summaryrefslogtreecommitdiffstats
path: root/sys/gnu/fs/reiserfs/reiserfs_stree.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/gnu/fs/reiserfs/reiserfs_stree.c')
-rw-r--r--sys/gnu/fs/reiserfs/reiserfs_stree.c760
1 files changed, 760 insertions, 0 deletions
diff --git a/sys/gnu/fs/reiserfs/reiserfs_stree.c b/sys/gnu/fs/reiserfs/reiserfs_stree.c
new file mode 100644
index 0000000..d1d775c
--- /dev/null
+++ b/sys/gnu/fs/reiserfs/reiserfs_stree.c
@@ -0,0 +1,760 @@
+/*-
+ * Copyright 2000 Hans Reiser
+ * See README for licensing and copyright details
+ *
+ * Ported to FreeBSD by Jean-Sébastien Pédron <jspedron@club-internet.fr>
+ *
+ * $FreeBSD$
+ */
+
+#include <gnu/fs/reiserfs/reiserfs_fs.h>
+
+/* Minimal possible key. It is never in the tree. */
+const struct key MIN_KEY = {
+ 0,
+ 0,
+ { {0, 0}, }
+};
+
+/* Maximal possible key. It is never in the tree. */
+const struct key MAX_KEY = {
+ 0xffffffff,
+ 0xffffffff,
+ { {0xffffffff, 0xffffffff }, }
+};
+
+/* Does the buffer contain a disk block which is in the tree. */
+int
+B_IS_IN_TREE(const struct buf *p_s_bp)
+{
+
+ return (B_LEVEL(p_s_bp) != FREE_LEVEL);
+}
+
+/* To gets item head in le form */
+void
+copy_item_head(struct item_head *p_v_to, const struct item_head *p_v_from)
+{
+
+ memcpy(p_v_to, p_v_from, IH_SIZE);
+}
+
+/*
+ * k1 is pointer to on-disk structure which is stored in little-endian
+ * form. k2 is pointer to cpu variable. For key of items of the same
+ * object this returns 0.
+ * Returns: -1 if key1 < key2, 0 if key1 == key2 or 1 if key1 > key2
+ */
+/*inline*/ int
+comp_short_keys(const struct key *le_key, const struct cpu_key *cpu_key)
+{
+ const uint32_t *p_s_le_u32, *p_s_cpu_u32;
+ int n_key_length = REISERFS_SHORT_KEY_LEN;
+
+ p_s_le_u32 = (const uint32_t *)le_key;
+ p_s_cpu_u32 = (const uint32_t *)&cpu_key->on_disk_key;
+ for(; n_key_length--; ++p_s_le_u32, ++p_s_cpu_u32) {
+ if (le32toh(*p_s_le_u32) < *p_s_cpu_u32)
+ return (-1);
+ if (le32toh(*p_s_le_u32) > *p_s_cpu_u32)
+ return (1);
+ }
+
+ return (0);
+}
+
+/*
+ * k1 is pointer to on-disk structure which is stored in little-endian
+ * form. k2 is pointer to cpu variable. Compare keys using all 4 key
+ * fields.
+ * Returns: -1 if key1 < key2, 0 if key1 = key2 or 1 if key1 > key2
+ */
+/*inline*/ int
+comp_keys(const struct key *le_key, const struct cpu_key *cpu_key)
+{
+ int retval;
+
+ retval = comp_short_keys(le_key, cpu_key);
+ if (retval)
+ return retval;
+
+ if (le_key_k_offset(le_key_version(le_key), le_key) <
+ cpu_key_k_offset(cpu_key))
+ return (-1);
+ if (le_key_k_offset(le_key_version(le_key), le_key) >
+ cpu_key_k_offset(cpu_key))
+ return (1);
+
+ if (cpu_key->key_length == 3)
+ return (0);
+
+ /* This part is needed only when tail conversion is in progress */
+ if (le_key_k_type(le_key_version(le_key), le_key) <
+ cpu_key_k_type(cpu_key))
+ return (-1);
+
+ if (le_key_k_type(le_key_version(le_key), le_key) >
+ cpu_key_k_type(cpu_key))
+ return (1);
+
+ return (0);
+}
+
+/* Release all buffers in the path. */
+void
+pathrelse(struct path *p_s_search_path)
+{
+ struct buf *bp;
+ int n_path_offset = p_s_search_path->path_length;
+
+ while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
+ bp = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
+ free(bp->b_data, M_REISERFSPATH);
+ free(bp, M_REISERFSPATH);
+ }
+
+ p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
+}
+
+/*
+ * This does not say which one is bigger, it only returns 1 if keys
+ * are not equal, 0 otherwise
+ */
+int
+comp_le_keys(const struct key *k1, const struct key *k2)
+{
+
+ return (memcmp(k1, k2, sizeof(struct key)));
+}
+
+/*
+ * Binary search toolkit function. Search for an item in the array by
+ * the item key.
