diff options
Diffstat (limited to 'sys/dev/sym/sym_hipd.c')
-rw-r--r-- | sys/dev/sym/sym_hipd.c | 10414 |
1 files changed, 10414 insertions, 0 deletions
diff --git a/sys/dev/sym/sym_hipd.c b/sys/dev/sym/sym_hipd.c new file mode 100644 index 0000000..31e8b9c --- /dev/null +++ b/sys/dev/sym/sym_hipd.c @@ -0,0 +1,10414 @@ +/* + * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 + * PCI-SCSI controllers. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver also supports the following Symbios/LSI PCI-SCSI chips: + * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, + * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. + * + * + * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-1999 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * The initialisation code, and part of the code that addresses + * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM + * written by Justin T. Gibbs. + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +/* $FreeBSD$ */ + +#define SYM_DRIVER_NAME "sym-1.6.5-20000902" + +/* #define SYM_DEBUG_GENERIC_SUPPORT */ +/* #define CAM_NEW_TRAN_CODE */ + +#include <sys/param.h> + +/* + * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. + * Note that the old BUS stuff also works for FreeBSD 4 and spares + * about 1 KB for the driver object file. + */ +#if __FreeBSD_version >= 400000 +#define FreeBSD_Bus_Dma_Abstraction +#define FreeBSD_Bus_Io_Abstraction +#define FreeBSD_Bus_Space_Abstraction +#endif + +/* + * Driver configuration options. + */ +#include "opt_sym.h" +#include <dev/sym/sym_conf.h> + +#ifndef FreeBSD_Bus_Io_Abstraction +#include "ncr.h" /* To know if the ncr has been configured */ +#endif + +#include <sys/systm.h> +#include <sys/malloc.h> +#include <sys/endian.h> +#include <sys/kernel.h> +#ifdef FreeBSD_Bus_Io_Abstraction +#include <sys/module.h> +#include <sys/bus.h> +#endif + +#include <sys/proc.h> + +#include <pci/pcireg.h> +#include <pci/pcivar.h> + +#ifdef FreeBSD_Bus_Space_Abstraction +#include <machine/bus_memio.h> +/* + * Only include bus_pio if needed. + * This avoids bus space primitives to be uselessly bloated + * by out-of-age PIO operations. + */ +#ifdef SYM_CONF_IOMAPPED +#include <machine/bus_pio.h> +#endif +#endif +#include <machine/bus.h> + +#ifdef FreeBSD_Bus_Io_Abstraction +#include <machine/resource.h> +#include <sys/rman.h> +#endif + +#include <cam/cam.h> +#include <cam/cam_ccb.h> +#include <cam/cam_sim.h> +#include <cam/cam_xpt_sim.h> +#include <cam/cam_debug.h> + +#include <cam/scsi/scsi_all.h> +#include <cam/scsi/scsi_message.h> + +#include <vm/vm.h> +#include <vm/vm_param.h> +#include <vm/pmap.h> + +/* Short and quite clear integer types */ +typedef int8_t s8; +typedef int16_t s16; +typedef int32_t s32; +typedef u_int8_t u8; +typedef u_int16_t u16; +typedef u_int32_t u32; + +/* + * From 'cam.error_recovery_diffs.20010313.context' patch. + */ +#ifdef CAM_NEW_TRAN_CODE +#define FreeBSD_New_Tran_Settings +#endif /* CAM_NEW_TRAN_CODE */ + +/* + * Driver definitions. + */ +#include <dev/sym/sym_defs.h> +#include <dev/sym/sym_fw.h> + +/* + * IA32 architecture does not reorder STORES and prevents + * LOADS from passing STORES. It is called `program order' + * by Intel and allows device drivers to deal with memory + * ordering by only ensuring that the code is not reordered + * by the compiler when ordering is required. + * Other architectures implement a weaker ordering that + * requires memory barriers (and also IO barriers when they + * make sense) to be used. + */ + +#if defined __i386__ +#define MEMORY_BARRIER() do { ; } while(0) +#elif defined __alpha__ +#define MEMORY_BARRIER() alpha_mb() +#elif defined __powerpc__ +#define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") +#elif defined __ia64__ +#define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") +#elif defined __sparc64__ +#define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") +#else +#error "Not supported platform" +#endif + +/* + * Portable but silly implemented byte order primitives. + * We define the primitives we need, since FreeBSD doesn't + * seem to have them yet. + */ +#if BYTE_ORDER == BIG_ENDIAN + +#define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ + (((u16)(x) & (u16)0xff00U) >> 8) ) +#define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ + (((u32)(x) & 0x0000ff00U) << 8) | \ + (((u32)(x) & 0x00ff0000U) >> 8) | \ + (((u32)(x) & 0xff000000U) >> 24) ) + +#define __htole16(v) __revb16(v) +#define __htole32(v) __revb32(v) +#define __le16toh(v) __htole16(v) +#define __le32toh(v) __htole32(v) + +static __inline u16 _htole16(u16 v) { return __htole16(v); } +static __inline u32 _htole32(u32 v) { return __htole32(v); } +#define _le16toh _htole16 +#define _le32toh _htole32 + +#else /* LITTLE ENDIAN */ + +#define __htole16(v) (v) +#define __htole32(v) (v) +#define __le16toh(v) (v) +#define __le32toh(v) (v) + +#define _htole16(v) (v) +#define _htole32(v) (v) +#define _le16toh(v) (v) +#define _le32toh(v) (v) + +#endif /* BYTE_ORDER */ + +/* + * A la VMS/CAM-3 queue management. + */ + +typedef struct sym_quehead { + struct sym_quehead *flink; /* Forward pointer */ + struct sym_quehead *blink; /* Backward pointer */ +} SYM_QUEHEAD; + +#define sym_que_init(ptr) do { \ + (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ +} while (0) + +static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) +{ + return (head->flink == head) ? 0 : head->flink; +} + +static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) +{ + return (head->blink == head) ? 0 : head->blink; +} + +static __inline void __sym_que_add(struct sym_quehead * new, + struct sym_quehead * blink, + struct sym_quehead * flink) +{ + flink->blink = new; + new->flink = flink; + new->blink = blink; + blink->flink = new; +} + +static __inline void __sym_que_del(struct sym_quehead * blink, + struct sym_quehead * flink) +{ + flink->blink = blink; + blink->flink = flink; +} + +static __inline int sym_que_empty(struct sym_quehead *head) +{ + return head->flink == head; +} + +static __inline void sym_que_splice(struct sym_quehead *list, + struct sym_quehead *head) +{ + struct sym_quehead *first = list->flink; + + if (first != list) { + struct sym_quehead *last = list->blink; + struct sym_quehead *at = head->flink; + + first->blink = head; + head->flink = first; + + last->flink = at; + at->blink = last; + } +} + +#define sym_que_entry(ptr, type, member) \ + ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) + + +#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) + +#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) + +#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) + +static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) +{ + struct sym_quehead *elem = head->flink; + + if (elem != head) + __sym_que_del(head, elem->flink); + else + elem = 0; + return elem; +} + +#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) + +static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) +{ + struct sym_quehead *elem = head->blink; + + if (elem != head) + __sym_que_del(elem->blink, head); + else + elem = 0; + return elem; +} + +/* + * This one may be useful. + */ +#define FOR_EACH_QUEUED_ELEMENT(head, qp) \ + for (qp = (head)->flink; qp != (head); qp = qp->flink) +/* + * FreeBSD does not offer our kind of queue in the CAM CCB. + * So, we have to cast. + */ +#define sym_qptr(p) ((struct sym_quehead *) (p)) + +/* + * Simple bitmap operations. + */ +#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) +#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) +#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) + +/* + * Number of tasks per device we want to handle. + */ +#if SYM_CONF_MAX_TAG_ORDER > 8 +#error "more than 256 tags per logical unit not allowed." +#endif +#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) + +/* + * Donnot use more tasks that we can handle. + */ +#ifndef SYM_CONF_MAX_TAG +#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK +#endif +#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK +#undef SYM_CONF_MAX_TAG +#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK +#endif + +/* + * This one means 'NO TAG for this job' + */ +#define NO_TAG (256) + +/* + * Number of SCSI targets. + */ +#if SYM_CONF_MAX_TARGET > 16 +#error "more than 16 targets not allowed." +#endif + +/* + * Number of logical units per target. + */ +#if SYM_CONF_MAX_LUN > 64 +#error "more than 64 logical units per target not allowed." +#endif + +/* + * Asynchronous pre-scaler (ns). Shall be 40 for + * the SCSI timings to be compliant. + */ +#define SYM_CONF_MIN_ASYNC (40) + +/* + * Number of entries in the START and DONE queues. + * + * We limit to 1 PAGE in order to succeed allocation of + * these queues. Each entry is 8 bytes long (2 DWORDS). + */ +#ifdef SYM_CONF_MAX_START +#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) +#else +#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) +#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) +#endif + +#if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 +#undef SYM_CONF_MAX_QUEUE +#define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 +#undef SYM_CONF_MAX_START +#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) +#endif + +/* + * For this one, we want a short name :-) + */ +#define MAX_QUEUE SYM_CONF_MAX_QUEUE + +/* + * These ones should have been already defined. + */ +#ifndef MIN +#define MIN(a, b) (((a) < (b)) ? (a) : (b)) +#endif + +/* + * Active debugging tags and verbosity. + */ +#define DEBUG_ALLOC (0x0001) +#define DEBUG_PHASE (0x0002) +#define DEBUG_POLL (0x0004) +#define DEBUG_QUEUE (0x0008) +#define DEBUG_RESULT (0x0010) +#define DEBUG_SCATTER (0x0020) +#define DEBUG_SCRIPT (0x0040) +#define DEBUG_TINY (0x0080) +#define DEBUG_TIMING (0x0100) +#define DEBUG_NEGO (0x0200) +#define DEBUG_TAGS (0x0400) +#define DEBUG_POINTER (0x0800) + +#if 0 +static int sym_debug = 0; + #define DEBUG_FLAGS sym_debug +#else +/* #define DEBUG_FLAGS (0x0631) */ + #define DEBUG_FLAGS (0x0000) + +#endif +#define sym_verbose (np->verbose) + +/* + * Insert a delay in micro-seconds and milli-seconds. + */ +static void UDELAY(int us) { DELAY(us); } +static void MDELAY(int ms) { while (ms--) UDELAY(1000); } + +/* + * Simple