summaryrefslogtreecommitdiffstats
path: root/sys/dev/ti/if_ti.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/ti/if_ti.c')
-rw-r--r--sys/dev/ti/if_ti.c2486
1 files changed, 2486 insertions, 0 deletions
diff --git a/sys/dev/ti/if_ti.c b/sys/dev/ti/if_ti.c
new file mode 100644
index 0000000..33900df
--- /dev/null
+++ b/sys/dev/ti/if_ti.c
@@ -0,0 +1,2486 @@
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $Id: if_ti.c,v 1.106 1999/04/06 15:55:01 wpaul Exp $
+ */
+
+/*
+ * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
+ * Manuals, sample driver and firmware source kits are available
+ * from http://www.alteon.com/support/openkits.
+ *
+ * Written by Bill Paul <wpaul@ctr.columbia.edu>
+ * Electrical Engineering Department
+ * Columbia University, New York City
+ */
+
+/*
+ * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
+ * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
+ * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
+ * Tigon supports hardware IP, TCP and UCP checksumming, multicast
+ * filtering and jumbo (9014 byte) frames. The hardware is largely
+ * controlled by firmware, which must be loaded into the NIC during
+ * initialization.
+ *
+ * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
+ * revision, which supports new features such as extended commands,
+ * extended jumbo receive ring desciptors and a mini receive ring.
+ *
+ * Alteon Networks is to be commended for releasing such a vast amount
+ * of development material for the Tigon NIC without requiring an NDA
+ * (although they really should have done it a long time ago). With
+ * any luck, the other vendors will finally wise up and follow Alteon's
+ * stellar example.
+ *
+ * The firmware for the Tigon 1 and 2 NICs is compiled directly into
+ * this driver by #including it as a C header file. This bloats the
+ * driver somewhat, but it's the easiest method considering that the
+ * driver code and firmware code need to be kept in sync. The source
+ * for the firmware is not provided with the FreeBSD distribution since
+ * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
+ *
+ * The following people deserve special thanks:
+ * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
+ * for testing
+ * - Raymond Lee of Netgear, for providing a pair of Netgear
+ * GA620 Tigon 2 boards for testing
+ * - Ulf Zimmermann, for bringing the GA260 to my attention and
+ * convincing me to write this driver.
+ * - Andrew Gallatin for providing FreeBSD/Alpha support.
+ */
+
+#include "bpfilter.h"
+#include "vlan.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/socket.h>
+#include <sys/queue.h>
+
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#if NBPFILTER > 0
+#include <net/bpf.h>
+#endif
+
+#if NVLAN > 0
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+#endif
+
+#include <netinet/in_systm.h>
+#include <netinet/in.h>
+#include <netinet/ip.h>
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+#include <machine/clock.h> /* for DELAY */
+#include <machine/bus_memio.h>
+#include <machine/bus.h>
+
+#include <pci/pcireg.h>
+#include <pci/pcivar.h>
+
+#include <pci/if_tireg.h>
+#include <pci/ti_fw.h>
+#include <pci/ti_fw2.h>
+
+#ifdef M_HWCKSUM
+/*#define TI_CSUM_OFFLOAD*/
+#endif
+
+#if !defined(lint)
+static const char rcsid[] =
+ "$Id: if_ti.c,v 1.106 1999/04/06 15:55:01 wpaul Exp $";
+#endif
+
+/*
+ * Various supported device vendors/types and their names.
+ */
+
+static struct ti_type ti_devs[] = {
+ { ALT_VENDORID, ALT_DEVICEID_ACENIC,
+ "Alteon AceNIC Gigabit Ethernet" },
+ { TC_VENDORID, TC_DEVICEID_3C985,
+ "3Com 3c985-SX Gigabit Ethernet" },
+ { NG_VENDORID, NG_DEVICEID_GA620,
+ "Netgear GA620 Gigabit Ethernet" },
+ { SGI_VENDORID, SGI_DEVICEID_TIGON,
+ "Silicon Graphics Gigabit Ethernet" },
+ { 0, 0, NULL }
+};
+
+static unsigned long ti_count;
+
+static const char *ti_probe __P((pcici_t, pcidi_t));
+static void ti_attach __P((pcici_t, int));
+static void ti_txeof __P((struct ti_softc *));
+static void ti_rxeof __P((struct ti_softc *));
+
+static void ti_stats_update __P((struct ti_softc *));
+static int ti_encap __P((struct ti_softc *, struct mbuf *,
+ u_int32_t *));
+
+static void ti_intr __P((void *));
+static void ti_start __P((struct ifnet *));
+static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
+static void ti_init __P((void *));
+static void ti_init2 __P((struct ti_softc *));
+static void ti_stop __P((struct ti_softc *));
+static void ti_watchdog __P((struct ifnet *));
+static void ti_shutdown __P((int, void *));
+static int ti_ifmedia_upd __P((struct ifnet *));
+static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
+
+static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
+static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
+ int, u_int8_t *));
+static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
+
+static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
+static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
+static void ti_setmulti __P((struct ti_softc *));
+
+static void ti_mem __P((struct ti_softc *, u_int32_t,
+ u_int32_t, caddr_t));
+static void ti_loadfw __P((struct ti_softc *));
+static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
+static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
+ caddr_t, int));
+static void ti_handle_events __P((struct ti_softc *));
+static int ti_alloc_jumbo_mem __P((struct ti_softc *));
+static void *ti_jalloc __P((struct ti_softc *));
+static void ti_jfree __P((caddr_t, u_int));
+static void ti_jref __P((caddr_t, u_int));
+static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *));
+static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *));
+static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
+static int ti_init_rx_ring_std __P((struct ti_softc *));
+static void ti_free_rx_ring_std __P((struct ti_softc *));
+static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
+static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
+static int ti_init_rx_ring_mini __P((struct ti_softc *));
+static void ti_free_rx_ring_mini __P((struct ti_softc *));
+static void ti_refill_rx_rings __P((struct ti_softc *));
+static void ti_free_tx_ring __P((struct ti_softc *));
+static int ti_init_tx_ring __P((struct ti_softc *));
+
+static int ti_64bitslot_war __P((struct ti_softc *));
+static int ti_chipinit __P((struct ti_softc *));
+static int ti_gibinit __P((struct ti_softc *));
+
+/*
+ * Send an instruction or address to the EEPROM, check for ACK.
+ */
+static u_int32_t ti_eeprom_putbyte(sc, byte)
+ struct ti_softc *sc;
+ int byte;
+{
+ register int i, ack = 0;
+
+ /*
+ * Make sure we're in TX mode.
+ */
+ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
+
+ /*
+ * Feed in each bit and stobe the clock.
+ */
+ for (i = 0x80; i; i >>= 1) {
+ if (byte & i) {
+ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
+ } else {
+ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
+ }
+ DELAY(1);
+ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
+ DELAY(1);
+ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
+ }
+
+ /*
+ * Turn off TX mode.
+ */
+ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
+
+ /*
+ * Check for ack.
+ */
+ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
+ ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
+ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
+
+ return(ack);
+}
+
+/*
+ * Read a byte of data stored in the EEPROM at address 'addr.'
+ * We have to send two address bytes since the EEPROM can hold
+ * more than 256 bytes of data.
+ */
+static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
+ struct ti_softc *sc;
+ int addr;
+ u_int8_t *dest;
+{
+ register int i;
+ u_int8_t byte = 0;
+
+ EEPROM_START;
+
+ /*
+ * Send write control code to EEPROM.
+ */
+ if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
+ printf("ti%d: failed to send write command, status: %x\n",
+ sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
+ return(1);
+ }
+
+ /*
+ * Send first byte of address of byte we want to read.
+ */
+ if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
+ printf("ti%d: failed to send address, status: %x\n",
+ sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
+ return(1);
+ }
+ /*
+ * Send second byte address of byte we want to read.
+ */
+ if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
+ printf("ti%d: failed to send address, status: %x\n",
+ sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
+ return(1);
+ }
+
+ EEPROM_STOP;
+ EEPROM_START;
+ /*
+ * Send read control code to EEPROM.