+ * Returns: 1 if found, 0 if not found;
+ * *p_n_pos = number of the searched element if found, else the
+ * number of the first element that is larger than p_v_key.
+ */
+/*
+ * For those not familiar with binary search: n_lbound is the leftmost
+ * item that it could be, n_rbound the rightmost item that it could be.
+ * We examine the item halfway between n_lbound and n_rbound, and that
+ * tells us either that we can increase n_lbound, or decrease n_rbound,
+ * or that we have found it, or if n_lbound <= n_rbound that there are
+ * no possible items, and we have not found it. With each examination we
+ * cut the number of possible items it could be by one more than half
+ * rounded down, or we find it.
+ */
+int
+bin_search(const void *p_v_key, /* Key to search for. */
+ const void *p_v_base, /* First item in the array. */
+ int p_n_num, /* Number of items in the array. */
+ int p_n_width, /* Item size in the array. searched. Lest the
+ reader be confused, note that this is crafted
+ as a general function, and when it is applied
+ specifically to the array of item headers in
+ a node, p_n_width is actually the item header
+ size not the item size. */
+ int *p_n_pos) /* Number of the searched for element. */
+{
+ int n_rbound, n_lbound, n_j;
+
+ for (n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0)) / 2;
+ n_lbound <= n_rbound; n_j = (n_rbound + n_lbound) / 2) {
+ switch (COMP_KEYS((const struct key *)
+ ((const char *)p_v_base + n_j * p_n_width),
+ (const struct cpu_key *)p_v_key)) {
+ case -1:
+ n_lbound = n_j + 1;
+ continue;
+ case 1:
+ n_rbound = n_j - 1;
+ continue;
+ case 0:
+ *p_n_pos = n_j;
+ return (ITEM_FOUND); /* Key found in the array. */
+ }
+ }
+
+ /*
+ * bin_search did not find given key, it returns position of key,
+ * that is minimal and greater than the given one.
+ */
+ *p_n_pos = n_lbound;
+ return (ITEM_NOT_FOUND);
+}
+
+/*
+ * Get delimiting key of the buffer by looking for it in the buffers in
+ * the path, starting from the bottom of the path, and going upwards. We
+ * must check the path's validity at each step. If the key is not in the
+ * path, there is no delimiting key in the tree (buffer is first or last
+ * buffer in tree), and in this case we return a special key, either
+ * MIN_KEY or MAX_KEY.
+ */
+const struct key *
+get_lkey(const struct path *p_s_chk_path,
+ const struct reiserfs_sb_info *p_s_sbi)
+{
+ struct buf *p_s_parent;
+ int n_position, n_path_offset = p_s_chk_path->path_length;
+
+ /* While not higher in path than first element. */
+ while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
+ /* Parent at the path is not in the tree now. */
+ if (!B_IS_IN_TREE(p_s_parent =
+ PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
+ return (&MAX_KEY);
+
+ /* Check whether position in the parent is correct. */
+ if ((n_position = PATH_OFFSET_POSITION(p_s_chk_path,
+ n_path_offset)) > B_NR_ITEMS(p_s_parent))
+ return (&MAX_KEY);
+
+ /*
+ * Check whether parent at the path really points to
+ * the child.
