summaryrefslogtreecommitdiffstats
path: root/sys/geom/raid/g_raid.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/geom/raid/g_raid.c')
-rw-r--r--sys/geom/raid/g_raid.c2340
1 files changed, 2340 insertions, 0 deletions
diff --git a/sys/geom/raid/g_raid.c b/sys/geom/raid/g_raid.c
new file mode 100644
index 0000000..eebb360
--- /dev/null
+++ b/sys/geom/raid/g_raid.c
@@ -0,0 +1,2340 @@
+/*-
+ * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/module.h>
+#include <sys/limits.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/bio.h>
+#include <sys/sysctl.h>
+#include <sys/malloc.h>
+#include <sys/eventhandler.h>
+#include <vm/uma.h>
+#include <geom/geom.h>
+#include <sys/proc.h>
+#include <sys/kthread.h>
+#include <sys/sched.h>
+#include <geom/raid/g_raid.h>
+#include "g_raid_md_if.h"
+#include "g_raid_tr_if.h"
+
+static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
+
+SYSCTL_DECL(_kern_geom);
+SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
+u_int g_raid_aggressive_spare = 0;
+TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
+ &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
+u_int g_raid_debug = 2;
+TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
+ "Debug level");
+int g_raid_read_err_thresh = 10;
+TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
+ &g_raid_read_err_thresh, 0,
+ "Number of read errors equated to disk failure");
+u_int g_raid_start_timeout = 30;
+TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
+ &g_raid_start_timeout, 0,
+ "Time to wait for all array components");
+static u_int g_raid_clean_time = 5;
+TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
+ &g_raid_clean_time, 0, "Mark volume as clean when idling");
+static u_int g_raid_disconnect_on_failure = 1;
+TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
+ &g_raid_disconnect_on_failure);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
+ &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
+static u_int g_raid_name_format = 0;
+TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
+ &g_raid_name_format, 0, "Providers name format.");
+static u_int g_raid_idle_threshold = 1000000;
+TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
+SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
+ &g_raid_idle_threshold, 1000000,
+ "Time in microseconds to consider a volume idle.");
+
+#define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \
+ G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \
+ rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \
+ G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \
+} while (0)
+
+LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
+ LIST_HEAD_INITIALIZER(g_raid_md_classes);
+
+LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
+ LIST_HEAD_INITIALIZER(g_raid_tr_classes);
+
+LIST_HEAD(, g_raid_volume) g_raid_volumes =
+ LIST_HEAD_INITIALIZER(g_raid_volumes);
+
+static eventhandler_tag g_raid_pre_sync = NULL;
+static int g_raid_started = 0;
+
+static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
+ struct g_geom *gp);
+static g_taste_t g_raid_taste;
+static void g_raid_init(struct g_class *mp);
+static void g_raid_fini(struct g_class *mp);
+
+struct g_class g_raid_class = {
+ .name = G_RAID_CLASS_NAME,
+ .version = G_VERSION,
+ .ctlreq = g_raid_ctl,
+ .taste = g_raid_taste,
+ .destroy_geom = g_raid_destroy_geom,
+ .init = g_raid_init,
+ .fini = g_raid_fini
+};
+
+static void g_raid_destroy_provider(struct g_raid_volume *vol);
+static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
+static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
+static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
+static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
+static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
+ struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
+static void g_raid_start(struct bio *bp);
+static void g_raid_start_request(struct bio *bp);
+static void g_raid_disk_done(struct bio *bp);
+static void g_raid_poll(struct g_raid_softc *sc);
+
+static const char *
+g_raid_node_event2str(int event)
+{
+
+ switch (event) {
+ case G_RAID_NODE_E_WAKE:
+ return ("WAKE");
+ case G_RAID_NODE_E_START:
+ return ("START");
+ default:
+ return ("INVALID");
+ }
+}
+
+const char *
+g_raid_disk_state2str(int state)
+{
+
+ switch (state) {
+ case G_RAID_DISK_S_NONE:
+ return ("NONE");
+ case G_RAID_DISK_S_OFFLINE:
+ return ("OFFLINE");
+ case G_RAID_DISK_S_FAILED:
+ return ("FAILED");
+ case G_RAID_DISK_S_STALE_FAILED:
+ return ("STALE_FAILED");
+ case G_RAID_DISK_S_SPARE:
+ return ("SPARE");
+ case G_RAID_DISK_S_STALE:
+ return ("STALE");
+ case G_RAID_DISK_S_ACTIVE:
+ return ("ACTIVE");
+ default:
+ return ("INVALID");
+ }
+}
+
+static const char *
+g_raid_disk_event2str(int event)
+{
+
+ switch (event) {
+ case G_RAID_DISK_E_DISCONNECTED:
+ return ("DISCONNECTED");
+ default:
+ return ("INVALID");
+ }
+}
+
+const char *
+g_raid_subdisk_state2str(int state)
+{
+
+ switch (state) {
+ case G_RAID_SUBDISK_S_NONE:
+ return ("NONE");
+ case G_RAID_SUBDISK_S_FAILED:
+ return ("FAILED");
+ case G_RAID_SUBDISK_S_NEW:
+ return ("NEW");
+ case G_RAID_SUBDISK_S_REBUILD:
+ return ("REBUILD");
+ case G_RAID_SUBDISK_S_UNINITIALIZED:
+ return ("UNINITIALIZED");
+ case G_RAID_SUBDISK_S_STALE:
+ return ("STALE");
+ case G_RAID_SUBDISK_S_RESYNC:
+ return ("RESYNC");
+ case G_RAID_SUBDISK_S_ACTIVE:
+ return ("ACTIVE");
+ default:
+ return ("INVALID");
+ }
+}
+
+static const char *
+g_raid_subdisk_event2str(int event)
+{
+
+ switch (event) {
+ case G_RAID_SUBDISK_E_NEW:
+ return ("NEW");
+ case G_RAID_SUBDISK_E_DISCONNECTED:
+ return ("DISCONNECTED");
+ default:
+ return ("INVALID");
+ }
+}
+
+const char *
+g_raid_volume_state2str(int state)
+{
+
+ switch (state) {
+ case G_RAID_VOLUME_S_STARTING:
+ return ("STARTING");
+ case G_RAID_VOLUME_S_BROKEN:
+ return ("BROKEN");
+ case G_RAID_VOLUME_S_DEGRADED:
+ return ("DEGRADED");
+ case G_RAID_VOLUME_S_SUBOPTIMAL:
+ return ("SUBOPTIMAL");
+ case G_RAID_VOLUME_S_OPTIMAL:
+ return ("OPTIMAL");
+ case G_RAID_VOLUME_S_UNSUPPORTED:
+ return ("UNSUPPORTED");
+ case G_RAID_VOLUME_S_STOPPED:
+ return ("STOPPED");
+ default:
+ return ("INVALID");
+ }
+}
+
+static const char *
+g_raid_volume_event2str(int event)
+{
+
+ switch (event) {
+ case G_RAID_VOLUME_E_UP:
+ return ("UP");
+ case G_RAID_VOLUME_E_DOWN:
+ return ("DOWN");
+ case G_RAID_VOLUME_E_START:
+ return ("START");
+ case G_RAID_VOLUME_E_STARTMD:
+ return ("STARTMD");
+ default:
+ return ("INVALID");
+ }
+}
+
+const char *
+g_raid_volume_level2str(int level, int qual)
+{
+
+ switch (level) {
+ case G_RAID_VOLUME_RL_RAID0:
+ return ("RAID0");
+ case G_RAID_VOLUME_RL_RAID1:
+ return ("RAID1");
+ case G_RAID_VOLUME_RL_RAID3:
+ return ("RAID3");
+ case G_RAID_VOLUME_RL_RAID4:
+ return ("RAID4");
+ case G_RAID_VOLUME_RL_RAID5:
+ return ("RAID5");
+ case G_RAID_VOLUME_RL_RAID6:
+ return ("RAID6");
+ case G_RAID_VOLUME_RL_RAID1E:
