summaryrefslogtreecommitdiffstats
path: root/sys/geom/raid/tr_raid1.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/geom/raid/tr_raid1.c')
-rw-r--r--sys/geom/raid/tr_raid1.c993
1 files changed, 993 insertions, 0 deletions
diff --git a/sys/geom/raid/tr_raid1.c b/sys/geom/raid/tr_raid1.c
new file mode 100644
index 0000000..b5e4953
--- /dev/null
+++ b/sys/geom/raid/tr_raid1.c
@@ -0,0 +1,993 @@
+/*-
+ * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/bio.h>
+#include <sys/endian.h>
+#include <sys/kernel.h>
+#include <sys/kobj.h>
+#include <sys/limits.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/mutex.h>
+#include <sys/sysctl.h>
+#include <sys/systm.h>
+#include <geom/geom.h>
+#include "geom/raid/g_raid.h"
+#include "g_raid_tr_if.h"
+
+SYSCTL_DECL(_kern_geom_raid);
+SYSCTL_NODE(_kern_geom_raid, OID_AUTO, raid1, CTLFLAG_RW, 0,
+ "RAID1 parameters");
+
+#define RAID1_REBUILD_SLAB (1 << 20) /* One transation in a rebuild */
+static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB;
+TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size",
+ &g_raid1_rebuild_slab);
+SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW,
+ &g_raid1_rebuild_slab, 0,
+ "Amount of the disk to rebuild each read/write cycle of the rebuild.");
+
+#define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */
+static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO;
+TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io",
+ &g_raid1_rebuild_fair_io);
+SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW,
+ &g_raid1_rebuild_fair_io, 0,
+ "Fraction of the I/O bandwidth to use when disk busy for rebuild.");
+
+#define RAID1_REBUILD_CLUSTER_IDLE 100
+static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE;
+TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle",
+ &g_raid1_rebuild_cluster_idle);
+SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW,
+ &g_raid1_rebuild_cluster_idle, 0,
+ "Number of slabs to do each time we trigger a rebuild cycle");
+
+#define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */
+static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE;
+TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update",
+ &g_raid1_rebuild_meta_update);
+SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW,
+ &g_raid1_rebuild_meta_update, 0,
+ "When to update the meta data.");
+
+static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data");
+
+#define TR_RAID1_NONE 0
+#define TR_RAID1_REBUILD 1
+#define TR_RAID1_RESYNC 2
+
+#define TR_RAID1_F_DOING_SOME 0x1
+#define TR_RAID1_F_LOCKED 0x2
+#define TR_RAID1_F_ABORT 0x4
+
+struct g_raid_tr_raid1_object {
+ struct g_raid_tr_object trso_base;
+ int trso_starting;
+ int trso_stopping;
+ int trso_type;
+ int trso_recover_slabs; /* slabs before rest */
+ int trso_fair_io;
+ int trso_meta_update;
+ int trso_flags;
+ struct g_raid_subdisk *trso_failed_sd; /* like per volume */
+ void *trso_buffer; /* Buffer space */
+ struct bio trso_bio;
+};
+
+static g_raid_tr_taste_t g_raid_tr_taste_raid1;
+static g_raid_tr_event_t g_raid_tr_event_raid1;
+static g_raid_tr_start_t g_raid_tr_start_raid1;
+static g_raid_tr_stop_t g_raid_tr_stop_raid1;
+static g_raid_tr_iostart_t g_raid_tr_iostart_raid1;
+static g_raid_tr_iodone_t g_raid_tr_iodone_raid1;
+static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1;
+static g_raid_tr_locked_t g_raid_tr_locked_raid1;
+static g_raid_tr_idle_t g_raid_tr_idle_raid1;
+static g_raid_tr_free_t g_raid_tr_free_raid1;
+
+static kobj_method_t g_raid_tr_raid1_methods[] = {
+ KOBJMETHOD(g_raid_tr_taste, g_raid_tr_taste_raid1),
+ KOBJMETHOD(g_raid_tr_event, g_raid_tr_event_raid1),
+ KOBJMETHOD(g_raid_tr_start, g_raid_tr_start_raid1),
+ KOBJMETHOD(g_raid_tr_stop, g_raid_tr_stop_raid1),
