diff options
Diffstat (limited to 'sys/dev/ti/if_ti.c')
-rw-r--r-- | sys/dev/ti/if_ti.c | 2486 |
1 files changed, 2486 insertions, 0 deletions
diff --git a/sys/dev/ti/if_ti.c b/sys/dev/ti/if_ti.c new file mode 100644 index 0000000..33900df --- /dev/null +++ b/sys/dev/ti/if_ti.c @@ -0,0 +1,2486 @@ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $Id: if_ti.c,v 1.106 1999/04/06 15:55:01 wpaul Exp $ + */ + +/* + * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. + * Manuals, sample driver and firmware source kits are available + * from http://www.alteon.com/support/openkits. + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Electrical Engineering Department + * Columbia University, New York City + */ + +/* + * The Alteon Networks Tigon chip contains an embedded R4000 CPU, + * gigabit MAC, dual DMA channels and a PCI interface unit. NICs + * using the Tigon may have anywhere from 512K to 2MB of SRAM. The + * Tigon supports hardware IP, TCP and UCP checksumming, multicast + * filtering and jumbo (9014 byte) frames. The hardware is largely + * controlled by firmware, which must be loaded into the NIC during + * initialization. + * + * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware + * revision, which supports new features such as extended commands, + * extended jumbo receive ring desciptors and a mini receive ring. + * + * Alteon Networks is to be commended for releasing such a vast amount + * of development material for the Tigon NIC without requiring an NDA + * (although they really should have done it a long time ago). With + * any luck, the other vendors will finally wise up and follow Alteon's + * stellar example. + * + * The firmware for the Tigon 1 and 2 NICs is compiled directly into + * this driver by #including it as a C header file. This bloats the + * driver somewhat, but it's the easiest method considering that the + * driver code and firmware code need to be kept in sync. The source + * for the firmware is not provided with the FreeBSD distribution since + * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. + * + * The following people deserve special thanks: + * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board + * for testing + * - Raymond Lee of Netgear, for providing a pair of Netgear + * GA620 Tigon 2 boards for testing + * - Ulf Zimmermann, for bringing the GA260 to my attention and + * convincing me to write this driver. + * - Andrew Gallatin for providing FreeBSD/Alpha support. + */ + +#include "bpfilter.h" +#include "vlan.h" + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> +#include <sys/queue.h> + +#include <net/if.h> +#include <net/if_arp.h> +#include <net/ethernet.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#if NBPFILTER > 0 +#include <net/bpf.h> +#endif + +#if NVLAN > 0 +#include <net/if_types.h> +#include <net/if_vlan_var.h> +#endif + +#include <netinet/in_systm.h> +#include <netinet/in.h> +#include <netinet/ip.h> + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/clock.h> /* for DELAY */ +#include <machine/bus_memio.h> +#include <machine/bus.h> + +#include <pci/pcireg.h> +#include <pci/pcivar.h> + +#include <pci/if_tireg.h> +#include <pci/ti_fw.h> +#include <pci/ti_fw2.h> + +#ifdef M_HWCKSUM +/*#define TI_CSUM_OFFLOAD*/ +#endif + +#if !defined(lint) +static const char rcsid[] = + "$Id: if_ti.c,v 1.106 1999/04/06 15:55:01 wpaul Exp $"; +#endif + +/* + * Various supported device vendors/types and their names. + */ + +static struct ti_type ti_devs[] = { + { ALT_VENDORID, ALT_DEVICEID_ACENIC, + "Alteon AceNIC Gigabit Ethernet" }, + { TC_VENDORID, TC_DEVICEID_3C985, + "3Com 3c985-SX Gigabit Ethernet" }, + { NG_VENDORID, NG_DEVICEID_GA620, + "Netgear GA620 Gigabit Ethernet" }, + { SGI_VENDORID, SGI_DEVICEID_TIGON, + "Silicon Graphics Gigabit Ethernet" }, + { 0, 0, NULL } +}; + +static unsigned long ti_count; + +static const char *ti_probe __P((pcici_t, pcidi_t)); +static void ti_attach __P((pcici_t, int)); +static void ti_txeof __P((struct ti_softc *)); +static void ti_rxeof __P((struct ti_softc *)); + +static void ti_stats_update __P((struct ti_softc *)); +static int ti_encap __P((struct ti_softc *, struct mbuf *, + u_int32_t *)); + +static void ti_intr __P((void *)); +static void ti_start __P((struct ifnet *)); +static int ti_ioctl __P((struct ifnet *, u_long, caddr_t)); +static void ti_init __P((void *)); +static void ti_init2 __P((struct ti_softc *)); +static void ti_stop __P((struct ti_softc *)); +static void ti_watchdog __P((struct ifnet *)); +static void ti_shutdown __P((int, void *)); +static int ti_ifmedia_upd __P((struct ifnet *)); +static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); + +static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int)); +static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *, + int, u_int8_t *)); +static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int)); + +static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *)); +static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *)); +static void ti_setmulti __P((struct ti_softc *)); + +static void ti_mem __P((struct ti_softc *, u_int32_t, + u_int32_t, caddr_t)); +static void ti_loadfw __P((struct ti_softc *)); +static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *)); +static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *, + caddr_t, int)); +static void ti_handle_events __P((struct ti_softc *)); +static int ti_alloc_jumbo_mem __P((struct ti_softc *)); +static void *ti_jalloc __P((struct ti_softc *)); +static void ti_jfree __P((caddr_t, u_int)); +static void ti_jref __P((caddr_t, u_int)); +static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *)); +static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *)); +static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *)); +static int ti_init_rx_ring_std __P((struct ti_softc *)); +static void ti_free_rx_ring_std __P((struct ti_softc *)); +static int ti_init_rx_ring_jumbo __P((struct ti_softc *)); +static void ti_free_rx_ring_jumbo __P((struct ti_softc *)); +static int ti_init_rx_ring_mini __P((struct ti_softc *)); +static void ti_free_rx_ring_mini __P((struct ti_softc *)); +static void ti_refill_rx_rings __P((struct ti_softc *)); +static void ti_free_tx_ring __P((struct ti_softc *)); +static int ti_init_tx_ring __P((struct ti_softc *)); + +static int ti_64bitslot_war __P((struct ti_softc *)); +static int ti_chipinit __P((struct ti_softc *)); +static int ti_gibinit __P((struct ti_softc *)); + +/* + * Send an instruction or address to the EEPROM, check for ACK. + */ +static u_int32_t ti_eeprom_putbyte(sc, byte) + struct ti_softc *sc; + int byte; +{ + register int i, ack = 0; + + /* + * Make sure we're in TX mode. + */ + TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); + + /* + * Feed in each bit and stobe the clock. + */ + for (i = 0x80; i; i >>= 1) { + if (byte & i) { + TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); + } else { + TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); + } + DELAY(1); + TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); + DELAY(1); + TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); + } + + /* + * Turn off TX mode. + */ + TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); + + /* + * Check for ack. + */ + TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); + ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; + TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); + + return(ack); +} + +/* + * Read a byte of data stored in the EEPROM at address 'addr.' + * We have to send two address bytes since the EEPROM can hold + * more than 256 bytes of data. + */ +static u_int8_t ti_eeprom_getbyte(sc, addr, dest) + struct ti_softc *sc; + int addr; + u_int8_t *dest; +{ + register int i; + u_int8_t byte = 0; + + EEPROM_START; + + /* + * Send write control code to EEPROM. + */ + if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { + printf("ti%d: failed to send write command, status: %x\n", + sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); + return(1); + } + + /* + * Send first byte of address of byte we want to read. + */ + if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { + printf("ti%d: failed to