+ return ("RAID1E");
+ case G_RAID_VOLUME_RL_SINGLE:
+ return ("SINGLE");
+ case G_RAID_VOLUME_RL_CONCAT:
+ return ("CONCAT");
+ case G_RAID_VOLUME_RL_RAID5E:
+ return ("RAID5E");
+ case G_RAID_VOLUME_RL_RAID5EE:
+ return ("RAID5EE");
+ default:
+ return ("UNKNOWN");
+ }
+}
+
+int
+g_raid_volume_str2level(const char *str, int *level, int *qual)
+{
+
+ *level = G_RAID_VOLUME_RL_UNKNOWN;
+ *qual = G_RAID_VOLUME_RLQ_NONE;
+ if (strcasecmp(str, "RAID0") == 0)
+ *level = G_RAID_VOLUME_RL_RAID0;
+ else if (strcasecmp(str, "RAID1") == 0)
+ *level = G_RAID_VOLUME_RL_RAID1;
+ else if (strcasecmp(str, "RAID3") == 0)
+ *level = G_RAID_VOLUME_RL_RAID3;
+ else if (strcasecmp(str, "RAID4") == 0)
+ *level = G_RAID_VOLUME_RL_RAID4;
+ else if (strcasecmp(str, "RAID5") == 0)
+ *level = G_RAID_VOLUME_RL_RAID5;
+ else if (strcasecmp(str, "RAID6") == 0)
+ *level = G_RAID_VOLUME_RL_RAID6;
+ else if (strcasecmp(str, "RAID10") == 0 ||
+ strcasecmp(str, "RAID1E") == 0)
+ *level = G_RAID_VOLUME_RL_RAID1E;
+ else if (strcasecmp(str, "SINGLE") == 0)
+ *level = G_RAID_VOLUME_RL_SINGLE;
+ else if (strcasecmp(str, "CONCAT") == 0)
+ *level = G_RAID_VOLUME_RL_CONCAT;
+ else if (strcasecmp(str, "RAID5E") == 0)
+ *level = G_RAID_VOLUME_RL_RAID5E;
+ else if (strcasecmp(str, "RAID5EE") == 0)
+ *level = G_RAID_VOLUME_RL_RAID5EE;
+ else
+ return (-1);
+ return (0);
+}
+
+const char *
+g_raid_get_diskname(struct g_raid_disk *disk)
+{
+
+ if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
+ return ("[unknown]");
+ return (disk->d_consumer->provider->name);
+}
+
+void
+g_raid_report_disk_state(struct g_raid_disk *disk)
+{
+ struct g_raid_subdisk *sd;
+ int len, state;
+ uint32_t s;
+
+ if (disk->d_consumer == NULL)
+ return;
+ if (disk->d_state == G_RAID_DISK_S_FAILED ||
+ disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
+ s = G_STATE_FAILED;
+ } else {
+ state = G_RAID_SUBDISK_S_ACTIVE;
+ TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
+ if (sd->sd_state < state)
+ state = sd->sd_state;
+ }
+ if (state == G_RAID_SUBDISK_S_FAILED)
+ s = G_STATE_FAILED;
+ else if (state == G_RAID_SUBDISK_S_NEW ||
+ state == G_RAID_SUBDISK_S_REBUILD)
+ s = G_STATE_REBUILD;
+ else if (state == G_RAID_SUBDISK_S_STALE ||
+ state == G_RAID_SUBDISK_S_RESYNC)
+ s = G_STATE_RESYNC;
+ else
+ s = G_STATE_ACTIVE;
+ }
+ len = sizeof(s);
+ g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
+ G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
+ g_raid_get_diskname(disk), s);
+}
+
+void
+g_raid_change_disk_state(struct g_raid_disk *disk, int state)
+{
+
+ G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
+ g_raid_get_diskname(disk),
+ g_raid_disk_state2str(disk->d_state),
+ g_raid_disk_state2str(state));
+ disk->d_state = state;
+ g_raid_report_disk_state(disk);
+}
+
+void
+g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
+{
+
+ G_RAID_DEBUG1(0, sd->sd_softc,
+ "Subdisk %s:%d-%s state changed from %s to %s.",
+ sd->sd_volume->v_name, sd->sd_pos,
+ sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
+ g_raid_subdisk_state2str(sd->sd_state),
+ g_raid_subdisk_state2str(state));
+ sd->sd_state = state;
+ if (sd->sd_disk)
+ g_raid_report_disk_state(sd->sd_disk);
+}
+
+void
+g_raid_change_volume_state(struct g_raid_volume *vol, int state)
+{
+
+ G_RAID_DEBUG1(0, vol->v_softc,
+ "Volume %s state changed from %s to %s.",
+ vol->v_name,
+ g_raid_volume_state2str(vol->v_state),
+ g_raid_volume_state2str(state));
+ vol->v_state = state;
+}
+
+/*
+ * --- Events handling functions ---
+ * Events in geom_raid are used to maintain subdisks and volumes status
+ * from one thread to simplify locking.
+ */
+static void
+g_raid_event_free(struct g_raid_event *ep)
+{
+
+ free(ep, M_RAID);
+}
+
+int
+g_raid_event_send(void *arg, int event, int flags)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_event *ep;
+ int error;
+
+ if ((flags & G_RAID_EVENT_VOLUME) != 0) {
+ sc = ((struct g_raid_volume *)arg)->v_softc;
+ } else if ((flags & G_RAID_EVENT_DISK) != 0) {
+ sc = ((struct g_raid_disk *)arg)->d_softc;
+ } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
+ sc = ((struct g_raid_subdisk *)arg)->sd_softc;
+ } else {
+ sc = arg;
+ }
+ ep = malloc(sizeof(*ep), M_RAID,
+ sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
+ if (ep == NULL)
+ return (ENOMEM);
+ ep->e_tgt = arg;
+ ep->e_event = event;
+ ep->e_flags = flags;
+ ep->e_error = 0;
+ G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
+ mtx_lock(&sc->sc_queue_mtx);
+ TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
+ mtx_unlock(&sc->sc_queue_mtx);
+ wakeup(sc);
+
+ if ((flags & G_RAID_EVENT_WAIT) == 0)
+ return (0);
+
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+ G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
+ sx_xunlock(&sc->sc_lock);
+ while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
+ mtx_lock(&sc->sc_queue_mtx);
+ MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
+ hz * 5);
+ }
+ error = ep->e_error;
+ g_raid_event_free(ep);
+ sx_xlock(&sc->sc_lock);
+ return (error);
+}
+
+static void
+g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
+{
+ struct g_raid_event *ep, *tmpep;
+
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ mtx_lock(&sc->sc_queue_mtx);
+ TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
+ if (ep->e_tgt != tgt)
+ continue;
+ TAILQ_REMOVE(&sc->sc_events, ep, e_next);
+ if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
+ g_raid_event_free(ep);
+ else {
+ ep->e_error = ECANCELED;
+ wakeup(ep);
+ }
+ }
+ mtx_unlock(&sc->sc_queue_mtx);
+}
+
+static int
+g_raid_event_check(struct g_raid_softc *sc, void *tgt)
+{
+ struct g_raid_event *ep;
+ int res = 0;
+
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ mtx_lock(&sc->sc_queue_mtx);
+ TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
+ if (ep->e_tgt != tgt)
+ continue;
+ res = 1;
+ break;
+ }
+ mtx_unlock(&sc->sc_queue_mtx);
+ return (res);
+}
+
+/*
+ * Return the number of disks in given state.
+ * If state is equal to -1, count all connected disks.
+ */
+u_int
+g_raid_ndisks(struct g_raid_softc *sc, int state)
+{
+ struct g_raid_disk *disk;
+ u_int n;
+
+ sx_assert(&sc->sc_lock, SX_LOCKED);
+
+ n = 0;
+ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
+ if (disk->d_state == state || state == -1)
+ n++;
+ }
+ return (n);
+}
+
+/*
+ * Return the number of subdisks in given state.
+ * If state is equal to -1, count all connected disks.
+ */
+u_int
+g_raid_nsubdisks(struct g_raid_volume *vol, int state)
+{
+ struct g_raid_subdisk *subdisk;
+ struct g_raid_softc *sc;
+ u_int i, n ;
+
+ sc = vol->v_softc;
+ sx_assert(&sc->sc_lock, SX_LOCKED);
+
+ n = 0;
+ for (i = 0; i < vol->v_disks_count; i++) {
+ subdisk = &vol->v_subdisks[i];
+ if ((state == -1 &&
+ subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
+ subdisk->sd_state == state)
+ n++;
+ }
+ return (n);
+}
+
+/*
+ * Return the first subdisk in given state.
+ * If state is equal to -1, then the first connected disks.