+ KOBJMETHOD(g_raid_tr_iostart, g_raid_tr_iostart_raid1),
+ KOBJMETHOD(g_raid_tr_iodone, g_raid_tr_iodone_raid1),
+ KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1),
+ KOBJMETHOD(g_raid_tr_locked, g_raid_tr_locked_raid1),
+ KOBJMETHOD(g_raid_tr_idle, g_raid_tr_idle_raid1),
+ KOBJMETHOD(g_raid_tr_free, g_raid_tr_free_raid1),
+ { 0, 0 }
+};
+
+static struct g_raid_tr_class g_raid_tr_raid1_class = {
+ "RAID1",
+ g_raid_tr_raid1_methods,
+ sizeof(struct g_raid_tr_raid1_object),
+ .trc_priority = 100
+};
+
+static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr);
+static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
+ struct g_raid_subdisk *sd);
+
+static int
+g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
+{
+ struct g_raid_tr_raid1_object *trs;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 ||
+ tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_NONE)
+ return (G_RAID_TR_TASTE_FAIL);
+ trs->trso_starting = 1;
+ return (G_RAID_TR_TASTE_SUCCEED);
+}
+
+static int
+g_raid_tr_update_state_raid1(struct g_raid_volume *vol,
+ struct g_raid_subdisk *sd)
+{
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_softc *sc;
+ struct g_raid_subdisk *tsd, *bestsd;
+ u_int s;
+ int i, na, ns;
+
+ sc = vol->v_softc;
+ trs = (struct g_raid_tr_raid1_object *)vol->v_tr;
+ if (trs->trso_stopping &&
+ (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0)
+ s = G_RAID_VOLUME_S_STOPPED;
+ else if (trs->trso_starting)
+ s = G_RAID_VOLUME_S_STARTING;
+ else {
+ /* Make sure we have at least one ACTIVE disk. */
+ na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
+ if (na == 0) {
+ /*
+ * Critical situation! We have no any active disk!
+ * Choose the best disk we have to make it active.
+ */
+ bestsd = &vol->v_subdisks[0];
+ for (i = 1; i < vol->v_disks_count; i++) {
+ tsd = &vol->v_subdisks[i];
+ if (tsd->sd_state > bestsd->sd_state)
+ bestsd = tsd;
+ else if (tsd->sd_state == bestsd->sd_state &&
+ (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
+ tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
+ tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos)
+ bestsd = tsd;
+ }
+ if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) {
+ /* We found reasonable candidate. */
+ G_RAID_DEBUG1(1, sc,
+ "Promote subdisk %s:%d from %s to ACTIVE.",
+ vol->v_name, bestsd->sd_pos,
+ g_raid_subdisk_state2str(bestsd->sd_state));
+ g_raid_change_subdisk_state(bestsd,
+ G_RAID_SUBDISK_S_ACTIVE);
+ g_raid_write_metadata(sc,
+ vol, bestsd, bestsd->sd_disk);
+ }
+ }
+ na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
+ ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
+ g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
+ if (na == vol->v_disks_count)
+ s = G_RAID_VOLUME_S_OPTIMAL;
+ else if (na + ns == vol->v_disks_count)
+ s = G_RAID_VOLUME_S_SUBOPTIMAL;
+ else if (na > 0)
+ s = G_RAID_VOLUME_S_DEGRADED;
+ else
+ s = G_RAID_VOLUME_S_BROKEN;
+ g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd);
+ }
+ if (s != vol->v_state) {
+ g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
+ G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
+ G_RAID_EVENT_VOLUME);
+ g_raid_change_volume_state(vol, s);
+ if (!trs->trso_starting && !trs->trso_stopping)
+ g_raid_write_metadata(sc, vol, NULL, NULL);
+ }
+ return (0);
+}
+
+static void
+g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd,
+ struct g_raid_disk *disk)
+{
+ /*
+ * We don't fail the last disk in the pack, since it still has decent
+ * data on it and that's better than failing the disk if it is the root
+ * file system.
+ *
+ * XXX should this be controlled via a tunable? It makes sense for
+ * the volume that has / on it. I can't think of a case where we'd
+ * want the volume to go away on this kind of event.
