diff options
Diffstat (limited to 'sys/i386/xen/pmap.c')
-rw-r--r-- | sys/i386/xen/pmap.c | 3819 |
1 files changed, 3819 insertions, 0 deletions
diff --git a/sys/i386/xen/pmap.c b/sys/i386/xen/pmap.c new file mode 100644 index 0000000..920d6cb --- /dev/null +++ b/sys/i386/xen/pmap.c @@ -0,0 +1,3819 @@ +/*- + * Copyright (c) 1991 Regents of the University of California. + * All rights reserved. + * Copyright (c) 1994 John S. Dyson + * All rights reserved. + * Copyright (c) 1994 David Greenman + * All rights reserved. + * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu> + * All rights reserved. + * + * This code is derived from software contributed to Berkeley by + * the Systems Programming Group of the University of Utah Computer + * Science Department and William Jolitz of UUNET Technologies Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 + */ +/*- + * Copyright (c) 2003 Networks Associates Technology, Inc. + * All rights reserved. + * + * This software was developed for the FreeBSD Project by Jake Burkholder, + * Safeport Network Services, and Network Associates Laboratories, the + * Security Research Division of Network Associates, Inc. under + * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA + * CHATS research program. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +/* + * Manages physical address maps. + * + * In addition to hardware address maps, this + * module is called upon to provide software-use-only + * maps which may or may not be stored in the same + * form as hardware maps. These pseudo-maps are + * used to store intermediate results from copy + * operations to and from address spaces. + * + * Since the information managed by this module is + * also stored by the logical address mapping module, + * this module may throw away valid virtual-to-physical + * mappings at almost any time. However, invalidations + * of virtual-to-physical mappings must be done as + * requested. + * + * In order to cope with hardware architectures which + * make virtual-to-physical map invalidates expensive, + * this module may delay invalidate or reduced protection + * operations until such time as they are actually + * necessary. This module is given full information as + * to which processors are currently using which maps, + * and to when physical maps must be made correct. + */ + +#include "opt_cpu.h" +#include "opt_pmap.h" +#include "opt_msgbuf.h" +#include "opt_xbox.h" + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/kernel.h> +#include <sys/ktr.h> +#include <sys/lock.h> +#include <sys/malloc.h> +#include <sys/mman.h> +#include <sys/msgbuf.h> +#include <sys/mutex.h> +#include <sys/proc.h> +#include <sys/sx.h> +#include <sys/vmmeter.h> +#include <sys/sched.h> +#include <sys/sysctl.h> +#include <sys/syslog.h> +#ifdef SMP +#include <sys/smp.h> +#endif + +#ifdef XBOX +#include <machine/xbox.h> +#endif + +#include <vm/vm.h> +#include <vm/vm_param.h> +#include <vm/vm_kern.h> +#include <vm/vm_page.h> +#include <vm/vm_map.h> +#include <vm/vm_object.h> +#include <vm/vm_extern.h> +#include <vm/vm_pageout.h> +#include <vm/vm_pager.h> +#include <vm/uma.h> + +#ifdef XEN +#include <xen/interface/xen.h> +#include <machine/xen/hypervisor.h> +#include <machine/xen/hypercall.h> +#include <machine/xen/xenvar.h> +#include <machine/xen/xenfunc.h> +#endif + +#include <machine/cpu.h> +#include <machine/cputypes.h> +#include <machine/md_var.h> +#include <machine/pcb.h> +#include <machine/specialreg.h> +#ifdef SMP +#include <machine/smp.h> +#endif + +#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU) +#define CPU_ENABLE_SSE +#endif + +#ifndef PMAP_SHPGPERPROC +#define PMAP_SHPGPERPROC 200 +#endif + +#define PMAP_DIAGNOSTIC + +#if defined(DIAGNOSTIC) +#define PMAP_DIAGNOSTIC +#endif + +#if !defined(PMAP_DIAGNOSTIC) +#define PMAP_INLINE __inline +#else +#define PMAP_INLINE +#endif + +/* + * Get PDEs and PTEs for user/kernel address space + */ +#define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT])) +#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT]) + +#define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0) +#define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0) +#define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0) +#define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0) +#define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0) + +#ifndef XEN +#define pmap_pte_set_w(pte, v) ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \ + atomic_clear_int((u_int *)(pte), PG_W)) +#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v))) +#endif + +struct pmap kernel_pmap_store; +LIST_HEAD(pmaplist, pmap); +static struct pmaplist allpmaps; +static struct mtx allpmaps_lock; + +vm_paddr_t avail_end; /* PA of last available physical page */ +vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ +vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ +int pgeflag = 0; /* PG_G or-in */ +int pseflag = 0; /* PG_PS or-in */ + +static int nkpt; +vm_offset_t kernel_vm_end; +extern u_int32_t KERNend; + +#if defined(PAE) && !defined(XEN) +static uma_zone_t pdptzone; +#endif + +/* + * Data for the pv entry allocation mechanism + */ +static uma_zone_t pvzone; +static struct vm_object pvzone_obj; +static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; +int pmap_pagedaemon_waken; + +/* + * All those kernel PT submaps that BSD is so fond of + */ +struct sysmaps { + struct mtx lock; + pt_entry_t *CMAP1; + pt_entry_t *CMAP2; + caddr_t CADDR1; + caddr_t CADDR2; +}; +static struct sysmaps sysmaps_pcpu[MAXCPU]; +pt_entry_t *CMAP1 = 0; +static pt_entry_t *CMAP3; +caddr_t CADDR1 = 0, ptvmmap = 0; +static caddr_t CADDR3; +struct msgbuf *msgbufp = 0; + +/* + * Crashdump maps. + */ +static caddr_t crashdumpmap; + +#ifdef SMP +extern pt_entry_t *SMPpt; +#endif +static pt_entry_t *PMAP1 = 0, *PMAP2; +static pt_entry_t *PADDR1 = 0, *PADDR2; +#ifdef SMP +static int PMAP1cpu; +static int PMAP1changedcpu; +SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, + &PMAP1changedcpu, 0, + "Number of times pmap_pte_quick changed CPU with same PMAP1"); +#endif +static int PMAP1changed; +SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, + &PMAP1changed, 0, + "Number of times pmap_pte_quick changed PMAP1"); +static int PMAP1unchanged; +SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, + &PMAP1unchanged, 0, + "Number of times pmap_pte_quick didn't change PMAP1"); +static struct mtx PMAP2mutex; + +static PMAP_INLINE void free_pv_entry(pv_entry_t pv); +static pv_entry_t get_pv_entry(void); +static void pmap_clear_ptes(vm_page_t m, int bit); + +static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, + vm_page_t m, vm_prot_t prot, vm_page_t mpte); +static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva, + vm_page_t *free); +static void pmap_remove_page(struct pmap *pmap, vm_offset_t va); +static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, + vm_offset_t va); +static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m); +static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, + vm_page_t m); + +static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags); + +static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags); +static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free); +static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va); +static void pmap_pte_release(pt_entry_t *pte); +static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *); +static vm_offset_t pmap_kmem_choose(vm_offset_t addr); +#if defined(PAE) && !defined(XEN) +static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait); +#endif + +CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t)); +CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t)); + +/* + * If you get an error here, then you set KVA_PAGES wrong! See the + * description of KVA_PAGES in sys/i386/include/pmap.h. It must be + * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE. + */ +CTASSERT(KERNBASE % (1 << 24) == 0); + +static __inline void +pagezero(void *page) +{ +#if defined(I686_CPU) + if (cpu_class == CPUCLASS_686) { +#if defined(CPU_ENABLE_SSE) + if (cpu_feature & CPUID_SSE2) + sse2_pagezero(page); + else +#endif + i686_pagezero(page); + } else +#endif + bzero(page, PAGE_SIZE); +} + +void +pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type) +{ + vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]); + + switch (type) { + case SH_PD_SET_VA: +#if 0 + xen_queue_pt_update(shadow_pdir_ma, + xpmap_ptom(val & ~(PG_RW))); +#endif + xen_queue_pt_update(pdir_ma, + xpmap_ptom(val)); + break; + case SH_PD_SET_VA_MA: +#if 0 + xen_queue_pt_update(shadow_pdir_ma, + val & ~(PG_RW)); +#endif + xen_queue_pt_update(pdir_ma, val); + break; + case SH_PD_SET_VA_CLEAR: +#if 0 + xen_queue_pt_update(shadow_pdir_ma, 0); +#endif + xen_queue_pt_update(pdir_ma, 0); + break; + } +} + +/* + * Move the kernel virtual free pointer to the next + * 4MB. This is used to help improve performance + * by using a large (4MB) page for much of the kernel + * (.text, .data, .bss) + */ +static vm_offset_t +pmap_kmem_choose(vm_offset_t addr) +{ + vm_offset_t newaddr = addr; + +#ifndef DISABLE_PSE + if (cpu_feature & CPUID_PSE) + newaddr = (addr + PDRMASK) & ~PDRMASK; +#endif + return newaddr; +} + +/* + * Bootstrap the system enough to run with virtual memory. + * + * On the i386 this is called after mapping has already been enabled + * and just syncs the pmap module with what has already been done. + * [We can't call it easily with mapping off since the kernel is not + * mapped with PA == VA, hence we would have to relocate every address + * from the linked base (virtual) address "KERNBASE" to the actual + * (physical) address starting relative to 0] + */ +void +pmap_bootstrap(firstaddr, loadaddr) + vm_paddr_t firstaddr; + vm_paddr_t loadaddr; +{ + vm_offset_t va; + pt_entry_t *pte, *unused; + struct sysmaps *sysmaps; + int i; + + /* + * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too + * large. It should instead be correctly calculated in locore.s and + * not based on 'first' (which is a physical address, not a virtual + * address, for the start of unused physical memory). The kernel + * page tables are NOT double mapped and thus should not be included + * in this calculation. + */ + virtual_avail = (vm_offset_t) KERNBASE + firstaddr; + virtual_avail = pmap_kmem_choose(virtual_avail); + + virtual_end = VM_MAX_KERNEL_ADDRESS; + + /* + * Initialize the kernel pmap (which is statically allocated). + */ + PMAP_LOCK_INIT(kernel_pmap); + kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD); +#ifdef PAE + kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT); +#endif + kernel_pmap->pm_active = -1; /* don't allow deactivation */ + TAILQ_INIT(&kernel_pmap->pm_pvlist); + LIST_INIT(&allpmaps); + mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN); + mtx_lock_spin(&allpmaps_lock); + LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list); + mtx_unlock_spin(&allpmaps_lock); + nkpt = NKPT; + + /* + * Reserve some special page table entries/VA space for temporary + * mapping of pages. + */ +#define SYSMAP(c, p, v, n) \ + v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n); + + va = virtual_avail; + pte = vtopte(va); + + /* + * CMAP1/CMAP2 are used for zeroing and copying pages. + * CMAP3 is used for the idle process page zeroing. + */ + for (i = 0; i < MAXCPU; i++) { + sysmaps = &sysmaps_pcpu[i]; + mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF); + SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1) + SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1) + } + SYSMAP(caddr_t, CMAP1, CADDR1, 1) + SYSMAP(caddr_t, CMAP3, CADDR3, 1) +#ifdef XEN + PT_SET_MA(CADDR3, 0); +#else + *CMAP3 = 0; +#endif + /* + * Crashdump maps. + */ + SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS) + + /* + * ptvmmap is used for reading arbitrary physical pages via /dev/mem. + */ + SYSMAP(caddr_t, unused, ptvmmap, 1) + + /* + * msgbufp is used to map the system message buffer. + */ + SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE))) + + /* + * ptemap is used for pmap_pte_quick + */ + SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1); + SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1); + + mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF); + + virtual_avail = va; +#ifdef XEN + PT_SET_MA(CADDR1, 0); +#else + *CMAP1 = 0; +#endif + +#if !defined(XEN) +#ifdef XBOX + /* FIXME: This is gross, but needed for the XBOX. Since we are in such + * an early stadium, we cannot yet neatly map video memory ... :-( + * Better fixes are very welcome! + */ + if (!arch_i386_is_xbox) +#endif + for (i = 0; i < NKPT; i++) + PTD[i] = 0; + + /* Initialize the PAT MSR if present. */ + pmap_init_pat(); + + /* Turn on PG_G on kernel page(s) */ + pmap_set_pg(); +#endif /* !XEN */ +} + +/* + * Setup the PAT MSR. + */ +void +pmap_init_pat(void) +{ + uint64_t pat_msr; + + /* Bail if this CPU doesn't implement PAT. */ + if (!(cpu_feature & CPUID_PAT)) + return; + +#ifdef PAT_WORKS + /* + * Leave the indices 0-3 at the default of WB, WT, UC, and UC-. + * Program 4 and 5 as WP and WC. + * Leave 6 and 7 as UC and UC-. + */ + pat_msr = rdmsr(MSR_PAT); + pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5)); + pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) | + PAT_VALUE(5, PAT_WRITE_COMBINING); +#else + /* + * Due to some Intel errata, we can only safely use the lower 4 + * PAT entries. Thus, just replace PAT Index 2 with WC instead + * of UC-. + * + * Intel Pentium III Processor Specification Update + * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B + * or Mode C Paging) + * + * Intel Pentium IV Processor Specification Update + * Errata N46 (PAT Index MSB May Be Calculated Incorrectly) + */ + pat_msr = rdmsr(MSR_PAT); + pat_msr &= ~PAT_MASK(2); + pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING); +#endif + wrmsr(MSR_PAT, pat_msr); +} + +/* + * Set PG_G on kernel pages. Only the BSP calls this when SMP is turned on. + */ +void +pmap_set_pg(void) +{ + pd_entry_t pdir; + pt_entry_t *pte; + vm_offset_t va, endva; + int i; + + if (pgeflag == 0) + return; + + i = KERNLOAD/NBPDR; + endva = KERNBASE + KERNend; + + if (pseflag) { + va = KERNBASE + KERNLOAD; + while (va < endva) { + pdir = kernel_pmap->pm_pdir[KPTDI+i]; + pdir |= pgeflag; + kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir; + invltlb(); /* Play it safe, invltlb() every time */ + i++; + va += NBPDR; + } + } else { + va = (vm_offset_t)btext; + while (va < endva) { + pte = vtopte(va); + if (*pte) { +#ifdef XEN + PT_SET_MA(va, *pte | pgeflag); +#else + *pte |= pgeflag; +#endif + } + invltlb(); /* Play it safe, invltlb() every time */ + va += PAGE_SIZE; + } + } +} + +/* + * Initialize a vm_page's machine-dependent fields. + */ +void +pmap_page_init(vm_page_t m) +{ + + TAILQ_INIT(&m->md.pv_list); + m->md.pv_list_count = 0; +} + +#if defined(PAE) && !defined(XEN) + +static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt"); + +static void * +pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) +{ + *flags = UMA_SLAB_PRIV; + return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL, + 1, 0)); +} +#endif + +/* + * Initialize the pmap module. + * Called by vm_init, to initialize any structures that the pmap + * system needs to map virtual memory. + */ +void +pmap_init(void) +{ + int shpgperproc = PMAP_SHPGPERPROC; + + /* + * Initialize the address space (zone) for the pv entries. Set a + * high water mark so that the system can recover from excessive + * numbers of pv entries. + */ + pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, + NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); + TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); + pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; + TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); + pv_entry_high_water = 9 * (pv_entry_max / 10); + uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max); + +#if defined(PAE) && !defined(XEN) + pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL, + NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1, + UMA_ZONE_VM | UMA_ZONE_NOFREE); + uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf); +#endif +} + +void +pmap_init2() +{ +} + + +/*************************************************** + * Low level helper routines..... + ***************************************************/ + +/* + * Determine the appropriate bits to set in a PTE or PDE for a specified + * caching mode. + */ +static int +pmap_cache_bits(int mode, boolean_t is_pde) +{ + int pat_flag, pat_index, cache_bits; + + /* The PAT bit is different for PTE's and PDE's. */ + pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT; + + /* If we don't support PAT, map extended modes to older ones. */ + if (!(cpu_feature & CPUID_PAT)) { + switch (mode) { + case PAT_UNCACHEABLE: + case PAT_WRITE_THROUGH: + case PAT_WRITE_BACK: + break; + case PAT_UNCACHED: + case PAT_WRITE_COMBINING: + case PAT_WRITE_PROTECTED: + mode = PAT_UNCACHEABLE; + break; + } + } + + /* Map the caching mode to a PAT index. */ + switch (mode) { +#ifdef PAT_WORKS + case PAT_UNCACHEABLE: + pat_index = 3; + break; + case PAT_WRITE_THROUGH: + pat_index = 1; + break; + case PAT_WRITE_BACK: + pat_index = 0; + break; + case PAT_UNCACHED: + pat_index = 2; + break; + case PAT_WRITE_COMBINING: + pat_index = 5; + break; + case PAT_WRITE_PROTECTED: + pat_index = 4; + break; +#else + case PAT_UNCACHED: + case PAT_UNCACHEABLE: + case PAT_WRITE_PROTECTED: + pat_index = 3; + break; + case PAT_WRITE_THROUGH: + pat_index = 1; + break; + case PAT_WRITE_BACK: + pat_index = 0; + break; + case PAT_WRITE_COMBINING: + pat_index = 2; + break; +#endif + default: + panic("Unknown caching mode %d\n", mode); + } + + /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */ + cache_bits = 0; + if (pat_index & 0x4) + cache_bits |= pat_flag; + if (pat_index & 0x2) + cache_bits |= PG_NC_PCD; + if (pat_index & 0x1) + cache_bits |= PG_NC_PWT; + return (cache_bits); +} +#ifdef SMP +/* + * For SMP, these functions have to use the IPI mechanism for coherence. + * + * N.B.: Before calling any of the following TLB invalidation functions, + * the calling processor must ensure that all stores updating a non- + * kernel page table are globally performed. Otherwise, another + * processor could cache an old, pre-update entry without being + * invalidated. This can happen one of two ways: (1) The pmap becomes + * active on another processor after its pm_active field is checked by + * one of the following functions but before a store updating the page + * table is globally performed. (2) The pmap becomes active on another + * processor before its pm_active field is checked but due to + * speculative loads one of the following functions stills reads the + * pmap as inactive on the other processor. + * + * The kernel page table is exempt because its pm_active field is + * immutable. The kernel page table is always active on every + * processor. + */ +void +pmap_invalidate_page(pmap_t pmap, vm_offset_t va) +{ + u_int cpumask; + u_int other_cpus; + + CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x", + pmap, va); + + sched_pin(); + if (pmap == kernel_pmap || pmap->pm_active == all_cpus) { + invlpg(va); + smp_invlpg(va); + } else { + cpumask = PCPU_GET(cpumask); + other_cpus = PCPU_GET(other_cpus); + if (pmap->pm_active & cpumask) + invlpg(va); + if (pmap->pm_active & other_cpus) + smp_masked_invlpg(pmap->pm_active & other_cpus, va); + } + PT_UPDATES_FLUSH(); + sched_unpin(); +} + +void +pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) +{ + u_int cpumask; + u_int other_cpus; + vm_offset_t addr; + + CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x", + pmap, sva, eva); + + sched_pin(); + if (pmap == kernel_pmap || pmap->pm_active == all_cpus) { + for (addr = sva; addr < eva; addr += PAGE_SIZE) + invlpg(addr); + smp_invlpg_range(sva, eva); + } else { + cpumask = PCPU_GET(cpumask); + other_cpus = PCPU_GET(other_cpus); + if (pmap->pm_active & cpumask) + for (addr = sva; addr < eva; addr += PAGE_SIZE) + invlpg(addr); + if (pmap->pm_active & other_cpus) + smp_masked_invlpg_range(pmap->pm_active & other_cpus, + sva, eva); + } + PT_UPDATES_FLUSH(); + sched_unpin(); +} + +void +pmap_invalidate_all(pmap_t pmap) +{ + u_int cpumask; + u_int other_cpus; + + CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap); + sched_pin(); + if (pmap == kernel_pmap || pmap->pm_active == all_cpus) { + invltlb(); + smp_invltlb(); + } else { + cpumask = PCPU_GET(cpumask); + other_cpus = PCPU_GET(other_cpus); + if (pmap->pm_active & cpumask) + invltlb(); + if (pmap->pm_active & other_cpus) + smp_masked_invltlb(pmap->pm_active & other_cpus); + } + sched_unpin(); +} + +void +pmap_invalidate_cache(void) +{ + + sched_pin(); + wbinvd(); + smp_cache_flush(); + sched_unpin(); +} +#else /* !SMP */ +/* + * Normal, non-SMP, 486+ invalidation functions. + * We inline these within pmap.c for speed. + */ +PMAP_INLINE void +pmap_invalidate_page(pmap_t pmap, vm_offset_t va) +{ + if (pmap == kernel_pmap || pmap->pm_active) { + CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x", + pmap, va); + invlpg(va); + PT_UPDATES_FLUSH(); + } +} + +PMAP_INLINE void +pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) +{ + vm_offset_t addr; + + if (pmap == kernel_pmap || pmap->pm_active) { + if (eva - sva > PAGE_SIZE) + CTR3(KTR_PMAP, + "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x", + pmap, sva, eva); + for (addr = sva; addr < eva; addr += PAGE_SIZE) + invlpg(addr); + PT_UPDATES_FLUSH(); + } +} + +PMAP_INLINE void +pmap_invalidate_all(pmap_t pmap) +{ + + + if (pmap == kernel_pmap || pmap->pm_active) { + CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap); + invltlb(); + } +} + +PMAP_INLINE void +pmap_invalidate_cache(void) +{ + + wbinvd(); +} +#endif /* !SMP */ + +/* + * Are we current address space or kernel? N.B. We return FALSE when + * a pmap's page table is in use because a kernel thread is borrowing + * it. The borrowed page table can change spontaneously, making any + * dependence on its continued use subject to a race condition. + */ +static __inline int +pmap_is_current(pmap_t pmap) +{ + + return (pmap == kernel_pmap || + (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) && + (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME))); +} + +/* + * If