+ */
+ if (B_N_CHILD_NUM(p_s_parent, n_position) !=
+ (PATH_OFFSET_PBUFFER(p_s_chk_path,
+ n_path_offset + 1)->b_blkno
+ / btodb(p_s_sbi->s_blocksize)))
+ return (&MAX_KEY);
+
+ /*
+ * Return delimiting key if position in the parent is not
+ * equal to zero.
+ */
+ if (n_position)
+ return (B_N_PDELIM_KEY(p_s_parent, n_position - 1));
+ }
+
+ /* Return MIN_KEY if we are in the root of the buffer tree. */
+ if ((PATH_OFFSET_PBUFFER(p_s_chk_path,
+ FIRST_PATH_ELEMENT_OFFSET)->b_blkno
+ / btodb(p_s_sbi->s_blocksize)) == SB_ROOT_BLOCK(p_s_sbi))
+ return (&MIN_KEY);
+
+ return (&MAX_KEY);
+}
+
+/* Get delimiting key of the buffer at the path and its right neighbor. */
+const struct key *
+get_rkey(const struct path *p_s_chk_path,
+ const struct reiserfs_sb_info *p_s_sbi)
+{
+ struct buf *p_s_parent;
+ int n_position, n_path_offset = p_s_chk_path->path_length;
+
+ while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
+ /* Parent at the path is not in the tree now. */
+ if (!B_IS_IN_TREE(p_s_parent =
+ PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
+ return (&MIN_KEY);
+
+ /* Check whether position in the parent is correct. */
+ if ((n_position = PATH_OFFSET_POSITION(p_s_chk_path,
+ n_path_offset)) >
+ B_NR_ITEMS(p_s_parent))
+ return (&MIN_KEY);
+
+ /*
+ * Check whether parent at the path really points to the
+ * child.
+ */
+ if (B_N_CHILD_NUM(p_s_parent, n_position) !=
+ (PATH_OFFSET_PBUFFER(p_s_chk_path,
+ n_path_offset + 1)->b_blkno
+ / btodb(p_s_sbi->s_blocksize)))
+ return (&MIN_KEY);
+
+ /*
+ * Return delimiting key if position in the parent is not
+ * the last one.
+ */
+ if (n_position != B_NR_ITEMS(p_s_parent))
+ return (B_N_PDELIM_KEY(p_s_parent, n_position));
+ }
+
+ /* Return MAX_KEY if we are in the root of the buffer tree. */
+ if ((PATH_OFFSET_PBUFFER(p_s_chk_path,
+ FIRST_PATH_ELEMENT_OFFSET)->b_blkno
+ / btodb(p_s_sbi->s_blocksize)) == SB_ROOT_BLOCK(p_s_sbi))
+ return (&MAX_KEY);
+
+ return (&MIN_KEY);
+}
+
+int
+reiserfs_check_path(struct path *p)
+{
+
+ if (p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET)
+ reiserfs_log(LOG_WARNING, "path not properly relsed\n");
+ return (0);
+}
+
+/*
+ * Check whether a key is contained in the tree rooted from a buffer at
+ * a path. This works by looking at the left and right delimiting keys
+ * for the buffer in the last path_element in the path. These delimiting
+ * keys are stored at least one level above that buffer in the tree.
+ * If the buffer is the first or last node in the tree order then one
+ * of the delimiting keys may be absent, and in this case get_lkey and
+ * get_rkey return a special key which is MIN_KEY or MAX_KEY.