+ */
+ if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 &&
+ g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd)
+ return;
+ g_raid_fail_disk(sc, sd, disk);
+}
+
+static void
+g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_subdisk *sd, *good_sd;
+ struct bio *bp;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ if (trs->trso_flags & TR_RAID1_F_DOING_SOME)
+ return;
+ sd = trs->trso_failed_sd;
+ good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE);
+ if (good_sd == NULL) {
+ g_raid_tr_raid1_rebuild_abort(tr);
+ return;
+ }
+ bp = &trs->trso_bio;
+ memset(bp, 0, sizeof(*bp));
+ bp->bio_offset = sd->sd_rebuild_pos;
+ bp->bio_length = MIN(g_raid1_rebuild_slab,
+ sd->sd_size - sd->sd_rebuild_pos);
+ bp->bio_data = trs->trso_buffer;
+ bp->bio_cmd = BIO_READ;
+ bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
+ bp->bio_caller1 = good_sd;
+ trs->trso_flags |= TR_RAID1_F_DOING_SOME;
+ trs->trso_flags |= TR_RAID1_F_LOCKED;
+ g_raid_lock_range(sd->sd_volume, /* Lock callback starts I/O */
+ bp->bio_offset, bp->bio_length, NULL, bp);
+}
+
+static void
+g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs)
+{
+ struct g_raid_volume *vol;
+ struct g_raid_subdisk *sd;
+
+ vol = trs->trso_base.tro_volume;
+ sd = trs->trso_failed_sd;
+ g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk);
+ free(trs->trso_buffer, M_TR_RAID1);
+ trs->trso_buffer = NULL;
+ trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
+ trs->trso_type = TR_RAID1_NONE;
+ trs->trso_recover_slabs = 0;
+ trs->trso_failed_sd = NULL;
+ g_raid_tr_update_state_raid1(vol, NULL);
+}
+
+static void
+g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_subdisk *sd;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ sd = trs->trso_failed_sd;
+ G_RAID_DEBUG1(0, tr->tro_volume->v_softc,
+ "Subdisk %s:%d-%s rebuild completed.",
+ sd->sd_volume->v_name, sd->sd_pos,
+ sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
+ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE);
+ sd->sd_rebuild_pos = 0;
+ g_raid_tr_raid1_rebuild_done(trs);
+}
+
+static void
+g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_subdisk *sd;
+ struct g_raid_volume *vol;
+ off_t len;
+
+ vol = tr->tro_volume;
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ sd = trs->trso_failed_sd;
+ if (trs->trso_flags & TR_RAID1_F_DOING_SOME) {
+ G_RAID_DEBUG1(1, vol->v_softc,
+ "Subdisk %s:%d-%s rebuild is aborting.",
+ sd->sd_volume->v_name, sd->sd_pos,
+ sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
+ trs->trso_flags |= TR_RAID1_F_ABORT;
+ } else {
+ G_RAID_DEBUG1(0, vol->v_softc,
+ "Subdisk %s:%d-%s rebuild aborted.",
+ sd->sd_volume->v_name, sd->sd_pos,
+ sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
+ trs->trso_flags &= ~TR_RAID1_F_ABORT;
+ if (trs->trso_flags & TR_RAID1_F_LOCKED) {
+ trs->trso_flags &= ~TR_RAID1_F_LOCKED;
+ len = MIN(g_raid1_rebuild_slab,
+ sd->sd_size - sd->sd_rebuild_pos);
+ g_raid_unlock_range(tr->tro_volume,
+ sd->sd_rebuild_pos, len);
+ }
+ g_raid_tr_raid1_rebuild_done(trs);
+ }
+}
+
+static void
+g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr)
+{
+ struct g_raid_volume *vol;
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_subdisk *sd, *fsd;
+
+ vol = tr->tro_volume;
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ if (trs->trso_failed_sd) {
+ G_RAID_DEBUG1(1, vol->v_softc,
+ "Already rebuild in start rebuild. pos %jd\n",
+ (intmax_t)trs->trso_failed_sd->sd_rebuild_pos);
+ return;
+ }
+ sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE);
+ if (sd == NULL) {