+ */
+struct g_raid_subdisk *
+g_raid_get_subdisk(struct g_raid_volume *vol, int state)
+{
+ struct g_raid_subdisk *sd;
+ struct g_raid_softc *sc;
+ u_int i;
+
+ sc = vol->v_softc;
+ sx_assert(&sc->sc_lock, SX_LOCKED);
+
+ for (i = 0; i < vol->v_disks_count; i++) {
+ sd = &vol->v_subdisks[i];
+ if ((state == -1 &&
+ sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
+ sd->sd_state == state)
+ return (sd);
+ }
+ return (NULL);
+}
+
+struct g_consumer *
+g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
+{
+ struct g_consumer *cp;
+ struct g_provider *pp;
+
+ g_topology_assert();
+
+ if (strncmp(name, "/dev/", 5) == 0)
+ name += 5;
+ pp = g_provider_by_name(name);
+ if (pp == NULL)
+ return (NULL);
+ cp = g_new_consumer(sc->sc_geom);
+ if (g_attach(cp, pp) != 0) {
+ g_destroy_consumer(cp);
+ return (NULL);
+ }
+ if (g_access(cp, 1, 1, 1) != 0) {
+ g_detach(cp);
+ g_destroy_consumer(cp);
+ return (NULL);
+ }
+ return (cp);
+}
+
+static u_int
+g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
+{
+ struct bio *bp;
+ u_int nreqs = 0;
+
+ mtx_lock(&sc->sc_queue_mtx);
+ TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
+ if (bp->bio_from == cp)
+ nreqs++;
+ }
+ mtx_unlock(&sc->sc_queue_mtx);
+ return (nreqs);
+}
+
+u_int
+g_raid_nopens(struct g_raid_softc *sc)
+{
+ struct g_raid_volume *vol;
+ u_int opens;
+
+ opens = 0;
+ TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
+ if (vol->v_provider_open != 0)
+ opens++;
+ }
+ return (opens);
+}
+
+static int
+g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
+{
+
+ if (cp->index > 0) {
+ G_RAID_DEBUG1(2, sc,
+ "I/O requests for %s exist, can't destroy it now.",
+ cp->provider->name);
+ return (1);
+ }
+ if (g_raid_nrequests(sc, cp) > 0) {
+ G_RAID_DEBUG1(2, sc,
+ "I/O requests for %s in queue, can't destroy it now.",
+ cp->provider->name);
+ return (1);
+ }
+ return (0);
+}
+
+static void
+g_raid_destroy_consumer(void *arg, int flags __unused)
+{
+ struct g_consumer *cp;
+
+ g_topology_assert();
+
+ cp = arg;
+ G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
+ g_detach(cp);
+ g_destroy_consumer(cp);
+}
+
+void
+g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
+{
+ struct g_provider *pp;
+ int retaste_wait;
+
+ g_topology_assert_not();
+
+ g_topology_lock();
+ cp->private = NULL;
+ if (g_raid_consumer_is_busy(sc, cp))
+ goto out;
+ pp = cp->provider;
+ retaste_wait = 0;
+ if (cp->acw == 1) {
+ if ((pp->geom->flags & G_GEOM_WITHER) == 0)
+ retaste_wait = 1;
+ }
+ if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
+ g_access(cp, -cp->acr, -cp->acw, -cp->ace);
+ if (retaste_wait) {
+ /*
+ * After retaste event was send (inside g_access()), we can send
+ * event to detach and destroy consumer.
+ * A class, which has consumer to the given provider connected
+ * will not receive retaste event for the provider.
+ * This is the way how I ignore retaste events when I close
+ * consumers opened for write: I detach and destroy consumer
+ * after retaste event is sent.
+ */
+ g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
+ goto out;
+ }
+ G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
+ g_detach(cp);
+ g_destroy_consumer(cp);
+out:
+ g_topology_unlock();
+}
+
+static void
+g_raid_orphan(struct g_consumer *cp)
+{
+ struct g_raid_disk *disk;
+
+ g_topology_assert();
+
+ disk = cp->private;
+ if (disk == NULL)
+ return;
+ g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
+ G_RAID_EVENT_DISK);
+}
+
+static int
+g_raid_clean(struct g_raid_volume *vol, int acw)
+{
+ struct g_raid_softc *sc;
+ int timeout;
+
+ sc = vol->v_softc;
+ g_topology_assert_not();
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+// if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
+// return (0);
+ if (!vol->v_dirty)
+ return (0);
+ if (vol->v_writes > 0)
+ return (0);
+ if (acw > 0 || (acw == -1 &&
+ vol->v_provider != NULL && vol->v_provider->acw > 0)) {
+ timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
+ if (timeout > 0)
+ return (timeout);
+ }
+ vol->v_dirty = 0;
+ G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
+ vol->v_name);
+ g_raid_write_metadata(sc, vol, NULL, NULL);
+ return (0);
+}
+
+static void
+g_raid_dirty(struct g_raid_volume *vol)
+{
+ struct g_raid_softc *sc;
+
+ sc = vol->v_softc;
+ g_topology_assert_not();
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+// if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
+// return;
+ vol->v_dirty = 1;
+ G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
+ vol->v_name);
+ g_raid_write_metadata(sc, vol, NULL, NULL);
+}
+
+void
+g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+ struct g_raid_subdisk *sd;
+ struct bio_queue_head queue;
+ struct bio *cbp;
+ int i;
+
+ vol = tr->tro_volume;
+ sc = vol->v_softc;
+
+ /*
+ * Allocate all bios before sending any request, so we can return
+ * ENOMEM in nice and clean way.
+ */
+ bioq_init(&queue);
+ for (i = 0; i < vol->v_disks_count; i++) {
+ sd = &vol->v_subdisks[i];
+ if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
+ sd->sd_state == G_RAID_SUBDISK_S_FAILED)
+ continue;
+ cbp = g_clone_bio(bp);
+ if (cbp == NULL)
+ goto failure;
+ cbp->bio_caller1 = sd;
+ bioq_insert_tail(&queue, cbp);
+ }
+ for (cbp = bioq_first(&queue); cbp != NULL;
+ cbp = bioq_first(&queue)) {
+ bioq_remove(&queue, cbp);
+ sd = cbp->bio_caller1;
+ cbp->bio_caller1 = NULL;
+ g_raid_subdisk_iostart(sd, cbp);
+ }
+ return;
+failure:
+ for (cbp = bioq_first(&queue); cbp != NULL;
+ cbp = bioq_first(&queue)) {
+ bioq_remove(&queue, cbp);
+ g_destroy_bio(cbp);
+ }
+ if (bp->bio_error == 0)
+ bp->bio_error = ENOMEM;
+ g_raid_iodone(bp, bp->bio_error);
+}
+
+static void
+g_raid_tr_kerneldump_common_done(struct bio *bp)
+{
+
+ bp->bio_flags |= BIO_DONE;
+}
+
+int
+g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
+ void *virtual, vm_offset_t physical, off_t offset, size_t length)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+ struct bio bp;
+
+ vol = tr->tro_volume;
+ sc = vol->v_softc;
+
+ bzero(&bp, sizeof(bp));
+ bp.bio_cmd = BIO_WRITE;
+ bp.bio_done = g_raid_tr_kerneldump_common_done;
+ bp.bio_attribute = NULL;
+ bp.bio_offset = offset;
+ bp.bio_length = length;
+ bp.bio_data = virtual;
+ bp.bio_to = vol->v_provider;
+
+ g_raid_start(&bp);
+ while (!(bp.bio_flags & BIO_DONE)) {
+ G_RAID_DEBUG1(4, sc, "Poll...");
+ g_raid_poll(sc);
+ DELAY(10);
+ }
+
+ return (bp.bio_error != 0 ? EIO : 0);
+}
+
+static int
+g_raid_dump(void *arg,
+ void *virtual, vm_offset_t physical, off_t offset, size_t length)
+{
+ struct g_raid_volume *vol;
+ int error;
+
+ vol = (struct g_raid_volume *)arg;
+ G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
+ (long long unsigned)offset, (long long unsigned)length);
+
+ error = G_RAID_TR_KERNELDUMP(vol->v_tr,
+ virtual, physical, offset, length);
+ return (error);
+}
+
+static void
+g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
+{
+ struct g_kerneldump *gkd;
+ struct g_provider *pp;
+ struct g_raid_volume *vol;
+
+ gkd = (struct g_kerneldump*)bp->bio_data;
+ pp = bp->bio_to;
+ vol = pp->private;
+ g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
+ pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
+ gkd->di.dumper = g_raid_dump;
+ gkd->di.priv = vol;
+ gkd->di.blocksize = vol->v_sectorsize;
+ gkd->di.maxiosize = DFLTPHYS;
+ gkd->di.mediaoffset = gkd->offset;
+ if ((gkd->offset + gkd->length) > vol->v_mediasize)
+ gkd->length = vol->v_mediasize - gkd->offset;
+ gkd->di.mediasize = gkd->length;
+ g_io_deliver(bp, 0);
+}
+
+static void
+g_raid_start(struct bio *bp)
+{
+ struct g_raid_softc *sc;
+
+ sc = bp->bio_to->geom->softc;
+ /*
+ * If sc == NULL or there are no valid disks, provider's error
+ * should be set and g_raid_start() should not be called at all.