+ */
+ if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
+ printf("ti%d: failed to send read command, status: %x\n",
+ sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
+ return(1);
+ }
+
+ /*
+ * Start reading bits from EEPROM.
+ */
+ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
+ for (i = 0x80; i; i >>= 1) {
+ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
+ DELAY(1);
+ if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
+ byte |= i;
+ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
+ DELAY(1);
+ }
+
+ EEPROM_STOP;
+
+ /*
+ * No ACK generated for read, so just return byte.
+ */
+
+ *dest = byte;
+
+ return(0);
+}
+
+/*
+ * Read a sequence of bytes from the EEPROM.
+ */
+static int ti_read_eeprom(sc, dest, off, cnt)
+ struct ti_softc *sc;
+ caddr_t dest;
+ int off;
+ int cnt;
+{
+ int err = 0, i;
+ u_int8_t byte = 0;
+
+ for (i = 0; i < cnt; i++) {
+ err = ti_eeprom_getbyte(sc, off + i, &byte);
+ if (err)
+ break;
+ *(dest + i) = byte;
+ }
+
+ return(err ? 1 : 0);
+}
+
+/*
+ * NIC memory access function. Can be used to either clear a section
+ * of NIC local memory or (if buf is non-NULL) copy data into it.
+ */
+static void ti_mem(sc, addr, len, buf)
+ struct ti_softc *sc;
+ u_int32_t addr, len;
+ caddr_t buf;
+{
+ int segptr, segsize, cnt;
+ caddr_t ti_winbase, ptr;
+
+ segptr = addr;
+ cnt = len;
+#ifdef __i386__
+ ti_winbase = (caddr_t)(sc->ti_bhandle + TI_WINDOW);
+#endif
+#ifdef __alpha__
+ ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
+#endif
+ ptr = buf;
+
+ while(cnt) {
+ if (cnt < TI_WINLEN)
+ segsize = cnt;
+ else
+ segsize = TI_WINLEN - (segptr % TI_WINLEN);
+ CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
+ if (buf == NULL)
+ bzero((char *)ti_winbase + (segptr &
+ (TI_WINLEN - 1)), segsize);
+ else {
+ bcopy((char *)ptr, (char *)ti_winbase +
+ (segptr & (TI_WINLEN - 1)), segsize);
+ ptr += segsize;
+ }
+ segptr += segsize;
+ cnt -= segsize;
+ }
+
+ return;
+}
+
+/*
+ * Load firmware image into the NIC. Check that the firmware revision
+ * is acceptable and see if we want the firmware for the Tigon 1 or
+ * Tigon 2.
+ */
+static void ti_loadfw(sc)
+ struct ti_softc *sc;
+{
+ switch(sc->ti_hwrev) {
+ case TI_HWREV_TIGON:
+ if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
+ tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
+ tigonFwReleaseFix != TI_FIRMWARE_FIX) {
+ printf("ti%d: firmware revision mismatch; want "
+ "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
+ TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
+ TI_FIRMWARE_FIX, tigonFwReleaseMajor,
+ tigonFwReleaseMinor, tigonFwReleaseFix);
+ return;
+ }
+ ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
+ (caddr_t)tigonFwText);
+ ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
+ (caddr_t)tigonFwData);
+ ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
+ (caddr_t)tigonFwRodata);
+ ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
+ ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
+ CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
+ break;
+ case TI_HWREV_TIGON_II:
+ if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
+ tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
+ tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
+ printf("ti%d: firmware revision mismatch; want "
+ "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
+ TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
+ TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
+ tigon2FwReleaseMinor, tigon2FwReleaseFix);
+ return;
+ }
+ ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
+ (caddr_t)tigon2FwText);
+ ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
+ (caddr_t)tigon2FwData);
+ ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
+ (caddr_t)tigon2FwRodata);
+ ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
+ ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
+ CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
+ break;
+ default:
+ printf("ti%d: can't load firmware: unknown hardware rev\n",
+ sc->ti_unit);
+ break;
+ }
+
+ return;
+}
+
+/*
+ * Send the NIC a command via the command ring.
+ */
+static void ti_cmd(sc, cmd)
+ struct ti_softc *sc;
+ struct ti_cmd_desc *cmd;
+{
+ u_int32_t index;
+
+ if (sc->ti_rdata->ti_cmd_ring == NULL)
+ return;
+
+ index = sc->ti_cmd_saved_prodidx;
+ CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
+ TI_INC(index, TI_CMD_RING_CNT);
+ CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
+ sc->ti_cmd_saved_prodidx = index;
+
+ return;
+}
+
+/*
+ * Send the NIC an extended command. The 'len' parameter specifies the
+ * number of command slots to include after the initial command.
+ */
+static void ti_cmd_ext(sc, cmd, arg, len)
+ struct ti_softc *sc;
+ struct ti_cmd_desc *cmd;
+ caddr_t arg;
+ int len;
+{
+ u_int32_t index;
+ register int i;
+
+ if (sc->ti_rdata->ti_cmd_ring == NULL)
+ return;
+
+ index = sc->ti_cmd_saved_prodidx;
+ CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
+ TI_INC(index, TI_CMD_RING_CNT);
+ for (i = 0; i < len; i++) {
+ CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
+ *(u_int32_t *)(&arg[i * 4]));
+ TI_INC(index, TI_CMD_RING_CNT);
+ }
+ CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
+ sc->ti_cmd_saved_prodidx = index;
+
+ return;
+}
+
+/*
+ * Handle events that have triggered interrupts.
+ */
+static void ti_handle_events(sc)
+ struct ti_softc *sc;
+{
+ struct ti_event_desc *e;
+
+ if (sc->ti_rdata->ti_event_ring == NULL)
+ return;
+
+ while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
+ e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
+ switch(e->ti_event) {
+ case TI_EV_LINKSTAT_CHANGED:
+ sc->ti_linkstat = e->ti_code;
+ if (e->ti_code == TI_EV_CODE_LINK_UP)
+ printf("ti%d: 10/100 link up\n", sc->ti_unit);
+ else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
+ printf("ti%d: gigabit link up\n", sc->ti_unit);
+ else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
+ printf("ti%d: link down\n", sc->ti_unit);
+ break;
+ case TI_EV_ERROR:
+ if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
+ printf("ti%d: invalid command\n", sc->ti_unit);
+ else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
+ printf("ti%d: unknown command\n", sc->ti_unit);
+ else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
+ printf("ti%d: bad config data\n", sc->ti_unit);
+ break;
+ case TI_EV_FIRMWARE_UP:
+ ti_init2(sc);
+ break;
+ case TI_EV_STATS_UPDATED:
+ ti_stats_update(sc);
+ break;
+ case TI_EV_RESET_JUMBO_RING:
+ case TI_EV_MCAST_UPDATED:
+ /* Who cares. */
+ break;
+ default:
+ printf("ti%d: unknown event: %d\n",
+ sc->ti_unit, e->ti_event);
+ break;
+ }
+ /* Advance the consumer index. */
+ TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
+ CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
+ }
+
+ return;
+}
+
+/*
+ * Memory management for the jumbo receive ring is a pain in the
+ * butt. We need to allocate at least 9018 bytes of space per frame,
+ * _and_ it has to be contiguous (unless you use the extended
+ * jumbo descriptor format). Using malloc() all the time won't
+ * work: malloc() allocates memory in powers of two, which means we
+ * would end up wasting a considerable amount of space by allocating
+ * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
+ * to do our own memory management.
+ *
+ * The driver needs to allocate a contiguous chunk of memory at boot
+ * time. We then chop this up ourselves into 9K pieces and use them
+ * as external mbuf storage.
+ *
+ * One issue here is how much memory to allocate. The jumbo ring has
+ * 256 slots in it, but at 9K per slot than can consume over 2MB of
+ * RAM. This is a bit much, especially considering we also need
+ * RAM for the standard ring and mini ring (on the Tigon 2). To
+ * save space, we only actually allocate enough memory for 64 slots
+ * by default, which works out to between 500 and 600K. This can
+ * be tuned by changing a #define in if_tireg.h.