+ G_RAID_DEBUG1(1, vol->v_softc,
+ "No active disk to rebuild. night night.");
+ return;
+ }
+ fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC);
+ if (fsd == NULL)
+ fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD);
+ if (fsd == NULL) {
+ fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE);
+ if (fsd != NULL) {
+ fsd->sd_rebuild_pos = 0;
+ g_raid_change_subdisk_state(fsd,
+ G_RAID_SUBDISK_S_RESYNC);
+ g_raid_write_metadata(vol->v_softc, vol, fsd, NULL);
+ } else {
+ fsd = g_raid_get_subdisk(vol,
+ G_RAID_SUBDISK_S_UNINITIALIZED);
+ if (fsd == NULL)
+ fsd = g_raid_get_subdisk(vol,
+ G_RAID_SUBDISK_S_NEW);
+ if (fsd != NULL) {
+ fsd->sd_rebuild_pos = 0;
+ g_raid_change_subdisk_state(fsd,
+ G_RAID_SUBDISK_S_REBUILD);
+ g_raid_write_metadata(vol->v_softc,
+ vol, fsd, NULL);
+ }
+ }
+ }
+ if (fsd == NULL) {
+ G_RAID_DEBUG1(1, vol->v_softc,
+ "No failed disk to rebuild. night night.");
+ return;
+ }
+ trs->trso_failed_sd = fsd;
+ G_RAID_DEBUG1(0, vol->v_softc,
+ "Subdisk %s:%d-%s rebuild start at %jd.",
+ fsd->sd_volume->v_name, fsd->sd_pos,
+ fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]",
+ trs->trso_failed_sd->sd_rebuild_pos);
+ trs->trso_type = TR_RAID1_REBUILD;
+ trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK);
+ trs->trso_meta_update = g_raid1_rebuild_meta_update;
+ g_raid_tr_raid1_rebuild_some(tr);
+}
+
+
+static void
+g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
+ struct g_raid_subdisk *sd)
+{
+ struct g_raid_volume *vol;
+ struct g_raid_tr_raid1_object *trs;
+ int na, nr;
+
+ /*
+ * If we're stopping, don't do anything. If we don't have at least one
+ * good disk and one bad disk, we don't do anything. And if there's a
+ * 'good disk' stored in the trs, then we're in progress and we punt.
+ * If we make it past all these checks, we need to rebuild.
+ */
+ vol = tr->tro_volume;
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ if (trs->trso_stopping)
+ return;
+ na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
+ nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) +
+ g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
+ switch(trs->trso_type) {
+ case TR_RAID1_NONE:
+ if (na == 0)
+ return;
+ if (nr == 0) {
+ nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) +
+ g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
+ g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
+ if (nr == 0)
+ return;
+ }
+ g_raid_tr_raid1_rebuild_start(tr);
+ break;
+ case TR_RAID1_REBUILD:
+ if (na == 0 || nr == 0 || trs->trso_failed_sd == sd)
+ g_raid_tr_raid1_rebuild_abort(tr);
+ break;
+ case TR_RAID1_RESYNC:
+ break;
+ }
+}
+
+static int
+g_raid_tr_event_raid1(struct g_raid_tr_object *tr,
+ struct g_raid_subdisk *sd, u_int event)
+{
+
+ g_raid_tr_update_state_raid1(tr->tro_volume, sd);
+ return (0);
+}
+
+static int
+g_raid_tr_start_raid1(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_volume *vol;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ vol = tr->tro_volume;
+ trs->trso_starting = 0;
+ g_raid_tr_update_state_raid1(vol, NULL);
+ return (0);
+}
+
+static int
+g_raid_tr_stop_raid1(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+ struct g_raid_volume *vol;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ vol = tr->tro_volume;
+ trs->trso_starting = 0;
+ trs->trso_stopping = 1;
+ g_raid_tr_update_state_raid1(vol, NULL);
+ return (0);
+}
+
+/*
+ * Select the disk to read from. Take into account: subdisk state, running
+ * error recovery, average disk load, head position and possible cache hits.
