;
+ /*
+ * Finish setting up thread glue. We need to initialize
+ * the thread into a td_critnest=1 state. Some platforms
+ * may have already partially or fully initialized td_critnest
+ * and/or td_md.md_savecrit (when applciable).
+ *
+ * see <arch>/<arch>/critical.c
+ */
+ sched_lock.mtx_lock = (uintptr_t)td;
+ sched_lock.mtx_recurse = 0;
+ cpu_critical_fork_exit();
+ CTR3(KTR_PROC, "fork_exit: new thread %p (pid %d, %s)", td, p->p_pid,
+ p->p_comm);
+ if (PCPU_GET(switchtime.sec) == 0)
+ binuptime(PCPU_PTR(switchtime));
+ PCPU_SET(switchticks, ticks);
+ mtx_unlock_spin(&sched_lock);
+
+ /*
+ * cpu_set_fork_handler intercepts this function call to
+ * have this call a non-return function to stay in kernel mode.
+ * initproc has its own fork handler, but it does return.
+ */
+ KASSERT(callout != NULL, ("NULL callout in fork_exit"));
+ callout(arg, frame);
+
+ /*
+ * Check if a kernel thread misbehaved and returned from its main
+ * function.
+ */
+ PROC_LOCK(p);
+ if (p->p_flag & P_KTHREAD) {
+ PROC_UNLOCK(p);
+ mtx_lock(&Giant);
+ printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
+ p->p_comm, p->p_pid);
+ kthread_exit(0);
+ }
+ PROC_UNLOCK(p);
+#ifdef DIAGNOSTIC
+ cred_free_thread(td);
+#endif
+ mtx_assert(&Giant, MA_NOTOWNED);
+}
+
+/*
+ * Simplified back end of syscall(), used when returning from fork()
+ * directly into user mode. Giant is not held on entry, and must not
+ * be held on return. This function is passed in to fork_exit() as the
+ * first parameter and is called when returning to a new userland process.
+ */
+void
+fork_return(td, frame)
+ struct thread *td;
+ struct trapframe *frame;
+{
+
+ userret(td, frame, 0);
+#ifdef KTRACE
+ if (KTRPOINT(td, KTR_SYSRET))
+ ktrsysret(SYS_fork, 0, 0);
+#endif
+ mtx_assert(&Giant, MA_NOTOWNED);
+}
OpenPOWER on IntegriCloud