+ */
+static inline int
+key_in_buffer(
+ struct path *p_s_chk_path, /* Path which should be checked. */
+ const struct cpu_key *p_s_key, /* Key which should be checked. */
+ struct reiserfs_sb_info *p_s_sbi) /* Super block pointer. */
+{
+
+ if (COMP_KEYS(get_lkey(p_s_chk_path, p_s_sbi), p_s_key) == 1)
+ /* left delimiting key is bigger, that the key we look for */
+ return (0);
+
+ if (COMP_KEYS(get_rkey(p_s_chk_path, p_s_sbi), p_s_key) != 1)
+ /* p_s_key must be less than right delimitiing key */
+ return (0);
+
+ return (1);
+}
+
+#if 0
+/* XXX Il ne semble pas y avoir de compteur de référence dans struct buf */
+inline void
+decrement_bcount(struct buf *p_s_bp)
+{
+
+ if (p_s_bp) {
+ if (atomic_read(&(p_s_bp->b_count))) {
+ put_bh(p_s_bp);
+ return;
+ }
+ }
+}
+#endif
+
+/* Decrement b_count field of the all buffers in the path. */
+void
+decrement_counters_in_path(struct path *p_s_search_path)
+{
+
+ pathrelse(p_s_search_path);
+#if 0
+ int n_path_offset = p_s_search_path->path_length;
+
+ while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
+ struct buf *bp;
+
+ bp = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
+ decrement_bcount(bp);
+ }
+
+ p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
+#endif
+}
+
+static int
+is_leaf(char *buf, int blocksize, struct buf *bp)
+{
+ struct item_head *ih;
+ struct block_head *blkh;
+ int used_space, prev_location, i, nr;
+
+ blkh = (struct block_head *)buf;
+ if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
+ reiserfs_log(LOG_WARNING, "this should be caught earlier");
+ return (0);
+ }
+
+ nr = blkh_nr_item(blkh);
+ if (nr < 1 || nr >
+ ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
+ /* Item number is too big or too small */
+ reiserfs_log(LOG_WARNING, "nr_item seems wrong\n");
+ return (0);
+ }
+
+ ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
+ used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
+ if (used_space != blocksize - blkh_free_space(blkh)) {
+ /*
+ * Free space does not match to calculated amount of
+ * use space
+ */
+ reiserfs_log(LOG_WARNING, "free space seems wrong\n");
+ return (0);
+ }
+
+ /* FIXME: it is_leaf will hit performance too much - we may have
+ * return 1 here */
+
+ /* Check tables of item heads */
+ ih = (struct item_head *)(buf + BLKH_SIZE);
+ prev_location = blocksize;
+ for (i = 0; i < nr; i++, ih++) {
+ if (le_ih_k_type(ih) == TYPE_ANY) {
+ reiserfs_log(LOG_WARNING,
+ "wrong item type for item\n");
+ return (0);
+ }
+ if (ih_location(ih) >= blocksize ||
+ ih_location(ih) < IH_SIZE * nr) {
+ reiserfs_log(LOG_WARNING,
+ "item location seems wrong\n");
+ return (0);
+ }
+ if (ih_item_len(ih) < 1 ||
+ ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
+ reiserfs_log(LOG_WARNING, "item length seems wrong\n");
+ return (0);
+ }
+ if (prev_location - ih_location(ih) != ih_item_len(ih)) {
+ reiserfs_log(LOG_WARNING,
+ "item location seems wrong (second one)\n");
+ return (0);
+ }
+ prev_location = ih_location(ih);
+ }
+
+ /* One may imagine much more checks */
+ return 1;
+}
+
+/* Returns 1 if buf looks like an internal node, 0 otherwise */
+static int
+is_internal(char *buf, int blocksize, struct buf *bp)
+{
+ int nr, used_space;
+ struct block_head *blkh;
+
+ blkh = (struct block_head *)buf;
+ nr = blkh_level(blkh);
+ if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
+ /* This level is not possible for internal nodes */
+ reiserfs_log(LOG_WARNING, "this should be caught earlier\n");
+ return (0);
+ }
+
+ nr = blkh_nr_item(blkh);
+ if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
+ /*
+ * For internal which is not root we might check min
+ * number of keys
+ */
+ reiserfs_log(LOG_WARNING, "number of key seems wrong\n");
+ return (0);
+ }
+
+ used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
+ if (used_space != blocksize - blkh_free_space(blkh)) {
+ reiserfs_log(LOG_WARNING,
+ "is_internal: free space seems wrong\n");
+ return (0);
+ }
+
+ /* One may imagine much more checks */
+ return (1);
+}
+
+/*
+ * Make sure that bh contains formatted node of reiserfs tree of
+ * 'level'-th level
+ */
+static int
+is_tree_node(struct buf *bp, int level)
+{
+ if (B_LEVEL(bp) != level) {
+ reiserfs_log(LOG_WARNING,
+ "node level (%d) doesn't match to the "
+ "expected one (%d)\n", B_LEVEL (bp), level);
+ return (0);
+ }
+
+ if (level == DISK_LEAF_NODE_LEVEL)
+ return (is_leaf(bp->b_data, bp->b_bcount, bp));
+
+ return (is_internal(bp->b_data, bp->b_bcount, bp));
+}
+
+int
+search_by_key(struct reiserfs_sb_info *p_s_sbi,
+ const struct cpu_key * p_s_key, /* Key to search. */
+ struct path * p_s_search_path, /* This structure was allocated and
+ initialized by the calling function.