send address, status: %x\n", + sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); + return(1); + } + /* + * Send second byte address of byte we want to read. + */ + if (ti_eeprom_putbyte(sc, addr & 0xFF)) { + printf("ti%d: failed to send address, status: %x\n", + sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); + return(1); + } + + EEPROM_STOP; + EEPROM_START; + /* + * Send read control code to EEPROM. + */ + if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { + printf("ti%d: failed to send read command, status: %x\n", + sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); + return(1); + } + + /* + * Start reading bits from EEPROM. + */ + TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); + for (i = 0x80; i; i >>= 1) { + TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); + DELAY(1); + if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) + byte |= i; + TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); + DELAY(1); + } + + EEPROM_STOP; + + /* + * No ACK generated for read, so just return byte. + */ + + *dest = byte; + + return(0); +} + +/* + * Read a sequence of bytes from the EEPROM. + */ +static int ti_read_eeprom(sc, dest, off, cnt) + struct ti_softc *sc; + caddr_t dest; + int off; + int cnt; +{ + int err = 0, i; + u_int8_t byte = 0; + + for (i = 0; i < cnt; i++) { + err = ti_eeprom_getbyte(sc, off + i, &byte); + if (err) + break; + *(dest + i) = byte; + } + + return(err ? 1 : 0); +} + +/* + * NIC memory access function. Can be used to either clear a section + * of NIC local memory or (if buf is non-NULL) copy data into it. + */ +static void ti_mem(sc, addr, len, buf) + struct ti_softc *sc; + u_int32_t addr, len; + caddr_t buf; +{ + int segptr, segsize, cnt; + caddr_t ti_winbase, ptr; + + segptr = addr; + cnt = len; +#ifdef __i386__ + ti_winbase = (caddr_t)(sc->ti_bhandle + TI_WINDOW); +#endif +#ifdef __alpha__ + ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW); +#endif + ptr = buf; + + while(cnt) { + if (cnt < TI_WINLEN) + segsize = cnt; + else + segsize = TI_WINLEN - (segptr % TI_WINLEN); + CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); + if (buf == NULL) + bzero((char *)ti_winbase + (segptr & + (TI_WINLEN - 1)), segsize); + else { + bcopy((char *)ptr, (char *)ti_winbase + + (segptr & (TI_WINLEN - 1)), segsize); + ptr += segsize; + } + segptr += segsize; + cnt -= segsize; + } + + return; +} + +/* + * Load firmware image into the NIC. Check that the firmware revision + * is acceptable and see if we want the firmware for the Tigon 1 or + * Tigon 2. + */ +static void ti_loadfw(sc) + struct ti_softc *sc; +{ + switch(sc->ti_hwrev) { + case TI_HWREV_TIGON: + if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || + tigonFwReleaseMinor != TI_FIRMWARE_MINOR || + tigonFwReleaseFix != TI_FIRMWARE_FIX) { + printf("ti%d: firmware revision mismatch; want " + "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, + TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, + TI_FIRMWARE_FIX, tigonFwReleaseMajor, + tigonFwReleaseMinor, tigonFwReleaseFix); + return; + } + ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, + (caddr_t)tigonFwText); + ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, + (caddr_t)tigonFwData); + ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, + (caddr_t)tigonFwRodata); + ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); + ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); + CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); + break; + case TI_HWREV_TIGON_II: + if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || + tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || + tigon2FwReleaseFix != TI_FIRMWARE_FIX) { + printf("ti%d: firmware revision mismatch; want " + "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, + TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, + TI_FIRMWARE_FIX, tigon2FwReleaseMajor, + tigon2FwReleaseMinor, tigon2FwReleaseFix); + return; + } + ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, + (caddr_t)tigon2FwText); + ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, + (caddr_t)tigon2FwData); + ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, + (caddr_t)tigon2FwRodata); + ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); + ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); + CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); + break; + default: + printf("ti%d: can't load firmware: unknown hardware rev\n", + sc->ti_unit); + break; + } + + return; +} + +/* + * Send the NIC a command via the command ring. + */ +static void ti_cmd(sc, cmd) + struct ti_softc *sc; + struct ti_cmd_desc *cmd; +{ + u_int32_t index; + + if (sc->ti_rdata->ti_cmd_ring == NULL) + return; + + index = sc->ti_cmd_saved_prodidx; + CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); + TI_INC(index, TI_CMD_RING_CNT); + CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); + sc->ti_cmd_saved_prodidx = index; + + return; +} + +/* + * Send the NIC an extended command. The 'len' parameter specifies the + * number of command slots to include after the initial command. + */ +static void ti_cmd_ext(sc, cmd, arg, len) + struct ti_softc *sc; + struct ti_cmd_desc *cmd; + caddr_t arg; + int len; +{ + u_int32_t index; + register int i; + + if (sc->ti_rdata->ti_cmd_ring == NULL) + return; + + index = sc->ti_cmd_saved_prodidx; + CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); + TI_INC(index, TI_CMD_RING_CNT); + for (i = 0; i < len; i++) { + CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), + *(u_int32_t *)(&arg[i * 4])); + TI_INC(index, TI_CMD_RING_CNT); + } + CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); + sc->ti_cmd_saved_prodidx = index; + + return; +} + +/* + * Handle events that have triggered interrupts. + */ +static void ti_handle_events(sc) + struct ti_softc *sc; +{ + struct ti_event_desc *e; + + if (sc->ti_rdata->ti_event_ring == NULL) + return; + + while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { + e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; + switch(e->ti_event) { + case TI_EV_LINKSTAT_CHANGED: + sc->ti_linkstat = e->ti_code; + if (e->ti_code == TI_EV_CODE_LINK_UP) + printf("ti%d: 10/100 link up\n", sc->ti_unit); + else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) + printf("ti%d: gigabit link up\n", sc->ti_unit); + else if (e->ti_code == TI_EV_CODE_LINK_DOWN) + printf("ti%d: link down\n", sc->ti_unit); + break; + case TI_EV_ERROR: + if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) + printf("ti%d: invalid command\n", sc->ti_unit); + else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) + printf("ti%d: unknown command\n", sc->ti_unit); + else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) + printf("ti%d: bad config data\n", sc->ti_unit); + break; + case TI_EV_FIRMWARE_UP: + ti_init2(sc); + break; + case TI_EV_STATS_UPDATED: + ti_stats_update(sc); + break; + case TI_EV_RESET_JUMBO_RING: + case TI_EV_MCAST_UPDATED: + /* Who cares. */ + break; + default: + printf("ti%d: unknown event: %d\n", + sc->ti_unit, e->ti_event); + break; + } + /* Advance the consumer index. */ + TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); + CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); + } + + return; +} + +/* + * Memory management for the jumbo receive ring is a pain in the + * butt. We need to allocate at least 9018 bytes of space per frame, + * _and_ it has to be contiguous (unless you use the extended + * jumbo descriptor format). Using malloc() all the time won't + * work: malloc() allocates memory in powers of two, which means we + * would end up wasting a considerable amount of space by allocating + * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have + * to do our own memory management. + * + * The driver needs to allocate a contiguous chunk of memory at boot + * time. We then chop this up ourselves into 9K pieces and use them + * as external mbuf storage. + * + * One issue here is how much memory to allocate. The jumbo ring has + * 256 slots in it, but at 9K per slot than can consume over 2MB of + * RAM. This is a bit much, especially considering we also need + * RAM for the standard ring and mini ring (on the Tigon 2). To + * save space, we only actually allocate enough memory for 64 slots + * by default, which works out to between 500 and 600K. This can + * be tuned by changing a #define in if_tireg.h. + */ + +static int ti_alloc_jumbo_mem(sc) + struct ti_softc *sc; +{ + caddr_t ptr; + register int i; + struct ti_jpool_entry *entry; + + /* Grab a big chunk o' storage. */ + sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF, + M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0); + + if (sc->ti_cdata.ti_jumbo_buf == NULL) { + printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit); + return(ENOBUFS); + } + + SLIST_INIT(&sc->ti_jfree_listhead); + SLIST_INIT(&sc->ti_jinuse_listhead); + + /* + * Now divide it up into 9K pieces and save the addresses + * in an array. Note that we play an evil trick here by using + * the first few bytes in the buffer to hold the the address + * of the softc structure for this interface. This is because + * ti_jfree() needs it, but it is called by the mbuf management + * code which will not pass it to us explicitly. + */ + ptr = sc->ti_cdata.ti_jumbo_buf; + for (i = 0; i < TI_JSLOTS; i++) { + u_int64_t **aptr; + aptr = (u_int64_t **)ptr; + aptr[0] = (u_int64_t *)sc; + ptr += sizeof(u_int64_t); + sc->ti_cdata.ti_jslots[i].ti_buf = ptr; + sc->ti_cdata.ti_jslots[i].ti_inuse = 0; + ptr += (TI_JLEN - sizeof(u_int64_t)); + entry = malloc(sizeof(struct ti_jpool_entry), + M_DEVBUF, M_NOWAIT); + if (entry == NULL) { + free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF); + sc->ti_cdata.ti_jumbo_buf = NULL; + printf("ti%d: no memory for jumbo " + "buffer queue!\n", sc->ti_unit); + return(ENOBUFS); + } + entry->slot = i; + SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); + } + + return(0); +} + +/* + * Allocate a jumbo buffer. + */ +static void *ti_jalloc(sc) + struct ti_softc *sc; +{ + struct ti_jpool_entry *entry; + + entry = SLIST_FIRST(&sc->ti_jfree_listhead); + + if (entry == NULL) { + printf("ti%d: no free jumbo buffers\n", sc->ti_unit); + return(NULL); + } + + SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries); + SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); + sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1; + return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf); +} + +/* + * Adjust usage count on a jumbo buffer. In general this doesn't + * get used much because our jumbo buffers don't get passed around + * too much, but it's implemented for correctness. + */ +static void ti_jref(buf, size) + caddr_t buf; + u_int size; +{ + struct ti_softc *sc; + u_int64_t **aptr; + register int i; + + /* Extract the softc struct pointer. */ + aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); + sc = (struct ti_softc *)(aptr[0]); + + if (sc == NULL) + panic("ti_jref: can't find softc pointer!"); + + if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN) + panic("ti_jref: adjusting refcount of buf of wrong size!"); + + /* calculate the slot this buffer belongs to */ + + i = ((vm_offset_t)aptr + - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; + + if ((i < 0) || (i >= TI_JSLOTS)) + panic("ti_jref: asked to reference buffer " + "that we don't manage!"); + else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0) + panic("ti_jref: buffer already free!"); + else + sc->ti_cdata.ti_jslots[i].ti_inuse++; + + return; +} + +/* + * Release a jumbo buffer. + */ +static void ti_jfree(buf, size) + caddr_t buf; + u_int size; +{ + struct ti_softc *sc; + u_int64_t **aptr; + int i; + struct ti_jpool_entry *entry; + + /* Extract the softc struct pointer. */ + aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); + sc = (struct ti_softc *)(aptr[0]); + + if (sc == NULL) + panic("ti_jfree: can't find softc pointer!"); + + if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN) + panic("ti_jfree: freeing buffer of wrong size!"); + + /* calculate the slot this buffer belongs to */ + + i = ((vm_offset_t)aptr + - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; + + if ((i < 0) || (i >= TI_JSLOTS)) + panic("ti_jfree: asked to free buffer that we don't manage!"); + else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0) + panic("ti_jfree: buffer already free!"); + else { + sc->ti_cdata.ti_jslots[i].ti_inuse--; + if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) { + entry = SLIST_FIRST(&sc->ti_jinuse_listhead); + if (entry == NULL) + panic("ti_jfree: buffer not in use!"); + entry->slot = i; + SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, + jpool_entries); + SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, + entry, jpool_entries); + } + } + + return; +} + + +/* + * Intialize a standard receive ring descriptor. + */ +static int ti_newbuf_std(sc, i, m) + struct ti_softc *sc; + int i; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + struct ti_rx_desc *r; + + if (m != NULL) { + m_new = m; + } else { + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("ti%d: mbuf allocation failed " + "-- packet dropped!\n", sc->ti_unit); + return(ENOBUFS); + } + + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + printf("ti%d: cluster allocation failed " + "-- packet dropped!\n", sc->ti_unit); + m_freem(m_new); + return(ENOBUFS); + } + } + + m_new->m_len -= ETHER_ALIGN; + m_new->m_data += ETHER_ALIGN; + sc->ti_cdata.ti_rx_std_chain[i] = m_new; + r = &sc->ti_rdata->ti_rx_std_ring[i]; + TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); + r->ti_type = TI_BDTYPE_RECV_BD; +#ifdef TI_CSUM_OFFLOAD + r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; +#else + r->ti_flags = 0; +#endif + r->ti_len = MCLBYTES - ETHER_ALIGN; + r->ti_idx = i; + + return(0); +} + +/* + * Intialize a mini receive ring descriptor. This only applies to + * the Tigon 2. + */ +static int ti_newbuf_mini(sc, i, m) + struct ti_softc *sc; + int i; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + struct ti_rx_desc *r; + + if (m != NULL) { + m_new = m; + } else { + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("ti%d: mbuf allocation failed " + "-- packet dropped!\n", sc->ti_unit); + return(ENOBUFS); + } + } + m_new->m_len -= ETHER_ALIGN; + m_new->m_data += ETHER_ALIGN; + r = &sc->ti_rdata->ti_rx_mini_ring[i]; + sc->ti_cdata.ti_rx_mini_chain[i] = m_new; + TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); + r->ti_type = TI_BDTYPE_RECV_BD; + r->ti_flags = TI_BDFLAG_MINI_RING; +#ifdef TI_CSUM_OFFLOAD + r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; +#endif + r->ti_len = MHLEN - ETHER_ALIGN; + r->ti_idx = i; + + return(0); +} + +/* + * Initialize a jumbo receive ring descriptor. This allocates + * a jumbo buffer from the pool managed internally by the driver. + */ +static int ti_newbuf_jumbo(sc, i, m) + struct ti_softc *sc; + int i; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + struct ti_rx_desc *r; + + if (m != NULL) { + m_new = m; + } else { + caddr_t *buf = NULL; + + /* Allocate the mbuf. */ + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("ti%d: mbuf allocation failed " + "-- packet dropped!\n", sc->ti_unit); + return(ENOBUFS); + } + + /* Allocate the jumbo buffer */ + buf = ti_jalloc(sc); + if (buf == NULL) { + m_freem(m_new); + printf("ti%d: jumbo allocation failed " + "-- packet dropped!