+ */
+#define ABS(x) (((x) >= 0) ? (x) : (-(x)))
+static struct g_raid_subdisk *
+g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp,
+ u_int mask)
+{
+ struct g_raid_subdisk *sd, *best;
+ int i, prio, bestprio;
+
+ best = NULL;
+ bestprio = INT_MAX;
+ for (i = 0; i < vol->v_disks_count; i++) {
+ sd = &vol->v_subdisks[i];
+ if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
+ ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD &&
+ sd->sd_state != G_RAID_SUBDISK_S_RESYNC) ||
+ bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos))
+ continue;
+ if ((mask & (1 << i)) != 0)
+ continue;
+ prio = G_RAID_SUBDISK_LOAD(sd);
+ prio += min(sd->sd_recovery, 255) << 22;
+ prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16;
+ /* If disk head is precisely in position - highly prefer it. */
+ if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset)
+ prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE;
+ else
+ /* If disk head is close to position - prefer it. */
+ if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) <
+ G_RAID_SUBDISK_TRACK_SIZE)
+ prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE;
+ if (prio < bestprio) {
+ best = sd;
+ bestprio = prio;
+ }
+ }
+ return (best);
+}
+
+static void
+g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp)
+{
+ struct g_raid_subdisk *sd;
+ struct bio *cbp;
+
+ sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0);
+ KASSERT(sd != NULL, ("No active disks in volume %s.",
+ tr->tro_volume->v_name));
+
+ cbp = g_clone_bio(bp);
+ if (cbp == NULL) {
+ g_raid_iodone(bp, ENOMEM);
+ return;
+ }
+
+ g_raid_subdisk_iostart(sd, cbp);
+}
+
+static void
+g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+ struct g_raid_subdisk *sd;
+ struct bio_queue_head queue;
+ struct bio *cbp;
+ int i;
+
+ vol = tr->tro_volume;
+ sc = vol->v_softc;
+
+ /*
+ * Allocate all bios before sending any request, so we can return
+ * ENOMEM in nice and clean way.
+ */
+ bioq_init(&queue);
+ for (i = 0; i < vol->v_disks_count; i++) {
+ sd = &vol->v_subdisks[i];
+ switch (sd->sd_state) {
+ case G_RAID_SUBDISK_S_ACTIVE:
+ break;
+ case G_RAID_SUBDISK_S_REBUILD:
+ /*
+ * When rebuilding, only part of this subdisk is
+ * writable, the rest will be written as part of the
+ * that process.
+ */
+ if (bp->bio_offset >= sd->sd_rebuild_pos)
+ continue;
+ break;
+ case G_RAID_SUBDISK_S_STALE:
+ case G_RAID_SUBDISK_S_RESYNC:
+ /*
+ * Resyncing still writes on the theory that the
+ * resync'd disk is very close and writing it will
+ * keep it that way better if we keep up while
+ * resyncing.
+ */
+ break;
+ default:
+ continue;
+ }
+ cbp = g_clone_bio(bp);
+ if (cbp == NULL)
+ goto failure;
+ cbp->bio_caller1 = sd;
+ bioq_insert_tail(&queue, cbp);
+ }
+ for (cbp = bioq_first(&queue); cbp != NULL;
+ cbp = bioq_first(&queue)) {
+ bioq_remove(&queue, cbp);
+ sd = cbp->bio_caller1;
+ cbp->bio_caller1 = NULL;
+ g_raid_subdisk_iostart(sd, cbp);
+ }
+ return;
+failure:
+ for (cbp = bioq_first(&queue); cbp != NULL;
+ cbp = bioq_first(&queue)) {
+ bioq_remove(&queue, cbp);
+ g_destroy_bio(cbp);
+ }
+ if (bp->bio_error == 0)
+ bp->bio_error = ENOMEM;
+ g_raid_iodone(bp, bp->bio_error);
+}
+
+static void
+g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp)
+{
+ struct g_raid_volume *vol;
+ struct g_raid_tr_raid1_object *trs;
+
+ vol = tr->tro_volume;
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL &&
+ vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL &&
+ vol->v_state != G_RAID_VOLUME_S_DEGRADED) {
+ g_raid_iodone(bp, EIO);
+ return;
+ }
+ /*
+ * If we're rebuilding, squeeze in rebuild activity every so often,
+ * even when the disk is busy. Be sure to only count real I/O
+ * to the disk. All 'SPECIAL' I/O is traffic generated to the disk
+ * by this module.