power of two buddy-like allocator. + * + * This simple code is not intended to be fast, but to + * provide power of 2 aligned memory allocations. + * Since the SCRIPTS processor only supplies 8 bit arithmetic, + * this allocator allows simple and fast address calculations + * from the SCRIPTS code. In addition, cache line alignment + * is guaranteed for power of 2 cache line size. + * + * This allocator has been developped for the Linux sym53c8xx + * driver, since this O/S does not provide naturally aligned + * allocations. + * It has the advantage of allowing the driver to use private + * pages of memory that will be useful if we ever need to deal + * with IO MMUs for PCI. + */ + +#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ +#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ +#if 0 +#define MEMO_FREE_UNUSED /* Free unused pages immediately */ +#endif +#define MEMO_WARN 1 +#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) +#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) +#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) + +#define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) +#define free_pages(p) free((p), M_DEVBUF) + +typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ + +typedef struct m_link { /* Link between free memory chunks */ + struct m_link *next; +} m_link_s; + +#ifdef FreeBSD_Bus_Dma_Abstraction +typedef struct m_vtob { /* Virtual to Bus address translation */ + struct m_vtob *next; + bus_dmamap_t dmamap; /* Map for this chunk */ + m_addr_t vaddr; /* Virtual address */ + m_addr_t baddr; /* Bus physical address */ +} m_vtob_s; +/* Hash this stuff a bit to speed up translations */ +#define VTOB_HASH_SHIFT 5 +#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) +#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) +#define VTOB_HASH_CODE(m) \ + ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) +#endif + +typedef struct m_pool { /* Memory pool of a given kind */ +#ifdef FreeBSD_Bus_Dma_Abstraction + bus_dma_tag_t dev_dmat; /* Identifies the pool */ + bus_dma_tag_t dmat; /* Tag for our fixed allocations */ + m_addr_t (*getp)(struct m_pool *); +#ifdef MEMO_FREE_UNUSED + void (*freep)(struct m_pool *, m_addr_t); +#endif +#define M_GETP() mp->getp(mp) +#define M_FREEP(p) mp->freep(mp, p) + int nump; + m_vtob_s *(vtob[VTOB_HASH_SIZE]); + struct m_pool *next; +#else +#define M_GETP() get_pages() +#define M_FREEP(p) free_pages(p) +#endif /* FreeBSD_Bus_Dma_Abstraction */ + struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; +} m_pool_s; + +static void *___sym_malloc(m_pool_s *mp, int size) +{ + int i = 0; + int s = (1 << MEMO_SHIFT); + int j; + m_addr_t a; + m_link_s *h = mp->h; + + if (size > MEMO_CLUSTER_SIZE) + return 0; + + while (size > s) { + s <<= 1; + ++i; + } + + j = i; + while (!h[j].next) { + if (s == MEMO_CLUSTER_SIZE) { + h[j].next = (m_link_s *) M_GETP(); + if (h[j].next) + h[j].next->next = 0; + break; + } + ++j; + s <<= 1; + } + a = (m_addr_t) h[j].next; + if (a) { + h[j].next = h[j].next->next; + while (j > i) { + j -= 1; + s >>= 1; + h[j].next = (m_link_s *) (a+s); + h[j].next->next = 0; + } + } +#ifdef DEBUG + printf("___sym_malloc(%d) = %p\n", size, (void *) a); +#endif + return (void *) a; +} + +static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) +{ + int i = 0; + int s = (1 << MEMO_SHIFT); + m_link_s *q; + m_addr_t a, b; + m_link_s *h = mp->h; + +#ifdef DEBUG + printf("___sym_mfree(%p, %d)\n", ptr, size); +#endif + + if (size > MEMO_CLUSTER_SIZE) + return; + + while (size > s) { + s <<= 1; + ++i; + } + + a = (m_addr_t) ptr; + + while (1) { +#ifdef MEMO_FREE_UNUSED + if (s == MEMO_CLUSTER_SIZE) { + M_FREEP(a); + break; + } +#endif + b = a ^ s; + q = &h[i]; + while (q->next && q->next != (m_link_s *) b) { + q = q->next; + } + if (!q->next) { + ((m_link_s *) a)->next = h[i].next; + h[i].next = (m_link_s *) a; + break; + } + q->next = q->next->next; + a = a & b; + s <<= 1; + ++i; + } +} + +static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) +{ + void *p; + + p = ___sym_malloc(mp, size); + + if (DEBUG_FLAGS & DEBUG_ALLOC) + printf ("new %-10s[%4d] @%p.\n", name, size, p); + + if (p) + bzero(p, size); + else if (uflags & MEMO_WARN) + printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); + + return p; +} + +#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) + +static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) +{ + if (DEBUG_FLAGS & DEBUG_ALLOC) + printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); + + ___sym_mfree(mp, ptr, size); + +} + +/* + * Default memory pool we donnot need to involve in DMA. + */ +#ifndef FreeBSD_Bus_Dma_Abstraction +/* + * Without the `bus dma abstraction', all the memory is assumed + * DMAable and a single pool is all what we need. + */ +static m_pool_s mp0; + +#else +/* + * With the `bus dma abstraction', we use a separate pool for + * memory we donnot need to involve in DMA. + */ +static m_addr_t ___mp0_getp(m_pool_s *mp) +{ + m_addr_t m = (m_addr_t) get_pages(); + if (m) + ++mp->nump; + return m; +} + +#ifdef MEMO_FREE_UNUSED +static void ___mp0_freep(m_pool_s *mp, m_addr_t m) +{ + free_pages(m); + --mp->nump; +} +#endif + +#ifdef MEMO_FREE_UNUSED +static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; +#else +static m_pool_s mp0 = {0, 0, ___mp0_getp}; +#endif + +#endif /* FreeBSD_Bus_Dma_Abstraction */ + +/* + * Actual memory allocation routine for non-DMAed memory. + */ +static void *sym_calloc(int size, char *name) +{ + void *m; + /* Lock */ + m = __sym_calloc(&mp0, size, name); + /* Unlock */ + return m; +} + +/* + * Actual memory allocation routine for non-DMAed memory. + */ +static void sym_mfree(void *ptr, int size, char *name) +{ + /* Lock */ + __sym_mfree(&mp0, ptr, size, name); + /* Unlock */ +} + +/* + * DMAable pools. + */ +#ifndef FreeBSD_Bus_Dma_Abstraction +/* + * Without `bus dma abstraction', all the memory is DMAable, and + * only a single pool is needed (vtophys() is our friend). + */ +#define __sym_calloc_dma(b, s, n) sym_calloc(s, n) +#define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n) +#ifdef __alpha__ +#define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p)) +#else /*__i386__, __sparc64__*/ +#define __vtobus(b, p) vtophys(p) +#endif + +#else +/* + * With `bus dma abstraction', we use a separate pool per parent + * BUS handle. A reverse table (hashed) is maintained for virtual + * to BUS address translation. + */ +static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) +{ + bus_addr_t *baddr; + baddr = (bus_addr_t *)arg; + *baddr = segs->ds_addr; +} + +static m_addr_t ___dma_getp(m_pool_s *mp) +{ + m_vtob_s *vbp; + void *vaddr = 0; + bus_addr_t baddr = 0; + + vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); + if (!vbp) + goto out_err; + + if (bus_dmamem_alloc(mp->dmat, &vaddr, + BUS_DMA_NOWAIT, &vbp->dmamap)) + goto out_err; + bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, + MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); + if (baddr) { + int hc = VTOB_HASH_CODE(vaddr); + vbp->vaddr = (m_addr_t) vaddr; + vbp->baddr = (m_addr_t) baddr; + vbp->next = mp->vtob[hc]; + mp->vtob[hc] = vbp; + ++mp->nump; + return (m_addr_t) vaddr; + } +out_err: + if (baddr) + bus_dmamap_unload(mp->dmat, vbp->dmamap); + if (vaddr) + bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); + if (vbp->dmamap) + bus_dmamap_destroy(mp->dmat, vbp->dmamap); + if (vbp) + __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); + return 0; +} + +#ifdef MEMO_FREE_UNUSED +static void ___dma_freep(m_pool_s *mp, m_addr_t m) +{ + m_vtob_s **vbpp, *vbp; + int hc = VTOB_HASH_CODE(m); + + vbpp = &mp->vtob[hc]; + while (*vbpp && (*vbpp)->vaddr != m) + vbpp = &(*vbpp)->next; + if (*vbpp) { + vbp = *vbpp; + *vbpp = (*vbpp)->next; + bus_dmamap_unload(mp->dmat, vbp->dmamap); + bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); + bus_dmamap_destroy(mp->dmat, vbp->dmamap); + __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); + --mp->nump; + } +} +#endif + +static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) +{ + m_pool_s *mp; + for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); + return mp; +} + +static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) +{ + m_pool_s *mp = 0; + + mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); + if (mp) { + mp->dev_dmat = dev_dmat; + if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, + BUS_SPACE_MAXADDR_32BIT, + BUS_SPACE_MAXADDR_32BIT, + NULL, NULL, MEMO_CLUSTER_SIZE, 1, + MEMO_CLUSTER_SIZE, 0, &mp->dmat)) { + mp->getp = ___dma_getp; +#ifdef MEMO_FREE_UNUSED + mp->freep = ___dma_freep; +#endif + mp->next = mp0.next; + mp0.next = mp; + return mp; + } + } + if (mp) + __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); + return 0; +} + +#ifdef MEMO_FREE_UNUSED +static void ___del_dma_pool(m_pool_s *p) +{ + struct m_pool **pp = &mp0.next; + + while (*pp && *pp != p) + pp = &(*pp)->next; + if (*pp) { + *pp = (*pp)->next; + bus_dma_tag_destroy(p->dmat); + __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); + } +} +#endif + +static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) +{ + struct m_pool *mp; + void *m = 0; + + /* Lock */ + mp = ___get_dma_pool(dev_dmat); + if (!mp) + mp = ___cre_dma_pool(dev_dmat); + if (mp) + m = __sym_calloc(mp, size, name); +#ifdef MEMO_FREE_UNUSED + if (mp && !mp->nump) + ___del_dma_pool(mp); +#endif + /* Unlock */ + + return m; +} + +static void +__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) +{ + struct m_pool *mp; + + /* Lock */ + mp = ___get_dma_pool(dev_dmat); + if (mp) + __sym_mfree(mp, m, size, name); +#ifdef MEMO_FREE_UNUSED + if (mp && !mp->nump) + ___del_dma_pool(mp); +#endif + /* Unlock */ +} + +static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) +{ + m_pool_s *mp; + int hc = VTOB_HASH_CODE(m); + m_vtob_s *vp = 0; + m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; + + /* Lock */ + mp = ___get_dma_pool(dev_dmat); + if (mp) { + vp = mp->vtob[hc]; + while (vp && (m_addr_t) vp->vaddr != a) + vp = vp->next; + } + /* Unlock */ + if (!vp) + panic("sym: VTOBUS FAILED!