+ */
+
+static int ti_alloc_jumbo_mem(sc)
+ struct ti_softc *sc;
+{
+ caddr_t ptr;
+ register int i;
+ struct ti_jpool_entry *entry;
+
+ /* Grab a big chunk o' storage. */
+ sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
+ M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc->ti_cdata.ti_jumbo_buf == NULL) {
+ printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
+ return(ENOBUFS);
+ }
+
+ SLIST_INIT(&sc->ti_jfree_listhead);
+ SLIST_INIT(&sc->ti_jinuse_listhead);
+
+ /*
+ * Now divide it up into 9K pieces and save the addresses
+ * in an array. Note that we play an evil trick here by using
+ * the first few bytes in the buffer to hold the the address
+ * of the softc structure for this interface. This is because
+ * ti_jfree() needs it, but it is called by the mbuf management
+ * code which will not pass it to us explicitly.
+ */
+ ptr = sc->ti_cdata.ti_jumbo_buf;
+ for (i = 0; i < TI_JSLOTS; i++) {
+ u_int64_t **aptr;
+ aptr = (u_int64_t **)ptr;
+ aptr[0] = (u_int64_t *)sc;
+ ptr += sizeof(u_int64_t);
+ sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
+ sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
+ ptr += (TI_JLEN - sizeof(u_int64_t));
+ entry = malloc(sizeof(struct ti_jpool_entry),
+ M_DEVBUF, M_NOWAIT);
+ if (entry == NULL) {
+ free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
+ sc->ti_cdata.ti_jumbo_buf = NULL;
+ printf("ti%d: no memory for jumbo "
+ "buffer queue!\n", sc->ti_unit);
+ return(ENOBUFS);
+ }
+ entry->slot = i;
+ SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
+ }
+
+ return(0);
+}
+
+/*
+ * Allocate a jumbo buffer.
+ */
+static void *ti_jalloc(sc)
+ struct ti_softc *sc;
+{
+ struct ti_jpool_entry *entry;
+
+ entry = SLIST_FIRST(&sc->ti_jfree_listhead);
+
+ if (entry == NULL) {
+ printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
+ return(NULL);
+ }
+
+ SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
+ SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
+ sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
+ return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
+}
+
+/*
+ * Adjust usage count on a jumbo buffer. In general this doesn't
+ * get used much because our jumbo buffers don't get passed around
+ * too much, but it's implemented for correctness.
+ */
+static void ti_jref(buf, size)
+ caddr_t buf;
+ u_int size;
+{
+ struct ti_softc *sc;
+ u_int64_t **aptr;
+ register int i;
+
+ /* Extract the softc struct pointer. */
+ aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
+ sc = (struct ti_softc *)(aptr[0]);
+
+ if (sc == NULL)
+ panic("ti_jref: can't find softc pointer!");
+
+ if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
+ panic("ti_jref: adjusting refcount of buf of wrong size!");
+
+ /* calculate the slot this buffer belongs to */
+
+ i = ((vm_offset_t)aptr
+ - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
+
+ if ((i < 0) || (i >= TI_JSLOTS))
+ panic("ti_jref: asked to reference buffer "
+ "that we don't manage!");
+ else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
+ panic("ti_jref: buffer already free!");
+ else
+ sc->ti_cdata.ti_jslots[i].ti_inuse++;
+
+ return;
+}
+
+/*
+ * Release a jumbo buffer.
+ */
+static void ti_jfree(buf, size)
+ caddr_t buf;
+ u_int size;
+{
+ struct ti_softc *sc;
+ u_int64_t **aptr;
+ int i;
+ struct ti_jpool_entry *entry;
+
+ /* Extract the softc struct pointer. */
+ aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
+ sc = (struct ti_softc *)(aptr[0]);
+
+ if (sc == NULL)
+ panic("ti_jfree: can't find softc pointer!");
+
+ if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
+ panic("ti_jfree: freeing buffer of wrong size!");
+
+ /* calculate the slot this buffer belongs to */
+
+ i = ((vm_offset_t)aptr
+ - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
+
+ if ((i < 0) || (i >= TI_JSLOTS))
+ panic("ti_jfree: asked to free buffer that we don't manage!");
+ else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
+ panic("ti_jfree: buffer already free!");
+ else {
+ sc->ti_cdata.ti_jslots[i].ti_inuse--;
+ if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
+ entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
+ if (entry == NULL)
+ panic("ti_jfree: buffer not in use!");
+ entry->slot = i;
+ SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
+ jpool_entries);
+ SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
+ entry, jpool_entries);
+ }
+ }
+
+ return;
+}
+
+
+/*
+ * Intialize a standard receive ring descriptor.
+ */
+static int ti_newbuf_std(sc, i, m)
+ struct ti_softc *sc;
+ int i;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+ struct ti_rx_desc *r;
+
+ if (m != NULL) {
+ m_new = m;
+ } else {
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("ti%d: mbuf allocation failed "
+ "-- packet dropped!\n", sc->ti_unit);
+ return(ENOBUFS);
+ }
+
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ printf("ti%d: cluster allocation failed "
+ "-- packet dropped!\n", sc->ti_unit);
+ m_freem(m_new);
+ return(ENOBUFS);
+ }
+ }
+
+ m_new->m_len -= ETHER_ALIGN;
+ m_new->m_data += ETHER_ALIGN;
+ sc->ti_cdata.ti_rx_std_chain[i] = m_new;
+ r = &sc->ti_rdata->ti_rx_std_ring[i];
+ TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
+ r->ti_type = TI_BDTYPE_RECV_BD;
+#ifdef TI_CSUM_OFFLOAD
+ r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
+#else
+ r->ti_flags = 0;
+#endif
+ r->ti_len = MCLBYTES - ETHER_ALIGN;
+ r->ti_idx = i;
+
+ return(0);
+}
+
+/*
+ * Intialize a mini receive ring descriptor. This only applies to
+ * the Tigon 2.
+ */
+static int ti_newbuf_mini(sc, i, m)
+ struct ti_softc *sc;
+ int i;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+ struct ti_rx_desc *r;
+
+ if (m != NULL) {
+ m_new = m;
+ } else {
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("ti%d: mbuf allocation failed "
+ "-- packet dropped!\n", sc->ti_unit);
+ return(ENOBUFS);
+ }
+ }
+ m_new->m_len -= ETHER_ALIGN;
+ m_new->m_data += ETHER_ALIGN;
+ r = &sc->ti_rdata->ti_rx_mini_ring[i];
+ sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
+ TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
+ r->ti_type = TI_BDTYPE_RECV_BD;
+ r->ti_flags = TI_BDFLAG_MINI_RING;
+#ifdef TI_CSUM_OFFLOAD
+ r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
+#endif
+ r->ti_len = MHLEN - ETHER_ALIGN;
+ r->ti_idx = i;
+
+ return(0);
+}
+
+/*
+ * Initialize a jumbo receive ring descriptor. This allocates
+ * a jumbo buffer from the pool managed internally by the driver.
+ */
+static int ti_newbuf_jumbo(sc, i, m)
+ struct ti_softc *sc;
+ int i;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+ struct ti_rx_desc *r;
+
+ if (m != NULL) {
+ m_new = m;
+ } else {
+ caddr_t *buf = NULL;
+
+ /* Allocate the mbuf. */
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("ti%d: mbuf allocation failed "
+ "-- packet dropped!\n", sc->ti_unit);
+ return(ENOBUFS);
+ }
+
+ /* Allocate the jumbo buffer */
+ buf = ti_jalloc(sc);
+ if (buf == NULL) {
+ m_freem(m_new);
+ printf("ti%d: jumbo allocation failed "
+ "-- packet dropped!\n", sc->ti_unit);
+ return(ENOBUFS);
+ }
+
+ /* Attach the buffer to the mbuf. */
+ m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
+ m_new->m_data += ETHER_ALIGN;
+ m_new->m_flags |= M_EXT;
+ m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
+ m_new->m_ext.ext_free = ti_jfree;
+ m_new->m_ext.ext_ref = ti_jref;
+ }
+
+ /* Set up the descriptor. */
+ r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
+ sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
+ TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
+ r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
+ r->ti_flags = TI_BDFLAG_JUMBO_RING;
+#ifdef TI_CSUM_OFFLOAD
+ r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
+#endif
+ r->ti_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
+ r->ti_idx = i;
+
+ return(0);
+}
+
+/*
+ * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
+ * that's 1MB or memory, which is a lot. For now, we fill only the first
+ * 256 ring entries and hope that our CPU is fast enough to keep up with
+ * the NIC.