+ */
+// KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
+// ("Provider's error should be set (error=%d)(mirror=%s).",
+// bp->bio_to->error, bp->bio_to->name));
+ G_RAID_LOGREQ(3, bp, "Request received.");
+
+ switch (bp->bio_cmd) {
+ case BIO_READ:
+ case BIO_WRITE:
+ case BIO_DELETE:
+ case BIO_FLUSH:
+ break;
+ case BIO_GETATTR:
+ if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
+ g_raid_kerneldump(sc, bp);
+ else
+ g_io_deliver(bp, EOPNOTSUPP);
+ return;
+ default:
+ g_io_deliver(bp, EOPNOTSUPP);
+ return;
+ }
+ mtx_lock(&sc->sc_queue_mtx);
+ bioq_disksort(&sc->sc_queue, bp);
+ mtx_unlock(&sc->sc_queue_mtx);
+ if (!dumping) {
+ G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
+ wakeup(sc);
+ }
+}
+
+static int
+g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
+{
+ /*
+ * 5 cases:
+ * (1) bp entirely below NO
+ * (2) bp entirely above NO
+ * (3) bp start below, but end in range YES
+ * (4) bp entirely within YES
+ * (5) bp starts within, ends above YES
+ *
+ * lock range 10-19 (offset 10 length 10)
+ * (1) 1-5: first if kicks it out
+ * (2) 30-35: second if kicks it out
+ * (3) 5-15: passes both ifs
+ * (4) 12-14: passes both ifs
+ * (5) 19-20: passes both
+ */
+ off_t lend = lstart + len - 1;
+ off_t bstart = bp->bio_offset;
+ off_t bend = bp->bio_offset + bp->bio_length - 1;
+
+ if (bend < lstart)
+ return (0);
+ if (lend < bstart)
+ return (0);
+ return (1);
+}
+
+static int
+g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
+{
+ struct g_raid_lock *lp;
+
+ sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
+
+ LIST_FOREACH(lp, &vol->v_locks, l_next) {
+ if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
+ return (1);
+ }
+ return (0);
+}
+
+static void
+g_raid_start_request(struct bio *bp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+
+ sc = bp->bio_to->geom->softc;
+ sx_assert(&sc->sc_lock, SX_LOCKED);
+ vol = bp->bio_to->private;
+
+ /*
+ * Check to see if this item is in a locked range. If so,
+ * queue it to our locked queue and return. We'll requeue
+ * it when the range is unlocked. Internal I/O for the
+ * rebuild/rescan/recovery process is excluded from this
+ * check so we can actually do the recovery.
+ */
+ if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
+ g_raid_is_in_locked_range(vol, bp)) {
+ G_RAID_LOGREQ(3, bp, "Defer request.");
+ bioq_insert_tail(&vol->v_locked, bp);
+ return;
+ }
+
+ /*
+ * If we're actually going to do the write/delete, then
+ * update the idle stats for the volume.
+ */
+ if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
+ if (!vol->v_dirty)
+ g_raid_dirty(vol);
+ vol->v_writes++;
+ }
+
+ /*
+ * Put request onto inflight queue, so we can check if new
+ * synchronization requests don't collide with it. Then tell
+ * the transformation layer to start the I/O.
+ */
+ bioq_insert_tail(&vol->v_inflight, bp);
+ G_RAID_LOGREQ(4, bp, "Request started");
+ G_RAID_TR_IOSTART(vol->v_tr, bp);
+}
+
+static void
+g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
+{
+ off_t off, len;
+ struct bio *nbp;
+ struct g_raid_lock *lp;
+
+ vol->v_pending_lock = 0;
+ LIST_FOREACH(lp, &vol->v_locks, l_next) {
+ if (lp->l_pending) {
+ off = lp->l_offset;
+ len = lp->l_length;
+ lp->l_pending = 0;
+ TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
+ if (g_raid_bio_overlaps(nbp, off, len))
+ lp->l_pending++;
+ }
+ if (lp->l_pending) {
+ vol->v_pending_lock = 1;
+ G_RAID_DEBUG1(4, vol->v_softc,
+ "Deferred lock(%jd, %jd) has %d pending",
+ (intmax_t)off, (intmax_t)(off + len),
+ lp->l_pending);
+ continue;
+ }
+ G_RAID_DEBUG1(4, vol->v_softc,
+ "Deferred lock of %jd to %jd completed",
+ (intmax_t)off, (intmax_t)(off + len));
+ G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
+ }
+ }
+}
+
+void
+g_raid_iodone(struct bio *bp, int error)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+
+ sc = bp->bio_to->geom->softc;
+ sx_assert(&sc->sc_lock, SX_LOCKED);
+ vol = bp->bio_to->private;
+ G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
+
+ /* Update stats if we done write/delete. */
+ if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
+ vol->v_writes--;
+ vol->v_last_write = time_uptime;
+ }
+
+ bioq_remove(&vol->v_inflight, bp);
+ if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
+ g_raid_finish_with_locked_ranges(vol, bp);
+ getmicrouptime(&vol->v_last_done);
+ g_io_deliver(bp, error);
+}
+
+int
+g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
+ struct bio *ignore, void *argp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_lock *lp;
+ struct bio *bp;
+
+ sc = vol->v_softc;
+ lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
+ LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
+ lp->l_offset = off;
+ lp->l_length = len;
+ lp->l_callback_arg = argp;
+
+ lp->l_pending = 0;
+ TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
+ if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
+ lp->l_pending++;
+ }
+
+ /*
+ * If there are any writes that are pending, we return EBUSY. All
+ * callers will have to wait until all pending writes clear.
+ */
+ if (lp->l_pending > 0) {
+ vol->v_pending_lock = 1;
+ G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
+ (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
+ return (EBUSY);
+ }
+ G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
+ (intmax_t)off, (intmax_t)(off+len));
+ G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
+ return (0);
+}
+
+int
+g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
+{
+ struct g_raid_lock *lp;
+ struct g_raid_softc *sc;
+ struct bio *bp;
+
+ sc = vol->v_softc;
+ LIST_FOREACH(lp, &vol->v_locks, l_next) {
+ if (lp->l_offset == off && lp->l_length == len) {
+ LIST_REMOVE(lp, l_next);
+ /* XXX
+ * Right now we just put them all back on the queue
+ * and hope for the best. We hope this because any
+ * locked ranges will go right back on this list
+ * when the worker thread runs.
+ * XXX
+ */
+ G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
+ (intmax_t)lp->l_offset,
+ (intmax_t)(lp->l_offset+lp->l_length));
+ mtx_lock(&sc->sc_queue_mtx);
+ while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
+ bioq_disksort(&sc->sc_queue, bp);
+ mtx_unlock(&sc->sc_queue_mtx);
+ free(lp, M_RAID);
+ return (0);
+ }
+ }
+ return (EINVAL);
+}
+
+void
+g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
+{
+ struct g_consumer *cp;
+ struct g_raid_disk *disk, *tdisk;
+
+ bp->bio_caller1 = sd;
+
+ /*
+ * Make sure that the disk is present. Generally it is a task of
+ * transformation layers to not send requests to absent disks, but
+ * it is better to be safe and report situation then sorry.