the given pmap is not the current or kernel pmap, the returned pte must + * be released by passing it to pmap_pte_release(). + */ +pt_entry_t * +pmap_pte(pmap_t pmap, vm_offset_t va) +{ + pd_entry_t newpf; + pd_entry_t *pde; + + pde = pmap_pde(pmap, va); + if (*pde & PG_PS) + return (pde); + if (*pde != 0) { + /* are we current address space or kernel? */ + if (pmap_is_current(pmap)) + return (vtopte(va)); + mtx_lock(&PMAP2mutex); + newpf = *pde & PG_FRAME; + if ((*PMAP2 & PG_FRAME) != newpf) { +#ifdef XEN + PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M); + CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x", + pmap, va, (*PMAP2 & 0xffffffff)); +#else + *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M; + pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2); +#endif + } + return (PADDR2 + (i386_btop(va) & (NPTEPG - 1))); + } + return (0); +} + +/* + * Releases a pte that was obtained from pmap_pte(). Be prepared for the pte + * being NULL. + */ +static __inline void +pmap_pte_release(pt_entry_t *pte) +{ + + if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) { + CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx", + *PMAP2); + PT_SET_VA_MA(PMAP2, 0, TRUE); + mtx_unlock(&PMAP2mutex); + } +} + +static __inline void +invlcaddr(void *caddr) +{ + + invlpg((u_int)caddr); + PT_UPDATES_FLUSH(); +} + +/* + * Super fast pmap_pte routine best used when scanning + * the pv lists. This eliminates many coarse-grained + * invltlb calls. Note that many of the pv list + * scans are across different pmaps. It is very wasteful + * to do an entire invltlb for checking a single mapping. + * + * If the given pmap is not the current pmap, vm_page_queue_mtx + * must be held and curthread pinned to a CPU. + */ +static pt_entry_t * +pmap_pte_quick(pmap_t pmap, vm_offset_t va) +{ + pd_entry_t newpf; + pd_entry_t *pde; + + pde = pmap_pde(pmap, va); + if (*pde & PG_PS) + return (pde); + + /* + * + * XXX hitting this indicates that things are AFU + */ + if (*pde != 0) { + /* are we current address space or kernel? */ + if (pmap_is_current(pmap)) + return (vtopte(va)); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + KASSERT(curthread->td_pinned > 0, ("curthread not pinned")); + newpf = *pde & PG_FRAME; + if ((*PMAP1 & PG_FRAME) != newpf) { +#ifdef XEN + PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M); + CTR3(KTR_PMAP, + "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x", + pmap, va, (u_long)*PMAP1); +#else + *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M; +#endif +#ifdef SMP + PMAP1cpu = PCPU_GET(cpuid); +#endif + invlcaddr(PADDR1); + PMAP1changed++; + } else +#ifdef SMP + if (PMAP1cpu != PCPU_GET(cpuid)) { + PMAP1cpu = PCPU_GET(cpuid); + invlcaddr(PADDR1); + PMAP1changedcpu++; + } else +#endif + PMAP1unchanged++; + return (PADDR1 + (i386_btop(va) & (NPTEPG - 1))); + } + return (0); +} + +/* + * Routine: pmap_extract + * Function: + * Extract the physical page address associated + * with the given map/virtual_address pair. + */ + +vm_paddr_t +pmap_extract(pmap_t pmap, vm_offset_t va) +{ + vm_paddr_t rtval; + pt_entry_t *pte; + pd_entry_t pde; + + rtval = 0; + PMAP_LOCK(pmap); + pde = pmap->pm_pdir[va >> PDRSHIFT]; + if (pde != 0) { + if ((pde & PG_PS) != 0) { +#ifdef XEN + rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK); +#else + rtval = (pde & ~PDRMASK) | (va & PDRMASK); +#endif + PMAP_UNLOCK(pmap); + return (rtval); + } + pte = pmap_pte(pmap, va); +#ifdef XEN + rtval = ((*pte ? xpmap_mtop(*pte) : 0) & PG_FRAME) | (va & PAGE_MASK); + +#else + rtval = (*pte & PG_FRAME) | (va & PAGE_MASK); +#endif + pmap_pte_release(pte); + } + PMAP_UNLOCK(pmap); + return (rtval); +} + +vm_paddr_t +pmap_extract_ma(pmap_t pmap, vm_offset_t va) +{ + vm_paddr_t rtval; + pt_entry_t *pte; + pd_entry_t pde; + + rtval = 0; + PMAP_LOCK(pmap); + pde = pmap->pm_pdir[va >> PDRSHIFT]; + if (pde != 0) { + if ((pde & PG_PS) != 0) { + rtval = (pde & ~PDRMASK) | (va & PDRMASK); + + PMAP_UNLOCK(pmap); + return (rtval); + } + pte = pmap_pte(pmap, va); + + rtval = (*pte & PG_FRAME) | (va & PAGE_MASK); + pmap_pte_release(pte); + } + PMAP_UNLOCK(pmap); + return (rtval); +} + + +/* + * Routine: pmap_extract_and_hold + * Function: + * Atomically extract and hold the physical page + * with the given pmap and virtual address pair + * if that mapping permits the given protection. + */ +vm_page_t +pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) +{ + pd_entry_t pde; + pt_entry_t pte; + vm_page_t m; + + m = NULL; + vm_page_lock_queues(); + PMAP_LOCK(pmap); + pde = PT_GET(pmap_pde(pmap, va)); + if (pde != 0) { + if (pde & PG_PS) { + if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) { + m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) | + (va & PDRMASK)); + vm_page_hold(m); + } + } else { + sched_pin(); + pte = PT_GET(pmap_pte_quick(pmap, va)); + if (pte != 0 && + ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) { + m = PHYS_TO_VM_PAGE(pte & PG_FRAME); + vm_page_hold(m); + } + sched_unpin(); + } + } + vm_page_unlock_queues(); + PMAP_UNLOCK(pmap); + return (m); +} + +/*************************************************** + * Low level mapping routines..... + ***************************************************/ + +/* + * Add a wired page to the kva. + * Note: not SMP coherent. + */ +PMAP_INLINE void +pmap_kenter(vm_offset_t va, vm_paddr_t pa) +{ + PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag); +} + +PMAP_INLINE void +pmap_kenter_ma(vm_offset_t va, vm_paddr_t pa) +{ + + PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag); +} + +PMAP_INLINE void +pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode) +{ + PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0)); +} + +/* + * Remove a page from the kernel pagetables. + * Note: not SMP coherent. + */ +PMAP_INLINE void +pmap_kremove(vm_offset_t va) +{ + pt_entry_t *pte; + + pte = vtopte(va); + PT_SET_VA_MA(pte, 0, FALSE); +} + +/* + * Used to map a range of physical addresses into kernel + * virtual address space. + * + * The value passed in '*virt' is a suggested virtual address for + * the mapping. Architectures which can support a direct-mapped + * physical to virtual region can return the appropriate address + * within that region, leaving '*virt' unchanged. Other + * architectures should map the pages starting at '*virt' and + * update '*virt' with the first usable address after the mapped + * region. + */ +vm_offset_t +pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) +{ + vm_offset_t va, sva; + + va = sva = *virt; + while (start < end) { + pmap_kenter(va, start); + va += PAGE_SIZE; + start += PAGE_SIZE; + } + pmap_invalidate_range(kernel_pmap, sva, va); + *virt = va; + return (sva); +} + + +/* + * Add a list of wired pages to the kva + * this routine is only used for temporary + * kernel mappings that do not need to have + * page modification or references recorded. + * Note that old mappings are simply written + * over. The page *must* be wired. + * Note: SMP coherent. Uses a ranged shootdown IPI. + */ +void +pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count) +{ + pt_entry_t *endpte, oldpte, *pte; + + oldpte = 0; + pte = vtopte(sva); + endpte = pte + count; + vm_page_lock_queues(); + critical_enter(); + while (pte < endpte) { + oldpte |= *pte; +#ifdef XEN + PT_SET_VA(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V, FALSE); +#else + pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V); +#endif + pte++; + ma++; + } + PT_UPDATES_FLUSH(); + if ((oldpte & PG_V) != 0) + pmap_invalidate_range(kernel_pmap, sva, sva + count * + PAGE_SIZE); + vm_page_unlock_queues(); + critical_exit(); +} + +/* + * This routine tears out page mappings from the + * kernel -- it is meant only for temporary mappings. + * Note: SMP coherent. Uses a ranged shootdown IPI. + */ +void +pmap_qremove(vm_offset_t sva, int count) +{ + vm_offset_t va; + + va = sva; + vm_page_lock_queues(); + critical_enter(); + while (count-- > 0) { + pmap_kremove(va); + va += PAGE_SIZE; + } + pmap_invalidate_range(kernel_pmap, sva, va); + critical_exit(); + vm_page_unlock_queues(); + +} + +/*************************************************** + * Page table page management routines..... + ***************************************************/ +static PMAP_INLINE void +pmap_free_zero_pages(vm_page_t free) +{ + vm_page_t m; + + while (free != NULL) { + m = free; + free = m->right; + vm_page_free_zero(m); + } +} + +/* + * This routine unholds page table pages, and if the hold count + * drops to zero, then it decrements the wire count. + */ +static PMAP_INLINE int +pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free) +{ + + --m->wire_count; + if (m->wire_count == 0) + return _pmap_unwire_pte_hold(pmap, m, free); + else + return 0; +} + +static int +_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free) +{ + vm_offset_t pteva; + + PT_UPDATES_FLUSH(); + /* + * unmap the page table page + */ +#ifdef XEN + xen_pt_unpin(pmap->pm_pdir[m->pindex]); + PT_SET_VA_MA(&pmap->pm_pdir[m->pindex], 0, TRUE); + pmap_zero_page(m); +#else + pmap->pm_pdir[m->pindex] = 0; +#endif + --pmap->pm_stats.resident_count; + + /* + * This is a release store so that the ordinary store unmapping + * the page table page is globally performed before TLB shoot- + * down is begun. + */ + atomic_subtract_rel_int(&cnt.v_wire_count, 1); + + /* + * Do an invltlb to make the invalidated mapping + * take effect immediately. + */ + pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex); + pmap_invalidate_page(pmap, pteva); + + /* + * Put page on a list so that it is released after + * *ALL* TLB shootdown is done + */ + m->right = *free; + *free = m; + + return 1; +} + +/* + * After removing a page table entry, this routine is used to + * conditionally free the page, and manage the hold/wire counts. + */ +static int +pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free) +{ + pd_entry_t ptepde; + vm_page_t mpte; + + if (va >= VM_MAXUSER_ADDRESS) + return 0; + ptepde = PT_GET(pmap_pde(pmap, va)); + mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME); + return pmap_unwire_pte_hold(pmap, mpte, free); +} + +void +pmap_pinit0(pmap) + struct pmap *pmap; +{ + + PMAP_LOCK_INIT(pmap); + pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD); +#ifdef PAE + pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT); +#endif + pmap->pm_active = 0; + PCPU_SET(curpmap, pmap); + TAILQ_INIT(&pmap->pm_pvlist); + bzero(&pmap->pm_stats, sizeof pmap->pm_stats); + mtx_lock_spin(&allpmaps_lock); + LIST_INSERT_HEAD(&allpmaps, pmap, pm_list); + mtx_unlock_spin(&allpmaps_lock); +} + +/* + * Initialize a preallocated and zeroed pmap structure, + * such as one in a vmspace structure. + */ +void +pmap_pinit(struct pmap *pmap) +{ +#ifdef XEN + vm_page_t m, ptdpg[NPGPTD + 1]; + int npgptd = NPGPTD + 1; +#else + vm_page_t m, ptdpg[NPGPTD]; + vm_paddr_t pa; + int npgptd = NPGPTD; +#endif + static int color; + int i; + + PMAP_LOCK_INIT(pmap); + + /* + * No need to allocate page table space yet but we do need a valid + * page directory table. + */ + if (pmap->pm_pdir == NULL) { + pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map, + NBPTD); + +#if