+ */
+static int ti_init_rx_ring_std(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+ struct ti_cmd_desc cmd;
+
+ for (i = 0; i < TI_SSLOTS; i++) {
+ if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
+ return(ENOBUFS);
+ };
+
+ TI_UPDATE_STDPROD(sc, i - 1);
+ sc->ti_std_old = sc->ti_std = i - 1;
+ sc->ti_std_cnt = 0;
+
+ return(0);
+}
+
+static void ti_free_rx_ring_std(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+
+ for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
+ if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
+ m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
+ sc->ti_cdata.ti_rx_std_chain[i] = NULL;
+ }
+ bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
+ sizeof(struct ti_rx_desc));
+ }
+
+ return;
+}
+
+static int ti_init_rx_ring_jumbo(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+ struct ti_cmd_desc cmd;
+
+ for (i = 0; i < (TI_JSLOTS - 20); i++) {
+ if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
+ return(ENOBUFS);
+ };
+
+ TI_UPDATE_JUMBOPROD(sc, i - 1);
+ sc->ti_jumbo_old = sc->ti_jumbo = i - 1;
+ sc->ti_jumbo_cnt = 0;
+
+ return(0);
+}
+
+static void ti_free_rx_ring_jumbo(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+
+ for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
+ if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
+ m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
+ sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
+ }
+ bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
+ sizeof(struct ti_rx_desc));
+ }
+
+ return;
+}
+
+static int ti_init_rx_ring_mini(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+
+ for (i = 0; i < TI_MSLOTS; i++) {
+ if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
+ return(ENOBUFS);
+ };
+
+ TI_UPDATE_MINIPROD(sc, i - 1);
+ sc->ti_mini_old = sc->ti_mini = i - 1;
+ sc->ti_mini_cnt = 0;
+
+ return(0);
+}
+
+static void ti_free_rx_ring_mini(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+
+ for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
+ if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
+ m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
+ sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
+ }
+ bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
+ sizeof(struct ti_rx_desc));
+ }
+
+ return;
+}
+
+/*
+ * In order to reduce the amount of work we have to do in the interrupt
+ * handler, we delay putting new buffers in the receive rings until a
+ * certain amount have been used. This lets us hand over descriptors to
+ * the NIC in fairly large chunks instead of one (or a few) at a time,
+ * and it lets tx_rxeof() run a bit faster some of the time.
+ */
+static void ti_refill_rx_rings(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+ struct ti_cmd_desc cmd;
+
+ if (sc->ti_std_cnt > 15) {
+ for (i = sc->ti_std_old; i != sc->ti_std;
+ TI_INC(i, TI_STD_RX_RING_CNT)) {
+ if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
+ break;
+ };
+ TI_UPDATE_STDPROD(sc, i);
+ sc->ti_std_old = i;
+ sc->ti_std_cnt = 0;
+ }
+
+ if (sc->ti_jumbo_cnt > 15) {
+ for (i = sc->ti_jumbo_old; i != sc->ti_jumbo;
+ TI_INC(i, TI_JUMBO_RX_RING_CNT)) {
+ if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
+ break;
+ };
+ TI_UPDATE_JUMBOPROD(sc, i);
+ sc->ti_jumbo_old = i;
+ sc->ti_jumbo_cnt = 0;
+ }
+
+ if (sc->ti_mini_cnt > 15) {
+ for (i = sc->ti_mini_old; i != sc->ti_mini;
+ TI_INC(i, TI_MINI_RX_RING_CNT)) {
+ if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
+ break;
+ };
+ TI_UPDATE_MINIPROD(sc, i);
+ sc->ti_mini_old = i;
+ sc->ti_mini_cnt = 0;
+ }
+
+ return;
+}
+
+static void ti_free_tx_ring(sc)
+ struct ti_softc *sc;
+{
+ register int i;
+
+ if (sc->ti_rdata->ti_tx_ring == NULL)
+ return;
+
+ for (i = 0; i < TI_TX_RING_CNT; i++) {
+ if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
+ m_freem(sc->ti_cdata.ti_tx_chain[i]);
+ sc->ti_cdata.ti_tx_chain[i] = NULL;
+ }
+ bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
+ sizeof(struct ti_tx_desc));
+ }
+
+ return;
+}
+
+static int ti_init_tx_ring(sc)
+ struct ti_softc *sc;
+{
+ sc->ti_tx_saved_considx = 0;
+ CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
+ return(0);
+}
+
+/*
+ * The Tigon 2 firmware has a new way to add/delete multicast addresses,
+ * but we have to support the old way too so that Tigon 1 cards will
+ * work.
+ */
+void ti_add_mcast(sc, addr)
+ struct ti_softc *sc;
+ struct ether_addr *addr;
+{
+ struct ti_cmd_desc cmd;
+ u_int16_t *m;
+ u_int32_t ext[2] = {0, 0};
+
+ m = (u_int16_t *)&addr->octet[0];
+
+ switch(sc->ti_hwrev) {
+ case TI_HWREV_TIGON:
+ CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
+ CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
+ TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
+ break;
+ case TI_HWREV_TIGON_II:
+ ext[0] = htons(m[0]);
+ ext[1] = (htons(m[1]) << 16) | htons(m[2]);
+ TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
+ break;
+ default:
+ printf("ti%d: unknown hwrev\n", sc->ti_unit);
+ break;
+ }
+
+ return;
+}
+
+void ti_del_mcast(sc, addr)
+ struct ti_softc *sc;
+ struct ether_addr *addr;
+{
+ struct ti_cmd_desc cmd;
+ u_int16_t *m;
+ u_int32_t ext[2] = {0, 0};
+
+ m = (u_int16_t *)&addr->octet[0];
+
+ switch(sc->ti_hwrev) {
+ case TI_HWREV_TIGON:
+ CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
+ CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
+ TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
+ break;
+ case TI_HWREV_TIGON_II:
+ ext[0] = htons(m[0]);
+ ext[1] = (htons(m[1]) << 16) | htons(m[2]);
+ TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
+ break;
+ default:
+ printf("ti%d: unknown hwrev\n", sc->ti_unit);
+ break;
+ }
+
+ return;
+}
+
+/*
+ * Configure the Tigon's multicast address filter.
+ *
+ * The actual multicast table management is a bit of a pain, thanks to
+ * slight brain damage on the part of both Alteon and us. With our
+ * multicast code, we are only alerted when the multicast address table
+ * changes and at that point we only have the current list of addresses:
+ * we only know the current state, not the previous state, so we don't
+ * actually know what addresses were removed or added. The firmware has
+ * state, but we can't get our grubby mits on it, and there is no 'delete
+ * all multicast addresses' command. Hence, we have to maintain our own
+ * state so we know what addresses have been programmed into the NIC at
+ * any given time.
+ */
+static void ti_setmulti(sc)
+ struct ti_softc *sc;
+{
+ struct ifnet *ifp;
+ struct ifmultiaddr *ifma;
+ struct ti_cmd_desc cmd;
+ struct ti_mc_entry *mc;
+ u_int32_t intrs;
+
+ ifp = &sc->arpcom.ac_if;
+
+ if (ifp->if_flags & IFF_ALLMULTI) {
+ TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
+ return;
+ } else {
+ TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
+ }
+
+ /* Disable interrupts. */
+ intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
+
+ /* First, zot all the existing filters. */
+ while (sc->ti_mc_listhead.slh_first != NULL) {
+ mc = sc->ti_mc_listhead.slh_first;
+ ti_del_mcast(sc, &mc->mc_addr);
+ SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
+ free(mc, M_DEVBUF);
+ }
+
+ /* Now program new ones. */
+ for (ifma = ifp->if_multiaddrs.lh_first;
+ ifma != NULL; ifma = ifma->ifma_link.le_next) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ (char *)&mc->mc_addr, ETHER_ADDR_LEN);
+ SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
+ ti_add_mcast(sc, &mc->mc_addr);
+ }
+
+ /* Re-enable interrupts. */
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
+
+ return;
+}
+
+/*
+ * Check to see if the BIOS has configured us for a 64 bit slot when
+ * we aren't actually in one. If we detect this condition, we can work
+ * around it on the Tigon 2 by setting a bit in the PCI state register,
+ * but for the Tigon 1 we must give up and abort the interface attach.