+ */
+ if (sd->sd_disk == NULL) {
+ G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
+nodisk:
+ bp->bio_from = NULL;
+ bp->bio_to = NULL;
+ bp->bio_error = ENXIO;
+ g_raid_disk_done(bp);
+ return;
+ }
+ disk = sd->sd_disk;
+ if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
+ disk->d_state != G_RAID_DISK_S_FAILED) {
+ G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
+ "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
+ goto nodisk;
+ }
+
+ cp = disk->d_consumer;
+ bp->bio_from = cp;
+ bp->bio_to = cp->provider;
+ cp->index++;
+
+ /* Update average disks load. */
+ TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
+ if (tdisk->d_consumer == NULL)
+ tdisk->d_load = 0;
+ else
+ tdisk->d_load = (tdisk->d_consumer->index *
+ G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
+ }
+
+ disk->d_last_offset = bp->bio_offset + bp->bio_length;
+ if (dumping) {
+ G_RAID_LOGREQ(3, bp, "Sending dumping request.");
+ if (bp->bio_cmd == BIO_WRITE) {
+ bp->bio_error = g_raid_subdisk_kerneldump(sd,
+ bp->bio_data, 0, bp->bio_offset, bp->bio_length);
+ } else
+ bp->bio_error = EOPNOTSUPP;
+ g_raid_disk_done(bp);
+ } else {
+ bp->bio_done = g_raid_disk_done;
+ bp->bio_offset += sd->sd_offset;
+ G_RAID_LOGREQ(3, bp, "Sending request.");
+ g_io_request(bp, cp);
+ }
+}
+
+int
+g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
+ void *virtual, vm_offset_t physical, off_t offset, size_t length)
+{
+
+ if (sd->sd_disk == NULL)
+ return (ENXIO);
+ if (sd->sd_disk->d_kd.di.dumper == NULL)
+ return (EOPNOTSUPP);
+ return (dump_write(&sd->sd_disk->d_kd.di,
+ virtual, physical,
+ sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
+ length));
+}
+
+static void
+g_raid_disk_done(struct bio *bp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_subdisk *sd;
+
+ sd = bp->bio_caller1;
+ sc = sd->sd_softc;
+ mtx_lock(&sc->sc_queue_mtx);
+ bioq_disksort(&sc->sc_queue, bp);
+ mtx_unlock(&sc->sc_queue_mtx);
+ if (!dumping)
+ wakeup(sc);
+}
+
+static void
+g_raid_disk_done_request(struct bio *bp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_disk *disk;
+ struct g_raid_subdisk *sd;
+ struct g_raid_volume *vol;
+
+ g_topology_assert_not();
+
+ G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
+ sd = bp->bio_caller1;
+ sc = sd->sd_softc;
+ vol = sd->sd_volume;
+ if (bp->bio_from != NULL) {
+ bp->bio_from->index--;
+ disk = bp->bio_from->private;
+ if (disk == NULL)
+ g_raid_kill_consumer(sc, bp->bio_from);
+ }
+ bp->bio_offset -= sd->sd_offset;
+
+ G_RAID_TR_IODONE(vol->v_tr, sd, bp);
+}
+
+static void
+g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
+{
+
+ if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
+ ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
+ else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
+ ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
+ else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
+ ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
+ else
+ ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
+ if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
+ KASSERT(ep->e_error == 0,
+ ("Error cannot be handled."));
+ g_raid_event_free(ep);
+ } else {
+ ep->e_flags |= G_RAID_EVENT_DONE;
+ G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
+ mtx_lock(&sc->sc_queue_mtx);
+ wakeup(ep);
+ mtx_unlock(&sc->sc_queue_mtx);
+ }
+}
+
+/*
+ * Worker thread.
+ */
+static void
+g_raid_worker(void *arg)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_event *ep;
+ struct g_raid_volume *vol;
+ struct bio *bp;
+ struct timeval now, t;
+ int timeout, rv;
+
+ sc = arg;
+ thread_lock(curthread);
+ sched_prio(curthread, PRIBIO);
+ thread_unlock(curthread);
+
+ sx_xlock(&sc->sc_lock);
+ for (;;) {
+ mtx_lock(&sc->sc_queue_mtx);
+ /*
+ * First take a look at events.
+ * This is important to handle events before any I/O requests.
+ */
+ bp = NULL;
+ vol = NULL;
+ rv = 0;
+ ep = TAILQ_FIRST(&sc->sc_events);
+ if (ep != NULL)
+ TAILQ_REMOVE(&sc->sc_events, ep, e_next);
+ else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
+ ;
+ else {
+ getmicrouptime(&now);
+ t = now;
+ TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
+ if (bioq_first(&vol->v_inflight) == NULL &&
+ vol->v_tr &&
+ timevalcmp(&vol->v_last_done, &t, < ))
+ t = vol->v_last_done;
+ }
+ timevalsub(&t, &now);
+ timeout = g_raid_idle_threshold +
+ t.tv_sec * 1000000 + t.tv_usec;
+ if (timeout > 0) {
+ /*
+ * Two steps to avoid overflows at HZ=1000
+ * and idle timeouts > 2.1s. Some rounding
+ * errors can occur, but they are < 1tick,
+ * which is deemed to be close enough for
+ * this purpose.
+ */
+ int micpertic = 1000000 / hz;
+ timeout = (timeout + micpertic - 1) / micpertic;
+ sx_xunlock(&sc->sc_lock);
+ MSLEEP(rv, sc, &sc->sc_queue_mtx,
+ PRIBIO | PDROP, "-", timeout);
+ sx_xlock(&sc->sc_lock);
+ goto process;
+ } else
+ rv = EWOULDBLOCK;
+ }
+ mtx_unlock(&sc->sc_queue_mtx);
+process:
+ if (ep != NULL) {
+ g_raid_handle_event(sc, ep);
+ } else if (bp != NULL) {
+ if (bp->bio_to != NULL &&
+ bp->bio_to->geom == sc->sc_geom)
+ g_raid_start_request(bp);
+ else
+ g_raid_disk_done_request(bp);
+ } else if (rv == EWOULDBLOCK) {
+ TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
+ if (vol->v_writes == 0 && vol->v_dirty)
+ g_raid_clean(vol, -1);
+ if (bioq_first(&vol->v_inflight) == NULL &&
+ vol->v_tr) {
+ t.tv_sec = g_raid_idle_threshold / 1000000;
+ t.tv_usec = g_raid_idle_threshold % 1000000;
+ timevaladd(&t, &vol->v_last_done);
+ getmicrouptime(&now);
+ if (timevalcmp(&t, &now, <= )) {
+ G_RAID_TR_IDLE(vol->v_tr);
+ vol->v_last_done = now;
+ }
+ }
+ }
+ }
+ if (sc->sc_stopping == G_RAID_DESTROY_HARD)
+ g_raid_destroy_node(sc, 1); /* May not return. */
+ }
+}
+
+static void
+g_raid_poll(struct g_raid_softc *sc)
+{
+ struct g_raid_event *ep;
+ struct bio *bp;
+
+ sx_xlock(&sc->sc_lock);
+ mtx_lock(&sc->sc_queue_mtx);
+ /*
+ * First take a look at events.
+ * This is important to handle events before any I/O requests.
+ */
+ ep = TAILQ_FIRST(&sc->sc_events);
+ if (ep != NULL) {
+ TAILQ_REMOVE(&sc->sc_events, ep, e_next);
+ mtx_unlock(&sc->sc_queue_mtx);
+ g_raid_handle_event(sc, ep);
+ goto out;
+ }
+ bp = bioq_takefirst(&sc->sc_queue);
+ if (bp != NULL) {
+ mtx_unlock(&sc->sc_queue_mtx);
+ if (bp->bio_from == NULL ||
+ bp->bio_from->geom != sc->sc_geom)
+ g_raid_start_request(bp);
+ else
+ g_raid_disk_done_request(bp);
+ }
+out:
+ sx_xunlock(&sc->sc_lock);
+}
+
+static void
+g_raid_launch_provider(struct g_raid_volume *vol)
+{
+ struct g_raid_disk *disk;
+ struct g_raid_softc *sc;
+ struct g_provider *pp;
+ char name[G_RAID_MAX_VOLUMENAME];
+ off_t off;
+
+ sc = vol->v_softc;
+ sx_assert(&sc->sc_lock, SX_LOCKED);
+
+ g_topology_lock();
+ /* Try to name provider with volume name. */
+ snprintf(name, sizeof(name), "raid/%s", vol->v_name);
+ if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
+ g_provider_by_name(name) != NULL) {
+ /* Otherwise use sequential volume number. */
+ snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
+ }
+ pp = g_new_providerf(sc->sc_geom, "%s", name);
+ pp->private = vol;
+ pp->mediasize = vol->v_mediasize;
+ pp->sectorsize = vol->v_sectorsize;
+ pp->stripesize = 0;
+ pp->stripeoffset = 0;
+ if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
+ vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
+ vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
+ vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
+ if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
+ disk->d_consumer != NULL &&
+ disk->d_consumer->provider != NULL) {
+ pp->stripesize = disk->d_consumer->provider->stripesize;
+ off = disk->d_consumer->provider->stripeoffset;
+ pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
+ if (off > 0)
+ pp->stripeoffset %= off;
+ }
+ if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
+ pp->stripesize *= (vol->v_disks_count - 1);
+ pp->stripeoffset *= (vol->v_disks_count - 1);
+ }
+ } else
+ pp->stripesize = vol->v_strip_size;
+ vol->v_provider = pp;
+ g_error_provider(pp, 0);
+ g_topology_unlock();
+ G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
+ pp->name, vol->v_name);
+}
+
+static void
+g_raid_destroy_provider(struct g_raid_volume *vol)
+{
+ struct g_raid_softc *sc;
+ struct g_provider *pp;
+ struct bio *bp, *tmp;
+
+ g_topology_assert_not();
+ sc = vol->v_softc;
+ pp = vol->v_provider;
+ KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
+
+ g_topology_lock();
+ g_error_provider(pp, ENXIO);
+ mtx_lock(&sc->sc_queue_mtx);
+ TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
+ if (bp->bio_to != pp)
+ continue;
+ bioq_remove(&sc->sc_queue, bp);
+ g_io_deliver(bp, ENXIO);
+ }
+ mtx_unlock(&sc->sc_queue_mtx);
+ G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
+ pp->name, vol->v_name);
+ g_wither_provider(pp, ENXIO);
+ g_topology_unlock();
+ vol->v_provider = NULL;
+}
+
+/*
+ * Update device state.