+ It is filled up by this function. */
+ int n_stop_level) /* How far down the tree to search. To
+ stop at leaf level - set to
+ DISK_LEAF_NODE_LEVEL */
+{
+ int error;
+ int n_node_level, n_retval;
+ int n_block_number, expected_level, fs_gen;
+ struct path_element *p_s_last_element;
+ struct buf *p_s_bp, *tmp_bp;
+
+ /*
+ * As we add each node to a path we increase its count. This means that
+ * we must be careful to release all nodes in a path before we either
+ * discard the path struct or re-use the path struct, as we do here.
+ */
+ decrement_counters_in_path(p_s_search_path);
+
+ /*
+ * With each iteration of this loop we search through the items in the
+ * current node, and calculate the next current node(next path element)
+ * for the next iteration of this loop...
+ */
+ n_block_number = SB_ROOT_BLOCK(p_s_sbi);
+ expected_level = -1;
+
+ reiserfs_log(LOG_DEBUG, "root block: #%d\n", n_block_number);
+
+ while (1) {
+ /* Prep path to have another element added to it. */
+ reiserfs_log(LOG_DEBUG, "path element #%d\n",
+ p_s_search_path->path_length);
+ p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path,
+ ++p_s_search_path->path_length);
+ fs_gen = get_generation(p_s_sbi);
+
+ /*
+ * Read the next tree node, and set the last element in the
+ * path to have a pointer to it.
+ */
+ reiserfs_log(LOG_DEBUG, "reading block #%d\n",
+ n_block_number);
+ if ((error = bread(p_s_sbi->s_devvp,
+ n_block_number * btodb(p_s_sbi->s_blocksize),
+ p_s_sbi->s_blocksize, NOCRED, &tmp_bp)) != 0) {
+ reiserfs_log(LOG_DEBUG, "error reading block\n");
+ p_s_search_path->path_length--;
+ pathrelse(p_s_search_path);
+ return (IO_ERROR);
+ }
+ reiserfs_log(LOG_DEBUG, "blkno = %ju, lblkno = %ju\n",
+ (intmax_t)tmp_bp->b_blkno, (intmax_t)tmp_bp->b_lblkno);
+
+ /*
+ * As i didn't found a way to handle the lock correctly,
+ * i copy the data into a fake buffer
+ */
+ reiserfs_log(LOG_DEBUG, "allocating p_s_bp\n");
+ p_s_bp = malloc(sizeof *p_s_bp, M_REISERFSPATH, M_WAITOK);
+ if (!p_s_bp) {
+ reiserfs_log(LOG_DEBUG, "error allocating memory\n");
+ p_s_search_path->path_length--;
+ pathrelse(p_s_search_path);
+ brelse(tmp_bp);
+ return (IO_ERROR);
+ }
+ reiserfs_log(LOG_DEBUG, "copying struct buf\n");
+ bcopy(tmp_bp, p_s_bp, sizeof(struct buf));
+
+ reiserfs_log(LOG_DEBUG, "allocating p_s_bp->b_data\n");
+ p_s_bp->b_data = malloc(p_s_sbi->s_blocksize,
+ M_REISERFSPATH, M_WAITOK);
+ if (!p_s_bp->b_data) {
+ reiserfs_log(LOG_DEBUG, "error allocating memory\n");
+ p_s_search_path->path_length--;
+ pathrelse(p_s_search_path);
+ free(p_s_bp, M_REISERFSPATH);
+ brelse(tmp_bp);
+ return (IO_ERROR);
+ }
+ reiserfs_log(LOG_DEBUG, "copying buffer data\n");
+ bcopy(tmp_bp->b_data, p_s_bp->b_data, p_s_sbi->s_blocksize);
+ brelse(tmp_bp);
+ tmp_bp = NULL;
+
+ reiserfs_log(LOG_DEBUG, "...done\n");
+ p_s_last_element->pe_buffer = p_s_bp;
+
+ if (expected_level == -1)
+ expected_level = SB_TREE_HEIGHT(p_s_sbi);
+ expected_level--;
+ reiserfs_log(LOG_DEBUG, "expected level: %d (%d)\n",
+ expected_level, SB_TREE_HEIGHT(p_s_sbi));
+
+ /* XXX */
+ /*
+ * It is possible that schedule occurred. We must check
+ * whether the key to search is still in the tree rooted
+ * from the current buffer. If not then repeat search
+ * from the root.