+ */
+static int ti_64bitslot_war(sc)
+ struct ti_softc *sc;
+{
+ if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
+ CSR_WRITE_4(sc, 0x600, 0);
+ CSR_WRITE_4(sc, 0x604, 0);
+ CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
+ if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
+ if (sc->ti_hwrev == TI_HWREV_TIGON)
+ return(EINVAL);
+ else {
+ TI_SETBIT(sc, TI_PCI_STATE,
+ TI_PCISTATE_32BIT_BUS);
+ return(0);
+ }
+ }
+ }
+
+ return(0);
+}
+
+/*
+ * Do endian, PCI and DMA initialization. Also check the on-board ROM
+ * self-test results.
+ */
+static int ti_chipinit(sc)
+ struct ti_softc *sc;
+{
+ u_int32_t cacheline;
+ u_int32_t pci_writemax = 0;
+
+ /* Initialize link to down state. */
+ sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
+
+ /* Set endianness before we access any non-PCI registers. */
+#if BYTE_ORDER == BIG_ENDIAN
+ CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
+ TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
+#else
+ CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
+ TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
+#endif
+
+ /* Check the ROM failed bit to see if self-tests passed. */
+ if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
+ printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
+ return(ENODEV);
+ }
+
+ /* Halt the CPU. */
+ TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
+
+ /* Figure out the hardware revision. */
+ switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
+ case TI_REV_TIGON_I:
+ sc->ti_hwrev = TI_HWREV_TIGON;
+ break;
+ case TI_REV_TIGON_II:
+ sc->ti_hwrev = TI_HWREV_TIGON_II;
+ break;
+ default:
+ printf("ti%d: unsupported chip revision\n", sc->ti_unit);
+ return(ENODEV);
+ }
+
+ /* Do special setup for Tigon 2. */
+ if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
+ TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
+ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
+ TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
+ }
+
+ /* Set up the PCI state register. */
+ CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
+ if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
+ TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
+ }
+
+ /* Clear the read/write max DMA parameters. */
+ TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
+ TI_PCISTATE_READ_MAXDMA));
+
+ /* Get cache line size. */
+ cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
+
+ /*
+ * If the system has set enabled the PCI memory write
+ * and invalidate command in the command register, set
+ * the write max parameter accordingly. This is necessary
+ * to use MWI with the Tigon 2.
+ */
+ if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
+ switch(cacheline) {
+ case 1:
+ case 4:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ break;
+ default:
+ /* Disable PCI memory write and invalidate. */
+ if (bootverbose)
+ printf("ti%d: cache line size %d not "
+ "supported; disabling PCI MWI\n",
+ sc->ti_unit, cacheline);
+ CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
+ TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
+ break;
+ }
+ }
+
+#ifdef __brokenalpha__
+ /*
+ * From the Alteon sample driver:
+ * Must insure that we do not cross an 8K (bytes) boundary
+ * for DMA reads. Our highest limit is 1K bytes. This is a
+ * restriction on some ALPHA platforms with early revision
+ * 21174 PCI chipsets, such as the AlphaPC 164lx
+ */
+ TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
+#else
+ TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
+#endif
+
+ /* This sets the min dma param all the way up (0xff). */
+ TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
+
+ /* Configure DMA variables. */
+#if BYTE_ORDER == BIG_ENDIAN
+ CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
+ TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
+ TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
+ TI_OPMODE_DONT_FRAG_JUMBO);
+#else
+ CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
+ TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
+ TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
+#endif
+
+ /*
+ * Only allow 1 DMA channel to be active at a time.
+ * I don't think this is a good idea, but without it
+ * the firmware racks up lots of nicDmaReadRingFull
+ * errors.
+ */
+#ifndef TI_CSUM_OFFLOAD
+ TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
+#endif
+
+ /* Recommended settings from Tigon manual. */
+ CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
+ CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
+
+ if (ti_64bitslot_war(sc)) {
+ printf("ti%d: bios thinks we're in a 64 bit slot, "
+ "but we aren't", sc->ti_unit);
+ return(EINVAL);
+ }
+
+ return(0);
+}
+
+/*
+ * Initialize the general information block and firmware, and
+ * start the CPU(s) running.
+ */
+static int ti_gibinit(sc)
+ struct ti_softc *sc;
+{
+ struct ti_rcb *rcb;
+ int i;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* Disable interrupts for now. */
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
+
+ /* Tell the chip where to find the general information block. */
+ CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
+ CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
+
+ /* Load the firmware into SRAM. */
+ ti_loadfw(sc);
+
+ /* Set up the contents of the general info and ring control blocks. */
+
+ /* Set up the event ring and producer pointer. */
+ rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
+
+ TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
+ rcb->ti_flags = 0;
+ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
+ vtophys(&sc->ti_ev_prodidx);
+ sc->ti_ev_prodidx.ti_idx = 0;
+ CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
+ sc->ti_ev_saved_considx = 0;
+
+ /* Set up the command ring and producer mailbox. */
+ rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
+
+#ifdef __i386__
+ sc->ti_rdata->ti_cmd_ring =
+ (struct ti_cmd_desc *)(sc->ti_bhandle + TI_GCR_CMDRING);
+#endif
+#ifdef __alpha__
+ sc->ti_rdata->ti_cmd_ring =
+ (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
+#endif
+ TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
+ rcb->ti_flags = 0;
+ rcb->ti_max_len = 0;
+ for (i = 0; i < TI_CMD_RING_CNT; i++) {
+ CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
+ }
+ CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
+ CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
+ sc->ti_cmd_saved_prodidx = 0;
+
+ /*
+ * Assign the address of the stats refresh buffer.
+ * We re-use the current stats buffer for this to
+ * conserve memory.
+ */
+ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
+ vtophys(&sc->ti_rdata->ti_info.ti_stats);
+
+ /* Set up the standard receive ring. */
+ rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
+ TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
+ rcb->ti_max_len = TI_FRAMELEN;
+ rcb->ti_flags = 0;
+#ifdef TI_CSUM_OFFLOAD
+ rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
+#endif
+#if NVLAN > 0
+ rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
+#endif
+
+ /* Set up the jumbo receive ring. */
+ rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
+ TI_HOSTADDR(rcb->ti_hostaddr) =
+ vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
+ rcb->ti_max_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
+ rcb->ti_flags = 0;
+#ifdef TI_CSUM_OFFLOAD
+ rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
+#endif
+#if NVLAN > 0
+ rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
+#endif
+
+ /*
+ * Set up the mini ring. Only activated on the
+ * Tigon 2 but the slot in the config block is
+ * still there on the Tigon 1.
+ */
+ rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
+ TI_HOSTADDR(rcb->ti_hostaddr) =
+ vtophys(&sc->ti_rdata->ti_rx_mini_ring);
+ rcb->ti_max_len = MHLEN;
+ if (sc->ti_hwrev == TI_HWREV_TIGON)
+ rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
+ else
+ rcb->ti_flags = 0;
+#ifdef TI_CSUM_OFFLOAD
+ rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
+#endif
+#if NVLAN > 0
+ rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
+#endif
+
+ /*
+ * Set up the receive return ring.
+ */
+ rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
+ TI_HOSTADDR(rcb->ti_hostaddr) =
+ vtophys(&sc->ti_rdata->ti_rx_return_ring);
+ rcb->ti_flags = 0;
+ rcb->ti_max_len = TI_RETURN_RING_CNT;
+ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
+ vtophys(&sc->ti_return_prodidx);
+
+ /*
+ * Set up the tx ring. Note: for the Tigon 2, we have the option
+ * of putting the transmit ring in the host's address space and
+ * letting the chip DMA it instead of leaving the ring in the NIC's
+ * memory and accessing it through the shared memory region. We
+ * do this for the Tigon 2, but it doesn't work on the Tigon 1,
+ * so we have to revert to the shared memory scheme if we detect
+ * a Tigon 1 chip.