+ */
+static int
+g_raid_update_volume(struct g_raid_volume *vol, u_int event)
+{
+ struct g_raid_softc *sc;
+
+ sc = vol->v_softc;
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
+ g_raid_volume_event2str(event),
+ vol->v_name);
+ switch (event) {
+ case G_RAID_VOLUME_E_DOWN:
+ if (vol->v_provider != NULL)
+ g_raid_destroy_provider(vol);
+ break;
+ case G_RAID_VOLUME_E_UP:
+ if (vol->v_provider == NULL)
+ g_raid_launch_provider(vol);
+ break;
+ case G_RAID_VOLUME_E_START:
+ if (vol->v_tr)
+ G_RAID_TR_START(vol->v_tr);
+ return (0);
+ default:
+ if (sc->sc_md)
+ G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
+ return (0);
+ }
+
+ /* Manage root mount release. */
+ if (vol->v_starting) {
+ vol->v_starting = 0;
+ G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
+ root_mount_rel(vol->v_rootmount);
+ vol->v_rootmount = NULL;
+ }
+ if (vol->v_stopping && vol->v_provider_open == 0)
+ g_raid_destroy_volume(vol);
+ return (0);
+}
+
+/*
+ * Update subdisk state.
+ */
+static int
+g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+
+ sc = sd->sd_softc;
+ vol = sd->sd_volume;
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
+ g_raid_subdisk_event2str(event),
+ vol->v_name, sd->sd_pos,
+ sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
+ if (vol->v_tr)
+ G_RAID_TR_EVENT(vol->v_tr, sd, event);
+
+ return (0);
+}
+
+/*
+ * Update disk state.
+ */
+static int
+g_raid_update_disk(struct g_raid_disk *disk, u_int event)
+{
+ struct g_raid_softc *sc;
+
+ sc = disk->d_softc;
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
+ g_raid_disk_event2str(event),
+ g_raid_get_diskname(disk));
+
+ if (sc->sc_md)
+ G_RAID_MD_EVENT(sc->sc_md, disk, event);
+ return (0);
+}
+
+/*
+ * Node event.
+ */
+static int
+g_raid_update_node(struct g_raid_softc *sc, u_int event)
+{
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ G_RAID_DEBUG1(2, sc, "Event %s for the array.",
+ g_raid_node_event2str(event));
+
+ if (event == G_RAID_NODE_E_WAKE)
+ return (0);
+ if (sc->sc_md)
+ G_RAID_MD_EVENT(sc->sc_md, NULL, event);
+ return (0);
+}
+
+static int
+g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
+{
+ struct g_raid_volume *vol;
+ struct g_raid_softc *sc;
+ int dcr, dcw, dce, opens, error = 0;
+
+ g_topology_assert();
+ sc = pp->geom->softc;
+ vol = pp->private;
+ KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
+ KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
+
+ G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
+ acr, acw, ace);
+
+ dcr = pp->acr + acr;
+ dcw = pp->acw + acw;
+ dce = pp->ace + ace;
+
+ g_topology_unlock();
+ sx_xlock(&sc->sc_lock);
+ /* Deny new opens while dying. */
+ if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
+ error = ENXIO;
+ goto out;
+ }
+ if (dcw == 0 && vol->v_dirty)
+ g_raid_clean(vol, dcw);
+ vol->v_provider_open += acr + acw + ace;
+ /* Handle delayed node destruction. */
+ if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
+ vol->v_provider_open == 0) {
+ /* Count open volumes. */
+ opens = g_raid_nopens(sc);
+ if (opens == 0) {
+ sc->sc_stopping = G_RAID_DESTROY_HARD;
+ /* Wake up worker to make it selfdestruct. */
+ g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
+ }
+ }
+ /* Handle open volume destruction. */
+ if (vol->v_stopping && vol->v_provider_open == 0)
+ g_raid_destroy_volume(vol);
+out:
+ sx_xunlock(&sc->sc_lock);
+ g_topology_lock();
+ return (error);
+}
+
+struct g_raid_softc *
+g_raid_create_node(struct g_class *mp,
+ const char *name, struct g_raid_md_object *md)
+{
+ struct g_raid_softc *sc;
+ struct g_geom *gp;
+ int error;
+
+ g_topology_assert();
+ G_RAID_DEBUG(1, "Creating array %s.", name);
+
+ gp = g_new_geomf(mp, "%s", name);
+ sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
+ gp->start = g_raid_start;
+ gp->orphan = g_raid_orphan;
+ gp->access = g_raid_access;
+ gp->dumpconf = g_raid_dumpconf;
+
+ sc->sc_md = md;
+ sc->sc_geom = gp;
+ sc->sc_flags = 0;
+ TAILQ_INIT(&sc->sc_volumes);
+ TAILQ_INIT(&sc->sc_disks);
+ sx_init(&sc->sc_lock, "gmirror:lock");
+ mtx_init(&sc->sc_queue_mtx, "gmirror:queue", NULL, MTX_DEF);
+ TAILQ_INIT(&sc->sc_events);
+ bioq_init(&sc->sc_queue);
+ gp->softc = sc;
+ error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
+ "g_raid %s", name);
+ if (error != 0) {
+ G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
+ mtx_destroy(&sc->sc_queue_mtx);
+ sx_destroy(&sc->sc_lock);
+ g_destroy_geom(sc->sc_geom);
+ free(sc, M_RAID);
+ return (NULL);
+ }
+
+ G_RAID_DEBUG1(0, sc, "Array %s created.", name);
+ return (sc);
+}
+
+struct g_raid_volume *
+g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
+{
+ struct g_raid_volume *vol, *vol1;
+ int i;
+
+ G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
+ vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
+ vol->v_softc = sc;
+ strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
+ vol->v_state = G_RAID_VOLUME_S_STARTING;
+ vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
+ vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
+ bioq_init(&vol->v_inflight);
+ bioq_init(&vol->v_locked);
+ LIST_INIT(&vol->v_locks);
+ for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
+ vol->v_subdisks[i].sd_softc = sc;
+ vol->v_subdisks[i].sd_volume = vol;
+ vol->v_subdisks[i].sd_pos = i;
+ vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
+ }
+
+ /* Find free ID for this volume. */
+ g_topology_lock();
+ vol1 = vol;
+ if (id >= 0) {
+ LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
+ if (vol1->v_global_id == id)
+ break;
+ }
+ }
+ if (vol1 != NULL) {
+ for (id = 0; ; id++) {
+ LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
+ if (vol1->v_global_id == id)
+ break;
+ }
+ if (vol1 == NULL)
+ break;
+ }
+ }
+ vol->v_global_id = id;
+ LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
+ g_topology_unlock();
+
+ /* Delay root mounting. */
+ vol->v_rootmount = root_mount_hold("GRAID");
+ G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
+ vol->v_starting = 1;
+ TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
+ return (vol);
+}
+
+struct g_raid_disk *
+g_raid_create_disk(struct g_raid_softc *sc)
+{
+ struct g_raid_disk *disk;
+
+ G_RAID_DEBUG1(1, sc, "Creating disk.");
+ disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
+ disk->d_softc = sc;