\n", sc->ti_unit); + return(ENOBUFS); + } + + /* Attach the buffer to the mbuf. */ + m_new->m_data = m_new->m_ext.ext_buf = (void *)buf; + m_new->m_data += ETHER_ALIGN; + m_new->m_flags |= M_EXT; + m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN - ETHER_ALIGN; + m_new->m_ext.ext_free = ti_jfree; + m_new->m_ext.ext_ref = ti_jref; + } + + /* Set up the descriptor. */ + r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; + sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; + TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); + r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; + r->ti_flags = TI_BDFLAG_JUMBO_RING; +#ifdef TI_CSUM_OFFLOAD + r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; +#endif + r->ti_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN; + r->ti_idx = i; + + return(0); +} + +/* + * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, + * that's 1MB or memory, which is a lot. For now, we fill only the first + * 256 ring entries and hope that our CPU is fast enough to keep up with + * the NIC. + */ +static int ti_init_rx_ring_std(sc) + struct ti_softc *sc; +{ + register int i; + struct ti_cmd_desc cmd; + + for (i = 0; i < TI_SSLOTS; i++) { + if (ti_newbuf_std(sc, i, NULL) == ENOBUFS) + return(ENOBUFS); + }; + + TI_UPDATE_STDPROD(sc, i - 1); + sc->ti_std_old = sc->ti_std = i - 1; + sc->ti_std_cnt = 0; + + return(0); +} + +static void ti_free_rx_ring_std(sc) + struct ti_softc *sc; +{ + register int i; + + for (i = 0; i < TI_STD_RX_RING_CNT; i++) { + if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { + m_freem(sc->ti_cdata.ti_rx_std_chain[i]); + sc->ti_cdata.ti_rx_std_chain[i] = NULL; + } + bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i], + sizeof(struct ti_rx_desc)); + } + + return; +} + +static int ti_init_rx_ring_jumbo(sc) + struct ti_softc *sc; +{ + register int i; + struct ti_cmd_desc cmd; + + for (i = 0; i < (TI_JSLOTS - 20); i++) { + if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) + return(ENOBUFS); + }; + + TI_UPDATE_JUMBOPROD(sc, i - 1); + sc->ti_jumbo_old = sc->ti_jumbo = i - 1; + sc->ti_jumbo_cnt = 0; + + return(0); +} + +static void ti_free_rx_ring_jumbo(sc) + struct ti_softc *sc; +{ + register int i; + + for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { + if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { + m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); + sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; + } + bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], + sizeof(struct ti_rx_desc)); + } + + return; +} + +static int ti_init_rx_ring_mini(sc) + struct ti_softc *sc; +{ + register int i; + + for (i = 0; i < TI_MSLOTS; i++) { + if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS) + return(ENOBUFS); + }; + + TI_UPDATE_MINIPROD(sc, i - 1); + sc->ti_mini_old = sc->ti_mini = i - 1; + sc->ti_mini_cnt = 0; + + return(0); +} + +static void ti_free_rx_ring_mini(sc) + struct ti_softc *sc; +{ + register int i; + + for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { + if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { + m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); + sc->ti_cdata.ti_rx_mini_chain[i] = NULL; + } + bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i], + sizeof(struct ti_rx_desc)); + } + + return; +} + +/* + * In order to reduce the amount of work we have to do in the interrupt + * handler, we delay putting new buffers in the receive rings until a + * certain amount have been used. This lets us hand over descriptors to + * the NIC in fairly large chunks instead of one (or a few) at a time, + * and it lets tx_rxeof() run a bit faster some of the time. + */ +static void ti_refill_rx_rings(sc) + struct ti_softc *sc; +{ + register int i; + struct ti_cmd_desc cmd; + + if (sc->ti_std_cnt > 15) { + for (i = sc->ti_std_old; i != sc->ti_std; + TI_INC(i, TI_STD_RX_RING_CNT)) { + if (ti_newbuf_std(sc, i, NULL) == ENOBUFS) + break; + }; + TI_UPDATE_STDPROD(sc, i); + sc->ti_std_old = i; + sc->ti_std_cnt = 0; + } + + if (sc->ti_jumbo_cnt > 15) { + for (i = sc->ti_jumbo_old; i != sc->ti_jumbo; + TI_INC(i, TI_JUMBO_RX_RING_CNT)) { + if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) + break; + }; + TI_UPDATE_JUMBOPROD(sc, i); + sc->ti_jumbo_old = i; + sc->ti_jumbo_cnt = 0; + } + + if (sc->ti_mini_cnt > 15) { + for (i = sc->ti_mini_old; i != sc->ti_mini; + TI_INC(i, TI_MINI_RX_RING_CNT)) { + if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS) + break; + }; + TI_UPDATE_MINIPROD(sc, i); + sc->ti_mini_old = i; + sc->ti_mini_cnt = 0; + } + + return; +} + +static void ti_free_tx_ring(sc) + struct ti_softc *sc; +{ + register int i; + + if (sc->ti_rdata->ti_tx_ring == NULL) + return; + + for (i = 0; i < TI_TX_RING_CNT; i++) { + if (sc->ti_cdata.ti_tx_chain[i] != NULL) { + m_freem(sc->ti_cdata.ti_tx_chain[i]); + sc->ti_cdata.ti_tx_chain[i] = NULL; + } + bzero((char *)&sc->ti_rdata->ti_tx_ring[i], + sizeof(struct ti_tx_desc)); + } + + return; +} + +static int ti_init_tx_ring(sc) + struct ti_softc *sc; +{ + sc->ti_tx_saved_considx = 0; + CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); + return(0); +} + +/* + * The Tigon 2 firmware has a new way to add/delete multicast addresses, + * but we have to support the old way too so that Tigon 1 cards will + * work. + */ +void ti_add_mcast(sc, addr) + struct ti_softc *sc; + struct ether_addr *addr; +{ + struct ti_cmd_desc cmd; + u_int16_t *m; + u_int32_t ext[2] = {0, 0}; + + m = (u_int16_t *)&addr->octet[0]; + + switch(sc->ti_hwrev) { + case TI_HWREV_TIGON: + CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); + CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); + TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); + break; + case TI_HWREV_TIGON_II: + ext[0] = htons(m[0]); + ext[1] = (htons(m[1]) << 16) | htons(m[2]); + TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2); + break; + default: + printf("ti%d: unknown hwrev\n", sc->ti_unit); + break; + } + + return; +} + +void ti_del_mcast(sc, addr) + struct ti_softc *sc; + struct ether_addr *addr; +{ + struct ti_cmd_desc cmd; + u_int16_t *m; + u_int32_t ext[2] = {0, 0}; + + m = (u_int16_t *)&addr->octet[0]; + + switch(sc->ti_hwrev) { + case TI_HWREV_TIGON: + CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); + CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); + TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); + break; + case TI_HWREV_TIGON_II: + ext[0] = htons(m[0]); + ext[1] = (htons(m[1]) << 16) | htons(m[2]); + TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2); + break; + default: + printf("ti%d: unknown hwrev\n", sc->ti_unit); + break; + } + + return; +} + +/* + * Configure the Tigon's multicast address filter. + * + * The actual multicast table management is a bit of a pain, thanks to + * slight brain damage on the part of both Alteon and us. With our + * multicast code, we are only alerted when the multicast address table + * changes and at that point we only have the current list of addresses: + * we only know the current state, not the previous state, so we don't + * actually know what addresses were removed or added. The firmware has + * state, but we can't get our grubby mits on it, and there is no 'delete + * all multicast addresses' command. Hence, we have to maintain our own + * state so we know what addresses have been programmed into the NIC at + * any given time. + */ +static void ti_setmulti(sc) + struct ti_softc *sc; +{ + struct ifnet *ifp; + struct ifmultiaddr *ifma; + struct ti_cmd_desc cmd; + struct ti_mc_entry *mc; + u_int32_t intrs; + + ifp = &sc->arpcom.ac_if; + + if (ifp->if_flags & IFF_ALLMULTI) { + TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); + return; + } else { + TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); + } + + /* Disable interrupts. */ + intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); + + /* First, zot all the existing filters. */ + while (sc->ti_mc_listhead.slh_first != NULL) { + mc = sc->ti_mc_listhead.slh_first; + ti_del_mcast(sc, &mc->mc_addr); + SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); + free(mc, M_DEVBUF); + } + + /* Now program new ones. */ + for (ifma = ifp->if_multiaddrs.lh_first; + ifma != NULL; ifma = ifma->ifma_link.le_next) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT); + bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), + (char *)&mc->mc_addr, ETHER_ADDR_LEN); + SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); + ti_add_mcast(sc, &mc->mc_addr); + } + + /* Re-enable interrupts. */ + CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); + + return; +} + +/* + * Check to see if the BIOS has configured us for a 64 bit slot when + * we aren't actually in one. If we detect this condition, we can work + * around it on the Tigon 2 by setting a bit in the PCI state register, + * but for the Tigon 1 we must give up and abort the interface attach. + */ +static int ti_64bitslot_war(sc) + struct ti_softc *sc; +{ + if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { + CSR_WRITE_4(sc, 0x600, 0); + CSR_WRITE_4(sc, 0x604, 0); + CSR_WRITE_4(sc, 0x600, 0x5555AAAA); + if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { + if (sc->ti_hwrev == TI_HWREV_TIGON) + return(EINVAL); + else { + TI_SETBIT(sc, TI_PCI_STATE, + TI_PCISTATE_32BIT_BUS); + return(0); + } + } + } + + return(0); +} + +/* + * Do endian, PCI and DMA initialization. Also check the on-board ROM + * self-test results. + */ +static int ti_chipinit(sc) + struct ti_softc *sc; +{ + u_int32_t cacheline; + u_int32_t pci_writemax = 0; + + /* Initialize link to down state. */ + sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; + + /* Set endianness before we access any non-PCI registers. */ +#if BYTE_ORDER == BIG_ENDIAN + CSR_WRITE_4(sc, TI_MISC_HOST_CTL, + TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); +#else + CSR_WRITE_4(sc, TI_MISC_HOST_CTL, + TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); +#endif + + /* Check the ROM failed bit to see if self-tests passed. */ + if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { + printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit); + return(ENODEV); + } + + /* Halt the CPU. */ + TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); + + /* Figure out the hardware revision. */ + switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) { + case TI_REV_TIGON_I: + sc->ti_hwrev = TI_HWREV_TIGON; + break; + case TI_REV_TIGON_II: + sc->ti_hwrev = TI_HWREV_TIGON_II; + break; + default: + printf("ti%d: unsupported chip revision\n", sc->ti_unit); + return(ENODEV); + } + + /* Do special setup for Tigon 2. */ + if (sc->ti_hwrev == TI_HWREV_TIGON_II) { + TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); + TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K); + TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); + } + + /* Set up the PCI state register. */ + CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD); + if (sc->ti_hwrev == TI_HWREV_TIGON_II) { + TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); + } + + /* Clear the read/write max DMA parameters. */ + TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA| + TI_PCISTATE_READ_MAXDMA)); + + /* Get cache line size. */ + cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF; + + /* + * If the system has set enabled the PCI memory write + * and invalidate command in the command register, set + * the write max parameter accordingly. This is necessary + * to use MWI with the Tigon 2. + */ + if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) { + switch(cacheline) { + case 1: + case 4: + case 8: + case 16: + case 32: + case 64: + break; + default: + /* Disable PCI memory write and invalidate. */ + if (bootverbose) + printf("ti%d: cache line size %d not " + "supported; disabling PCI MWI\n", + sc->ti_unit, cacheline); + CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc, + TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN); + break; + } + } + +#ifdef __brokenalpha__ + /* + * From the Alteon sample driver: + * Must insure that we do not cross an 8K (bytes) boundary + * for DMA reads. Our highest limit is 1K bytes. This is a + * restriction on some ALPHA platforms with early revision + * 21174 PCI chipsets, such as the AlphaPC 164lx + */ + TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024); +#else + TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); +#endif + + /* This sets the min dma param all the way up (0xff). */ + TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); + + /* Configure DMA variables. */ +#if BYTE_ORDER == BIG_ENDIAN + CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | + TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | + TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | + TI_OPMODE_DONT_FRAG_JUMBO); +#else + CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA| + TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO| + TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB); +#endif + + /* + * Only allow 1 DMA channel to be active at a time. + * I don't think this is a good idea, but without it + * the firmware racks up lots of nicDmaReadRingFull + * errors. + */ +#ifndef TI_CSUM_OFFLOAD + TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); +#endif + + /* Recommended settings from Tigon manual. */ + CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); + CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); + + if (ti_64bitslot_war(sc)) { + printf("ti%d: bios thinks we're in a 64 bit slot, " + "but we aren't", sc->ti_unit); + return(EINVAL); + } + + return(0); +} + +/* + * Initialize the general information block and firmware, and + * start the CPU(s) running. + */ +static int ti_gibinit(sc) + struct ti_softc *sc; +{ + struct ti_rcb *rcb; + int i; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + /* Disable interrupts for now. */ + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); + + /* Tell the chip where to find the general information block. */ + CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); + CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info)); + + /* Load the firmware into SRAM. */ + ti_loadfw(sc); + + /* Set up the contents of the general info and ring control blocks. */ + + /* Set up the event ring and producer pointer. */ + rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; + + TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring); + rcb->ti_flags = 0; + TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = + vtophys(&sc->ti_ev_prodidx); + sc->ti_ev_prodidx.ti_idx = 0; + CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); + sc->ti_ev_saved_considx = 0; + + /* Set up the command ring and producer mailbox. */ + rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; + +#ifdef __i386__ + sc->ti_rdata->ti_cmd_ring = + (struct ti_cmd_desc *)(sc->ti_bhandle + TI_GCR_CMDRING); +#endif +#ifdef __alpha__ + sc->ti_rdata->ti_cmd_ring = + (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING); +#endif + TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); + rcb->ti_flags = 0; + rcb->ti_max_len = 0; + for (i = 0; i < TI_CMD_RING_CNT; i++) { + CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); + } + CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); + CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); + sc->ti_cmd_saved_prodidx = 0; + + /* + * Assign the address of the stats refresh buffer. + * We re-use the current stats buffer for this to + * conserve memory. + */ + TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = + vtophys(&sc->ti_rdata->ti_info.ti_stats); + + /* Set up the standard receive ring. */ + rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; + TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring); + rcb->ti_max_len = TI_FRAMELEN; + rcb->ti_flags = 0; +#ifdef TI_CSUM_OFFLOAD + rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM; +#endif +#if NVLAN > 0 + rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; +#endif + + /* Set up the jumbo receive ring. */ + rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; + TI_HOSTADDR(rcb->ti_hostaddr) = + vtophys(&sc->ti_rdata->ti_rx_jumbo_ring); + rcb->ti_max_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN; + rcb->ti_flags = 0; +#ifdef TI_CSUM_OFFLOAD + rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM; +#endif +#if NVLAN > 0 + rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; +#endif + + /* + * Set up the mini ring. Only activated on the + * Tigon 2 but the slot in the config block is + * still there on the Tigon 1. + */ + rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; + TI_HOSTADDR(rcb->ti_hostaddr) = + vtophys(&sc->ti_rdata->ti_rx_mini_ring); + rcb->ti_max_len = MHLEN; + if (sc->ti_hwrev == TI_HWREV_TIGON) + rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; + else + rcb->ti_flags = 0; +#ifdef TI_CSUM_OFFLOAD + rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM; +#endif +#if NVLAN > 0 + rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; +#endif + + /* + * Set up the receive return ring. + */ + rcb = &sc->ti_rdata->ti_info.ti_return_rcb; + TI_HOSTADDR(rcb->ti_hostaddr) = + vtophys(&sc->ti_rdata->ti_rx_return_ring); + rcb->ti_flags = 0; + rcb->ti_max_len = TI_RETURN_RING_CNT; + TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = + vtophys(&sc->ti_return_prodidx); + + /* + * Set