+ */
+ if (fs_changed(fs_gen, p_s_sbi) &&
+ (!B_IS_IN_TREE(p_s_bp) ||
+ B_LEVEL(p_s_bp) != expected_level ||
+ !key_in_buffer(p_s_search_path, p_s_key, p_s_sbi))) {
+ reiserfs_log(LOG_DEBUG,
+ "the key isn't in the tree anymore\n");
+ decrement_counters_in_path(p_s_search_path);
+
+ /*
+ * Get the root block number so that we can repeat
+ * the search starting from the root.
+ */
+ n_block_number = SB_ROOT_BLOCK(p_s_sbi);
+ expected_level = -1;
+
+ /* Repeat search from the root */
+ continue;
+ }
+
+ /*
+ * Make sure, that the node contents look like a node of
+ * certain level
+ */
+ if (!is_tree_node(p_s_bp, expected_level)) {
+ reiserfs_log(LOG_WARNING,
+ "invalid format found in block %ju. Fsck?",
+ (intmax_t)p_s_bp->b_blkno);
+ pathrelse (p_s_search_path);
+ return (IO_ERROR);
+ }
+
+ /* Ok, we have acquired next formatted node in the tree */
+ n_node_level = B_LEVEL(p_s_bp);
+ reiserfs_log(LOG_DEBUG, "block info:\n");
+ reiserfs_log(LOG_DEBUG, " node level: %d\n",
+ n_node_level);
+ reiserfs_log(LOG_DEBUG, " nb of items: %d\n",
+ B_NR_ITEMS(p_s_bp));
+ reiserfs_log(LOG_DEBUG, " free space: %d bytes\n",
+ B_FREE_SPACE(p_s_bp));
+ reiserfs_log(LOG_DEBUG, "bin_search with :\n"
+ " p_s_key = (objectid=%d, dirid=%d)\n"
+ " B_NR_ITEMS(p_s_bp) = %d\n"
+ " p_s_last_element->pe_position = %d (path_length = %d)\n",
+ p_s_key->on_disk_key.k_objectid,
+ p_s_key->on_disk_key.k_dir_id,
+ B_NR_ITEMS(p_s_bp),
+ p_s_last_element->pe_position,
+ p_s_search_path->path_length);
+ n_retval = bin_search(p_s_key, B_N_PITEM_HEAD(p_s_bp, 0),
+ B_NR_ITEMS(p_s_bp),
+ (n_node_level == DISK_LEAF_NODE_LEVEL) ? IH_SIZE : KEY_SIZE,
+ &(p_s_last_element->pe_position));
+ reiserfs_log(LOG_DEBUG, "bin_search result: %d\n",
+ n_retval);
+ if (n_node_level == n_stop_level) {
+ reiserfs_log(LOG_DEBUG, "stop level reached (%s)\n",
+ n_retval == ITEM_FOUND ? "found" : "not found");
+ return (n_retval);
+ }
+
+ /* We are not in the stop level */
+ if (n_retval == ITEM_FOUND)
+ /*
+ * Item has been found, so we choose the pointer
+ * which is to the right of the found one
+ */
+ p_s_last_element->pe_position++;
+
+ /*
+ * If item was not found we choose the position which is
+ * to the left of the found item. This requires no code,
+ * bin_search did it already.