+ disk->d_state = G_RAID_DISK_S_NONE;
+ TAILQ_INIT(&disk->d_subdisks);
+ TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
+ return (disk);
+}
+
+int g_raid_start_volume(struct g_raid_volume *vol)
+{
+ struct g_raid_tr_class *class;
+ struct g_raid_tr_object *obj;
+ int status;
+
+ G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
+ LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
+ G_RAID_DEBUG1(2, vol->v_softc,
+ "Tasting volume %s for %s transformation.",
+ vol->v_name, class->name);
+ obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
+ M_WAITOK);
+ obj->tro_class = class;
+ obj->tro_volume = vol;
+ status = G_RAID_TR_TASTE(obj, vol);
+ if (status != G_RAID_TR_TASTE_FAIL)
+ break;
+ kobj_delete((kobj_t)obj, M_RAID);
+ }
+ if (class == NULL) {
+ G_RAID_DEBUG1(0, vol->v_softc,
+ "No transformation module found for %s.",
+ vol->v_name);
+ vol->v_tr = NULL;
+ g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
+ g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
+ G_RAID_EVENT_VOLUME);
+ return (-1);
+ }
+ G_RAID_DEBUG1(2, vol->v_softc,
+ "Transformation module %s chosen for %s.",
+ class->name, vol->v_name);
+ vol->v_tr = obj;
+ return (0);
+}
+
+int
+g_raid_destroy_node(struct g_raid_softc *sc, int worker)
+{
+ struct g_raid_volume *vol, *tmpv;
+ struct g_raid_disk *disk, *tmpd;
+ int error = 0;
+
+ sc->sc_stopping = G_RAID_DESTROY_HARD;
+ TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
+ if (g_raid_destroy_volume(vol))
+ error = EBUSY;
+ }
+ if (error)
+ return (error);
+ TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
+ if (g_raid_destroy_disk(disk))
+ error = EBUSY;
+ }
+ if (error)
+ return (error);
+ if (sc->sc_md) {
+ G_RAID_MD_FREE(sc->sc_md);
+ kobj_delete((kobj_t)sc->sc_md, M_RAID);
+ sc->sc_md = NULL;
+ }
+ if (sc->sc_geom != NULL) {
+ G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
+ g_topology_lock();
+ sc->sc_geom->softc = NULL;
+ g_wither_geom(sc->sc_geom, ENXIO);
+ g_topology_unlock();
+ sc->sc_geom = NULL;
+ } else
+ G_RAID_DEBUG(1, "Array destroyed.");
+ if (worker) {
+ g_raid_event_cancel(sc, sc);
+ mtx_destroy(&sc->sc_queue_mtx);
+ sx_xunlock(&sc->sc_lock);
+ sx_destroy(&sc->sc_lock);
+ wakeup(&sc->sc_stopping);
+ free(sc, M_RAID);
+ curthread->td_pflags &= ~TDP_GEOM;
+ G_RAID_DEBUG(1, "Thread exiting.");
+ kproc_exit(0);
+ } else {
+ /* Wake up worker to make it selfdestruct. */
+ g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
+ }
+ return (0);
+}
+
+int
+g_raid_destroy_volume(struct g_raid_volume *vol)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_disk *disk;
+ int i;
+
+ sc = vol->v_softc;
+ G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
+ vol->v_stopping = 1;
+ if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
+ if (vol->v_tr) {
+ G_RAID_TR_STOP(vol->v_tr);
+ return (EBUSY);
+ } else
+ vol->v_state = G_RAID_VOLUME_S_STOPPED;
+ }
+ if (g_raid_event_check(sc, vol) != 0)
+ return (EBUSY);
+ if (vol->v_provider != NULL)
+ return (EBUSY);
+ if (vol->v_provider_open != 0)
+ return (EBUSY);
+ if (vol->v_tr) {
+ G_RAID_TR_FREE(vol->v_tr);
+ kobj_delete((kobj_t)vol->v_tr, M_RAID);
+ vol->v_tr = NULL;
+ }
+ if (vol->v_rootmount)
+ root_mount_rel(vol->v_rootmount);
+ g_topology_lock();
+ LIST_REMOVE(vol, v_global_next);
+ g_topology_unlock();
+ TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
+ for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
+ g_raid_event_cancel(sc, &vol->v_subdisks[i]);
+ disk = vol->v_subdisks[i].sd_disk;
+ if (disk == NULL)
+ continue;
+ TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
+ }
+ G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
+ if (sc->sc_md)
+ G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
+ g_raid_event_cancel(sc, vol);
+ free(vol, M_RAID);
+ if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
+ /* Wake up worker to let it selfdestruct. */
+ g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
+ }
+ return (0);
+}
+
+int
+g_raid_destroy_disk(struct g_raid_disk *disk)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_subdisk *sd, *tmp;
+
+ sc = disk->d_softc;
+ G_RAID_DEBUG1(2, sc, "Destroying disk.");
+ if (disk->d_consumer) {
+ g_raid_kill_consumer(sc, disk->d_consumer);
+ disk->d_consumer = NULL;
+ }
+ TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
+ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
+ g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
+ G_RAID_EVENT_SUBDISK);
+ TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
+ sd->sd_disk = NULL;
+ }
+ TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
+ if (sc->sc_md)
+ G_RAID_MD_FREE_DISK(sc->sc_md, disk);
+ g_raid_event_cancel(sc, disk);
+ free(disk, M_RAID);
+ return (0);
+}
+
+int
+g_raid_destroy(struct g_raid_softc *sc, int how)
+{
+ int opens;
+
+ g_topology_assert_not();
+ if (sc == NULL)
+ return (ENXIO);
+ sx_assert(&sc->sc_lock, SX_XLOCKED);
+
+ /* Count open volumes. */
+ opens = g_raid_nopens(sc);
+
+ /* React on some opened volumes. */
+ if (opens > 0) {
+ switch (how) {
+ case G_RAID_DESTROY_SOFT:
+ G_RAID_DEBUG1(1, sc,
+ "%d volumes are still open.",
+ opens);
+ return (EBUSY);
+ case G_RAID_DESTROY_DELAYED:
+ G_RAID_DEBUG1(1, sc,
+ "Array will be destroyed on last close.");
+ sc->sc_stopping = G_RAID_DESTROY_DELAYED;
+ return (EBUSY);
+ case G_RAID_DESTROY_HARD:
+ G_RAID_DEBUG1(1, sc,
+ "%d volumes are still open.",
+ opens);
+ }
+ }
+
+ /* Mark node for destruction. */
+ sc->sc_stopping = G_RAID_DESTROY_HARD;
+ /* Wake up worker to let it selfdestruct. */
+ g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
+ /* Sleep until node destroyed. */
+ sx_sleep(&sc->sc_stopping, &sc->sc_lock,
+ PRIBIO | PDROP, "r:destroy", 0);
+ return (0);
+}
+
+static void
+g_raid_taste_orphan(struct g_consumer *cp)
+{
+
+ KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
+ cp->provider->name));
+}
+
+static struct g_geom *
+g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
+{
+ struct g_consumer *cp;
+ struct g_geom *gp, *geom;
+ struct g_raid_md_class *class;
+ struct g_raid_md_object *obj;
+ int status;
+
+ g_topology_assert();
+ g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
+ G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
+
+ gp = g_new_geomf(mp, "mirror:taste");
+ /*
+ * This orphan function should be never called.