+ */
+ CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
+ if (sc->ti_hwrev == TI_HWREV_TIGON) {
+#ifdef __i386__
+ sc->ti_rdata->ti_tx_ring_nic =
+ (struct ti_tx_desc *)(sc->ti_bhandle + TI_WINDOW);
+#endif
+#ifdef __alpha__
+ sc->ti_rdata->ti_tx_ring_nic =
+ (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
+#endif
+ }
+ bzero((char *)sc->ti_rdata->ti_tx_ring,
+ TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
+ rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
+ if (sc->ti_hwrev == TI_HWREV_TIGON)
+ rcb->ti_flags = 0;
+ else
+ rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
+#if NVLAN > 0
+ rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
+#endif
+ rcb->ti_max_len = TI_TX_RING_CNT;
+ if (sc->ti_hwrev == TI_HWREV_TIGON)
+ TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
+ else
+ TI_HOSTADDR(rcb->ti_hostaddr) =
+ vtophys(&sc->ti_rdata->ti_tx_ring);
+ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
+ vtophys(&sc->ti_tx_considx);
+
+ /* Set up tuneables */
+ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
+ CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
+ (sc->ti_rx_coal_ticks / 10));
+ else
+ CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
+ CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
+ CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
+ CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
+ CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
+ CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
+
+ /* Turn interrupts on. */
+ CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
+
+ /* Start CPU. */
+ TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
+
+ return(0);
+}
+
+/*
+ * Probe for a Tigon chip. Check the PCI vendor and device IDs
+ * against our list and return its name if we find a match.
+ */
+static const char *
+ti_probe(config_id, device_id)
+ pcici_t config_id;
+ pcidi_t device_id;
+{
+ struct ti_type *t;
+
+ t = ti_devs;
+
+ while(t->ti_name != NULL) {
+ if ((device_id & 0xFFFF) == t->ti_vid &&
+ ((device_id >> 16) & 0xFFFF) == t->ti_did)
+ return(t->ti_name);
+ t++;
+ }
+
+ return(NULL);
+}
+
+
+static void
+ti_attach(config_id, unit)
+ pcici_t config_id;
+ int unit;
+{
+ vm_offset_t pbase, vbase;
+ int s;
+ u_int32_t command;
+ struct ifnet *ifp;
+ struct ti_softc *sc;
+
+ s = splimp();
+
+ /* First, allocate memory for the softc struct. */
+ sc = malloc(sizeof(struct ti_softc), M_DEVBUF, M_NOWAIT);
+ if (sc == NULL) {
+ printf("ti%d: no memory for softc struct!\n", unit);
+ goto fail;
+ }
+
+ bzero(sc, sizeof(struct ti_softc));
+
+ /*
+ * Map control/status registers.
+ */
+ command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
+ command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
+ pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
+ command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
+
+ if (!(command & PCIM_CMD_MEMEN)) {
+ printf("ti%d: failed to enable memory mapping!\n", unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+#ifdef __i386__
+ if (!pci_map_mem(config_id, TI_PCI_LOMEM, &vbase, &pbase)) {
+ printf ("ti%d: couldn't map memory\n", unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ sc->ti_bhandle = vbase;
+ sc->ti_btag = I386_BUS_SPACE_MEM;
+#endif
+
+#ifdef __alpha__
+ if (!(pci_map_bwx(config_id, TI_PCI_LOMEM, &vbase, &pbase) ||
+ pci_map_dense(config_id, TI_PCI_LOMEM, &vbase, &pbase))){
+ printf ("ti%d: couldn't map memory\n", unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ sc->ti_bhandle = pbase;
+ sc->ti_vhandle = vbase;
+ sc->ti_btag = ALPHA_BUS_SPACE_MEM;
+#endif
+ /* Allocate interrupt */
+ if (!pci_map_int(config_id, ti_intr, sc, &net_imask)) {
+ printf("ti%d: couldn't map interrupt\n", unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ sc->ti_unit = unit;
+
+ if (ti_chipinit(sc)) {
+ printf("ti%d: chip initialization failed\n", sc->ti_unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ /* Zero out the NIC's on-board SRAM. */
+ ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
+
+ /* Init again -- zeroing memory may have clobbered some registers. */
+ if (ti_chipinit(sc)) {
+ printf("ti%d: chip initialization failed\n", sc->ti_unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ /*
+ * Get station address from the EEPROM. Note: the manual states
+ * that the MAC address is at offset 0x8c, however the data is
+ * stored as two longwords (since that's how it's loaded into
+ * the NIC). This means the MAC address is actually preceeded
+ * by two zero bytes. We need to skip over those.
+ */
+ if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
+ TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
+ printf("ti%d: failed to read station address\n", unit);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ /*
+ * A Tigon chip was detected. Inform the world.
+ */
+ printf("ti%d: Ethernet address: %6D\n", unit,
+ sc->arpcom.ac_enaddr, ":");
+
+ /* Allocate the general information block and ring buffers. */
+ sc->ti_rdata_ptr = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
+ M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc->ti_rdata_ptr == NULL) {
+ free(sc, M_DEVBUF);
+ printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
+ goto fail;
+ }
+
+ sc->ti_rdata = (struct ti_ring_data *)sc->ti_rdata_ptr;
+ bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
+
+ /* Try to allocate memory for jumbo buffers. */
+ if (ti_alloc_jumbo_mem(sc)) {
+ printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
+ free(sc->ti_rdata_ptr, M_DEVBUF);
+ free(sc, M_DEVBUF);
+ goto fail;
+ }
+
+ /* Set default tuneable values. */
+ sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
+ sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
+ sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
+ sc->ti_rx_max_coal_bds = 64;
+ sc->ti_tx_max_coal_bds = 128;
+ sc->ti_tx_buf_ratio = 21;
+
+ /* Set up ifnet structure */
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_softc = sc;
+ ifp->if_unit = sc->ti_unit;
+ ifp->if_name = "ti";
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = ti_ioctl;
+ ifp->if_output = ether_output;
+ ifp->if_start = ti_start;
+ ifp->if_watchdog = ti_watchdog;
+ ifp->if_init = ti_init;
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
+
+ /* Set up ifmedia support. */
+ ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
+ ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
+
+ /*
+ * Call MI attach routines.
+ */
+ if_attach(ifp);
+ ether_ifattach(ifp);
+
+#if NBPFILTER > 0
+ bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
+#endif
+
+ at_shutdown(ti_shutdown, sc, SHUTDOWN_POST_SYNC);
+
+fail:
+ splx(s);
+
+ return;
+}
+
+/*
+ * Frame reception handling. This is called if there's a frame
+ * on the receive return list.