+ */
+
+ /*
+ * So we have chosen a position in the current node which
+ * is an internal node. Now we calculate child block number
+ * by position in the node.
+ */
+ n_block_number = B_N_CHILD_NUM(p_s_bp,
+ p_s_last_element->pe_position);
+ }
+
+ reiserfs_log(LOG_DEBUG, "done\n");
+ return (0);
+}
+
+/*
+ * Form the path to an item and position in this item which contains
+ * file byte defined by p_s_key. If there is no such item corresponding
+ * to the key, we point the path to the item with maximal key less than
+ * p_s_key, and *p_n_pos_in_item is set to one past the last entry/byte
+ * in the item. If searching for entry in a directory item, and it is
+ * not found, *p_n_pos_in_item is set to one entry more than the entry
+ * with maximal key which is less than the sought key.
+ *
+ * Note that if there is no entry in this same node which is one more,
+ * then we point to an imaginary entry. For direct items, the position
+ * is in units of bytes, for indirect items the position is in units
+ * of blocknr entries, for directory items the position is in units of
+ * directory entries.
+ */
+
+/* The function is NOT SCHEDULE-SAFE! */
+int
+search_for_position_by_key(struct reiserfs_sb_info *p_s_sbi,
+ const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
+ struct path *p_s_search_path) /* Filled up by this function. */
+{
+ int retval, n_blk_size;
+ off_t item_offset, offset;
+ struct item_head *p_le_ih; /* Pointer to on-disk structure */
+ struct reiserfs_dir_entry de;
+
+ /* If searching for directory entry. */
+ if (is_direntry_cpu_key(p_cpu_key))
+ return (search_by_entry_key(p_s_sbi, p_cpu_key,
+ p_s_search_path, &de));
+
+ /* If not searching for directory entry. */
+
+ /* If item is found. */
+ retval = search_item(p_s_sbi, p_cpu_key, p_s_search_path);
+ if (retval == IO_ERROR)
+ return (retval);
+ if (retval == ITEM_FOUND) {
+ if (ih_item_len(B_N_PITEM_HEAD(
+ PATH_PLAST_BUFFER(p_s_search_path),
+ PATH_LAST_POSITION(p_s_search_path))) == 0) {
+ reiserfs_log(LOG_WARNING, "item length equals zero\n");
+ }
+
+ pos_in_item(p_s_search_path) = 0;
+ return (POSITION_FOUND);
+ }
+
+ if (PATH_LAST_POSITION(p_s_search_path) == 0) {
+ reiserfs_log(LOG_WARNING, "position equals zero\n");
+ }
+
+ /* Item is not found. Set path to the previous item. */
+ p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
+ --PATH_LAST_POSITION(p_s_search_path));
+ n_blk_size = p_s_sbi->s_blocksize;
+
+ if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
+ return (FILE_NOT_FOUND);
+ }
+
+ item_offset = le_ih_k_offset(p_le_ih);
+ offset = cpu_key_k_offset(p_cpu_key);
+
+ /* Needed byte is contained in the item pointed to by the path.*/
+ if (item_offset <= offset &&
+ item_offset + op_bytes_number(p_le_ih, n_blk_size) > offset) {
+ pos_in_item(p_s_search_path) = offset - item_offset;
+ if (is_indirect_le_ih(p_le_ih)) {
+ pos_in_item(p_s_search_path) /= n_blk_size;
+ }
+ return (POSITION_FOUND);
+ }
+
+ /* Needed byte is not contained in the item pointed to by the
+ * path. Set pos_in_item out of the item. */
+ if (is_indirect_le_ih(p_le_ih))
+ pos_in_item(p_s_search_path) =
+ ih_item_len(p_le_ih) / UNFM_P_SIZE;
+ else
+ pos_in_item(p_s_search_path) =
+ ih_item_len(p_le_ih);
+
+ return (POSITION_NOT_FOUND);
+}
OpenPOWER on IntegriCloud