up the tx ring. Note: for the Tigon 2, we have the option + * of putting the transmit ring in the host's address space and + * letting the chip DMA it instead of leaving the ring in the NIC's + * memory and accessing it through the shared memory region. We + * do this for the Tigon 2, but it doesn't work on the Tigon 1, + * so we have to revert to the shared memory scheme if we detect + * a Tigon 1 chip. + */ + CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); + if (sc->ti_hwrev == TI_HWREV_TIGON) { +#ifdef __i386__ + sc->ti_rdata->ti_tx_ring_nic = + (struct ti_tx_desc *)(sc->ti_bhandle + TI_WINDOW); +#endif +#ifdef __alpha__ + sc->ti_rdata->ti_tx_ring_nic = + (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); +#endif + } + bzero((char *)sc->ti_rdata->ti_tx_ring, + TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); + rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; + if (sc->ti_hwrev == TI_HWREV_TIGON) + rcb->ti_flags = 0; + else + rcb->ti_flags = TI_RCB_FLAG_HOST_RING; +#if NVLAN > 0 + rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; +#endif + rcb->ti_max_len = TI_TX_RING_CNT; + if (sc->ti_hwrev == TI_HWREV_TIGON) + TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; + else + TI_HOSTADDR(rcb->ti_hostaddr) = + vtophys(&sc->ti_rdata->ti_tx_ring); + TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = + vtophys(&sc->ti_tx_considx); + + /* Set up tuneables */ + if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) + CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, + (sc->ti_rx_coal_ticks / 10)); + else + CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); + CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); + CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); + CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); + CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); + CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); + + /* Turn interrupts on. */ + CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); + + /* Start CPU. */ + TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP)); + + return(0); +} + +/* + * Probe for a Tigon chip. Check the PCI vendor and device IDs + * against our list and return its name if we find a match. + */ +static const char * +ti_probe(config_id, device_id) + pcici_t config_id; + pcidi_t device_id; +{ + struct ti_type *t; + + t = ti_devs; + + while(t->ti_name != NULL) { + if ((device_id & 0xFFFF) == t->ti_vid && + ((device_id >> 16) & 0xFFFF) == t->ti_did) + return(t->ti_name); + t++; + } + + return(NULL); +} + + +static void +ti_attach(config_id, unit) + pcici_t config_id; + int unit; +{ + vm_offset_t pbase, vbase; + int s; + u_int32_t command; + struct ifnet *ifp; + struct ti_softc *sc; + + s = splimp(); + + /* First, allocate memory for the softc struct. */ + sc = malloc(sizeof(struct ti_softc), M_DEVBUF, M_NOWAIT); + if (sc == NULL) { + printf("ti%d: no memory for softc struct!\n", unit); + goto fail; + } + + bzero(sc, sizeof(struct ti_softc)); + + /* + * Map control/status registers. + */ + command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); + command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); + pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command); + command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); + + if (!(command & PCIM_CMD_MEMEN)) { + printf("ti%d: failed to enable memory mapping!\n", unit); + free(sc, M_DEVBUF); + goto fail; + } + +#ifdef __i386__ + if (!pci_map_mem(config_id, TI_PCI_LOMEM, &vbase, &pbase)) { + printf ("ti%d: couldn't map memory\n", unit); + free(sc, M_DEVBUF); + goto fail; + } + + sc->ti_bhandle = vbase; + sc->ti_btag = I386_BUS_SPACE_MEM; +#endif + +#ifdef __alpha__ + if (!(pci_map_bwx(config_id, TI_PCI_LOMEM, &vbase, &pbase) || + pci_map_dense(config_id, TI_PCI_LOMEM, &vbase, &pbase))){ + printf ("ti%d: couldn't map memory\n", unit); + free(sc, M_DEVBUF); + goto fail; + } + + sc->ti_bhandle = pbase; + sc->ti_vhandle = vbase; + sc->ti_btag = ALPHA_BUS_SPACE_MEM; +#endif + /* Allocate interrupt */ + if (!pci_map_int(config_id, ti_intr, sc, &net_imask)) { + printf("ti%d: couldn't map interrupt\n", unit); + free(sc, M_DEVBUF); + goto fail; + } + + sc->ti_unit = unit; + + if (ti_chipinit(sc)) { + printf("ti%d: chip initialization failed\n", sc->ti_unit); + free(sc, M_DEVBUF); + goto fail; + } + + /* Zero out the NIC's on-board SRAM. */ + ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); + + /* Init again -- zeroing memory may have clobbered some registers. */ + if (ti_chipinit(sc)) { + printf("ti%d: chip initialization failed\n", sc->ti_unit); + free(sc, M_DEVBUF); + goto fail; + } + + /* + * Get station address from the EEPROM. Note: the manual states + * that the MAC address is at offset 0x8c, however the data is + * stored as two longwords (since that's how it's loaded into + * the NIC). This means the MAC address is actually preceeded + * by two zero bytes. We need to skip over those. + */ + if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, + TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { + printf("ti%d: failed to read station address\n", unit); + free(sc, M_DEVBUF); + goto fail; + } + + /* + * A Tigon chip was detected. Inform the world. + */ + printf("ti%d: Ethernet address: %6D\n", unit, + sc->arpcom.ac_enaddr, ":"); + + /* Allocate the general information block and ring buffers. */ + sc->ti_rdata_ptr = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF, + M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0); + + if (sc->ti_rdata_ptr == NULL) { + free(sc, M_DEVBUF); + printf("ti%d: no memory for list buffers!\n", sc->ti_unit); + goto fail; + } + + sc->ti_rdata = (struct ti_ring_data *)sc->ti_rdata_ptr; + bzero(sc->ti_rdata, sizeof(struct ti_ring_data)); + + /* Try to allocate memory for jumbo buffers. */ + if (ti_alloc_jumbo_mem(sc)) { + printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit); + free(sc->ti_rdata_ptr, M_DEVBUF); + free(sc, M_DEVBUF); + goto fail; + } + + /* Set default tuneable values. */ + sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; + sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; + sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; + sc->ti_rx_max_coal_bds = 64; + sc->ti_tx_max_coal_bds = 128; + sc->ti_tx_buf_ratio = 21; + + /* Set up ifnet structure */ + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_unit = sc->ti_unit; + ifp->if_name = "ti"; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = ti_ioctl; + ifp->if_output = ether_output; + ifp->if_start = ti_start; + ifp->if_watchdog = ti_watchdog; + ifp->if_init = ti_init; + ifp->if_mtu = ETHERMTU; + ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; + + /* Set up ifmedia support. */ + ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); + ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); + + /* + * Call MI attach routines. + */ + if_attach(ifp); + ether_ifattach(ifp); + +#if NBPFILTER > 0 + bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); +#endif + + at_shutdown(ti_shutdown, sc, SHUTDOWN_POST_SYNC); + +fail: + splx(s); + + return; +} + +/* + * Frame reception handling. This is called if there's a frame + * on the receive return list. + * + * Note: we have to be able to handle three possibilities here: + * 1) the frame is from the mini receive ring (can only happen) + * on Tigon 2 boards) + * 2) the frame is from the jumbo recieve ring + * 3) the frame is from the standard receive ring + */ +int ti_cksumok = 0; + +static void ti_rxeof(sc) + struct ti_softc *sc; +{ + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { + struct ti_rx_desc *cur_rx; + u_int32_t rxidx; + struct ether_header *eh; + struct mbuf *m = NULL; +#if NVLAN > 0 + u_int16_t vlan_tag = 0; + int have_tag = 0; +#endif +#ifdef TI_CSUM_OFFLOAD + struct ip *ip; +#endif + + cur_rx = + &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; + rxidx = cur_rx->ti_idx; + TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); + +#if NVLAN > 0 + if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) { + have_tag = 1; + vlan_tag = cur_rx->ti_vlan_tag; + } +#endif + + if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { + TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); + m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; + sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; + if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { + ifp->if_ierrors++; + ti_newbuf_jumbo(sc, sc->ti_jumbo, m); + TI_INC(sc->ti_jumbo_old, TI_JUMBO_RX_RING_CNT); + continue; + } + sc->ti_jumbo_cnt++; + } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { + TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); + m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; + sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; + if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { + ifp->if_ierrors++; + ti_newbuf_mini(sc, sc->ti_mini, m); + TI_INC(sc->ti_mini_old, TI_MINI_RX_RING_CNT); + continue; + } + sc->ti_mini_cnt++; + } else { + TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); + m = sc->ti_cdata.ti_rx_std_chain[rxidx]; + sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; + if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { + ifp->if_ierrors++; + ti_newbuf_std(sc, sc->ti_std, m); + TI_INC(sc->ti_std_old, TI_STD_RX_RING_CNT); + continue; + } + sc->ti_std_cnt++; + } + + m->m_pkthdr.len = m->m_len = cur_rx->ti_len; + ifp->if_ipackets++; + eh = mtod(m, struct ether_header *); + m->m_pkthdr.rcvif = ifp; + +#if NBPFILTER > 0 + /* + * Handle BPF listeners. Let the BPF user see the packet, but + * don't pass it up to the ether_input() layer unless it's + * a broadcast packet, multicast packet, matches our ethernet + * address or the interface is in promiscuous mode. + */ + if (ifp->if_bpf) { + bpf_mtap(ifp, m); + if (ifp->if_flags & IFF_PROMISC && + (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, + ETHER_ADDR_LEN) && + (eh->ether_dhost[0] & 1) == 0)) { + m_freem(m); + continue; + } + } +#endif + + /* Remove header from mbuf and pass it on. */ + m_adj(m, sizeof(struct ether_header)); + +#ifdef TI_CSUM_OFFLOAD + ip = mtod(m, struct ip *); + if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) && + !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF))) { + m->m_flags |= M_HWCKSUM; + ti_cksumok++; + } +#endif + +#if NVLAN > 0 + /* + * If we received a packet with a vlan tag, pass it + * to vlan_input() instead of ether_input(). + */ + if (have_tag) { + vlan_input_tag(eh, m, vlan_tag); + have_tag = vlan_tag = 0; + continue; + } +#endif + ether_input(ifp, eh, m); + } + + /* Only necessary on the Tigon 1. */ + if (sc->ti_hwrev == TI_HWREV_TIGON) + CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, + sc->ti_rx_saved_considx); + + ti_refill_rx_rings(sc); + + return; +} + +static void ti_txeof(sc) + struct ti_softc *sc; +{ + struct ti_tx_desc *cur_tx = NULL; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + /* + * Go through our tx ring and free mbufs for those + * frames that have been sent. + */ + while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { + u_int32_t idx = 0; + + idx = sc->ti_tx_saved_considx; + if (sc->ti_hwrev == TI_HWREV_TIGON) { + if (idx > 383) + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE + 6144); + else if (idx > 255) + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE + 4096); + else if (idx > 127) + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE + 2048); + else + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE); + cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128]; + } else + cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; + if (cur_tx->ti_flags & TI_BDFLAG_END) + ifp->if_opackets++; + if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { + m_freem(sc->ti_cdata.ti_tx_chain[idx]); + sc->ti_cdata.ti_tx_chain[idx] = NULL; + } + TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); + ifp->if_timer = 0; + } + + if (cur_tx != NULL) + ifp->if_flags &= ~IFF_OACTIVE; + + return; +} + +static void ti_intr(xsc) + void *xsc; +{ + struct ti_softc *sc; + struct ifnet *ifp; + + sc = xsc; + ifp = &sc->arpcom.ac_if; + +#ifdef notdef + /* Avoid this for now -- checking this register is expensive. */ + /* Make sure this is really our interrupt. */ + if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) + return; +#endif + + /* Ack interrupt and stop others from occuring. */ + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); + + if (ifp->if_flags & IFF_RUNNING) { + /* Check RX return ring producer/consumer */ + ti_rxeof(sc); + + /* Check TX ring producer/consumer */ + ti_txeof(sc); + } + + ti_handle_events(sc); + + /* Re-enable interrupts. */ + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); + + if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) + ti_start(ifp); + + return; +} + +static void ti_stats_update(sc) + struct ti_softc *sc; +{ + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + ifp->if_collisions += + (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + + sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + + sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + + sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - + ifp->if_collisions; + + return; +} + +/* + * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data + * pointers to descriptors. + */ +static int ti_encap(sc, m_head, txidx) + struct ti_softc *sc; + struct mbuf *m_head; + u_int32_t *txidx; +{ + struct ti_tx_desc *f = NULL; + struct mbuf *m; + u_int32_t frag, cur; +#if NVLAN > 0 + struct ifvlan *ifv = NULL; + + if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && + m_head->m_pkthdr.rcvif != NULL && + m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN) + ifv = m_head->m_pkthdr.rcvif->if_softc; +#endif + + m = m_head; + cur = frag = *txidx; + + /* + * Start packing the mbufs in this chain into + * the fragment pointers. Stop when we run out + * of fragments or hit the end of the mbuf chain. + */ + for (m = m_head; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (sc->ti_hwrev == TI_HWREV_TIGON) { + if (frag > 383) + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE + 6144); + else if (frag > 255) + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE + 4096); + else if (frag > 127) + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE + 2048); + else + CSR_WRITE_4(sc, TI_WINBASE, + TI_TX_RING_BASE); + f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128]; + } else + f = &sc->ti_rdata->ti_tx_ring[frag]; + if (sc->ti_cdata.ti_tx_chain[frag] != NULL) + break; + TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t)); + f->ti_len = m->m_len; + f->ti_flags = 0; +#if NVLAN > 0 + if (ifv != NULL) { + f->ti_flags |= TI_BDFLAG_VLAN_TAG; + f->ti_vlan_tag = ifv->ifv_tag; + } else { + f->ti_vlan_tag = 0; + } +#endif + cur = frag; + TI_INC(frag, TI_TX_RING_CNT); + } + } + + if (m != NULL) + return(ENOBUFS); + + if (sc->ti_hwrev == TI_HWREV_TIGON) + sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |= + TI_BDFLAG_END; + else + sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; + sc->ti_cdata.ti_tx_chain[*txidx] = m_head; + + *txidx = frag; + + return(0); +} + +/* + * Main transmit routine. To avoid having to do mbuf copies, we put pointers + * to the mbuf data regions directly in the transmit descriptors. + */ +static void ti_start(ifp) + struct ifnet *ifp; +{ + struct ti_softc *sc; + struct mbuf *m_head = NULL; + u_int32_t prodidx = 0; + + sc = ifp->if_softc; + + prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); + + while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + /* + * Pack the data into the transmit ring. If we + * don't have room, set the OACTIVE flag and wait + * for the NIC to drain the ring. + */ + if (ti_encap(sc, m_head, &prodidx)) { + IF_PREPEND(&ifp->if_snd, m_head); + ifp->if_flags |= IFF_OACTIVE; + break; + } + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ +#if NBPFILTER > 0 + if (ifp->if_bpf) + bpf_mtap(ifp, m_head); +#endif + } + + /* Transmit */ + CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); + + /* + * Set a timeout in case the chip goes out to lunch. + */ + ifp->if_timer = 5; + + return; +} + +static void ti_init(xsc) + void *xsc; +{ + struct ti_softc *sc = xsc; + int s; + + s = splimp(); + + /* Cancel pending I/O and flush buffers. */ + ti_stop(sc); + + /* Init