+ *
+ * Note: we have to be able to handle three possibilities here:
+ * 1) the frame is from the mini receive ring (can only happen)
+ * on Tigon 2 boards)
+ * 2) the frame is from the jumbo recieve ring
+ * 3) the frame is from the standard receive ring
+ */
+int ti_cksumok = 0;
+
+static void ti_rxeof(sc)
+ struct ti_softc *sc;
+{
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
+ struct ti_rx_desc *cur_rx;
+ u_int32_t rxidx;
+ struct ether_header *eh;
+ struct mbuf *m = NULL;
+#if NVLAN > 0
+ u_int16_t vlan_tag = 0;
+ int have_tag = 0;
+#endif
+#ifdef TI_CSUM_OFFLOAD
+ struct ip *ip;
+#endif
+
+ cur_rx =
+ &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
+ rxidx = cur_rx->ti_idx;
+ TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
+
+#if NVLAN > 0
+ if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
+ have_tag = 1;
+ vlan_tag = cur_rx->ti_vlan_tag;
+ }
+#endif
+
+ if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
+ TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
+ m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
+ sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
+ if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
+ ifp->if_ierrors++;
+ ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
+ TI_INC(sc->ti_jumbo_old, TI_JUMBO_RX_RING_CNT);
+ continue;
+ }
+ sc->ti_jumbo_cnt++;
+ } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
+ TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
+ m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
+ sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
+ if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
+ ifp->if_ierrors++;
+ ti_newbuf_mini(sc, sc->ti_mini, m);
+ TI_INC(sc->ti_mini_old, TI_MINI_RX_RING_CNT);
+ continue;
+ }
+ sc->ti_mini_cnt++;
+ } else {
+ TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
+ m = sc->ti_cdata.ti_rx_std_chain[rxidx];
+ sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
+ if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
+ ifp->if_ierrors++;
+ ti_newbuf_std(sc, sc->ti_std, m);
+ TI_INC(sc->ti_std_old, TI_STD_RX_RING_CNT);
+ continue;
+ }
+ sc->ti_std_cnt++;
+ }
+
+ m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
+ ifp->if_ipackets++;
+ eh = mtod(m, struct ether_header *);
+ m->m_pkthdr.rcvif = ifp;
+
+#if NBPFILTER > 0
+ /*
+ * Handle BPF listeners. Let the BPF user see the packet, but
+ * don't pass it up to the ether_input() layer unless it's
+ * a broadcast packet, multicast packet, matches our ethernet
+ * address or the interface is in promiscuous mode.
+ */
+ if (ifp->if_bpf) {
+ bpf_mtap(ifp, m);
+ if (ifp->if_flags & IFF_PROMISC &&
+ (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
+ ETHER_ADDR_LEN) &&
+ (eh->ether_dhost[0] & 1) == 0)) {
+ m_freem(m);
+ continue;
+ }
+ }
+#endif
+
+ /* Remove header from mbuf and pass it on. */
+ m_adj(m, sizeof(struct ether_header));
+
+#ifdef TI_CSUM_OFFLOAD
+ ip = mtod(m, struct ip *);
+ if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
+ !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF))) {
+ m->m_flags |= M_HWCKSUM;
+ ti_cksumok++;
+ }
+#endif
+
+#if NVLAN > 0
+ /*
+ * If we received a packet with a vlan tag, pass it
+ * to vlan_input() instead of ether_input().
+ */
+ if (have_tag) {
+ vlan_input_tag(eh, m, vlan_tag);
+ have_tag = vlan_tag = 0;
+ continue;
+ }
+#endif
+ ether_input(ifp, eh, m);
+ }
+
+ /* Only necessary on the Tigon 1. */
+ if (sc->ti_hwrev == TI_HWREV_TIGON)
+ CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
+ sc->ti_rx_saved_considx);
+
+ ti_refill_rx_rings(sc);
+
+ return;
+}
+
+static void ti_txeof(sc)
+ struct ti_softc *sc;
+{
+ struct ti_tx_desc *cur_tx = NULL;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ /*
+ * Go through our tx ring and free mbufs for those
+ * frames that have been sent.
+ */
+ while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
+ u_int32_t idx = 0;
+
+ idx = sc->ti_tx_saved_considx;
+ if (sc->ti_hwrev == TI_HWREV_TIGON) {
+ if (idx > 383)
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE + 6144);
+ else if (idx > 255)
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE + 4096);
+ else if (idx > 127)
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE + 2048);
+ else
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE);
+ cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
+ } else
+ cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
+ if (cur_tx->ti_flags & TI_BDFLAG_END)
+ ifp->if_opackets++;
+ if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
+ m_freem(sc->ti_cdata.ti_tx_chain[idx]);
+ sc->ti_cdata.ti_tx_chain[idx] = NULL;
+ }
+ TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
+ ifp->if_timer = 0;
+ }
+
+ if (cur_tx != NULL)
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ return;
+}
+
+static void ti_intr(xsc)
+ void *xsc;
+{
+ struct ti_softc *sc;
+ struct ifnet *ifp;
+
+ sc = xsc;
+ ifp = &sc->arpcom.ac_if;
+
+#ifdef notdef
+ /* Avoid this for now -- checking this register is expensive. */
+ /* Make sure this is really our interrupt. */
+ if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
+ return;
+#endif
+
+ /* Ack interrupt and stop others from occuring. */
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
+
+ if (ifp->if_flags & IFF_RUNNING) {
+ /* Check RX return ring producer/consumer */
+ ti_rxeof(sc);
+
+ /* Check TX ring producer/consumer */
+ ti_txeof(sc);
+ }
+
+ ti_handle_events(sc);
+
+ /* Re-enable interrupts. */
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
+
+ if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
+ ti_start(ifp);
+
+ return;
+}
+
+static void ti_stats_update(sc)
+ struct ti_softc *sc;
+{
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ ifp->if_collisions +=
+ (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
+ sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
+ sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
+ sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
+ ifp->if_collisions;
+
+ return;
+}
+
+/*
+ * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
+ * pointers to descriptors.
+ */
+static int ti_encap(sc, m_head, txidx)
+ struct ti_softc *sc;
+ struct mbuf *m_head;
+ u_int32_t *txidx;
+{
+ struct ti_tx_desc *f = NULL;
+ struct mbuf *m;
+ u_int32_t frag, cur;
+#if NVLAN > 0
+ struct ifvlan *ifv = NULL;
+
+ if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
+ m_head->m_pkthdr.rcvif != NULL &&
+ m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
+ ifv = m_head->m_pkthdr.rcvif->if_softc;
+#endif
+
+ m = m_head;
+ cur = frag = *txidx;
+
+ /*
+ * Start packing the mbufs in this chain into
+ * the fragment pointers. Stop when we run out
+ * of fragments or hit the end of the mbuf chain.
+ */
+ for (m = m_head; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if (sc->ti_hwrev == TI_HWREV_TIGON) {
+ if (frag > 383)
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE + 6144);
+ else if (frag > 255)
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE + 4096);
+ else if (frag > 127)
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE + 2048);
+ else
+ CSR_WRITE_4(sc, TI_WINBASE,
+ TI_TX_RING_BASE);
+ f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
+ } else
+ f = &sc->ti_rdata->ti_tx_ring[frag];
+ if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
+ break;
+ TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
+ f->ti_len = m->m_len;
+ f->ti_flags = 0;
+#if NVLAN > 0
+ if (ifv != NULL) {
+ f->ti_flags |= TI_BDFLAG_VLAN_TAG;
+ f->ti_vlan_tag = ifv->ifv_tag;
+ } else {
+ f->ti_vlan_tag = 0;
+ }
+#endif
+ cur = frag;
+ TI_INC(frag, TI_TX_RING_CNT);
+ }
+ }
+
+ if (m != NULL)
+ return(ENOBUFS);
+
+ if (sc->ti_hwrev == TI_HWREV_TIGON)
+ sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
+ TI_BDFLAG_END;
+ else
+ sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
+ sc->ti_cdata.ti_tx_chain[*txidx] = m_head;
+
+ *txidx = frag;
+
+ return(0);
+}
+
+/*
+ * Main transmit routine. To avoid having to do mbuf copies, we put pointers
+ * to the mbuf data regions directly in the transmit descriptors.
+ */
+static void ti_start(ifp)
+ struct ifnet *ifp;
+{
+ struct ti_softc *sc;
+ struct mbuf *m_head = NULL;
+ u_int32_t prodidx = 0;
+
+ sc = ifp->if_softc;
+
+ prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
+
+ while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ /*
+ * Pack the data into the transmit ring. If we
+ * don't have room, set the OACTIVE flag and wait
+ * for the NIC to drain the ring.
+ */
+ if (ti_encap(sc, m_head, &prodidx)) {
+ IF_PREPEND(&ifp->if_snd, m_head);
+ ifp->if_flags |= IFF_OACTIVE;
+ break;
+ }
+
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+#if NBPFILTER > 0
+ if (ifp->if_bpf)
+ bpf_mtap(ifp, m_head);
+#endif
+ }
+
+ /* Transmit */
+ CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
+
+ /*
+ * Set a timeout in case the chip goes out to lunch.