defined(PAE) +#ifdef XEN + pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1); +#else + pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO); + KASSERT(((vm_offset_t)pmap->pm_pdpt & + ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0, + ("pmap_pinit: pdpt misaligned")); + KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30), + ("pmap_pinit: pdpt above 4g")); +#endif /* !XEN */ +#endif /* PAE */ + } + + /* + * allocate the page directory page(s) + */ + for (i = 0; i < npgptd;) { + m = vm_page_alloc(NULL, color++, + VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | + VM_ALLOC_ZERO); + if (m == NULL) + VM_WAIT; + else { + ptdpg[i++] = m; + } + } + + pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD); + + for (i = 0; i < NPGPTD; i++) { + if ((ptdpg[i]->flags & PG_ZERO) == 0) + pagezero(&pmap->pm_pdir[i*NPDEPG]); + } + + mtx_lock_spin(&allpmaps_lock); + LIST_INSERT_HEAD(&allpmaps, pmap, pm_list); + mtx_unlock_spin(&allpmaps_lock); + /* Wire in kernel global address entries. */ + /* XXX copies current process, does not fill in MPPTDI */ + bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t)); + +#ifdef PAE +#ifdef XEN + pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1); + if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0) + bzero(pmap->pm_pdpt, PAGE_SIZE); +#endif + for (i = 0; i < NPGPTD; i++) { + vm_paddr_t ma; + + ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i])); + pmap->pm_pdpt[i] = ma | PG_V; + + } +#endif + +#ifdef SMP + pmap->pm_pdir[MPPTDI] = PTD[MPPTDI]; +#endif + + +#ifdef XEN + for (i = 0; i < NPGPTD; i++) { + pt_entry_t *pd; + vm_paddr_t ma; + + ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i])); + pd = pmap->pm_pdir + (i * NPDEPG); + PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW)); + + } + +#ifdef PAE + PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW); +#endif + vm_page_lock_queues(); + xen_flush_queue(); + xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD]))); + for (i = 0; i < NPGPTD; i++) { + vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i])); + PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE); + } + xen_flush_queue(); + vm_page_unlock_queues(); +#else + /* install self-referential address mapping entry(s) */ + for (i = 0; i < NPGPTD; i++) { + pa = VM_PAGE_TO_PHYS(ptdpg[i]); + pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M; +#ifdef PAE + pmap->pm_pdpt[i] = pa | PG_V; +#endif + } +#endif + pmap->pm_active = 0; + TAILQ_INIT(&pmap->pm_pvlist); + bzero(&pmap->pm_stats, sizeof pmap->pm_stats); +} + +/* + * this routine is called if the page table page is not + * mapped correctly. + */ +static vm_page_t +_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags) +{ + vm_paddr_t ptepa; + vm_page_t m; + + KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT || + (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK, + ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK")); + + /* + * Allocate a page table page. + */ + if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ | + VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) { + if (flags & M_WAITOK) { + PMAP_UNLOCK(pmap); + vm_page_unlock_queues(); + VM_WAIT; + vm_page_lock_queues(); + PMAP_LOCK(pmap); + } + + /* + * Indicate the need to retry. While waiting, the page table + * page may have been allocated. + */ + return (NULL); + } + if ((m->flags & PG_ZERO) == 0) + pmap_zero_page(m); + + /* + * Map the pagetable page into the process address space, if + * it isn't already there. + */ + + pmap->pm_stats.resident_count++; +#ifdef XEN + ptepa = xpmap_ptom(VM_PAGE_TO_PHYS(m)); + xen_pt_pin(ptepa); + PT_SET_VA_MA(&pmap->pm_pdir[ptepindex], + (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE); + + KASSERT(pmap->pm_pdir[ptepindex], + ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex)); +#else + ptepa = VM_PAGE_TO_PHYS(m); + pmap->pm_pdir[ptepindex] = + (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M); +#endif + return (m); +} + +static vm_page_t +pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags) +{ + unsigned ptepindex; + pd_entry_t ptepa; + vm_page_t m; + + KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT || + (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK, + ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK")); + + /* + * Calculate pagetable page index + */ + ptepindex = va >> PDRSHIFT; +retry: + /* + * Get the page directory entry + */ + ptepa = pmap->pm_pdir[ptepindex]; + + /* + * XXX track me down and fix me! + */ + if ((ptepa & PG_V) == 0) { + if (ptepa && ((ptepa & PG_V) == 0)) + panic("phys addr set but not valid"); + } + + /* + * This supports switching from a 4MB page to a + * normal 4K page. + */ + if (ptepa & PG_PS) { + pmap->pm_pdir[ptepindex] = 0; + ptepa = 0; + pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE; + pmap_invalidate_all(kernel_pmap); + } + + /* + * If the page table page is mapped, we just increment the + * hold count, and activate it. + */ + if (ptepa) { +#ifdef XEN + m = PHYS_TO_VM_PAGE(xpmap_mtop(ptepa)); +#else + m = PHYS_TO_VM_PAGE(ptepa); +#endif + m->wire_count++; + } else { + /* + * Here if the pte page isn't mapped, or if it has + * been deallocated. + */ + CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x", + pmap, va, flags); + + m = _pmap_allocpte(pmap, ptepindex, flags); + if (m == NULL && (flags & M_WAITOK)) + goto retry; + KASSERT(pmap->pm_pdir[ptepindex], + ("ptepindex=%d did not get mapped", ptepindex)); + } + return (m); +} + + +/*************************************************** +* Pmap allocation/deallocation routines. + ***************************************************/ + +#ifdef SMP +/* + * Deal with a SMP shootdown of other users of the pmap that we are + * trying to dispose of. This can be a bit hairy. + */ +static u_int *lazymask; +static u_int lazyptd; +static volatile u_int lazywait; + +void pmap_lazyfix_action(void); + +void +pmap_lazyfix_action(void) +{ + u_int mymask = PCPU_GET(cpumask); + + if (rcr3() == lazyptd) + load_cr3(PCPU_GET(curpcb)->pcb_cr3); + atomic_clear_int(lazymask, mymask); + atomic_store_rel_int(&lazywait, 1); +} + +static void +pmap_lazyfix_self(u_int mymask) +{ + + if (rcr3() == lazyptd) + load_cr3(PCPU_GET(curpcb)->pcb_cr3); + atomic_clear_int(lazymask, mymask); +} + + +static void +pmap_lazyfix(pmap_t pmap) +{ + u_int mymask; + u_int mask; + register u_int spins; + + while ((mask = pmap->pm_active) != 0) { + spins = 50000000; + mask = mask & -mask; /* Find least significant set bit */ + mtx_lock_spin(&smp_ipi_mtx); +#ifdef PAE + lazyptd = vtophys(pmap->pm_pdpt); +#else + lazyptd = vtophys(pmap->pm_pdir); +#endif + mymask = PCPU_GET(cpumask); + if (mask == mymask) { + lazymask = &pmap->pm_active; + pmap_lazyfix_self(mymask); + } else { + atomic_store_rel_int((u_int *)&lazymask, + (u_int)&pmap->pm_active); + atomic_store_rel_int(&lazywait, 0); + ipi_selected(mask, IPI_LAZYPMAP); + while (lazywait == 0) { + ia32_pause(); + if (--spins == 0) + break; + } + } + mtx_unlock_spin(&smp_ipi_mtx); + if (spins == 0) + printf("pmap_lazyfix: spun for 50000000\n"); + } +} + +#else /* SMP */ + +/* + * Cleaning up on uniprocessor is easy. For various reasons, we're + * unlikely to have to even execute this code, including the fact + * that the cleanup is deferred until the parent does a wait(2), which + * means that another userland process has run. + */ +static void +pmap_lazyfix(pmap_t pmap) +{ + u_int cr3; + + cr3 = vtophys(pmap->pm_pdir); + if (cr3 == rcr3()) { + load_cr3(PCPU_GET(curpcb)->pcb_cr3); + pmap->pm_active &= ~(PCPU_GET(cpumask)); + } +} +#endif /* SMP */ + +/* + * Release any resources held by the given physical map. + * Called when a pmap initialized by pmap_pinit is being released. + * Should only be called if the map contains no valid mappings. + */ +void +pmap_release(pmap_t pmap) +{ +#ifdef XEN + vm_page_t m, ptdpg[NPGPTD+1]; + int npgptd = NPGPTD + 1; +#else + vm_page_t m, ptdpg[NPGPTD]; + int npgptd = NPGPTD; +#endif + int i; + + KASSERT(pmap->pm_stats.resident_count == 0, + ("pmap_release: pmap resident count %ld != 0", + pmap->pm_stats.resident_count)); + + pmap_lazyfix(pmap); + mtx_lock_spin(&allpmaps_lock); + LIST_REMOVE(pmap, pm_list); + mtx_unlock_spin(&allpmaps_lock); + +#ifdef XEN + for (i = 0; i < NPGPTD; i++) + ptdpg[i] = PHYS_TO_VM_PAGE(xpmap_mtop(pmap->pm_pdir[PTDPTDI + i])); +#else + for (i = 0; i < NPGPTD; i++) + ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]); +#endif + + bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) * + sizeof(*pmap->pm_pdir)); +#ifdef SMP + pmap->pm_pdir[MPPTDI] = 0; +#endif + + pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD); +#if defined(PAE) && defined(XEN) + ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt)); +#endif + + vm_page_lock_queues(); + for (i = 0; i < npgptd; i++) { + vm_paddr_t ma; + + m = ptdpg[i]; + ma = xpmap_ptom(VM_PAGE_TO_PHYS(m)); + /* unpinning L1 and L2 treated the same */ + xen_pgd_unpin(ma); +#ifdef PAE + KASSERT( +#ifdef XEN + xpmap_ptom(VM_PAGE_TO_PHYS(m)) +#else + VM_PAGE_TO_PHYS(m) +#endif + == (pmap->pm_pdpt[i] & PG_FRAME), + ("pmap_release: got wrong ptd page")); +#endif + m->wire_count--; + atomic_subtract_int(&cnt.v_wire_count, 1); + vm_page_free(m); + } + vm_page_unlock_queues(); + PMAP_LOCK_DESTROY(pmap); +} + +static int +kvm_size(SYSCTL_HANDLER_ARGS) +{ + unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE; + + return sysctl_handle_long(oidp, &ksize, 0, req); +} +SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, + 0, 0, kvm_size, "IU", "Size of KVM"); + +static int +kvm_free(SYSCTL_HANDLER_ARGS) +{ + unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end; + + return sysctl_handle_long(oidp, &kfree, 0, req); +} +SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, + 0, 0, kvm_free, "IU", "Amount of KVM free"); + +/* + * grow the number of kernel page table entries, if needed + */ +void +pmap_growkernel(vm_offset_t addr) +{ + struct pmap *pmap; + vm_paddr_t ptppaddr; + vm_page_t nkpg; + pd_entry_t newpdir; + + mtx_assert(&kernel_map->system_mtx, MA_OWNED); + if (kernel_vm_end == 0) { + kernel_vm_end = KERNBASE; + nkpt = 0; + while (pdir_pde(PTD, kernel_vm_end)) { + kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1); + nkpt++; + if (kernel_vm_end - 1 >= kernel_map->max_offset) { + kernel_vm_end = kernel_map->max_offset; + break; + } + } + } + addr = roundup2(addr, PAGE_SIZE * NPTEPG); + if (addr - 1 >= kernel_map->max_offset) + addr = kernel_map->max_offset; + while (kernel_vm_end < addr) { + if (pdir_pde(PTD, kernel_vm_end)) { + kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1); + if (kernel_vm_end - 1 >= kernel_map->max_offset) { + kernel_vm_end = kernel_map->max_offset; + break; + } + continue; + } + + nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT, + VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); + if (nkpg == NULL) + panic("pmap_growkernel: no memory to grow kernel"); + + nkpt++; + + pmap_zero_page(nkpg); + ptppaddr = VM_PAGE_TO_PHYS(nkpg); + newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M); + vm_page_lock_queues(); + PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE); + mtx_lock_spin(&allpmaps_lock); + LIST_FOREACH(pmap, &allpmaps, pm_list) { + PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE); + } + mtx_unlock_spin(&allpmaps_lock); + vm_page_unlock_queues(); + + kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1); + if (kernel_vm_end - 1 >= kernel_map->max_offset) { + kernel_vm_end = kernel_map->max_offset; + break; + } + } +} + + +/*************************************************** + * page management routines. + ***************************************************/ + +/* + * free the pv_entry back to the free list + */ +static PMAP_INLINE void +free_pv_entry(pv_entry_t pv) +{ + pv_entry_count--; + uma_zfree(pvzone, pv); +} + +/* + * get a new pv_entry, allocating a block from the system + * when needed. + * the memory allocation is performed bypassing the malloc code + * because of the possibility of allocations at interrupt time. + */ +static pv_entry_t +get_pv_entry(void) +{ + pv_entry_count++; + if ((pv_entry_count > pv_entry_high_water) && + (pmap_pagedaemon_waken == 0)) { + pmap_pagedaemon_waken = 1; + wakeup (&vm_pages_needed); + } + return uma_zalloc(pvzone, M_NOWAIT); +} + + +static void +pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va) +{ + pv_entry_t pv; + + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + if (m->md.pv_list_count < pmap->pm_stats.resident_count) { + TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { + if (pmap == pv->pv_pmap && va == pv->pv_va) + break; + } + } else { + TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) { + if (va == pv->pv_va) + break; + } + } + KASSERT(pv != NULL, ("pmap_remove_entry: pv not found")); + TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); + m->md.pv_list_count--; + if (TAILQ_EMPTY(&m->md.pv_list)) + vm_page_flag_clear(m, PG_WRITEABLE); + TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist); + free_pv_entry(pv); +} + +/* + * Create a pv entry for page at pa for + * (pmap, va). + */ +static void +pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) +{ + pv_entry_t pv; + + pv = get_pv_entry(); + if (pv == NULL) + panic("no pv entries: increase vm.pmap.shpgperproc"); + pv->pv_va = va; + pv->pv_pmap = pmap; + + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist); + TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); + m->md.pv_list_count++; +} + +/* + * Conditionally create a pv entry. + */ +static boolean_t +pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) +{ + pv_entry_t pv; + + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + if (pv_entry_count < pv_entry_high_water && + (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) { + pv_entry_count++; + pv->pv_va = va; + pv->pv_pmap = pmap; + TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist); + TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); + m->md.pv_list_count++; + return (TRUE); + } else + return (FALSE); +} + +/* + * pmap_remove_pte: do the things to unmap a page in a process + */ +static int +pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free) +{ + pt_entry_t oldpte; + vm_page_t m; + + CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x", + pmap, (u_long)*ptq, va); + + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + PMAP_LOCK_ASSERT(pmap, MA_OWNED); +#ifdef XEN + oldpte = *ptq; + PT_SET_VA_MA(ptq, 0, TRUE); +#else + oldpte = pte_load_clear(ptq); +#endif + if (oldpte & PG_W) + pmap->pm_stats.wired_count -= 1; + /* + * Machines that don't support invlpg, also don't support + * PG_G. + */ + if (oldpte & PG_G) + pmap_invalidate_page(kernel_pmap, va); + pmap->pm_stats.resident_count -= 1; + if (oldpte & PG_MANAGED) { + m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte)); + if (oldpte & PG_M) { + KASSERT((oldpte & PG_RW), + ("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx", + va, (uintmax_t)oldpte)); + vm_page_dirty(m); + } + if (oldpte & PG_A) + vm_page_flag_set(m, PG_REFERENCED); + pmap_remove_entry(pmap, m, va); + } + return (pmap_unuse_pt(pmap, va, free)); +} + +/* + * Remove a single page from a process address space + */ +static void +pmap_remove_page(pmap_t pmap, vm_offset_t va) +{ + pt_entry_t *pte; + vm_page_t free = NULL; + + CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x", + pmap, va); + + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + KASSERT(curthread->td_pinned > 0, ("curthread not pinned")); + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0) + return; + pmap_remove_pte(pmap, pte, va, &free); + pmap_invalidate_page(pmap, va); + pmap_free_zero_pages(free); +} + +/* + * Remove the given range of addresses from the specified map. + * + * It is assumed that the start and end are properly + * rounded to the page size. + */ +void +pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) +{ + vm_offset_t pdnxt; + pd_entry_t ptpaddr; + pt_entry_t *pte; + vm_page_t free = NULL; + int anyvalid; + + CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x", + pmap, sva, eva); + + /* + * Perform an unsynchronized read. This is, however, safe. + */ + if (pmap->pm_stats.resident_count == 0) + return; + + anyvalid = 0; + + vm_page_lock_queues(); + sched_pin(); + PMAP_LOCK(pmap); + + /* + * special handling of removing one page. a very + * common operation and easy to short circuit some + * code. + */ + if ((sva + PAGE_SIZE == eva) && + ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) { + pmap_remove_page(pmap, sva); + goto out; + } + + for (; sva < eva; sva = pdnxt) { + unsigned pdirindex; + + /* + * Calculate index for next page table. + */ + pdnxt = (sva + NBPDR) & ~PDRMASK; + if (pmap->pm_stats.resident_count == 0) + break; + + pdirindex = sva >> PDRSHIFT; + ptpaddr = pmap->pm_pdir[pdirindex]; + + /* + * Weed out invalid mappings. Note: we assume that the page + * directory table is always allocated, and in kernel virtual. + */ + if (ptpaddr == 0) + continue; + + /* + * Check for large page. + */ + if ((ptpaddr & PG_PS) != 0) { +#ifdef XEN + PT_SET_VA_MA(&pmap->pm_pdir[pdirindex], 0, TRUE); +#else + pmap->pm_pdir[pdirindex] = 0; +#endif + pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE; + anyvalid = 1; + continue; + } + + /* + * Limit our scan to either the end of the va represented + * by the current page table page, or to the end of the + * range being removed. + */ + if (pdnxt > eva) + pdnxt = eva; + + for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++, + sva += PAGE_SIZE) { + if (*pte == 0) + continue; + + /* + * The TLB entry for a PG_G mapping is invalidated + * by pmap_remove_pte(). + */ + if ((*pte & PG_G) == 0) + anyvalid = 1; + if (pmap_remove_pte(pmap, pte, sva, &free)) + break; + } + } + PT_UPDATES_FLUSH(); + +out: + if (anyvalid) { + pmap_invalidate_all(pmap); + pmap_free_zero_pages(free); + } + sched_unpin(); + vm_page_unlock_queues(); + PMAP_UNLOCK(pmap); +} + +/* + * Routine: pmap_remove_all + * Function: + * Removes this physical page from + * all physical maps in which it resides. + * Reflects back modify bits to the pager. + * + * Notes: + * Original versions of this routine were very + * inefficient because they iteratively called + * pmap_remove (slow...) + */ + +void +pmap_remove_all(vm_page_t m) +{ + register pv_entry_t pv; + pt_entry_t *pte, tpte; + vm_page_t free; + +#if defined(PMAP_DIAGNOSTIC) + /* + * XXX This makes pmap_remove_all() illegal for non-managed pages! + */ + if (m->flags & PG_FICTITIOUS) { + panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx", + VM_PAGE_TO_PHYS(m)); + } +#endif + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + sched_pin(); + while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { + PMAP_LOCK(pv->pv_pmap); + pv->pv_pmap->pm_stats.resident_count--; + pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va); +#if defined(XEN) + tpte = *pte; + PT_SET_VA_MA(pte, 0, TRUE); +#else + tpte = pte_load_clear(pte); +#endif + if (tpte & PG_W) + pv->pv_pmap->pm_stats.wired_count--; + if (tpte & PG_A) + vm_page_flag_set(m, PG_REFERENCED); + + /* + * Update the vm_page_t clean and reference bits. + */ + if (tpte & PG_M) { + KASSERT((tpte & PG_RW), + ("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx", + pv->pv_va, (uintmax_t)tpte)); + vm_page_dirty(m); + } + free = NULL; + pmap_unuse_pt(pv->pv_pmap, pv->pv_va, &free); + pmap_invalidate_page(pv->pv_pmap, pv->pv_va); + pmap_free_zero_pages(free); + TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist); + TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); + m->md.pv_list_count--; + PMAP_UNLOCK(pv->pv_pmap); + free_pv_entry(pv); + } + vm_page_flag_clear(m, PG_WRITEABLE); + PT_UPDATES_FLUSH(); + sched_unpin(); +} + +/* + * Set the physical protection on the + * specified range of this map as requested. + */ +void +pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) +{ + vm_offset_t pdnxt; + pd_entry_t ptpaddr; + pt_entry_t *pte; + int anychanged; + + CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x", + pmap, sva, eva, prot); + + if ((prot & VM_PROT_READ) == VM_PROT_NONE) { + pmap_remove(pmap, sva, eva); + return; + } + + if (prot & VM_PROT_WRITE) + return; + + anychanged = 0; + + vm_page_lock_queues(); + sched_pin(); + PMAP_LOCK(pmap); + for (; sva < eva; sva = pdnxt) { + unsigned pdirindex; + vm_paddr_t obits, pbits; + + pdnxt = (sva + NBPDR) & ~PDRMASK; + + pdirindex = sva >> PDRSHIFT; + ptpaddr = pmap->pm_pdir[pdirindex]; + + /* + * Weed out invalid mappings. Note: we assume that the page + * directory table is always allocated, and in kernel virtual. + */ + if (ptpaddr == 0) + continue; + + /* + * Check for large page. + */ + if ((ptpaddr & PG_PS) != 0) { + pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW); + anychanged = 1; + continue; + } + + if (pdnxt > eva) + pdnxt = eva; + + for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++, + sva += PAGE_SIZE) { + vm_page_t m; + +retry: + /* + * Regardless of whether a pte is 32 or 64 bits in + * size, PG_RW, PG_A, and PG_M are among the least + * significant 32 bits. + */ + obits = pbits = *pte; + if (pbits & PG_MANAGED) { +#ifdef XEN + pt_entry_t pteval = xpmap_mtop(*pte); +#else + pt_entry_t pteval = *pte; +#endif + + m = NULL; + if (pbits & PG_A) { + m = PHYS_TO_VM_PAGE(pteval); + + vm_page_flag_set(m, PG_REFERENCED); + pbits &= ~PG_A; + } + if ((pbits & PG_M) != 0) { + if (m == NULL) + m = PHYS_TO_VM_PAGE(pteval); + vm_page_dirty(m); + } + } + + pbits &= ~(PG_RW | PG_M); + + if (pbits != obits) { +#ifdef XEN + obits = *pte; + PT_SET_VA_MA(pte, pbits, TRUE); + if (*pte != pbits) + goto retry; +#else + if (!atomic_cmpset_int((u_int *)pte, obits, + pbits)) + goto retry; +#endif + if (obits & PG_G) + pmap_invalidate_page(pmap, sva); + else + anychanged = 1; + } + } + } + PT_UPDATES_FLUSH(); + if (anychanged) + pmap_invalidate_all(pmap); + sched_unpin(); + vm_page_unlock_queues(); + PMAP_UNLOCK(pmap); +} + +/* + * Insert the given physical page (p) at + * the specified virtual address (v) in the + * target physical map with the protection requested. + * + * If specified, the page will be wired down, meaning + * that the related pte can not be reclaimed. + * + * NB: This is the only routine which MAY NOT lazy-evaluate + * or lose information. That is, this routine must actually + * insert this page