\n"); + return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; +} + +#endif /* FreeBSD_Bus_Dma_Abstraction */ + +/* + * Verbs for DMAable memory handling. + * The _uvptv_ macro avoids a nasty warning about pointer to volatile + * being discarded. + */ +#define _uvptv_(p) ((void *)((vm_offset_t)(p))) +#define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) +#define _sym_mfree_dma(np, p, s, n) \ + __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) +#define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) +#define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) +#define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) +#define vtobus(p) _vtobus(np, p) + + +/* + * Print a buffer in hexadecimal format. + */ +static void sym_printb_hex (u_char *p, int n) +{ + while (n-- > 0) + printf (" %x", *p++); +} + +/* + * Same with a label at beginning and .\n at end. + */ +static void sym_printl_hex (char *label, u_char *p, int n) +{ + printf ("%s", label); + sym_printb_hex (p, n); + printf (".\n"); +} + +/* + * Return a string for SCSI BUS mode. + */ +static char *sym_scsi_bus_mode(int mode) +{ + switch(mode) { + case SMODE_HVD: return "HVD"; + case SMODE_SE: return "SE"; + case SMODE_LVD: return "LVD"; + } + return "??"; +} + +/* + * Some poor and bogus sync table that refers to Tekram NVRAM layout. + */ +#ifdef SYM_CONF_NVRAM_SUPPORT +static u_char Tekram_sync[16] = + {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; +#endif + +/* + * Union of supported NVRAM formats. + */ +struct sym_nvram { + int type; +#define SYM_SYMBIOS_NVRAM (1) +#define SYM_TEKRAM_NVRAM (2) +#ifdef SYM_CONF_NVRAM_SUPPORT + union { + Symbios_nvram Symbios; + Tekram_nvram Tekram; + } data; +#endif +}; + +/* + * This one is hopefully useless, but actually useful. :-) + */ +#ifndef assert +#define assert(expression) { \ + if (!(expression)) { \ + (void)panic( \ + "assertion \"%s\" failed: file \"%s\", line %d\n", \ + #expression, \ + __FILE__, __LINE__); \ + } \ +} +#endif + +/* + * Some provision for a possible big endian mode supported by + * Symbios chips (never seen, by the way). + * For now, this stuff does not deserve any comments. :) + */ + +#define sym_offb(o) (o) +#define sym_offw(o) (o) + +/* + * Some provision for support for BIG ENDIAN CPU. + * Btw, FreeBSD does not seem to be ready yet for big endian. + */ + +#if BYTE_ORDER == BIG_ENDIAN +#define cpu_to_scr(dw) _htole32(dw) +#define scr_to_cpu(dw) _le32toh(dw) +#else +#define cpu_to_scr(dw) (dw) +#define scr_to_cpu(dw) (dw) +#endif + +/* + * Access to the chip IO registers and on-chip RAM. + * We use the `bus space' interface under FreeBSD-4 and + * later kernel versions. + */ + +#ifdef FreeBSD_Bus_Space_Abstraction + +#if defined(SYM_CONF_IOMAPPED) + +#define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) +#define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) +#define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) + +#define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) +#define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) +#define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) + +#else /* Memory mapped IO */ + +#define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) +#define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) +#define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) + +#define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) +#define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) +#define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) + +#endif /* SYM_CONF_IOMAPPED */ + +#define OUTRAM_OFF(o, a, l) \ + bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) + +#else /* not defined FreeBSD_Bus_Space_Abstraction */ + +#if BYTE_ORDER == BIG_ENDIAN +#error "BIG ENDIAN support requires bus space kernel interface" +#endif + +/* + * Access to the chip IO registers and on-chip RAM. + * We use legacy MMIO and IO interface for FreeBSD 3.X versions. + */ + +/* + * Define some understable verbs for IO and MMIO. + */ +#define io_read8(p) scr_to_cpu(inb((p))) +#define io_read16(p) scr_to_cpu(inw((p))) +#define io_read32(p) scr_to_cpu(inl((p))) +#define io_write8(p, v) outb((p), cpu_to_scr(v)) +#define io_write16(p, v) outw((p), cpu_to_scr(v)) +#define io_write32(p, v) outl((p), cpu_to_scr(v)) + +#ifdef __alpha__ + +#define mmio_read8(a) readb(a) +#define mmio_read16(a) readw(a) +#define mmio_read32(a) readl(a) +#define mmio_write8(a, b) writeb(a, b) +#define mmio_write16(a, b) writew(a, b) +#define mmio_write32(a, b) writel(a, b) +#define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n)) + +#else /*__i386__, __sparc64__*/ + +#define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) +#define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) +#define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) +#define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) +#define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) +#define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) +#define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) + +#endif + +/* + * Normal IO + */ +#if defined(SYM_CONF_IOMAPPED) + +#define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) +#define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) + +#define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) +#define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) + +#define INL_OFF(o) io_read32(np->io_port + (o)) +#define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v)) + +#else /* Memory mapped IO */ + +#define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) +#define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) + +#define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) +#define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) + +#define INL_OFF(o) mmio_read32(np->mmio_va + (o)) +#define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) + +#endif + +#define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l)) + +#endif /* FreeBSD_Bus_Space_Abstraction */ + +/* + * Common definitions for both bus space and legacy IO methods. + */ +#define INB(r) INB_OFF(offsetof(struct sym_reg,r)) +#define INW(r) INW_OFF(offsetof(struct sym_reg,r)) +#define INL(r) INL_OFF(offsetof(struct sym_reg,r)) + +#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) +#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) +#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) + +#define OUTONB(r, m) OUTB(r, INB(r) | (m)) +#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) +#define OUTONW(r, m) OUTW(r, INW(r) | (m)) +#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) +#define OUTONL(r, m) OUTL(r, INL(r) | (m)) +#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) + +/* + * We normally want the chip to have a consistent view + * of driver internal data structures when we restart it. + * Thus these macros. + */ +#define OUTL_DSP(v) \ + do { \ + MEMORY_BARRIER(); \ + OUTL (nc_dsp, (v)); \ + } while (0) + +#define OUTONB_STD() \ + do { \ + MEMORY_BARRIER(); \ + OUTONB (nc_dcntl, (STD|NOCOM)); \ + } while (0) + +/* + * Command control block states. + */ +#define HS_IDLE (0) +#define HS_BUSY (1) +#define HS_NEGOTIATE (2) /* sync/wide data transfer*/ +#define HS_DISCONNECT (3) /* Disconnected by target */ +#define HS_WAIT (4) /* waiting for resource */ + +#define HS_DONEMASK (0x80) +#define HS_COMPLETE (4|HS_DONEMASK) +#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ +#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ +#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ + +/* + * Software Interrupt Codes + */ +#define SIR_BAD_SCSI_STATUS (1) +#define SIR_SEL_ATN_NO_MSG_OUT (2) +#define SIR_MSG_RECEIVED (3) +#define SIR_MSG_WEIRD (4) +#define SIR_NEGO_FAILED (5) +#define SIR_NEGO_PROTO (6) +#define SIR_SCRIPT_STOPPED (7) +#define SIR_REJECT_TO_SEND (8) +#define SIR_SWIDE_OVERRUN (9) +#define SIR_SODL_UNDERRUN (10) +#define SIR_RESEL_NO_MSG_IN (11) +#define SIR_RESEL_NO_IDENTIFY (12) +#define SIR_RESEL_BAD_LUN (13) +#define SIR_TARGET_SELECTED (14) +#define SIR_RESEL_BAD_I_T_L (15) +#define SIR_RESEL_BAD_I_T_L_Q (16) +#define SIR_ABORT_SENT (17) +#define SIR_RESEL_ABORTED (18) +#define SIR_MSG_OUT_DONE (19) +#define SIR_COMPLETE_ERROR (20) +#define SIR_DATA_OVERRUN (21) +#define SIR_BAD_PHASE (22) +#define SIR_MAX (22) + +/* + * Extended error bit codes. + * xerr_status field of struct sym_ccb. + */ +#define XE_EXTRA_DATA (1) /* unexpected data phase */ +#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ +#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ +#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ +#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ + +/* + * Negotiation status. + * nego_status field of struct sym_ccb. + */ +#define NS_SYNC (1) +#define NS_WIDE (2) +#define NS_PPR (3) + +/* + * A CCB hashed table is used to retrieve CCB address + * from DSA value. + */ +#define CCB_HASH_SHIFT 8 +#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) +#define CCB_HASH_MASK (CCB_HASH_SIZE-1) +#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) + +/* + * Device flags. + */ +#define SYM_DISC_ENABLED (1) +#define SYM_TAGS_ENABLED (1<<1) +#define SYM_SCAN_BOOT_DISABLED (1<<2) +#define SYM_SCAN_LUNS_DISABLED (1<<3) + +/* + * Host adapter miscellaneous flags. + */ +#define SYM_AVOID_BUS_RESET (1) +#define SYM_SCAN_TARGETS_HILO (1<<1) + +/* + * Device quirks. + * Some devices, for example the CHEETAH 2 LVD, disconnects without + * saving the DATA POINTER then reselects and terminates the IO. + * On reselection, the automatic RESTORE DATA POINTER makes the + * CURRENT DATA POINTER not point at the end of the IO. + * This behaviour just breaks our calculation of the residual. + * For now, we just force an AUTO SAVE on disconnection and will + * fix that in a further driver version. + */ +#define SYM_QUIRK_AUTOSAVE 1 + +/* + * Misc. + */ +#define SYM_SNOOP_TIMEOUT (10000000) +#define SYM_PCI_IO PCIR_MAPS +#define SYM_PCI_MMIO (PCIR_MAPS + 4) +#define SYM_PCI_RAM (PCIR_MAPS + 8) +#define SYM_PCI_RAM64 (PCIR_MAPS + 12) + +/* + * Back-pointer from the CAM CCB to our data structures. + */ +#define sym_hcb_ptr spriv_ptr0 +/* #define sym_ccb_ptr spriv_ptr1 */ + +/* + * We mostly have to deal with pointers. + * Thus these typedef's. + */ +typedef