+ */
+ if (trs->trso_failed_sd != NULL &&
+ !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) {
+ /* Make this new or running now round short. */
+ trs->trso_recover_slabs = 0;
+ if (--trs->trso_fair_io <= 0) {
+ trs->trso_fair_io = g_raid1_rebuild_fair_io;
+ g_raid_tr_raid1_rebuild_some(tr);
+ }
+ }
+ switch (bp->bio_cmd) {
+ case BIO_READ:
+ g_raid_tr_iostart_raid1_read(tr, bp);
+ break;
+ case BIO_WRITE:
+ g_raid_tr_iostart_raid1_write(tr, bp);
+ break;
+ case BIO_DELETE:
+ g_raid_iodone(bp, EIO);
+ break;
+ case BIO_FLUSH:
+ g_raid_tr_flush_common(tr, bp);
+ break;
+ default:
+ KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
+ bp->bio_cmd, vol->v_name));
+ break;
+ }
+}
+
+static void
+g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr,
+ struct g_raid_subdisk *sd, struct bio *bp)
+{
+ struct bio *cbp;
+ struct g_raid_subdisk *nsd;
+ struct g_raid_volume *vol;
+ struct bio *pbp;
+ struct g_raid_tr_raid1_object *trs;
+ uintptr_t *mask;
+ int error, do_write;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ vol = tr->tro_volume;
+ if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) {
+ /*
+ * This operation is part of a rebuild or resync operation.
+ * See what work just got done, then schedule the next bit of
+ * work, if any. Rebuild/resync is done a little bit at a
+ * time. Either when a timeout happens, or after we get a
+ * bunch of I/Os to the disk (to make sure an active system
+ * will complete in a sane amount of time).
+ *
+ * We are setup to do differing amounts of work for each of
+ * these cases. so long as the slabs is smallish (less than
+ * 50 or so, I'd guess, but that's just a WAG), we shouldn't
+ * have any bio starvation issues. For active disks, we do
+ * 5MB of data, for inactive ones, we do 50MB.
+ */
+ if (trs->trso_type == TR_RAID1_REBUILD) {
+ if (bp->bio_cmd == BIO_READ) {
+
+ /* Immediately abort rebuild, if requested. */
+ if (trs->trso_flags & TR_RAID1_F_ABORT) {
+ trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
+ g_raid_tr_raid1_rebuild_abort(tr);
+ return;
+ }
+
+ /* On read error, skip and cross fingers. */
+ if (bp->bio_error != 0) {
+ G_RAID_LOGREQ(0, bp,
+ "Read error during rebuild (%d), "
+ "possible data loss!",
+ bp->bio_error);
+ goto rebuild_round_done;
+ }
+
+ /*
+ * The read operation finished, queue the
+ * write and get out.
+ */
+ G_RAID_LOGREQ(4, bp, "rebuild read done. %d",
+ bp->bio_error);
+ bp->bio_cmd = BIO_WRITE;
+ bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
+ bp->bio_offset = bp->bio_offset;
+ bp->bio_length = bp->bio_length;
+ G_RAID_LOGREQ(4, bp, "Queueing rebuild write.");
+ g_raid_subdisk_iostart(trs->trso_failed_sd, bp);
+ } else {
+ /*
+ * The write operation just finished. Do
+ * another. We keep cloning the master bio
+ * since it has the right buffers allocated to
+ * it.