+ */
+ ifp->if_timer = 5;
+
+ return;
+}
+
+static void ti_init(xsc)
+ void *xsc;
+{
+ struct ti_softc *sc = xsc;
+ int s;
+
+ s = splimp();
+
+ /* Cancel pending I/O and flush buffers. */
+ ti_stop(sc);
+
+ /* Init the gen info block, ring control blocks and firmware. */
+ if (ti_gibinit(sc)) {
+ printf("ti%d: initialization failure\n", sc->ti_unit);
+ splx(s);
+ return;
+ }
+
+ splx(s);
+
+ return;
+}
+
+static void ti_init2(sc)
+ struct ti_softc *sc;
+{
+ struct ti_cmd_desc cmd;
+ struct ifnet *ifp;
+ u_int16_t *m;
+ struct ifmedia *ifm;
+ int tmp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* Specify MTU and interface index. */
+ CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
+ CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
+ ETHER_HDR_LEN + ETHER_CRC_LEN);
+ TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
+
+ /* Load our MAC address. */
+ m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
+ CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
+ CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
+ TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
+
+ /* Enable or disable promiscuous mode as needed. */
+ if (ifp->if_flags & IFF_PROMISC) {
+ TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
+ } else {
+ TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
+ }
+
+ /* Program multicast filter. */
+ ti_setmulti(sc);
+
+ /*
+ * If this is a Tigon 1, we should tell the
+ * firmware to use software packet filtering.
+ */
+ if (sc->ti_hwrev == TI_HWREV_TIGON) {
+ TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
+ }
+
+ /* Init RX ring. */
+ ti_init_rx_ring_std(sc);
+
+ /* Init jumbo RX ring. */
+ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
+ ti_init_rx_ring_jumbo(sc);
+
+ /*
+ * If this is a Tigon 2, we can also configure the
+ * mini ring.
+ */
+ if (sc->ti_hwrev == TI_HWREV_TIGON_II)
+ ti_init_rx_ring_mini(sc);
+
+ CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
+ sc->ti_rx_saved_considx = 0;
+
+ /* Init TX ring. */
+ ti_init_tx_ring(sc);
+
+ /* Tell firmware we're alive. */
+ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
+
+ /* Enable host interrupts. */
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
+
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ /*
+ * Make sure to set media properly. We have to do this
+ * here since we have to issue commands in order to set
+ * the link negotiation and we can't issue commands until
+ * the firmware is running.
+ */
+ ifm = &sc->ifmedia;
+ tmp = ifm->ifm_media;
+ ifm->ifm_media = ifm->ifm_cur->ifm_media;
+ ti_ifmedia_upd(ifp);
+ ifm->ifm_media = tmp;
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+static int ti_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct ti_softc *sc;
+ struct ifmedia *ifm;
+ struct ti_cmd_desc cmd;
+
+ sc = ifp->if_softc;
+ ifm = &sc->ifmedia;
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return(EINVAL);
+
+ switch(IFM_SUBTYPE(ifm->ifm_media)) {
+ case IFM_AUTO:
+ CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
+ TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
+ TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
+ CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
+ TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
+ TI_LNK_AUTONEGENB|TI_LNK_ENB);
+ TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
+ TI_CMD_CODE_NEGOTIATE_BOTH, 0);
+ break;
+ case IFM_1000_SX:
+ CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
+ TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
+ CSR_WRITE_4(sc, TI_GCR_LINK, 0);
+ TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
+ TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
+ break;
+ case IFM_100_FX:
+ case IFM_10_FL:
+ CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
+ CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
+ if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
+ TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
+ } else {
+ TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
+ }
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
+ TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
+ } else {
+ TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
+ }
+ TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
+ TI_CMD_CODE_NEGOTIATE_10_100, 0);
+ break;
+ }
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+static void ti_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ struct ti_softc *sc;
+
+ sc = ifp->if_softc;
+
+ ifmr->ifm_status = IFM_AVALID;
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
+ return;
+
+ ifmr->ifm_status |= IFM_ACTIVE;
+
+ if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
+ ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
+ else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
+ u_int32_t media;
+ media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
+ if (media & TI_LNK_100MB)
+ ifmr->ifm_active |= IFM_100_FX;
+ if (media & TI_LNK_10MB)
+ ifmr->ifm_active |= IFM_10_FL;
+ if (media & TI_LNK_FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ if (media & TI_LNK_HALF_DUPLEX)
+ ifmr->ifm_active |= IFM_HDX;
+ }
+
+ return;
+}
+
+static int ti_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ u_long command;
+ caddr_t data;
+{
+ struct ti_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ int s, error = 0;
+ struct ti_cmd_desc cmd;
+
+ s = splimp();
+
+ switch(command) {
+ case SIOCSIFADDR:
+ case SIOCGIFADDR:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFMTU:
+ if (ifr->ifr_mtu > TI_JUMBO_MTU)
+ error = EINVAL;
+ else {
+ ifp->if_mtu = ifr->ifr_mtu;
+ ti_init(sc);
+ }
+ break;
+ case SIOCSIFFLAGS:
+ if (ifp->if_flags & IFF_UP) {
+ /*
+ * If only the state of the PROMISC flag changed,
+ * then just use the 'set promisc mode' command
+ * instead of reinitializing the entire NIC. Doing
+ * a full re-init means reloading the firmware and
+ * waiting for it to start up, which may take a
+ * second or two.
+ */
+ if (ifp->if_flags & IFF_RUNNING &&
+ ifp->if_flags & IFF_PROMISC &&
+ !(sc->ti_if_flags & IFF_PROMISC)) {
+ TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
+ TI_CMD_CODE_PROMISC_ENB, 0);
+ } else if (ifp->if_flags & IFF_RUNNING &&
+ !(ifp->if_flags & IFF_PROMISC) &&
+ sc->ti_if_flags & IFF_PROMISC) {
+ TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
+ TI_CMD_CODE_PROMISC_DIS, 0);
+ } else
+ ti_init(sc);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING) {
+ ti_stop(sc);
+ }
+ }
+ sc->ti_if_flags = ifp->if_flags;
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ if (ifp->if_flags & IFF_RUNNING) {
+ ti_setmulti(sc);
+ error = 0;
+ }
+ break;
+ case SIOCSIFMEDIA:
+ case SIOCGIFMEDIA:
+ error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ (void)splx(s);
+
+ return(error);
+}
+
+static void ti_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct ti_softc *sc;
+
+ sc = ifp->if_softc;
+
+ printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
+ ti_stop(sc);
+ ti_init(sc);
+
+ ifp->if_oerrors++;
+
+ return;
+}
+
+/*
+ * Stop the adapter and free any mbufs allocated to the
+ * RX and TX lists.
+ */
+static void ti_stop(sc)
+ struct ti_softc *sc;
+{
+ struct ifnet *ifp;
+ struct ti_cmd_desc cmd;
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* Disable host interrupts. */
+ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
+ /*
+ * Tell firmware we're shutting down.
+ */
+ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
+
+ /* Halt and reinitialize. */
+ ti_chipinit(sc);
+ ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
+ ti_chipinit(sc);
+
+ /* Free the RX lists. */
+ ti_free_rx_ring_std(sc);
+
+ /* Free jumbo RX list. */
+ ti_free_rx_ring_jumbo(sc);
+
+ /* Free mini RX list. */
+ ti_free_rx_ring_mini(sc);
+
+ /* Free TX buffers. */
+ ti_free_tx_ring(sc);
+
+ sc->ti_ev_prodidx.ti_idx = 0;
+ sc->ti_return_prodidx.ti_idx = 0;
+ sc->ti_tx_considx.ti_idx = 0;
+ sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
+
+ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
+
+ return;
+}
+
+/*
+ * Stop all chip I/O so that the kernel's probe routines don't
+ * get confused by errant DMAs when rebooting.
+ */
+static void ti_shutdown(howto, xsc)
+ int howto;
+ void *xsc;
+{
+ struct ti_softc *sc;
+
+ sc = xsc;
+
+ ti_chipinit(sc);
+
+ return;
+}
+
+static struct pci_device ti_device = {
+ "ti",
+ ti_probe,
+ ti_attach,
+ &ti_count,
+ NULL
+};
+DATA_SET(pcidevice_set, ti_device);
OpenPOWER on IntegriCloud