struct sym_tcb *tcb_p; +typedef struct sym_lcb *lcb_p; +typedef struct sym_ccb *ccb_p; +typedef struct sym_hcb *hcb_p; + +/* + * Gather negotiable parameters value + */ +struct sym_trans { +#ifdef FreeBSD_New_Tran_Settings + u8 scsi_version; + u8 spi_version; +#endif + u8 period; + u8 offset; + u8 width; + u8 options; /* PPR options */ +}; + +struct sym_tinfo { + struct sym_trans current; + struct sym_trans goal; + struct sym_trans user; +}; + +#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT +#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT + +/* + * Global TCB HEADER. + * + * Due to lack of indirect addressing on earlier NCR chips, + * this substructure is copied from the TCB to a global + * address after selection. + * For SYMBIOS chips that support LOAD/STORE this copy is + * not needed and thus not performed. + */ +struct sym_tcbh { + /* + * Scripts bus addresses of LUN table accessed from scripts. + * LUN #0 is a special case, since multi-lun devices are rare, + * and we we want to speed-up the general case and not waste + * resources. + */ + u32 luntbl_sa; /* bus address of this table */ + u32 lun0_sa; /* bus address of LCB #0 */ + /* + * Actual SYNC/WIDE IO registers value for this target. + * 'sval', 'wval' and 'uval' are read from SCRIPTS and + * so have alignment constraints. + */ +/*0*/ u_char uval; /* -> SCNTL4 register */ +/*1*/ u_char sval; /* -> SXFER io register */ +/*2*/ u_char filler1; +/*3*/ u_char wval; /* -> SCNTL3 io register */ +}; + +/* + * Target Control Block + */ +struct sym_tcb { + /* + * TCB header. + * Assumed at offset 0. + */ +/*0*/ struct sym_tcbh head; + + /* + * LUN table used by the SCRIPTS processor. + * An array of bus addresses is used on reselection. + */ + u32 *luntbl; /* LCBs bus address table */ + + /* + * LUN table used by the C code. + */ + lcb_p lun0p; /* LCB of LUN #0 (usual case) */ +#if SYM_CONF_MAX_LUN > 1 + lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ +#endif + + /* + * Bitmap that tells about LUNs that succeeded at least + * 1 IO and therefore assumed to be a real device. + * Avoid useless allocation of the LCB structure. + */ + u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; + + /* + * Bitmap that tells about LUNs that haven't yet an LCB + * allocated (not discovered or LCB allocation failed). + */ + u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; + + /* + * Transfer capabilities (SIP) + */ + struct sym_tinfo tinfo; + + /* + * Keep track of the CCB used for the negotiation in order + * to ensure that only 1 negotiation is queued at a time. + */ + ccb_p nego_cp; /* CCB used for the nego */ + + /* + * Set when we want to reset the device. + */ + u_char to_reset; + + /* + * Other user settable limits and options. + * These limits are read from the NVRAM if present. + */ + u_char usrflags; + u_short usrtags; +}; + +/* + * Global LCB HEADER. + * + * Due to lack of indirect addressing on earlier NCR chips, + * this substructure is copied from the LCB to a global + * address after selection. + * For SYMBIOS chips that support LOAD/STORE this copy is + * not needed and thus not performed. + */ +struct sym_lcbh { + /* + * SCRIPTS address jumped by SCRIPTS on reselection. + * For not probed logical units, this address points to + * SCRIPTS that deal with bad LU handling (must be at + * offset zero of the LCB for that reason). + */ +/*0*/ u32 resel_sa; + + /* + * Task (bus address of a CCB) read from SCRIPTS that points + * to the unique ITL nexus allowed to be disconnected. + */ + u32 itl_task_sa; + + /* + * Task table bus address (read from SCRIPTS). + */ + u32 itlq_tbl_sa; +}; + +/* + * Logical Unit Control Block + */ +struct sym_lcb { + /* + * TCB header. + * Assumed at offset 0. + */ +/*0*/ struct sym_lcbh head; + + /* + * Task table read from SCRIPTS that contains pointers to + * ITLQ nexuses. The bus address read from SCRIPTS is + * inside the header. + */ + u32 *itlq_tbl; /* Kernel virtual address */ + + /* + * Busy CCBs management. + */ + u_short busy_itlq; /* Number of busy tagged CCBs */ + u_short busy_itl; /* Number of busy untagged CCBs */ + + /* + * Circular tag allocation buffer. + */ + u_short ia_tag; /* Tag allocation index */ + u_short if_tag; /* Tag release index */ + u_char *cb_tags; /* Circular tags buffer */ + + /* + * Set when we want to clear all tasks. + */ + u_char to_clear; + + /* + * Capabilities. + */ + u_char user_flags; + u_char current_flags; +}; + +/* + * Action from SCRIPTS on a task. + * Is part of the CCB, but is also used separately to plug + * error handling action to perform from SCRIPTS. + */ +struct sym_actscr { + u32 start; /* Jumped by SCRIPTS after selection */ + u32 restart; /* Jumped by SCRIPTS on relection */ +}; + +/* + * Phase mismatch context. + * + * It is part of the CCB and is used as parameters for the + * DATA pointer. We need two contexts to handle correctly the + * SAVED DATA POINTER. + */ +struct sym_pmc { + struct sym_tblmove sg; /* Updated interrupted SG block */ + u32 ret; /* SCRIPT return address */ +}; + +/* + * LUN control block lookup. + * We use a direct pointer for LUN #0, and a table of + * pointers which is only allocated for devices that support + * LUN(s) > 0. + */ +#if SYM_CONF_MAX_LUN <= 1 +#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 +#else +#define sym_lp(np, tp, lun) \ + (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 +#endif + +/* + * Status are used by the host and the script processor. + * + * The last four bytes (status[4]) are copied to the + * scratchb register (declared as scr0..scr3) just after the + * select/reselect, and copied back just after disconnecting. + * Inside the script the XX_REG are used. + */ + +/* + * Last four bytes (script) + */ +#define QU_REG scr0 +#define HS_REG scr1 +#define HS_PRT nc_scr1 +#define SS_REG scr2 +#define SS_PRT nc_scr2 +#define HF_REG scr3 +#define HF_PRT nc_scr3 + +/* + * Last four bytes (host) + */ +#define actualquirks phys.head.status[0] +#define host_status phys.head.status[1] +#define ssss_status phys.head.status[2] +#define host_flags phys.head.status[3] + +/* + * Host flags + */ +#define HF_IN_PM0 1u +#define HF_IN_PM1 (1u<<1) +#define HF_ACT_PM (1u<<2) +#define HF_DP_SAVED (1u<<3) +#define HF_SENSE (1u<<4) +#define HF_EXT_ERR (1u<<5) +#define HF_DATA_IN (1u<<6) +#ifdef SYM_CONF_IARB_SUPPORT +#define HF_HINT_IARB (1u<<7) +#endif + +/* + * Global CCB HEADER. + * + * Due to lack of indirect addressing on earlier NCR chips, + * this substructure is copied from the ccb to a global + * address after selection (or reselection) and copied back + * before disconnect. + * For SYMBIOS chips that support LOAD/STORE this copy is + * not needed and thus not performed. + */ + +struct sym_ccbh { + /* + * Start and restart SCRIPTS addresses (must be at 0). + */ +/*0*/ struct sym_actscr go; + + /* + * SCRIPTS jump address that deal with data pointers. + * 'savep' points to the position in the script responsible + * for the actual transfer of data. + * It's written on reception of a SAVE_DATA_POINTER message. + */ + u32 savep; /* Jump address to saved data pointer */ + u32 lastp; /* SCRIPTS address at end of data */ + u32 goalp; /* Not accessed for now from SCRIPTS */ + + /* + * Status fields. + */ + u8 status[4]; +}; + +/* + * Data Structure Block + * + * During execution of a ccb by the script processor, the + * DSA (data structure address) register points to this + * substructure of the ccb. + */ +struct sym_dsb { + /* + * CCB header. + * Also assumed at offset 0 of the sym_ccb structure. + */ +/*0*/ struct sym_ccbh head; + + /* + * Phase mismatch contexts. + * We need two to handle correctly the SAVED DATA POINTER. + * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic + * for address calculation from SCRIPTS. + */ + struct sym_pmc pm0; + struct sym_pmc pm1; + + /* + * Table data for Script + */ + struct sym_tblsel select; + struct sym_tblmove smsg; + struct sym_tblmove smsg_ext; + struct sym_tblmove cmd; + struct sym_tblmove sense; + struct sym_tblmove wresid; + struct sym_tblmove data [SYM_CONF_MAX_SG]; +}; + +/* + * Our Command Control Block + */ +struct sym_ccb { + /* + * This is the data structure which is pointed by the DSA + * register when it is executed by the script processor. + * It must be the first entry. + */ + struct sym_dsb phys; + + /* + * Pointer to CAM ccb and related stuff. + */ + union ccb *cam_ccb; /* CAM scsiio ccb */ + u8 cdb_buf[16]; /* Copy of CDB */ + u8 *sns_bbuf; /* Bounce buffer for sense data */ +#define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) + int data_len; /* Total data length */ + int segments; /* Number of SG segments */ + + /* + * Miscellaneous status'. + */ + u_char nego_status; /* Negotiation status */ + u_char xerr_status; /* Extended error flags */ + u32 extra_bytes; /* Extraneous bytes transferred */ + + /* + * Message areas. + * We prepare a message to be sent after selection. + * We may use a second one if the command is rescheduled + * due to CHECK_CONDITION or COMMAND TERMINATED. + * Contents are IDENTIFY and SIMPLE_TAG. + * While negotiating sync or wide transfer, + * a SDTR or WDTR message is appended. + */ + u_char scsi_smsg [12]; + u_char scsi_smsg2[12]; + + /* + * Auto request sense related fields. + */ + u_char sensecmd[6]; /* Request Sense command */ + u_char sv_scsi_status; /* Saved SCSI status */ + u_char sv_xerr_status; /* Saved extended status */ + int sv_resid; /* Saved residual */ + + /* + * Map for the DMA of user data. + */ +#ifdef FreeBSD_Bus_Dma_Abstraction + void *arg; /* Argument for some callback */ + bus_dmamap_t dmamap; /* DMA map for user data */ + u_char dmamapped; +#define SYM_DMA_NONE 0 +#define SYM_DMA_READ 1 +#define SYM_DMA_WRITE 2 +#endif + /* + * Other fields. + */ + u32 ccb_ba; /* BUS address of this CCB */ + u_short tag; /* Tag for this transfer */ + /* NO_TAG means no tag */ + u_char target; + u_char lun; + ccb_p link_ccbh; /* Host adapter CCB hash chain */ + SYM_QUEHEAD + link_ccbq; /* Link to free/busy CCB queue */ + u32 startp; /* Initial data pointer */ + int ext_sg; /* Extreme data pointer, used */ + int ext_ofs; /* to calculate the residual. */ + u_char to_abort; /* Want this IO to be aborted */ +}; + +#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) + +/* + * Host Control Block + */ +struct sym_hcb { + /* + * Global headers. + * Due to poorness of addressing capabilities, earlier + * chips (810, 815, 825) copy part of the data structures + * (CCB, TCB and LCB) in fixed areas. + */ +#ifdef SYM_CONF_GENERIC_SUPPORT + struct sym_ccbh ccb_head; + struct sym_tcbh tcb_head; + struct sym_lcbh lcb_head; +#endif + /* + * Idle task and invalid task actions and + * their bus addresses. + */ + struct sym_actscr idletask, notask, bad_itl, bad_itlq; + vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; + + /* + * Dummy lun table to protect us against target + * returning bad lun number on reselection. + */ + u32 *badluntbl; /* Table physical address */ + u32 badlun_sa; /* SCRIPT handler BUS address */ + + /* + * Bus address of this host control block. + */ + u32 hcb_ba; + + /* + * Bit 32-63 of the on-chip RAM bus address in LE format. + * The START_RAM64 script loads the MMRS and MMWS from this + * field. + */ + u32 scr_ram_seg; + + /* + * Chip and controller indentification. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + device_t device; +#else + pcici_t pci_tag; +#endif + int unit; + char inst_name[8]; + + /* + * Initial value of some IO register bits. + * These values are assumed to have been set by BIOS, and may + * be used to probe adapter implementation differences. + */ + u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, + sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, + sv_stest1; + + /* + * Actual initial value of IO register bits used by the + * driver. They are loaded at initialisation according to + * features that are to be enabled/disabled. + */ + u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, + rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; + + /* + * Target data. + */ + struct sym_tcb target[SYM_CONF_MAX_TARGET]; + + /* + * Target control block bus address array used by the SCRIPT + * on reselection. + */ + u32 *targtbl; + u32 targtbl_ba; + + /* + * CAM SIM information for this instance. + */ + struct cam_sim *sim; + struct cam_path *path; + + /* + * Allocated hardware resources. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + struct resource *irq_res; + struct resource *io_res; + struct resource *mmio_res; + struct resource *ram_res; + int ram_id; + void *intr; +#endif + + /* + * Bus stuff. + * + * My understanding of PCI is that all agents must share the + * same addressing range and model. + * But some hardware architecture guys provide complex and + * brain-deaded stuff that makes shit. + * This driver only support PCI compliant implementations and + * deals with part of the BUS stuff complexity only to fit O/S + * requirements. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + bus_space_handle_t io_bsh; + bus_space_tag_t io_tag; + bus_space_handle_t mmio_bsh; + bus_space_tag_t mmio_tag; + bus_space_handle_t ram_bsh; + bus_space_tag_t ram_tag; +#endif + + /* + * DMA stuff. + */ +#ifdef FreeBSD_Bus_Dma_Abstraction + bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ + bus_dma_tag_t data_dmat; /* DMA tag for user data */ +#endif + /* + * Virtual and physical bus addresses of the chip. + */ + vm_offset_t mmio_va; /* MMIO kernel virtual address */ + vm_offset_t mmio_pa; /* MMIO CPU physical address */ + vm_offset_t mmio_ba; /* MMIO BUS address */ + int mmio_ws; /* MMIO Window size */ + + vm_offset_t ram_va; /* RAM kernel virtual address */ + vm_offset_t ram_pa; /* RAM CPU physical address */ + vm_offset_t ram_ba; /* RAM BUS address */ + int ram_ws; /* RAM window size */ + u32 io_port; /* IO port address */ + + /* + * SCRIPTS virtual and physical bus addresses. + * 'script' is loaded in the on-chip RAM if present. + * 'scripth' stays in main memory for all chips except the + * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. + */ + u_char *scripta0; /* Copies of script and scripth */ + u_char *scriptb0; /* Copies of script and scripth */ + vm_offset_t scripta_ba; /* Actual script and scripth */ + vm_offset_t scriptb_ba; /* bus addresses. */ + vm_offset_t scriptb0_ba; + u_short scripta_sz; /* Actual size of script A */ + u_short scriptb_sz; /* Actual size of script B */ + + /* + * Bus addresses, setup and patch methods for + * the selected firmware. + */ + struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ + struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ + void (*fw_setup)(hcb_p np, struct sym_fw *fw); + void (*fw_patch)(hcb_p np); + char *fw_name; + + /* + * General controller parameters and configuration. + */ + u_short device_id; /* PCI device id */ + u_char revision_id; /* PCI device revision id */ + u_int features; /* Chip features map */ + u_char myaddr; /* SCSI id of the adapter */ + u_char maxburst; /* log base 2 of dwords burst */ + u_char maxwide; /* Maximum transfer width */ + u_char minsync; /* Min sync period factor (ST) */ + u_char maxsync; /* Max sync period factor (ST) */ + u_char maxoffs; /* Max scsi offset (ST) */ + u_char minsync_dt; /* Min sync period factor (DT) */ + u_char maxsync_dt; /* Max sync period factor (DT) */ + u_char maxoffs_dt; /* Max scsi offset (DT) */ + u_char multiplier; /* Clock multiplier (1,2,4) */ + u_char clock_divn; /* Number of clock divisors */ + u32 clock_khz; /* SCSI clock frequency in KHz */ + u32 pciclk_khz; /* Estimated PCI clock in KHz */ + /* + * Start queue management. + * It is filled up by the host processor and accessed by the + * SCRIPTS processor in order to start SCSI commands. + */ + volatile /* Prevent code optimizations */ + u32 *squeue; /* Start queue virtual address */ + u32 squeue_ba; /* Start queue BUS address */ + u_short squeueput; /* Next free slot of the queue */ + u_short actccbs; /* Number of allocated CCBs */ + + /* + * Command completion queue. + * It is the same size as the start queue to avoid overflow. + */ + u_short dqueueget; /* Next position to scan */ + volatile /* Prevent code optimizations */ + u32 *dqueue; /* Completion (done) queue */ + u32 dqueue_ba; /* Done queue BUS address */ + + /* + * Miscellaneous buffers accessed by the scripts-processor. + * They shall be DWORD aligned, because they may be read or + * written with a script command. + */ + u_char msgout[8]; /* Buffer for MESSAGE OUT */ + u_char msgin [8]; /* Buffer for MESSAGE IN */ + u32 lastmsg; /* Last SCSI message sent */ + u_char scratch; /* Scratch for SCSI receive */ + + /* + * Miscellaneous configuration and status parameters. + */ + u_char usrflags; /* Miscellaneous user flags */ + u_char scsi_mode; /* Current SCSI BUS mode */ + u_char verbose; /* Verbosity for this controller*/ + u32 cache; /* Used for cache test at init. */ + + /* + * CCB lists and queue. + */ + ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ + SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ + SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ + + /* + * During error handling and/or recovery, + * active CCBs that are to be completed with + * error or requeued are moved from the busy_ccbq + * to the comp_ccbq prior to completion. + */ + SYM_QUEHEAD comp_ccbq; + + /* + * CAM CCB pending queue. + */ + SYM_QUEHEAD cam_ccbq; + + /* + * IMMEDIATE ARBITRATION (IARB) control. + * + * We keep track in 'last_cp' of the last CCB that has been + * queued to the SCRIPTS processor and clear 'last_cp' when + * this CCB completes. If last_cp is not zero at the moment + * we queue a new CCB, we set a flag in 'last_cp' that is + * used by the SCRIPTS as a hint for setting IARB. + * We donnot set more than 'iarb_max' consecutive hints for + * IARB in order to leave devices a chance to reselect. + * By the way, any non zero value of 'iarb_max' is unfair. :) + */ +#ifdef SYM_CONF_IARB_SUPPORT + u_short iarb_max; /* Max. # consecutive IARB hints*/ + u_short iarb_count; /* Actual # of these hints */ + ccb_p last_cp; +#endif + + /* + * Command abort handling. + * We need to synchronize tightly with the SCRIPTS + * processor in order to handle things correctly. + */ + u_char abrt_msg[4]; /* Message to send buffer */ + struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ + struct sym_tblsel abrt_sel; /* Sync params for selection */ + u_char istat_sem; /* Tells the chip to stop (SEM) */ +}; + +#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) + +/* + * Return the name of the controller. + */ +static __inline char *sym_name(hcb_p np) +{ + return np->inst_name; +} + +/*--------------------------------------------------------------------------*/ +/*------------------------------ FIRMWARES ---------------------------------*/ +/*--------------------------------------------------------------------------*/ + +/* + * This stuff will be moved to a separate source file when + * the driver will be broken into several source modules. + */ + +/* + * Macros used for all firmwares. + */ +#define SYM_GEN_A(s, label) ((short) offsetof(s, label)), +#define SYM_GEN_B(s, label) ((short) offsetof(s, label)), +#define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) +#define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) + + +#ifdef SYM_CONF_GENERIC_SUPPORT +/* + * Allocate firmware #1 script area. + */ +#define SYM_FWA_SCR sym_fw1a_scr +#define SYM_FWB_SCR sym_fw1b_scr +#include <dev/sym/sym_fw1.h> +struct sym_fwa_ofs sym_fw1a_ofs = { + SYM_GEN_FW_A(struct SYM_FWA_SCR) +}; +struct sym_fwb_ofs sym_fw1b_ofs = { + SYM_GEN_FW_B(struct SYM_FWB_SCR) +}; +#undef SYM_FWA_SCR +#undef SYM_FWB_SCR +#endif /* SYM_CONF_GENERIC_SUPPORT */ + +/* + * Allocate firmware #2 script area. + */ +#define SYM_FWA_SCR sym_fw2a_scr +#define SYM_FWB_SCR sym_fw2b_scr +#include <dev/sym/sym_fw2.h> +struct sym_fwa_ofs sym_fw2a_ofs = { + SYM_GEN_FW_A(struct SYM_FWA_SCR) +}; +struct sym_fwb_ofs sym_fw2b_ofs = { + SYM_GEN_FW_B(struct SYM_FWB_SCR) + SYM_GEN_B(struct SYM_FWB_SCR, start64) + SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) +}; +#undef SYM_FWA_SCR +#undef SYM_FWB_SCR + +#undef SYM_GEN_A +#undef SYM_GEN_B +#undef PADDR_A +#undef PADDR_B + +#ifdef SYM_CONF_GENERIC_SUPPORT +/* + * Patch routine for firmware #1. + */ +static void +sym_fw1_patch(hcb_p np) +{ + struct sym_fw1a_scr *scripta0; + struct sym_fw1b_scr *scriptb0; + + scripta0 = (struct sym_fw1a_scr *) np->scripta0; + scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; + + /* + * Remove LED support if not needed. + */ + if (!