+ */
+ G_RAID_LOGREQ(4, bp,
+ "rebuild write done. Error %d",
+ bp->bio_error);
+ nsd = trs->trso_failed_sd;
+ if (bp->bio_error != 0 ||
+ trs->trso_flags & TR_RAID1_F_ABORT) {
+ if ((trs->trso_flags &
+ TR_RAID1_F_ABORT) == 0) {
+ g_raid_tr_raid1_fail_disk(sd->sd_softc,
+ nsd, nsd->sd_disk);
+ }
+ trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
+ g_raid_tr_raid1_rebuild_abort(tr);
+ return;
+ }
+rebuild_round_done:
+ nsd = trs->trso_failed_sd;
+ trs->trso_flags &= ~TR_RAID1_F_LOCKED;
+ g_raid_unlock_range(sd->sd_volume,
+ bp->bio_offset, bp->bio_length);
+ nsd->sd_rebuild_pos += bp->bio_length;
+ if (nsd->sd_rebuild_pos >= nsd->sd_size) {
+ g_raid_tr_raid1_rebuild_finish(tr);
+ return;
+ }
+
+ /* Abort rebuild if we are stopping */
+ if (trs->trso_stopping) {
+ trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
+ g_raid_tr_raid1_rebuild_abort(tr);
+ return;
+ }
+
+ if (--trs->trso_meta_update <= 0) {
+ g_raid_write_metadata(vol->v_softc,
+ vol, nsd, nsd->sd_disk);
+ trs->trso_meta_update =
+ g_raid1_rebuild_meta_update;
+ }
+ trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
+ if (--trs->trso_recover_slabs <= 0)
+ return;
+ g_raid_tr_raid1_rebuild_some(tr);
+ }
+ } else if (trs->trso_type == TR_RAID1_RESYNC) {
+ /*
+ * read good sd, read bad sd in parallel. when both
+ * done, compare the buffers. write good to the bad
+ * if different. do the next bit of work.
+ */
+ panic("Somehow, we think we're doing a resync");
+ }
+ return;
+ }
+ pbp = bp->bio_parent;
+ pbp->bio_inbed++;
+ if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) {
+ /*
+ * Read failed on first drive. Retry the read error on
+ * another disk drive, if available, before erroring out the
+ * read.
+ */
+ sd->sd_disk->d_read_errs++;
+ G_RAID_LOGREQ(0, bp,
+ "Read error (%d), %d read errors total",
+ bp->bio_error, sd->sd_disk->d_read_errs);
+
+ /*
+ * If there are too many read errors, we move to degraded.
+ * XXX Do we want to FAIL the drive (eg, make the user redo
+ * everything to get it back in sync), or just degrade the
+ * drive, which kicks off a resync?
+ */
+ do_write = 1;
+ if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) {
+ g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
+ if (pbp->bio_children == 1)
+ do_write = 0;
+ }
+
+ /*
+ * Find the other disk, and try to do the I/O to it.
+ */
+ mask = (uintptr_t *)(&pbp->bio_driver2);
+ if (pbp->bio_children == 1) {
+ /* Save original subdisk. */
+ pbp->bio_driver1 = do_write ? sd : NULL;
+ *mask = 0;
+ }
+ *mask |= 1 << sd->sd_pos;
+ nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask);
+ if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) {
+ g_destroy_bio(bp);
+ G_RAID_LOGREQ(2, cbp, "Retrying read from %d",
+ nsd->sd_pos);
+ if (pbp->bio_children == 2 && do_write) {
+ sd->sd_recovery++;
+ cbp->bio_caller1 = nsd;
+ pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED;
+ /* Lock callback starts I/O */
+ g_raid_lock_range(sd->sd_volume,
+ cbp->bio_offset, cbp->bio_length, pbp, cbp);
+ } else {
+ g_raid_subdisk_iostart(nsd, cbp);
+ }
+ return;
+ }
+ /*
+ * We can't retry. Return the original error by falling
+ * through. This will happen when there's only one good disk.
+ * We don't need to fail the raid, since its actual state is
+ * based on the state of the subdisks.
+ */
+ G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it");
+ }
+ if (bp->bio_cmd == BIO_READ &&
+ bp->bio_error == 0 &&
+ pbp->bio_children > 1 &&
+ pbp->bio_driver1 != NULL) {
+ /*
+ * If it was a read, and bio_children is >1, then we just
+ * recovered the data from the second drive. We should try to
+ * write that data to the first drive if sector remapping is
+ * enabled. A write should put the data in a new place on the
+ * disk, remapping the bad sector. Do we need to do that by
+ * queueing a request to the main worker thread? It doesn't
+ * affect the return code of this current read, and can be
+ * done at our liesure. However, to make the code simpler, it
+ * is done syncrhonously.