the gen info block, ring control blocks and firmware. */ + if (ti_gibinit(sc)) { + printf("ti%d: initialization failure\n", sc->ti_unit); + splx(s); + return; + } + + splx(s); + + return; +} + +static void ti_init2(sc) + struct ti_softc *sc; +{ + struct ti_cmd_desc cmd; + struct ifnet *ifp; + u_int16_t *m; + struct ifmedia *ifm; + int tmp; + + ifp = &sc->arpcom.ac_if; + + /* Specify MTU and interface index. */ + CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit); + CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu + + ETHER_HDR_LEN + ETHER_CRC_LEN); + TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); + + /* Load our MAC address. */ + m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; + CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0])); + CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2])); + TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); + + /* Enable or disable promiscuous mode as needed. */ + if (ifp->if_flags & IFF_PROMISC) { + TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); + } else { + TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); + } + + /* Program multicast filter. */ + ti_setmulti(sc); + + /* + * If this is a Tigon 1, we should tell the + * firmware to use software packet filtering. + */ + if (sc->ti_hwrev == TI_HWREV_TIGON) { + TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); + } + + /* Init RX ring. */ + ti_init_rx_ring_std(sc); + + /* Init jumbo RX ring. */ + if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) + ti_init_rx_ring_jumbo(sc); + + /* + * If this is a Tigon 2, we can also configure the + * mini ring. + */ + if (sc->ti_hwrev == TI_HWREV_TIGON_II) + ti_init_rx_ring_mini(sc); + + CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); + sc->ti_rx_saved_considx = 0; + + /* Init TX ring. */ + ti_init_tx_ring(sc); + + /* Tell firmware we're alive. */ + TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); + + /* Enable host interrupts. */ + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + /* + * Make sure to set media properly. We have to do this + * here since we have to issue commands in order to set + * the link negotiation and we can't issue commands until + * the firmware is running. + */ + ifm = &sc->ifmedia; + tmp = ifm->ifm_media; + ifm->ifm_media = ifm->ifm_cur->ifm_media; + ti_ifmedia_upd(ifp); + ifm->ifm_media = tmp; + + return; +} + +/* + * Set media options. + */ +static int ti_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct ti_softc *sc; + struct ifmedia *ifm; + struct ti_cmd_desc cmd; + + sc = ifp->if_softc; + ifm = &sc->ifmedia; + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return(EINVAL); + + switch(IFM_SUBTYPE(ifm->ifm_media)) { + case IFM_AUTO: + CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| + TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y| + TI_GLNK_AUTONEGENB|TI_GLNK_ENB); + CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB| + TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| + TI_LNK_AUTONEGENB|TI_LNK_ENB); + TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, + TI_CMD_CODE_NEGOTIATE_BOTH, 0); + break; + case IFM_1000_SX: + CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| + TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB); + CSR_WRITE_4(sc, TI_GCR_LINK, 0); + TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, + TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); + break; + case IFM_100_FX: + case IFM_10_FL: + CSR_WRITE_4(sc, TI_GCR_GLINK, 0); + CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF); + if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) { + TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); + } else { + TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); + } + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { + TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); + } else { + TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); + } + TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, + TI_CMD_CODE_NEGOTIATE_10_100, 0); + break; + } + + return(0); +} + +/* + * Report current media status. + */ +static void ti_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct ti_softc *sc; + + sc = ifp->if_softc; + + ifmr->ifm_status = IFM_AVALID; + ifmr->ifm_active = IFM_ETHER; + + if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) + return; + + ifmr->ifm_status |= IFM_ACTIVE; + + if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) + ifmr->ifm_active |= IFM_1000_SX|IFM_FDX; + else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { + u_int32_t media; + media = CSR_READ_4(sc, TI_GCR_LINK_STAT); + if (media & TI_LNK_100MB) + ifmr->ifm_active |= IFM_100_FX; + if (media & TI_LNK_10MB) + ifmr->ifm_active |= IFM_10_FL; + if (media & TI_LNK_FULL_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + if (media & TI_LNK_HALF_DUPLEX) + ifmr->ifm_active |= IFM_HDX; + } + + return; +} + +static int ti_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct ti_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + int s, error = 0; + struct ti_cmd_desc cmd; + + s = splimp(); + + switch(command) { + case SIOCSIFADDR: + case SIOCGIFADDR: + error = ether_ioctl(ifp, command, data); + break; + case SIOCSIFMTU: + if (ifr->ifr_mtu > TI_JUMBO_MTU) + error = EINVAL; + else { + ifp->if_mtu = ifr->ifr_mtu; + ti_init(sc); + } + break; + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + /* + * If only the state of the PROMISC flag changed, + * then just use the 'set promisc mode' command + * instead of reinitializing the entire NIC. Doing + * a full re-init means reloading the firmware and + * waiting for it to start up, which may take a + * second or two. + */ + if (ifp->if_flags & IFF_RUNNING && + ifp->if_flags & IFF_PROMISC && + !(sc->ti_if_flags & IFF_PROMISC)) { + TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, + TI_CMD_CODE_PROMISC_ENB, 0); + } else if (ifp->if_flags & IFF_RUNNING && + !(ifp->if_flags & IFF_PROMISC) && + sc->ti_if_flags & IFF_PROMISC) { + TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, + TI_CMD_CODE_PROMISC_DIS, 0); + } else + ti_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) { + ti_stop(sc); + } + } + sc->ti_if_flags = ifp->if_flags; + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + if (ifp->if_flags & IFF_RUNNING) { + ti_setmulti(sc); + error = 0; + } + break; + case SIOCSIFMEDIA: + case SIOCGIFMEDIA: + error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); + break; + default: + error = EINVAL; + break; + } + + (void)splx(s); + + return(error); +} + +static void ti_watchdog(ifp) + struct ifnet *ifp; +{ + struct ti_softc *sc; + + sc = ifp->if_softc; + + printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit); + ti_stop(sc); + ti_init(sc); + + ifp->if_oerrors++; + + return; +} + +/* + * Stop the adapter and free any mbufs allocated to the + * RX and TX lists. + */ +static void ti_stop(sc) + struct ti_softc *sc; +{ + struct ifnet *ifp; + struct ti_cmd_desc cmd; + + ifp = &sc->arpcom.ac_if; + + /* Disable host interrupts. */ + CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); + /* + * Tell firmware we're shutting down. + */ + TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); + + /* Halt and reinitialize. */ + ti_chipinit(sc); + ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); + ti_chipinit(sc); + + /* Free the RX lists. */ + ti_free_rx_ring_std(sc); + + /* Free jumbo RX list. */ + ti_free_rx_ring_jumbo(sc); + + /* Free mini RX list. */ + ti_free_rx_ring_mini(sc); + + /* Free TX buffers. */ + ti_free_tx_ring(sc); + + sc->ti_ev_prodidx.ti_idx = 0; + sc->ti_return_prodidx.ti_idx = 0; + sc->ti_tx_considx.ti_idx = 0; + sc->ti_tx_saved_considx = TI_TXCONS_UNSET; + + ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); + + return; +} + +/* + * Stop all chip I/O so that the kernel's probe routines don't + * get confused by errant DMAs when rebooting. + */ +static void ti_shutdown(howto, xsc) + int howto; + void *xsc; +{ + struct ti_softc *sc; + + sc = xsc; + + ti_chipinit(sc); + + return; +} + +static struct pci_device ti_device = { + "ti", + ti_probe, + ti_attach, + &ti_count, + NULL +}; +DATA_SET(pcidevice_set, ti_device); |