(np->features & FE_LED0)) { + scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); + scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); + scripta0->start[0] = cpu_to_scr(SCR_NO_OP); + } + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user does not want to use IMMEDIATE ARBITRATION + * when we are reselected while attempting to arbitrate, + * patch the SCRIPTS accordingly with a SCRIPT NO_OP. + */ + if (!SYM_CONF_SET_IARB_ON_ARB_LOST) + scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); +#endif + /* + * Patch some data in SCRIPTS. + * - start and done queue initial bus address. + * - target bus address table bus address. + */ + scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); + scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); + scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); +} +#endif /* SYM_CONF_GENERIC_SUPPORT */ + +/* + * Patch routine for firmware #2. + */ +static void +sym_fw2_patch(hcb_p np) +{ + struct sym_fw2a_scr *scripta0; + struct sym_fw2b_scr *scriptb0; + + scripta0 = (struct sym_fw2a_scr *) np->scripta0; + scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; + + /* + * Remove LED support if not needed. + */ + if (!(np->features & FE_LED0)) { + scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); + scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); + scripta0->start[0] = cpu_to_scr(SCR_NO_OP); + } + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user does not want to use IMMEDIATE ARBITRATION + * when we are reselected while attempting to arbitrate, + * patch the SCRIPTS accordingly with a SCRIPT NO_OP. + */ + if (!SYM_CONF_SET_IARB_ON_ARB_LOST) + scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); +#endif + /* + * Patch some variable in SCRIPTS. + * - start and done queue initial bus address. + * - target bus address table bus address. + */ + scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); + scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); + scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); + + /* + * Remove the load of SCNTL4 on reselection if not a C10. + */ + if (!(np->features & FE_C10)) { + scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); + scripta0->resel_scntl4[1] = cpu_to_scr(0); + } + + /* + * Remove a couple of work-arounds specific to C1010 if + * they are not desirable. See `sym_fw2.h' for more details. + */ + if (!(np->device_id == PCI_ID_LSI53C1010_2 && + np->revision_id < 0x1 && + np->pciclk_khz < 60000)) { + scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); + scripta0->datao_phase[1] = cpu_to_scr(0); + } + if (!(np->device_id == PCI_ID_LSI53C1010 && + /* np->revision_id < 0xff */ 1)) { + scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); + scripta0->sel_done[1] = cpu_to_scr(0); + } + + /* + * Patch some other variables in SCRIPTS. + * These ones are loaded by the SCRIPTS processor. + */ + scriptb0->pm0_data_addr[0] = + cpu_to_scr(np->scripta_ba + + offsetof(struct sym_fw2a_scr, pm0_data)); + scriptb0->pm1_data_addr[0] = + cpu_to_scr(np->scripta_ba + + offsetof(struct sym_fw2a_scr, pm1_data)); +} + +/* + * Fill the data area in scripts. + * To be done for all firmwares. + */ +static void +sym_fw_fill_data (u32 *in, u32 *out) +{ + int i; + + for (i = 0; i < SYM_CONF_MAX_SG; i++) { + *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; + *in++ = offsetof (struct sym_dsb, data[i]); + *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; + *out++ = offsetof (struct sym_dsb, data[i]); + } +} + +/* + * Setup useful script bus addresses. + * To be done for all firmwares. + */ +static void +sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) +{ + u32 *pa; + u_short *po; + int i; + + /* + * Build the bus address table for script A + * from the script A offset table. + */ + po = (u_short *) fw->a_ofs; + pa = (u32 *) &np->fwa_bas; + for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) + pa[i] = np->scripta_ba + po[i]; + + /* + * Same for script B. + */ + po = (u_short *) fw->b_ofs; + pa = (u32 *) &np->fwb_bas; + for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) + pa[i] = np->scriptb_ba + po[i]; +} + +#ifdef SYM_CONF_GENERIC_SUPPORT +/* + * Setup routine for firmware #1. + */ +static void +sym_fw1_setup(hcb_p np, struct sym_fw *fw) +{ + struct sym_fw1a_scr *scripta0; + struct sym_fw1b_scr *scriptb0; + + scripta0 = (struct sym_fw1a_scr *) np->scripta0; + scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; + + /* + * Fill variable parts in scripts. + */ + sym_fw_fill_data(scripta0->data_in, scripta0->data_out); + + /* + * Setup bus addresses used from the C code.. + */ + sym_fw_setup_bus_addresses(np, fw); +} +#endif /* SYM_CONF_GENERIC_SUPPORT */ + +/* + * Setup routine for firmware #2. + */ +static void +sym_fw2_setup(hcb_p np, struct sym_fw *fw) +{ + struct sym_fw2a_scr *scripta0; + struct sym_fw2b_scr *scriptb0; + + scripta0 = (struct sym_fw2a_scr *) np->scripta0; + scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; + + /* + * Fill variable parts in scripts. + */ + sym_fw_fill_data(scripta0->data_in, scripta0->data_out); + + /* + * Setup bus addresses used from the C code.. + */ + sym_fw_setup_bus_addresses(np, fw); +} + +/* + * Allocate firmware descriptors. + */ +#ifdef SYM_CONF_GENERIC_SUPPORT +static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); +#endif /* SYM_CONF_GENERIC_SUPPORT */ +static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); + +/* + * Find the most appropriate firmware for a chip. + */ +static struct sym_fw * +sym_find_firmware(struct sym_pci_chip *chip) +{ + if (chip->features & FE_LDSTR) + return &sym_fw2; +#ifdef SYM_CONF_GENERIC_SUPPORT + else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) + return &sym_fw1; +#endif + else + return 0; +} + +/* + * Bind a script to physical addresses. + */ +static void sym_fw_bind_script (hcb_p np, u32 *start, int len) +{ + u32 opcode, new, old, tmp1, tmp2; + u32 *end, *cur; + int relocs; + + cur = start; + end = start + len/4; + + while (cur < end) { + + opcode = *cur; + + /* + * If we forget to change the length + * in scripts, a field will be + * padded with 0. This is an illegal + * command. + */ + if (opcode == 0) { + printf ("%s: ERROR0 IN SCRIPT at %d.\n", + sym_name(np), (int) (cur-start)); + MDELAY (10000); + ++cur; + continue; + }; + + /* + * We use the bogus value 0xf00ff00f ;-) + * to reserve data area in SCRIPTS. + */ + if (opcode == SCR_DATA_ZERO) { + *cur++ = 0; + continue; + } + + if (DEBUG_FLAGS & DEBUG_SCRIPT) + printf ("%d: <%x>\n", (int) (cur-start), + (unsigned)opcode); + + /* + * We don't have to decode ALL commands + */ + switch (opcode >> 28) { + case 0xf: + /* + * LOAD / STORE DSA relative, don't relocate. + */ + relocs = 0; + break; + case 0xe: + /* + * LOAD / STORE absolute. + */ + relocs = 1; + break; + case 0xc: + /* + * COPY has TWO arguments. + */ + relocs = 2; + tmp1 = cur[1]; + tmp2 = cur[2]; + if ((tmp1 ^ tmp2) & 3) { + printf ("%s: ERROR1 IN SCRIPT at %d.\n", + sym_name(np), (int) (cur-start)); + MDELAY (10000); + } + /* + * If PREFETCH feature not enabled, remove + * the NO FLUSH bit if present. + */ + if ((opcode & SCR_NO_FLUSH) && + !(np->features & FE_PFEN)) { + opcode = (opcode & ~SCR_NO_FLUSH); + } + break; + case 0x0: + /* + * MOVE/CHMOV (absolute address) + */ + if (!(np->features & FE_WIDE)) + opcode = (opcode | OPC_MOVE); + relocs = 1; + break; + case 0x1: + /* + * MOVE/CHMOV (table indirect) + */ + if (!(np->features & FE_WIDE)) + opcode = (opcode | OPC_MOVE); + relocs = 0; + break; + case 0x8: + /* + * JUMP / CALL + * dont't relocate if relative :-) + */ + if (opcode & 0x00800000) + relocs = 0; + else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ + relocs = 2; + else + relocs = 1; + break; + case 0x4: + case 0x5: + case 0x6: + case 0x7: + relocs = 1; + break; + default: + relocs = 0; + break; + }; + + /* + * Scriptify:) the opcode. + */ + *cur++ = cpu_to_scr(opcode); + + /* + * If no relocation, assume 1 argument + * and just scriptize:) it. + */ + if (!relocs) { + *cur = cpu_to_scr(*cur); + ++cur; + continue; + } + + /* + * Otherwise performs all needed relocations. + */ + while (relocs--) { + old = *cur; + + switch (old & RELOC_MASK) { + case RELOC_REGISTER: + new = (old & ~RELOC_MASK) + np->mmio_ba; + break; + case RELOC_LABEL_A: + new = (old & ~RELOC_MASK) + np->scripta_ba; + break; + case RELOC_LABEL_B: + new = (old & ~RELOC_MASK) + np->scriptb_ba; + break; + case RELOC_SOFTC: + new = (old & ~RELOC_MASK) + np->hcb_ba; + break; + case 0: + /* + * Don't relocate a 0 address. + * They are mostly used for patched or + * script self-modified areas. + */ + if (old == 0) { + new = old; + break; + } + /* fall through */ + default: + new = 0; + panic("sym_fw_bind_script: " + "weird relocation %x\n", old); + break; + } + + *cur++ = cpu_to_scr(new); + } + }; +} + +/*--------------------------------------------------------------------------*/ +/*--------------------------- END OF FIRMARES -----------------------------*/ +/*--------------------------------------------------------------------------*/ + +/* + * Function prototypes. + */ +static void sym_save_initial_setting (hcb_p np); +static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); +static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); +static void sym_put_start_queue (hcb_p np, ccb_p cp); +static void sym_chip_reset (hcb_p np); +static void sym_soft_reset (hcb_p np); +static void sym_start_reset (hcb_p np); +static int sym_reset_scsi_bus (hcb_p np, int enab_int); +static int sym_wakeup_done (hcb_p np); +static void sym_flush_busy_queue (hcb_p np, int cam_status); +static void sym_flush_comp_queue (hcb_p np, int cam_status); +static void sym_init (hcb_p np, int reason); +static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, + u_char *fakp); +static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, + u_char div, u_char fak); +static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); +static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak); +static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak); +static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); +static