+ */
+ G_RAID_LOGREQ(3, bp, "Recovered data from other drive");
+ cbp = g_clone_bio(pbp);
+ if (cbp != NULL) {
+ g_destroy_bio(bp);
+ cbp->bio_cmd = BIO_WRITE;
+ cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP;
+ G_RAID_LOGREQ(2, cbp,
+ "Attempting bad sector remap on failing drive.");
+ g_raid_subdisk_iostart(pbp->bio_driver1, cbp);
+ return;
+ }
+ }
+ if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) {
+ /*
+ * We're done with a recovery, mark the range as unlocked.
+ * For any write errors, we agressively fail the disk since
+ * there was both a READ and a WRITE error at this location.
+ * Both types of errors generally indicates the drive is on
+ * the verge of total failure anyway. Better to stop trusting
+ * it now. However, we need to reset error to 0 in that case
+ * because we're not failing the original I/O which succeeded.
+ */
+ if (bp->bio_cmd == BIO_WRITE && bp->bio_error) {
+ G_RAID_LOGREQ(0, bp, "Remap write failed: "
+ "failing subdisk.");
+ g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
+ bp->bio_error = 0;
+ }
+ if (pbp->bio_driver1 != NULL) {
+ ((struct g_raid_subdisk *)pbp->bio_driver1)
+ ->sd_recovery--;
+ }
+ G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error);
+ g_raid_unlock_range(sd->sd_volume, bp->bio_offset,
+ bp->bio_length);
+ }
+ error = bp->bio_error;
+ g_destroy_bio(bp);
+ if (pbp->bio_children == pbp->bio_inbed) {
+ pbp->bio_completed = pbp->bio_length;
+ g_raid_iodone(pbp, error);
+ }
+}
+
+static int
+g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr,
+ void *virtual, vm_offset_t physical, off_t offset, size_t length)
+{
+ struct g_raid_volume *vol;
+ struct g_raid_subdisk *sd;
+ int error, i, ok;
+
+ vol = tr->tro_volume;
+ error = 0;
+ ok = 0;
+ for (i = 0; i < vol->v_disks_count; i++) {
+ sd = &vol->v_subdisks[i];
+ switch (sd->sd_state) {
+ case G_RAID_SUBDISK_S_ACTIVE:
+ break;
+ case G_RAID_SUBDISK_S_REBUILD:
+ /*
+ * When rebuilding, only part of this subdisk is
+ * writable, the rest will be written as part of the
+ * that process.
+ */
+ if (offset >= sd->sd_rebuild_pos)
+ continue;
+ break;
+ case G_RAID_SUBDISK_S_STALE:
+ case G_RAID_SUBDISK_S_RESYNC:
+ /*
+ * Resyncing still writes on the theory that the
+ * resync'd disk is very close and writing it will
+ * keep it that way better if we keep up while
+ * resyncing.
+ */
+ break;
+ default:
+ continue;
+ }
+ error = g_raid_subdisk_kerneldump(sd,
+ virtual, physical, offset, length);
+ if (error == 0)
+ ok++;
+ }
+ return (ok > 0 ? 0 : error);
+}
+
+static int
+g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp)
+{
+ struct bio *bp;
+ struct g_raid_subdisk *sd;
+
+ bp = (struct bio *)argp;
+ sd = (struct g_raid_subdisk *)bp->bio_caller1;
+ g_raid_subdisk_iostart(sd, bp);
+
+ return (0);
+}
+
+static int
+g_raid_tr_idle_raid1(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+ trs->trso_fair_io = g_raid1_rebuild_fair_io;
+ trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle;
+ if (trs->trso_type == TR_RAID1_REBUILD)
+ g_raid_tr_raid1_rebuild_some(tr);
+ return (0);
+}
+
+static int
+g_raid_tr_free_raid1(struct g_raid_tr_object *tr)
+{
+ struct g_raid_tr_raid1_object *trs;
+
+ trs = (struct g_raid_tr_raid1_object *)tr;
+
+ if (trs->trso_buffer != NULL) {
+ free(trs->trso_buffer, M_TR_RAID1);
+ trs->trso_buffer = NULL;
+ }
+ return (0);
+}
+
+G_RAID_TR_DECLARE(g_raid_tr_raid1);
OpenPOWER on IntegriCloud