into the given map NOW. + */ +void +pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, + boolean_t wired) +{ + vm_paddr_t pa; + pd_entry_t *pde; + register pt_entry_t *pte; + vm_paddr_t opa; + pt_entry_t origpte, newpte; + vm_page_t mpte, om; + boolean_t invlva; + + + CTR5(KTR_PMAP, + "pmap_enter: pmap=%08p va=0x%08x ma=0x%08x prot=0x%x wired=%d", + pmap, va, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired); + va &= PG_FRAME; +#ifdef PMAP_DIAGNOSTIC + if (va > VM_MAX_KERNEL_ADDRESS) + panic("pmap_enter: toobig"); + if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS)) + panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va); +#endif + + mpte = NULL; + + vm_page_lock_queues(); + PMAP_LOCK(pmap); + sched_pin(); + + /* + * In the case that a page table page is not + * resident, we are creating it here. + */ + if (va < VM_MAXUSER_ADDRESS) { + mpte = pmap_allocpte(pmap, va, M_WAITOK); + } +#if 0 && defined(PMAP_DIAGNOSTIC) + else { + pd_entry_t *pdeaddr = pmap_pde(pmap, va); + origpte = *pdeaddr; + if ((origpte & PG_V) == 0) { + panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n", + pmap->pm_pdir[PTDPTDI], origpte, va); + } + } +#endif + + pde = pmap_pde(pmap, va); + if ((*pde & PG_PS) != 0) + panic("pmap_enter: attempted pmap_enter on 4MB page"); + pte = pmap_pte_quick(pmap, va); + + /* + * Page Directory table entry not valid, we need a new PT page + */ + if (pte == NULL) { + panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n", + (uintmax_t)pmap->pm_pdir[PTDPTDI], va); + } + + pa = VM_PAGE_TO_PHYS(m); + om = NULL; + + origpte = *pte; + if (origpte) + origpte = xpmap_mtop(origpte); + opa = origpte & PG_FRAME; + + /* + * Mapping has not changed, must be protection or wiring change. + */ + if (origpte && (opa == pa)) { + /* + * Wiring change, just update stats. We don't worry about + * wiring PT pages as they remain resident as long as there + * are valid mappings in them. Hence, if a user page is wired, + * the PT page will be also. + */ + if (wired && ((origpte & PG_W) == 0)) + pmap->pm_stats.wired_count++; + else if (!wired && (origpte & PG_W)) + pmap->pm_stats.wired_count--; + + /* + * Remove extra pte reference + */ + if (mpte) + mpte->wire_count--; + + /* + * We might be turning off write access to the page, + * so we go ahead and sense modify status. + */ + if (origpte & PG_MANAGED) { + om = m; + pa |= PG_MANAGED; + } + goto validate; + } + /* + * Mapping has changed, invalidate old range and fall through to + * handle validating new mapping. + */ + if (opa) { + if (origpte & PG_W) + pmap->pm_stats.wired_count--; + if (origpte & PG_MANAGED) { + om = PHYS_TO_VM_PAGE(opa); + pmap_remove_entry(pmap, om, va); + } + if (mpte != NULL) { + mpte->wire_count--; + KASSERT(mpte->wire_count > 0, + ("pmap_enter: missing reference to page table page," + " va: 0x%x", va)); + } + } else + pmap->pm_stats.resident_count++; + + /* + * Enter on the PV list if part of our managed memory. + */ + if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) { + KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva, + ("pmap_enter: managed mapping within the clean submap")); + pmap_insert_entry(pmap, va, m); + pa |= PG_MANAGED; + } + + /* + * Increment counters + */ + if (wired) + pmap->pm_stats.wired_count++; + +validate: + /* + * Now validate mapping with desired protection/wiring. + */ + newpte = (pt_entry_t)(pa | PG_V); + if ((prot & VM_PROT_WRITE) != 0) + newpte |= PG_RW; + if (wired) + newpte |= PG_W; + if (va < VM_MAXUSER_ADDRESS) + newpte |= PG_U; + if (pmap == kernel_pmap) + newpte |= pgeflag; + + critical_enter(); + /* + * if the mapping or permission bits are different, we need + * to update the pte. + */ + if ((origpte & ~(PG_M|PG_A)) != newpte) { + if (origpte & PG_V) { + invlva = FALSE; +#ifdef XEN + origpte = *pte; + PT_SET_VA(pte, newpte | PG_A, FALSE); +#else + origpte = pte_load_store(pte, newpte | PG_A); +#endif + if (origpte & PG_A) { + if (origpte & PG_MANAGED) + vm_page_flag_set(om, PG_REFERENCED); + if (opa != VM_PAGE_TO_PHYS(m)) + invlva = TRUE; + } + if (origpte & PG_M) { + KASSERT((origpte & PG_RW), + ("pmap_enter: modified page not writable: va: %#x, pte: %#jx", + va, (uintmax_t)origpte)); + if ((origpte & PG_MANAGED) != 0) + vm_page_dirty(om); + if ((prot & VM_PROT_WRITE) == 0) + invlva = TRUE; + } + if (invlva) + pmap_invalidate_page(pmap, va); + } else { +#ifdef XEN + PT_SET_VA(pte, newpte | PG_A, FALSE); +#else + pte_store(pte, newpte | PG_A); +#endif + } + } + PT_UPDATES_FLUSH(); + critical_exit(); + sched_unpin(); + vm_page_unlock_queues(); + PMAP_UNLOCK(pmap); +} + +/* + * Maps a sequence of resident pages belonging to the same object. + * The sequence begins with the given page m_start. This page is + * mapped at the given virtual address start. Each subsequent page is + * mapped at a virtual address that is offset from start by the same + * amount as the page is offset from m_start within the object. The + * last page in the sequence is the page with the largest offset from + * m_start that can be mapped at a virtual address less than the given + * virtual address end. Not every virtual page between start and end + * is mapped; only those for which a resident page exists with the + * corresponding offset from m_start are mapped. + */ +void +pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, + vm_page_t m_start, vm_prot_t prot) +{ + vm_page_t m, mpte; + vm_pindex_t diff, psize; + + VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED); + psize = atop(end - start); + mpte = NULL; + m = m_start; + PMAP_LOCK(pmap); + while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { + mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m, + prot, mpte); + m = TAILQ_NEXT(m, listq); + } + PMAP_UNLOCK(pmap); +} + +/* + * this code makes some *MAJOR* assumptions: + * 1. Current pmap & pmap exists. + * 2. Not wired. + * 3. Read access. + * 4. No page table pages. + * but is *MUCH* faster than pmap_enter... + */ + +void +pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) +{ + + PMAP_LOCK(pmap); + (void) pmap_enter_quick_locked(pmap, va, m, prot, NULL); + PMAP_UNLOCK(pmap); +} + +static vm_page_t +pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, + vm_prot_t prot, vm_page_t mpte) +{ + pt_entry_t *pte; + vm_paddr_t pa; + vm_page_t free; + + pa = VM_PAGE_TO_PHYS(m); + pa = pa ? xpmap_ptom(pa) >> PAGE_SHIFT : 0; + + CTR4(KTR_PMAP, + "pmap_enter_quick_locked: pmap=%p va=0x%08x mfn=%d prot=0x%x", + pmap, va, pa, prot); + KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || + (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0, + ("pmap_enter_quick_locked: managed mapping within the clean submap")); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + + /* + * In the case that a page table page is not + * resident, we are creating it here. + */ + if (va < VM_MAXUSER_ADDRESS) { + unsigned ptepindex; + pd_entry_t ptepa; + + /* + * Calculate pagetable page index + */ + ptepindex = va >> PDRSHIFT; + if (mpte && (mpte->pindex == ptepindex)) { + mpte->wire_count++; + } else { + /* + * Get the page directory entry + */ + ptepa = pmap->pm_pdir[ptepindex]; + + /* + * If the page table page is mapped, we just increment + * the hold count, and activate it. + */ + if (ptepa) { + ptepa = xpmap_mtop(ptepa); + if (ptepa & PG_PS) + panic("pmap_enter_quick: unexpected mapping into 4MB page"); + mpte = PHYS_TO_VM_PAGE(ptepa); + mpte->wire_count++; + } else { + mpte = _pmap_allocpte(pmap, ptepindex, + M_NOWAIT); + if (mpte == NULL) + return (mpte); + } + } + } else { + mpte = NULL; + } + + /* + * This call to vtopte makes the assumption that we are + * entering the page into the current pmap. In order to support + * quick entry into any pmap, one would likely use pmap_pte_quick. + * But that isn't as quick as vtopte. + */ + pte = vtopte(va); + if (*pte) { + if (mpte != NULL) { + mpte->wire_count--; + mpte = NULL; + } + return (mpte); + } + + /* + * Enter on the PV list if part of our managed memory. + */ + if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 && + !pmap_try_insert_pv_entry(pmap, va, m)) { + if (mpte != NULL) { + free = NULL; + if (pmap_unwire_pte_hold(pmap, mpte, &free)) { + pmap_invalidate_page(pmap, va); + pmap_free_zero_pages(free); + } + + mpte = NULL; + } + return (mpte); + } + + /* + * Increment counters + */ + pmap->pm_stats.resident_count++; + + pa = VM_PAGE_TO_PHYS(m); + + /* + * Now validate mapping with RO protection + */ +#ifdef XEN + if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) + PT_SET_VA(pte, pa | PG_V | PG_U, TRUE); + else + PT_SET_VA(pte, pa | PG_V | PG_U | PG_MANAGED, TRUE); +#else + if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) + pte_store(pte, pa | PG_V | PG_U); + else + pte_store(pte, pa | PG_V | PG_U | PG_MANAGED); +#endif + return (mpte); +} + +/* + * Make a temporary mapping for a physical address. This is only intended + * to be used for panic dumps. + */ +void * +pmap_kenter_temporary(vm_paddr_t pa, int i) +{ + vm_offset_t va; + + va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE); + pmap_kenter(va, pa); + invlpg(va); + return ((void *)crashdumpmap); +} + +/* + * This code maps large physical mmap regions into the + * processor address space. Note that some shortcuts + * are taken, but the code works. + */ +void +pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, + vm_object_t object, vm_pindex_t pindex, + vm_size_t size) +{ + vm_page_t p; + + CTR5(KTR_PMAP, + "pmap_object_init_pt: pmap=%p addr=0x%08x object=%p pindex=%d size=%d", + pmap, addr, object, pindex, size); + VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); + KASSERT(object->type == OBJT_DEVICE, + ("pmap_object_init_pt: non-device object")); + if (pseflag && + ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) { + int i; + vm_page_t m[1]; + unsigned int ptepindex; + int npdes; + pd_entry_t ptepa; + + PMAP_LOCK(pmap); + if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)]) + goto out; + PMAP_UNLOCK(pmap); +retry: + p = vm_page_lookup(object, pindex); + if (p != NULL) { + vm_page_lock_queues(); + if (vm_page_sleep_if_busy(p, FALSE, "init4p")) + goto retry; + } else { + p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); + if (p == NULL) + return; + m[0] = p; + + if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) { + vm_page_lock_queues(); + vm_page_free(p); + vm_page_unlock_queues(); + return; + } + + p = vm_page_lookup(object, pindex); + vm_page_lock_queues(); + vm_page_wakeup(p); + } + vm_page_unlock_queues(); + pmap_zero_page(p); + + ptepa = VM_PAGE_TO_PHYS(p); + if (ptepa & (NBPDR - 1)) + return; + + p->valid = VM_PAGE_BITS_ALL; + + PMAP_LOCK(pmap); + pmap->pm_stats.resident_count += size >> PAGE_SHIFT; + npdes = size >> PDRSHIFT; + critical_enter(); + for (i = 0; i < npdes; i++) { +#ifdef XEN + int flags = PG_U | PG_RW | PG_V | PG_PS; +#else + int flags = PG_U | PG_V | PG_PS; +#endif + pde_store(&pmap->pm_pdir[ptepindex], + ptepa | flags); + ptepa += NBPDR; + ptepindex += 1; + } + pmap_invalidate_all(pmap); + critical_exit(); + out: + PMAP_UNLOCK(pmap); + } +} + +/* + * Routine: pmap_change_wiring + * Function: Change the wiring attribute for a map/virtual-address + * pair. + * In/out conditions: + * The mapping must already exist in the pmap. + */ +void +pmap_change_wiring(pmap, va, wired) + register pmap_t pmap; + vm_offset_t va; + boolean_t wired; +{ + register pt_entry_t *pte; + + vm_page_lock_queues(); + PMAP_LOCK(pmap); + pte = pmap_pte(pmap, va); + + if (wired && !pmap_pte_w(pte)) { + PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE); + pmap->pm_stats.wired_count++; + } else if (!wired && pmap_pte_w(pte)) { + PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE); + pmap->pm_stats.wired_count--; + } + + /* + * Wiring is not a hardware characteristic so there is no need to + * invalidate TLB. + */ + pmap_pte_release(pte); + PMAP_UNLOCK(pmap); + vm_page_unlock_queues(); +} + + + +/* + * Copy the range specified by src_addr/len + * from the source map to the range dst_addr/len + * in the destination map. + * + * This routine is only advisory and need not do anything. + */ + +void +pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, + vm_offset_t src_addr) +{ + vm_page_t free; + vm_offset_t addr; + vm_offset_t end_addr = src_addr + len; + vm_offset_t pdnxt; + + if (dst_addr != src_addr) + return; + + if (!pmap_is_current(src_pmap)) + return; + + CTR5(KTR_PMAP, + "pmap_copy: dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x", + dst_pmap, src_pmap, dst_addr, len, src_addr); + + vm_page_lock_queues(); + if (dst_pmap < src_pmap) { + PMAP_LOCK(dst_pmap); + PMAP_LOCK(src_pmap); + } else { + PMAP_LOCK(src_pmap); + PMAP_LOCK(dst_pmap); + } + sched_pin(); + for (addr = src_addr; addr < end_addr; addr = pdnxt) { + pt_entry_t *src_pte, *dst_pte; + vm_page_t dstmpte, srcmpte; + pd_entry_t srcptepaddr; + unsigned ptepindex; + + if (addr >= UPT_MIN_ADDRESS) + panic("pmap_copy: invalid to pmap_copy page tables"); + + pdnxt = (addr + NBPDR) & ~PDRMASK; + ptepindex = addr >> PDRSHIFT; + + srcptepaddr = src_pmap->pm_pdir[ptepindex]; + if (srcptepaddr == 0) + continue; + + if (srcptepaddr & PG_PS) { + if (dst_pmap->pm_pdir[ptepindex] == 0) { + dst_pmap->pm_pdir[ptepindex] = srcptepaddr & + ~PG_W; + dst_pmap->pm_stats.resident_count += + NBPDR / PAGE_SIZE; + } + continue; + } + + srcmpte = MACH_TO_VM_PAGE(srcptepaddr); + if (srcmpte->wire_count == 0) + panic("pmap_copy: source page table page is unused"); + + if (pdnxt > end_addr) + pdnxt = end_addr; + + src_pte = vtopte(addr); + while (addr < pdnxt) { + pt_entry_t ptetemp; + ptetemp = *src_pte; + /* + * we only virtual copy managed pages + */ + if ((ptetemp & PG_MANAGED) != 0) { + dstmpte = pmap_allocpte(dst_pmap, addr, + M_NOWAIT); + if (dstmpte == NULL) + break; + dst_pte = pmap_pte_quick(dst_pmap, addr); + if (*dst_pte == 0 && + pmap_try_insert_pv_entry(dst_pmap, addr, + MACH_TO_VM_PAGE(ptetemp & PG_FRAME))) { + /* + * Clear the wired, modified, and + * accessed (referenced) bits + * during the copy. + */ + PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | + PG_A), FALSE); + dst_pmap->pm_stats.resident_count++; + } else { + free = NULL; + if (pmap_unwire_pte_hold( dst_pmap, + dstmpte, &free)) { + pmap_invalidate_page(dst_pmap, + addr); + pmap_free_zero_pages(free); + } + } + if (dstmpte->wire_count >= srcmpte->wire_count) + break; + } + addr += PAGE_SIZE; + src_pte++; + } + } + sched_unpin(); + vm_page_unlock_queues(); + PMAP_UNLOCK(src_pmap); + PMAP_UNLOCK(dst_pmap); +} + +/* + * pmap_zero_page zeros the specified hardware page by mapping + * the page into KVM and using bzero to clear its contents. + */ +void +pmap_zero_page(vm_page_t m) +{ + struct sysmaps *sysmaps; + + sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; + mtx_lock(&sysmaps->lock); + if (*sysmaps->CMAP2) + panic("pmap_zero_page: CMAP2 busy"); + sched_pin(); +#ifdef XEN + PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M); +#else + *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M; +#endif + invlcaddr(sysmaps->CADDR2); + pagezero(sysmaps->CADDR2); +#ifdef XEN + PT_SET_MA(sysmaps->CADDR2, 0); +#else + *sysmaps->CMAP2 = 0; +#endif + sched_unpin(); + mtx_unlock(&sysmaps->lock); +} + +/* + * pmap_zero_page_area zeros the specified hardware page by mapping + * the page into KVM and using bzero to clear its contents. + * + * off and size may not cover an area beyond a single hardware page. + */ +void +pmap_zero_page_area(vm_page_t m, int off, int size) +{ + struct sysmaps *sysmaps; + + sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; + mtx_lock(&sysmaps->lock); + if (*sysmaps->CMAP2) + panic("pmap_zero_page: CMAP2 busy"); + sched_pin(); +#ifdef XEN + PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M); +#else + *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M; +#endif + invlcaddr(sysmaps->CADDR2); + if (off == 0 && size == PAGE_SIZE) + pagezero(sysmaps->CADDR2); + else + bzero((char *)sysmaps->CADDR2 + off, size); +#ifdef XEN + PT_SET_MA(sysmaps->CADDR2, 0); +#else + *sysmaps->CMAP2 = 0; +#endif + sched_unpin(); + mtx_unlock(&sysmaps->lock); +} + +/* + * pmap_zero_page_idle zeros the specified hardware page by mapping + * the page into KVM and using bzero to clear its contents. This + * is intended to be called from the vm_pagezero process only and + * outside of Giant. + */ +void +pmap_zero_page_idle(vm_page_t m) +{ + + if (*CMAP3) + panic("pmap_zero_page: CMAP3 busy"); + sched_pin(); +#ifdef XEN + PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M); +#else + *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M; +#endif + invlcaddr(CADDR3); + pagezero(CADDR3); +#ifdef XEN + PT_SET_MA(CADDR3, 0); +#else + *CMAP3 = 0; +#endif + sched_unpin(); +} + +/* + * pmap_copy_page copies the specified (machine independent) + * page by mapping the page into virtual memory and using + * bcopy to copy the page, one machine dependent page at a + * time. + */ +void +pmap_copy_page(vm_page_t src, vm_page_t dst) +{ + struct sysmaps *sysmaps; + + sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; + mtx_lock(&sysmaps->lock); + if (*sysmaps->CMAP1) + panic("pmap_copy_page: CMAP1 busy"); + if (*sysmaps->CMAP2) + panic("pmap_copy_page: CMAP2 busy"); + sched_pin(); + invlpg((u_int)sysmaps->CADDR1); + invlpg((u_int)sysmaps->CADDR2); +#ifdef XEN + PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A); + PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M); + +#else + *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A; + *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M; +#endif + bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE); +#ifdef XEN + PT_SET_MA(sysmaps->CADDR1, 0); + PT_SET_MA(sysmaps->CADDR2, 0); +#else + *sysmaps->CMAP1 = 0; + *sysmaps->CMAP2 = 0; +#endif + sched_unpin(); + mtx_unlock(&sysmaps->lock); +} + +/* + * Returns true if the pmap's pv is one of the first + * 16 pvs linked to from this page. This count may + * be changed upwards or downwards in the future; it + * is only necessary that true be returned for a small + * subset of pmaps for proper page aging. + */ +boolean_t +pmap_page_exists_quick(pmap, m) + pmap_t pmap; + vm_page_t m; +{ + pv_entry_t pv; + int loops = 0; + + if (m->flags & PG_FICTITIOUS) + return (FALSE); + + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { + if (pv->pv_pmap == pmap) { + return TRUE; + } + loops++; + if (loops >= 16) + break; + } + return (FALSE); +} + +#define PMAP_REMOVE_PAGES_CURPROC_ONLY +/* + * Remove all pages from specified address space + * this aids process exit speeds. Also, this code + * is special cased for current process only, but + * can have the more generic (and slightly slower) + * mode enabled. This is much faster than pmap_remove + * in the case of running down an entire address space. + */ +void +pmap_remove_pages(pmap, sva, eva) + pmap_t pmap; + vm_offset_t sva, eva; +{ + pt_entry_t *pte, tpte; + vm_page_t m, free = NULL; + pv_entry_t pv, npv; + + CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap); +#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY + if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) { + printf("warning: pmap_remove_pages called with non-current pmap\n"); + return; + } +#endif + vm_page_lock_queues(); + KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap")); + PMAP_LOCK(pmap); + sched_pin(); + for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) { + + if (pv->pv_va >= eva || pv->pv_va < sva) { + npv = TAILQ_NEXT(pv, pv_plist); + continue; + } + +#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY + pte = vtopte(pv->pv_va); +#else + pte = pmap_pte_quick(pmap, pv->pv_va); +#endif + tpte = *pte ? xpmap_mtop(*pte) : 0; + + if (tpte == 0) { + printf("TPTE at %p IS ZERO @ VA %08x\n", + pte, pv->pv_va); + panic("bad pte"); + } + +/* + * We cannot remove wired pages from a process' mapping at this time + */ + if (tpte & PG_W) { + npv = TAILQ_NEXT(pv, pv_plist); + continue; + } + + m = PHYS_TO_VM_PAGE(tpte); + KASSERT(m->phys_addr == (tpte & PG_FRAME), + ("vm_page_t %p phys_addr mismatch %016jx %016jx", + m, (uintmax_t)m->phys_addr, (uintmax_t)tpte)); + + KASSERT(m < &vm_page_array[vm_page_array_size], + ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte)); + + pmap->pm_stats.resident_count--; + +#ifdef XEN + PT_SET_VA_MA(pte, 0, FALSE); +#else + pte_clear(pte); +#endif + /* + * Update the vm_page_t clean and reference bits. + */ + if (tpte & PG_M) { + vm_page_dirty(m); + } + + npv = TAILQ_NEXT(pv, pv_plist); + TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist); + + m->md.pv_list_count--; + TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); + if (TAILQ_EMPTY(&m->md.pv_list)) + vm_page_flag_clear(m, PG_WRITEABLE); + + pmap_unuse_pt(pmap, pv->pv_va, &free); + free_pv_entry(pv); + } + PT_UPDATES_FLUSH(); + sched_unpin(); + pmap_invalidate_all(pmap); + pmap_free_zero_pages(free); + vm_page_unlock_queues(); + PMAP_UNLOCK(pmap); +} + +/* + * pmap_is_modified: + * + * Return whether or not the specified physical page was modified + * in any physical maps. + */ +boolean_t +pmap_is_modified(vm_page_t m) +{ + pv_entry_t pv; + pt_entry_t *pte; + boolean_t rv; + + rv = FALSE; + if (m->flags & PG_FICTITIOUS) + return (rv); + + sched_pin(); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { + PMAP_LOCK(pv->pv_pmap); + pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va); + rv = (*pte & PG_M) != 0; + PMAP_UNLOCK(pv->pv_pmap); + if (rv) + break; + } + sched_unpin(); + return (rv); +} + +/* + * pmap_is_prefaultable: + * + * Return whether or not the specified virtual address is elgible + * for prefault. + */ +boolean_t +pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) +{ + pt_entry_t *pte; + boolean_t rv; + + rv = FALSE; +#ifdef XEN + /* + * disable prefaulting to start off + */ + return (rv); +#endif + PMAP_LOCK(pmap); + if (*pmap_pde(pmap, addr)) { + pte = vtopte(addr); + rv = *pte == 0; + } + PMAP_UNLOCK(pmap); + return (rv); +} + + +void +pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len) +{ + int i, npages = round_page(len) >> PAGE_SHIFT; + for (i = 0; i < npages; i++) { + pt_entry_t *pte; + pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE)); + pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M))); + PMAP_MARK_PRIV(xpmap_mtop(*pte)); + pmap_pte_release(pte); + } +} + +void +pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len) +{ + int i, npages = round_page(len) >> PAGE_SHIFT; + for (i = 0; i < npages; i++) { + pt_entry_t *pte; + pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE)); + PMAP_MARK_UNPRIV(xpmap_mtop(*pte)); + pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M)); + pmap_pte_release(pte); + } +} + +/* + * Clear the given bit in each of the given page's ptes. The bit is + * expressed as a 32-bit mask. Consequently, if the pte is 64 bits in + * size, only a bit within the least significant 32 can be cleared. + */ +static __inline void +pmap_clear_ptes(vm_page_t m, int bit) +{ + register pv_entry_t pv; + pt_entry_t pbits, *pte; + + if ((m->flags & PG_FICTITIOUS) || + (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0)) + return; + + sched_pin(); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + /* + * Loop over all current mappings setting/clearing as appropos If + * setting RO do we need to clear the VAC? + */ + TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { + PMAP_LOCK(pv->pv_pmap); + pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va); +retry: + pbits = *pte; + if (pbits & bit) { + if (bit == PG_RW) { + /* + * Regardless of whether a pte is 32 or 64 bits + * in size, PG_RW and PG_M are among the least + * significant 32 bits. + */ +#ifdef XEN + PT_SET_VA_MA(pte, (pbits & ~(PG_RW|PG_M)), TRUE); + if (*pte != (pbits & ~(PG_RW|PG_M))) + goto retry; +#else + if (!atomic_cmpset_int((u_int *)pte, pbits, + pbits & ~(PG_RW | PG_M))) + goto retry; +#endif + if (pbits & PG_M) { + vm_page_dirty(m); + } + } else { +#ifdef XEN + PT_SET_VA_MA(pte, pbits & ~bit, TRUE); +#else + atomic_clear_int((u_int *)pte, bit); +#endif + } + pmap_invalidate_page(pv->pv_pmap, pv->pv_va); + } + PMAP_UNLOCK(pv->pv_pmap); + } + if (bit == PG_RW) + vm_page_flag_clear(m, PG_WRITEABLE); + sched_unpin(); +} + +/* + * pmap_page_protect: + * + * Lower the permission for all mappings to a given page. + */ +void +pmap_page_protect(vm_page_t m, vm_prot_t prot) +{ + if ((prot & VM_PROT_WRITE) == 0) { + if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) { + pmap_clear_ptes(m, PG_RW); + } else { + pmap_remove_all(m); + } + } +} + +/* + * pmap_ts_referenced: + * + * Return a count of reference bits for a page, clearing those bits. + * It is not necessary for every reference bit to be cleared, but it + * is necessary that 0 only be returned when there are truly no + * reference bits set. + * + * XXX: The exact number of bits to check and clear is a matter that + * should be tested and standardized at some point in the future for + * optimal aging of shared pages. + */ +int +pmap_ts_referenced(vm_page_t m) +{ + register pv_entry_t pv, pvf, pvn; + pt_entry_t *pte; + pt_entry_t v; + int rtval = 0; + + if (m->flags & PG_FICTITIOUS) + return (rtval); + + sched_pin(); + mtx_assert(&vm_page_queue_mtx, MA_OWNED); + if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { + + pvf = pv; + + do { + pvn = TAILQ_NEXT(pv, pv_list); + + TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); + + TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); + + PMAP_LOCK(pv->pv_pmap); + pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va); + + if (pte && ((v = *pte) & PG_A) != 0) { +#ifdef XEN + PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE); +#else + atomic_clear_int((u_int *)pte, PG_A); +#endif + pmap_invalidate_page(pv->pv_pmap, pv->pv_va); + + rtval++; + if (rtval > 4) { + PMAP_UNLOCK(pv->pv_pmap); + break; + } + } + PMAP_UNLOCK(pv->pv_pmap); + } while ((pv = pvn) != NULL && pv != pvf); + } + PT_UPDATES_FLUSH(); + sched_unpin(); + + return (rtval); +} + +/* + * Clear the modify bits on the specified physical page. + */ +void +pmap_clear_modify(vm_page_t m) +{ + pmap_clear_ptes(m, PG_M); +} + +/* + * pmap_clear_reference: + * + * Clear the reference bit on the specified physical page. + */ +void +pmap_clear_reference(vm_page_t m) +{ + pmap_clear_ptes(m, PG_A); +} + +/* + * Miscellaneous support routines follow + */ + +/* + * Map a set of physical memory pages into the kernel virtual + * address space. Return a pointer to where it is mapped. This + * routine is intended to be used for mapping device memory, + * NOT real memory. + */ +void * +pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode) +{ + vm_offset_t va, tmpva, offset; + + offset = pa & PAGE_MASK; + size = roundup(offset + size, PAGE_SIZE); + pa = pa & PG_FRAME; + + if (pa < KERNLOAD && pa + size <= KERNLOAD) + va = KERNBASE + pa; + else + va = kmem_alloc_nofault(kernel_map, size); + if (!va) + panic("pmap_mapdev: Couldn't alloc kernel virtual memory"); + + for (tmpva = va; size > 0; ) { + pmap_kenter_attr(tmpva, pa, mode); + size -= PAGE_SIZE; + tmpva += PAGE_SIZE; + pa += PAGE_SIZE; + } + pmap_invalidate_range(kernel_pmap, va, tmpva); + pmap_invalidate_cache(); + return ((void *)(va + offset)); +} + +void * +pmap_mapdev(vm_paddr_t pa, vm_size_t size) +{ + + return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE)); +} + +void * +pmap_mapbios(vm_paddr_t pa, vm_size_t size) +{ + + return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK)); +} + +void +pmap_unmapdev(va, size) + vm_offset_t va; + vm_size_t size; +{ + vm_offset_t base, offset, tmpva; + + if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD) + return; + base = va & PG_FRAME; + offset = va & PAGE_MASK; + size = roundup(offset + size, PAGE_SIZE); + critical_enter(); + for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) + pmap_kremove(tmpva); + pmap_invalidate_range(kernel_pmap, va, tmpva); + critical_exit(); + kmem_free(kernel_map, base, size); +} + +int +pmap_change_attr(va, size, mode) + vm_offset_t va; + vm_size_t size; + int mode; +{ + vm_offset_t base, offset, tmpva; + pt_entry_t *pte; + vm_paddr_t opte, npte; + pd_entry_t *pde; + + base = va & PG_FRAME; + offset = va & PAGE_MASK; + size = roundup(offset + size, PAGE_SIZE); + + /* Only supported on kernel virtual addresses. */ + if (base <= VM_MAXUSER_ADDRESS) + return (EINVAL); + + /* 4MB pages and pages that aren't mapped aren't supported. */ + for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) { + pde = pmap_pde(kernel_pmap, tmpva); + if (*pde & PG_PS) + return (EINVAL); + if (*pde == 0) + return (EINVAL); + pte = vtopte(va); + if (*pte == 0) + return (EINVAL); + } + + /* + * Ok, all the pages exist and are 4k, so run through them updating + * their cache mode. + */ + for (tmpva = base; size > 0; ) { + pte = vtopte(tmpva); + + /* + * The cache mode bits are all in the low 32-bits of the + * PTE, so we can just spin on updating the low 32-bits. + */ + do { + opte = *pte; + npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT); + npte |= pmap_cache_bits(mode, 0); +#ifdef XEN + PT_SET_VA_MA(pte, npte, TRUE); +#endif + } +#ifdef XEN + while (npte != opte && (*pte != npte)); +#else + while (npte != opte && + !atomic_cmpset_int((u_int *)pte, opte, npte)); +#endif + tmpva += PAGE_SIZE; + size -= PAGE_SIZE; + } + + /* + * Flush CPU caches to make sure any data isn't cached that shouldn't + * be, etc. + */ + pmap_invalidate_range(kernel_pmap, base, tmpva); + pmap_invalidate_cache(); + return (0); +} + +/* + * perform the pmap work for mincore + */ +int +pmap_mincore(pmap, addr) + pmap_t pmap; + vm_offset_t addr; +{ + pt_entry_t *ptep, pte; + vm_page_t m; + int val = 0; + + PMAP_LOCK(pmap); + ptep = pmap_pte(pmap, addr); + pte = (ptep != NULL) ? PT_GET(ptep) : 0; + pmap_pte_release(ptep); + PMAP_UNLOCK(pmap); + + if (pte != 0) { + vm_paddr_t pa; + + val = MINCORE_INCORE; + if ((pte & PG_MANAGED) == 0) + return val; + + pa = pte & PG_FRAME; + + m = PHYS_TO_VM_PAGE(pa); + + /* + * Modified by us + */ + if (pte & PG_M) + val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER; + else { + /* + * Modified by someone else + */ + vm_page_lock_queues(); + if (m->dirty || pmap_is_modified(m)) + val |= MINCORE_MODIFIED_OTHER; + vm_page_unlock_queues(); + } + /* + * Referenced by us + */ + if (pte & PG_A) + val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER; + else { + /* + * Referenced by someone else + */ + vm_page_lock_queues(); + if ((m->flags & PG_REFERENCED) || + pmap_ts_referenced(m)) { + val |= MINCORE_REFERENCED_OTHER; + vm_page_flag_set(m, PG_REFERENCED); + } + vm_page_unlock_queues(); + } + } + return val; +} + +void +pmap_activate(struct thread *td) +{ + pmap_t pmap, oldpmap; + u_int32_t cr3; + + critical_enter(); + pmap = vmspace_pmap(td->td_proc->p_vmspace); + oldpmap = PCPU_GET(curpmap); +#if defined(SMP) + atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask)); + atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask)); +#else + oldpmap->pm_active &= ~1; + pmap->pm_active |= 1; +#endif +#ifdef PAE + cr3 = vtophys(pmap->pm_pdpt); +#else + cr3 = vtophys(pmap->pm_pdir); +#endif + /* + * pmap_activate is for the current thread on the current cpu + */ + td->td_pcb->pcb_cr3 = cr3; + PT_UPDATES_FLUSH(); + load_cr3(cr3); + PCPU_SET(curpmap, pmap); + critical_exit(); +} + +vm_offset_t +pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) +{ + + if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) { + return addr; + } + + addr = (addr + PDRMASK) & ~PDRMASK; + return addr; +} + + +#if defined(PMAP_DEBUG) +pmap_pid_dump(int pid) +{ + pmap_t pmap; + struct proc *p; + int npte = 0; + int index; + + sx_slock(&allproc_lock); + FOREACH_PROC_IN_SYSTEM(p) { + if (p->p_pid != pid) + continue; + + if (p->p_vmspace) { + int i,j; + index = 0; + pmap = vmspace_pmap(p->p_vmspace); + for (i = 0; i < NPDEPTD; i++) { + pd_entry_t *pde; + pt_entry_t *pte; + vm_offset_t base = i << PDRSHIFT; + + pde = &pmap->pm_pdir[i]; + if (pde && pmap_pde_v(pde)) { + for (j = 0; j < NPTEPG; j++) { + vm_offset_t va = base + (j << PAGE_SHIFT); + if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) { + if (index) { + index = 0; + printf("\n"); + } + sx_sunlock(&allproc_lock); + return npte; + } + pte = pmap_pte(pmap, va); + if (pte && pmap_pte_v(pte)) { + pt_entry_t pa; + vm_page_t m; + pa = PT_GET(pte); + m = PHYS_TO_VM_PAGE(pa); + printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x", + va, pa, m->hold_count, m->wire_count, m->flags); + npte++; + index++; + if (index >= 2) { + index = 0; + printf("\n"); + } else { + printf(" "); + } + } + } + } + } + } + } + sx_sunlock(&allproc_lock); + return npte; +} +#endif + +#if defined(DEBUG) + +static void pads(pmap_t pm); +void pmap_pvdump(vm_paddr_t pa); + +/* print address space of pmap*/ +static void +pads(pmap_t pm) +{ + int i, j; + vm_paddr_t va; + pt_entry_t *ptep; + + if (pm == kernel_pmap) + return; + for (i = 0; i < NPDEPTD; i++) + if (pm->pm_pdir[i]) + for (j = 0; j < NPTEPG; j++) { + va = (i << PDRSHIFT) + (j << PAGE_SHIFT); + if (pm == kernel_pmap && va < KERNBASE) + continue; + if (pm != kernel_pmap && va > UPT_MAX_ADDRESS) + continue; + ptep = pmap_pte(pm, va); + if (pmap_pte_v(ptep)) + printf("%x:%x ", va, *ptep); + }; + +} + +void +pmap_pvdump(vm_paddr_t pa) +{ + pv_entry_t pv; + vm_page_t m; + + printf("pa %x", pa); + m = PHYS_TO_VM_PAGE(pa); + TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { + printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va); + pads(pv->pv_pmap); + } + printf(" "); +} +#endif |