void sym_intr (void *arg); +static void sym_poll (struct cam_sim *sim); +static void sym_recover_scsi_int (hcb_p np, u_char hsts); +static void sym_int_sto (hcb_p np); +static void sym_int_udc (hcb_p np); +static void sym_int_sbmc (hcb_p np); +static void sym_int_par (hcb_p np, u_short sist); +static void sym_int_ma (hcb_p np); +static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, + int task); +static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); +static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); +static void sym_sir_task_recovery (hcb_p np, int num); +static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); +static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); +static int sym_compute_residual (hcb_p np, ccb_p cp); +static int sym_show_msg (u_char * msg); +static void sym_print_msg (ccb_p cp, char *label, u_char *msg); +static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_int_sir (hcb_p np); +static void sym_free_ccb (hcb_p np, ccb_p cp); +static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); +static ccb_p sym_alloc_ccb (hcb_p np); +static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); +static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); +static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); +static int sym_snooptest (hcb_p np); +static void sym_selectclock(hcb_p np, u_char scntl3); +static void sym_getclock (hcb_p np, int mult); +static int sym_getpciclock (hcb_p np); +static void sym_complete_ok (hcb_p np, ccb_p cp); +static void sym_complete_error (hcb_p np, ccb_p cp); +static void sym_timeout (void *arg); +static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); +static void sym_reset_dev (hcb_p np, union ccb *ccb); +static void sym_action (struct cam_sim *sim, union ccb *ccb); +static void sym_action1 (struct cam_sim *sim, union ccb *ccb); +static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); +static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, + ccb_p cp); +#ifdef FreeBSD_Bus_Dma_Abstraction +static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, + bus_dma_segment_t *psegs, int nsegs); +#else +static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, + vm_size_t len); +static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp, + bus_dma_segment_t *psegs, int nsegs); +static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr, + vm_size_t len); +#endif +static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, + bus_dma_segment_t *psegs, int nsegs); +static void sym_action2 (struct cam_sim *sim, union ccb *ccb); +static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, + struct ccb_trans_settings *cts); +static void sym_update_dflags(hcb_p np, u_char *flags, + struct ccb_trans_settings *cts); + +#ifdef FreeBSD_Bus_Io_Abstraction +static struct sym_pci_chip *sym_find_pci_chip (device_t dev); +static int sym_pci_probe (device_t dev); +static int sym_pci_attach (device_t dev); +#else +static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); +static const char *sym_pci_probe (pcici_t tag, pcidi_t type); +static void sym_pci_attach (pcici_t tag, int unit); +static int sym_pci_attach2 (pcici_t tag, int unit); +#endif + +static void sym_pci_free (hcb_p np); +static int sym_cam_attach (hcb_p np); +static void sym_cam_free (hcb_p np); + +static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); +static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); +static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); + +/* + * Print something which allows to retrieve the controler type, + * unit, target, lun concerned by a kernel message. + */ +static void PRINT_TARGET (hcb_p np, int target) +{ + printf ("%s:%d:", sym_name(np), target); +} + +static void PRINT_LUN(hcb_p np, int target, int lun) +{ + printf ("%s:%d:%d:", sym_name(np), target, lun); +} + +static void PRINT_ADDR (ccb_p cp) +{ + if (cp && cp->cam_ccb) + xpt_print_path(cp->cam_ccb->ccb_h.path); +} + +/* + * Take into account this ccb in the freeze count. + */ +static void sym_freeze_cam_ccb(union ccb *ccb) +{ + if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { + if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { + ccb->ccb_h.status |= CAM_DEV_QFRZN; + xpt_freeze_devq(ccb->ccb_h.path, 1); + } + } +} + +/* + * Set the status field of a CAM CCB. + */ +static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) +{ + ccb->ccb_h.status &= ~CAM_STATUS_MASK; + ccb->ccb_h.status |= status; +} + +/* + * Get the status field of a CAM CCB. + */ +static __inline int sym_get_cam_status(union ccb *ccb) +{ + return ccb->ccb_h.status & CAM_STATUS_MASK; +} + +/* + * Enqueue a CAM CCB. + */ +static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) +{ + assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); + ccb->ccb_h.status = CAM_REQ_INPROG; + + ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, + ccb->ccb_h.timeout*hz/1000); + ccb->ccb_h.status |= CAM_SIM_QUEUED; + ccb->ccb_h.sym_hcb_ptr = np; + + sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); +} + +/* + * Complete a pending CAM CCB. + */ +static void sym_xpt_done(hcb_p np, union ccb *ccb) +{ + if (ccb->ccb_h.status & CAM_SIM_QUEUED) { + untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); + sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); + ccb->ccb_h.status &= ~CAM_SIM_QUEUED; + ccb->ccb_h.sym_hcb_ptr = 0; + } + if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) + sym_freeze_cam_ccb(ccb); + xpt_done(ccb); +} + +static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) +{ + sym_set_cam_status(ccb, cam_status); + sym_xpt_done(np, ccb); +} + +/* + * SYMBIOS chip clock divisor table. + * + * Divisors are multiplied by 10,000,000 in order to make + * calculations more simple. + */ +#define _5M 5000000 +static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; + +/* + * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, + * 128 transfers. All chips support at least 16 transfers + * bursts. The 825A, 875 and 895 chips support bursts of up + * to 128 transfers and the 895A and 896 support bursts of up + * to 64 transfers. All other chips support up to 16 + * transfers bursts. + * + * For PCI 32 bit data transfers each transfer is a DWORD. + * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. + * + * We use log base 2 (burst length) as internal code, with + * value 0 meaning "burst disabled". + */ + +/* + * Burst length from burst code. + */ +#define burst_length(bc) (!(bc))? 0 : 1 << (bc) + +/* + * Burst code from io register bits. + */ +#define burst_code(dmode, ctest4, ctest5) \ + (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 + +/* + * Set initial io register bits from burst code. + */ +static __inline void sym_init_burst(hcb_p np, u_char bc) +{ + np->rv_ctest4 &= ~0x80; + np->rv_dmode &= ~(0x3 << 6); + np->rv_ctest5 &= ~0x4; + + if (!bc) { + np->rv_ctest4 |= 0x80; + } + else { + --bc; + np->rv_dmode |= ((bc & 0x3) << 6); + np->rv_ctest5 |= (bc & 0x4); + } +} + + +/* + * Print out the list of targets that have some flag disabled by user. + */ +static void sym_print_targets_flag(hcb_p np, int mask, char *msg) +{ + int cnt; + int i; + + for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + if (i == np->myaddr) + continue; + if (np->target[i].usrflags & mask) { + if (!cnt++) + printf("%s: %s disabled for targets", + sym_name(np), msg); + printf(" %d", i); + } + } + if (cnt) + printf(".\n"); +} + +/* + * Save initial settings of some IO registers. + * Assumed to have been set by BIOS. + * We cannot reset the chip prior to reading the + * IO registers, since informations will be lost. + * Since the SCRIPTS processor may be running, this + * is not safe on paper, but it seems to work quite + * well. :) + */ +static void sym_save_initial_setting (hcb_p np) +{ + np->sv_scntl0 = INB(nc_scntl0) & 0x0a; + np->sv_scntl3 = INB(nc_scntl3) & 0x07; + np->sv_dmode = INB(nc_dmode) & 0xce; + np->sv_dcntl = INB(nc_dcntl) & 0xa8; + np->sv_ctest3 = INB(nc_ctest3) & 0x01; + np->sv_ctest4 = INB(nc_ctest4) & 0x80; + np->sv_gpcntl = INB(nc_gpcntl); + np->sv_stest1 = INB(nc_stest1); + np->sv_stest2 = INB(nc_stest2) & 0x20; + np->sv_stest4 = INB(nc_stest4); + if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ + np->sv_scntl4 = INB(nc_scntl4); + np->sv_ctest5 = INB(nc_ctest5) & 0x04; + } + else + np->sv_ctest5 = INB(nc_ctest5) & 0x24; +} + +/* + * Prepare io register values used by sym_init() according + * to selected and supported features. + */ +static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) +{ + u_char burst_max; + u32 period; + int i; + + /* + * Wide ? + */ + np->maxwide = (np->features & FE_WIDE)? 1 : 0; + + /* + * Get the frequency of the chip's clock. + */ + if (np->features & FE_QUAD) + np->multiplier = 4; + else if (np->features & FE_DBLR) + np->multiplier = 2; + else + np->multiplier = 1; + + np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; + np->clock_khz *= np->multiplier; + + if (np->clock_khz != 40000) + sym_getclock(np, np->multiplier); + + /* + * Divisor to be used for async (timer pre-scaler). + */ + i = np->clock_divn - 1; + while (--i >= 0) { + if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { + ++i; + break; + } + } + np->rv_scntl3 = i+1; + + /* + * The C1010 uses hardwired divisors for async. + * So, we just throw away, the async. divisor.:-) + */ + if (np->features & FE_C10) + np->rv_scntl3 = 0; + + /* + * Minimum synchronous period factor supported by the chip. + * Btw, 'period' is in tenths of nanoseconds. + */ + period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; + if (period <= 250) np->minsync = 10; + else if (period <= 303) np->minsync = 11; + else if (period <= 500) np->minsync = 12; + else np->minsync = (period + 40 - 1) / 40; + + /* + * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). + */ + if (np->minsync < 25 && + !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) + np->minsync = 25; + else if (np->minsync < 12 && + !(np->features & (FE_ULTRA2|FE_ULTRA3))) + np->minsync = 12; + + /* + * Maximum synchronous period factor supported by the chip. + */ + period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); + np->maxsync = period > 2540 ? 