+ */
+ gp->orphan = g_raid_taste_orphan;
+ cp = g_new_consumer(gp);
+ g_attach(cp, pp);
+
+ geom = NULL;
+ LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
+ G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
+ pp->name, class->name);
+ obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
+ M_WAITOK);
+ obj->mdo_class = class;
+ status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
+ if (status != G_RAID_MD_TASTE_NEW)
+ kobj_delete((kobj_t)obj, M_RAID);
+ if (status != G_RAID_MD_TASTE_FAIL)
+ break;
+ }
+
+ g_detach(cp);
+ g_destroy_consumer(cp);
+ g_destroy_geom(gp);
+ G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
+ return (geom);
+}
+
+int
+g_raid_create_node_format(const char *format, struct g_geom **gp)
+{
+ struct g_raid_md_class *class;
+ struct g_raid_md_object *obj;
+ int status;
+
+ G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
+ LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
+ if (strcasecmp(class->name, format) == 0)
+ break;
+ }
+ if (class == NULL) {
+ G_RAID_DEBUG(1, "No support for %s metadata.", format);
+ return (G_RAID_MD_TASTE_FAIL);
+ }
+ obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
+ M_WAITOK);
+ obj->mdo_class = class;
+ status = G_RAID_MD_CREATE(obj, &g_raid_class, gp);
+ if (status != G_RAID_MD_TASTE_NEW)
+ kobj_delete((kobj_t)obj, M_RAID);
+ return (status);
+}
+
+static int
+g_raid_destroy_geom(struct gctl_req *req __unused,
+ struct g_class *mp __unused, struct g_geom *gp)
+{
+ struct g_raid_softc *sc;
+ int error;
+
+ g_topology_unlock();
+ sc = gp->softc;
+ sx_xlock(&sc->sc_lock);
+ g_cancel_event(sc);
+ error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
+ if (error != 0)
+ sx_xunlock(&sc->sc_lock);
+ g_topology_lock();
+ return (error);
+}
+
+void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
+ struct g_raid_subdisk *sd, struct g_raid_disk *disk)
+{
+
+ if (sc->sc_stopping == G_RAID_DESTROY_HARD)
+ return;
+ if (sc->sc_md)
+ G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
+}
+
+void g_raid_fail_disk(struct g_raid_softc *sc,
+ struct g_raid_subdisk *sd, struct g_raid_disk *disk)
+{
+
+ if (disk == NULL)
+ disk = sd->sd_disk;
+ if (disk == NULL) {
+ G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
+ return;
+ }
+ if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
+ G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
+ "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
+ return;
+ }
+ if (sc->sc_md)
+ G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
+}
+
+static void
+g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
+ struct g_consumer *cp, struct g_provider *pp)
+{
+ struct g_raid_softc *sc;
+ struct g_raid_volume *vol;
+ struct g_raid_subdisk *sd;
+ struct g_raid_disk *disk;
+ int i, s;
+
+ g_topology_assert();
+
+ sc = gp->softc;
+ if (sc == NULL)
+ return;
+ if (pp != NULL) {
+ vol = pp->private;
+ g_topology_unlock();
+ sx_xlock(&sc->sc_lock);
+ sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
+ vol->v_name);
+ sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
+ g_raid_volume_level2str(vol->v_raid_level,
+ vol->v_raid_level_qualifier));
+ sbuf_printf(sb,
+ "%s<Transformation>%s</Transformation>\n", indent,
+ vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
+ sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
+ vol->v_disks_count);
+ sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
+ vol->v_strip_size);
+ sbuf_printf(sb, "%s<State>%s</State>\n", indent,
+ g_raid_volume_state2str(vol->v_state));
+ sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
+ vol->v_dirty ? "Yes" : "No");
+ sbuf_printf(sb, "%s<Subdisks>", indent);
+ for (i = 0; i < vol->v_disks_count; i++) {
+ sd = &vol->v_subdisks[i];
+ if (sd->sd_disk != NULL &&
+ sd->sd_disk->d_consumer != NULL) {
+ sbuf_printf(sb, "%s ",
+ g_raid_get_diskname(sd->sd_disk));
+ } else {
+ sbuf_printf(sb, "NONE ");
+ }
+ sbuf_printf(sb, "(%s",
+ g_raid_subdisk_state2str(sd->sd_state));
+ if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
+ sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
+ sbuf_printf(sb, " %d%%",
+ (int)(sd->sd_rebuild_pos * 100 /
+ sd->sd_size));
+ }
+ sbuf_printf(sb, ")");
+ if (i + 1 < vol->v_disks_count)
+ sbuf_printf(sb, ", ");
+ }
+ sbuf_printf(sb, "</Subdisks>\n");
+ sx_xunlock(&sc->sc_lock);
+ g_topology_lock();
+ } else if (cp != NULL) {
+ disk = cp->private;
+ if (disk == NULL)
+ return;
+ g_topology_unlock();
+ sx_xlock(&sc->sc_lock);
+ sbuf_printf(sb, "%s<State>%s", indent,
+ g_raid_disk_state2str(disk->d_state));
+ if (!TAILQ_EMPTY(&disk->d_subdisks)) {
+ sbuf_printf(sb, " (");
+ TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
+ sbuf_printf(sb, "%s",
+ g_raid_subdisk_state2str(sd->sd_state));
+ if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
+ sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
+ sbuf_printf(sb, " %d%%",
+ (int)(sd->sd_rebuild_pos * 100 /
+ sd->sd_size));
+ }
+ if (TAILQ_NEXT(sd, sd_next))
+ sbuf_printf(sb, ", ");
+ }
+ sbuf_printf(sb, ")");
+ }
+ sbuf_printf(sb, "</State>\n");
+ sbuf_printf(sb, "%s<Subdisks>", indent);
+ TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
+ sbuf_printf(sb, "r%d(%s):%d@%ju",
+ sd->sd_volume->v_global_id,
+ sd->sd_volume->v_name,
+ sd->sd_pos, sd->sd_offset);
+ if (TAILQ_NEXT(sd, sd_next))
+ sbuf_printf(sb, ", ");
+ }
+ sbuf_printf(sb, "</Subdisks>\n");
+ sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
+ disk->d_read_errs);
+ sx_xunlock(&sc->sc_lock);
+ g_topology_lock();
+ } else {
+ g_topology_unlock();
+ sx_xlock(&sc->sc_lock);
+ if (sc->sc_md) {
+ sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
+ sc->sc_md->mdo_class->name);
+ }
+ if (!TAILQ_EMPTY(&sc->sc_volumes)) {
+ s = 0xff;
+ TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
+ if (vol->v_state < s)
+ s = vol->v_state;
+ }
+ sbuf_printf(sb, "%s<State>%s</State>\n", indent,
+ g_raid_volume_state2str(s));
+ }
+ sx_xunlock(&sc->sc_lock);
+ g_topology_lock();
+ }
+}
+
+static void
+g_raid_shutdown_pre_sync(void *arg, int howto)
+{
+ struct g_class *mp;
+ struct g_geom *gp, *gp2;
+ struct g_raid_softc *sc;
+ int error;
+
+ mp = arg;
+ DROP_GIANT();
+ g_topology_lock();
+ LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
+ if ((sc = gp->softc) == NULL)
+ continue;
+ g_topology_unlock();
+ sx_xlock(&sc->sc_lock);
+ g_cancel_event(sc);
+ error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
+ if (error != 0)
+ sx_xunlock(&sc->sc_lock);
+ g_topology_lock();
+ }
+ g_topology_unlock();
+ PICKUP_GIANT();
+}
+
+static void
+g_raid_init(struct g_class *mp)
+{
+
+ g_raid_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
+ g_raid_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
+ if (g_raid_pre_sync == NULL)
+ G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
+ g_raid_started = 1;
+}
+
+static void
+g_raid_fini(struct g_class *mp)
+{
+
+ if (g_raid_pre_sync != NULL)
+ EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid_pre_sync);
+ g_raid_started = 0;
+}
+
+int
+g_raid_md_modevent(module_t mod, int type, void *arg)
+{
+ struct g_raid_md_class *class, *c, *nc;
+ int error;
+
+ error = 0;
+ class = arg;
+ switch (type) {
+ case MOD_LOAD:
+ c = LIST_FIRST(&g_raid_md_classes);
+ if (c == NULL || c->mdc_priority > class->mdc_priority)
+ LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
+ else {
+ while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
+ nc->mdc_priority < class->mdc_priority)
+ c = nc;
+ LIST_INSERT_AFTER(c, class, mdc_list);
+ }
+ if (g_raid_started)
+ g_retaste(&g_raid_class);
+ break;
+ case MOD_UNLOAD:
+ LIST_REMOVE(class, mdc_list);
+ break;
+ default:
+ error = EOPNOTSUPP;
+ break;
+ }
+
+ return (error);
+}
+
+int
+g_raid_tr_modevent(module_t mod, int type, void *arg)
+{
+ struct g_raid_tr_class *class, *c, *nc;
+ int error;
+
+ error = 0;
+ class = arg;
+ switch (type) {
+ case MOD_LOAD:
+ c = LIST_FIRST(&g_raid_tr_classes);
+ if (c == NULL || c->trc_priority > class->trc_priority)
+ LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
+ else {
+ while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
+ nc->trc_priority < class->trc_priority)
+ c = nc;
+ LIST_INSERT_AFTER(c, class, trc_list);
+ }
+ break;
+ case MOD_UNLOAD:
+ LIST_REMOVE(class, trc_list);
+ break;
+ default:
+ error = EOPNOTSUPP;
+ break;
+ }
+
+ return (error);
+}
+
+/*
+ * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
+ * to reduce module priority, allowing submodules to register them first.
+ */
+static moduledata_t g_raid_mod = {
+ "g_raid",
+ g_modevent,
+ &g_raid_class
+};
+DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
+MODULE_VERSION(geom_raid, 0);
OpenPOWER on IntegriCloud