254 : period / 10; + + /* + * If chip is a C1010, guess the sync limits in DT mode. + */ + if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { + if (np->clock_khz == 160000) { + np->minsync_dt = 9; + np->maxsync_dt = 50; + np->maxoffs_dt = 62; + } + } + + /* + * 64 bit addressing (895A/896/1010) ? + */ + if (np->features & FE_DAC) +#if BITS_PER_LONG > 32 + np->rv_ccntl1 |= (XTIMOD | EXTIBMV); +#else + np->rv_ccntl1 |= (DDAC); +#endif + + /* + * Phase mismatch handled by SCRIPTS (895A/896/1010) ? + */ + if (np->features & FE_NOPM) + np->rv_ccntl0 |= (ENPMJ); + + /* + * C1010 Errata. + * In dual channel mode, contention occurs if internal cycles + * are used. Disable internal cycles. + */ + if (np->device_id == PCI_ID_LSI53C1010 && + np->revision_id < 0x2) + np->rv_ccntl0 |= DILS; + + /* + * Select burst length (dwords) + */ + burst_max = SYM_SETUP_BURST_ORDER; + if (burst_max == 255) + burst_max = burst_code(np->sv_dmode, np->sv_ctest4, + np->sv_ctest5); + if (burst_max > 7) + burst_max = 7; + if (burst_max > np->maxburst) + burst_max = np->maxburst; + + /* + * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. + * This chip and the 860 Rev 1 may wrongly use PCI cache line + * based transactions on LOAD/STORE instructions. So we have + * to prevent these chips from using such PCI transactions in + * this driver. The generic ncr driver that does not use + * LOAD/STORE instructions does not need this work-around. + */ + if ((np->device_id == PCI_ID_SYM53C810 && + np->revision_id >= 0x10 && np->revision_id <= 0x11) || + (np->device_id == PCI_ID_SYM53C860 && + np->revision_id <= 0x1)) + np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); + + /* + * Select all supported special features. + * If we are using on-board RAM for scripts, prefetch (PFEN) + * does not help, but burst op fetch (BOF) does. + * Disabling PFEN makes sure BOF will be used. + */ + if (np->features & FE_ERL) + np->rv_dmode |= ERL; /* Enable Read Line */ + if (np->features & FE_BOF) + np->rv_dmode |= BOF; /* Burst Opcode Fetch */ + if (np->features & FE_ERMP) + np->rv_dmode |= ERMP; /* Enable Read Multiple */ +#if 1 + if ((np->features & FE_PFEN) && !np->ram_ba) +#else + if (np->features & FE_PFEN) +#endif + np->rv_dcntl |= PFEN; /* Prefetch Enable */ + if (np->features & FE_CLSE) + np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ + if (np->features & FE_WRIE) + np->rv_ctest3 |= WRIE; /* Write and Invalidate */ + if (np->features & FE_DFS) + np->rv_ctest5 |= DFS; /* Dma Fifo Size */ + + /* + * Select some other + */ + if (SYM_SETUP_PCI_PARITY) + np->rv_ctest4 |= MPEE; /* Master parity checking */ + if (SYM_SETUP_SCSI_PARITY) + np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ + + /* + * Get parity checking, host ID and verbose mode from NVRAM + */ + np->myaddr = 255; + sym_nvram_setup_host (np, nvram); + + /* + * Get SCSI addr of host adapter (set by bios?). + */ + if (np->myaddr == 255) { + np->myaddr = INB(nc_scid) & 0x07; + if (!np->myaddr) + np->myaddr = SYM_SETUP_HOST_ID; + } + + /* + * Prepare initial io register bits for burst length + */ + sym_init_burst(np, burst_max); + + /* + * Set SCSI BUS mode. + * - LVD capable chips (895/895A/896/1010) report the + * current BUS mode through the STEST4 IO register. + * - For previous generation chips (825/825A/875), + * user has to tell us how to check against HVD, + * since a 100% safe algorithm is not possible. + */ + np->scsi_mode = SMODE_SE; + if (np->features & (FE_ULTRA2|FE_ULTRA3)) + np->scsi_mode = (np->sv_stest4 & SMODE); + else if (np->features & FE_DIFF) { + if (SYM_SETUP_SCSI_DIFF == 1) { + if (np->sv_scntl3) { + if (np->sv_stest2 & 0x20) + np->scsi_mode = SMODE_HVD; + } + else if (nvram->type == SYM_SYMBIOS_NVRAM) { + if (!(INB(nc_gpreg) & 0x08)) + np->scsi_mode = SMODE_HVD; + } + } + else if (SYM_SETUP_SCSI_DIFF == 2) + np->scsi_mode = SMODE_HVD; + } + if (np->scsi_mode == SMODE_HVD) + np->rv_stest2 |= 0x20; + + /* + * Set LED support from SCRIPTS. + * Ignore this feature for boards known to use a + * specific GPIO wiring and for the 895A, 896 + * and 1010 that drive the LED directly. + */ + if ((SYM_SETUP_SCSI_LED || + (nvram->type == SYM_SYMBIOS_NVRAM || + (nvram->type == SYM_TEKRAM_NVRAM && + np->device_id == PCI_ID_SYM53C895))) && + !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) + np->features |= FE_LED0; + + /* + * Set irq mode. + */ + switch(SYM_SETUP_IRQ_MODE & 3) { + case 2: + np->rv_dcntl |= IRQM; + break; + case 1: + np->rv_dcntl |= (np->sv_dcntl & IRQM); + break; + default: + break; + } + + /* + * Configure targets according to driver setup. + * If NVRAM present get targets setup from NVRAM. + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + tcb_p tp = &np->target[i]; + +#ifdef FreeBSD_New_Tran_Settings + tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; + tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; +#endif + tp->tinfo.user.period = np->minsync; + tp->tinfo.user.offset = np->maxoffs; + tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; + tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + tp->usrtags = SYM_SETUP_MAX_TAG; + + sym_nvram_setup_target (np, i, nvram); + + /* + * For now, guess PPR/DT support from the period + * and BUS width. + */ + if (np->features & FE_ULTRA3) { + if (tp->tinfo.user.period <= 9 && + tp->tinfo.user.width == BUS_16_BIT) { + tp->tinfo.user.options |= PPR_OPT_DT; + tp->tinfo.user.offset = np->maxoffs_dt; +#ifdef FreeBSD_New_Tran_Settings + tp->tinfo.user.spi_version = 3; +#endif + } + } + + if (!tp->usrtags) + tp->usrflags &= ~SYM_TAGS_ENABLED; + } + + /* + * Let user know about the settings. + */ + i = nvram->type; + printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), + i == SYM_SYMBIOS_NVRAM ? "Symbios" : + (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), + np->myaddr, + (np->features & FE_ULTRA3) ? 80 : + (np->features & FE_ULTRA2) ? 40 : + (np->features & FE_ULTRA) ? 20 : 10, + sym_scsi_bus_mode(np->scsi_mode), + (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); + /* + * Tell him more on demand. + */ + if (sym_verbose) { + printf("%s: %s IRQ line driver%s\n", + sym_name(np), + np->rv_dcntl & IRQM ? "totem pole" : "open drain", + np->ram_ba ? ", using on-chip SRAM" : ""); + printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); + if (np->features & FE_NOPM) + printf("%s: handling phase mismatch from SCRIPTS.\n", + sym_name(np)); + } + /* + * And still more. + */ + if (sym_verbose > 1) { + printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, + np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); + + printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, + np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); + } + /* + * Let user be aware of targets that have some disable flags set. + */ + sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); + if (sym_verbose) + sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, + "SCAN FOR LUNS"); + + return 0; +} + +/* + * Prepare the next negotiation message if needed. + * + * Fill in the part of message buffer that contains the + * negotiation and the nego_status field of the CCB. + * Returns the size of the message in bytes. + */ + +static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) +{ + tcb_p tp = &np->target[cp->target]; + int msglen = 0; + + /* + * Early C1010 chips need a work-around for DT + * data transfer to work. + */ + if (!(np->features & FE_U3EN)) + tp->tinfo.goal.options = 0; + /* + * negotiate using PPR ? + */ + if (tp->tinfo.goal.options & PPR_OPT_MASK) + nego = NS_PPR; + /* + * negotiate wide transfers ? + */ + else if (tp->tinfo.current.width != tp->tinfo.goal.width) + nego = NS_WIDE; + /* + * negotiate synchronous transfers? + */ + else if (tp->tinfo.current.period != tp->tinfo.goal.period || + tp->tinfo.current.offset != tp->tinfo.goal.offset) + nego = NS_SYNC; + + switch (nego) { + case NS_SYNC: + msgptr[msglen++] = M_EXTENDED; + msgptr[msglen++] = 3; + msgptr[msglen++] = M_X_SYNC_REQ; + msgptr[msglen++] = tp->tinfo.goal.period; + msgptr[msglen++] = tp->tinfo.goal.offset; + break; + case NS_WIDE: + msgptr[msglen++] = M_EXTENDED; + msgptr[msglen++] = 2; + msgptr[msglen++] = M_X_WIDE_REQ; + msgptr[msglen++] = tp->tinfo.goal.width; + break; + case NS_PPR: + msgptr[msglen++] = M_EXTENDED; + msgptr[msglen++] = 6; + msgptr[msglen++] = M_X_PPR_REQ; + msgptr[msglen++] = tp->tinfo.goal.period; + msgptr[msglen++] = 0; + msgptr[msglen++] = tp->tinfo.goal.offset; + msgptr[msglen++] = tp->tinfo.goal.width; + msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; + break; + }; + + cp->nego_status = nego; + + if (nego) { + tp->nego_cp = cp; /* Keep track a nego will be performed */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : + nego == NS_WIDE ? "wide msgout" : + "ppr msgout", msgptr); + }; + }; + + return msglen; +} + +/* + * Insert a job into the start queue. + */ +static void sym_put_start_queue(hcb_p np, ccb_p cp) +{ + u_short qidx; + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If the previously queued CCB is not yet done, + * set the IARB hint. The SCRIPTS will go with IARB + * for this job when starting the previous one. + * We leave devices a chance to win arbitration by + * not using more than 'iarb_max' consecutive + * immediate arbitrations. + */ + if (np->last_cp && np->iarb_count < np->iarb_max) { + np->last_cp->host_flags |= HF_HINT_IARB; + ++np->iarb_count; + } + else + np->iarb_count = 0; + np->last_cp = cp; +#endif + + /* + * Insert first the idle task and then our job. + * The MB should ensure proper ordering. + */ + qidx = np->squeueput + 2; + if (qidx >= MAX_QUEUE*2) qidx = 0; + + np->squeue [qidx] = cpu_to_scr(np->idletask_ba); + MEMORY_BARRIER(); + np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); + + np->squeueput = qidx; + + if (DEBUG_FLAGS & DEBUG_QUEUE) + printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); + + /* + * Script processor may be waiting for reselect. + * Wake it up. + */ + MEMORY_BARRIER(); + OUTB (nc_istat, SIGP|np->istat_sem); +} + + +/* + * Soft reset the chip. + * + * Raising SRST when the chip is running may cause + * problems on dual function chips (see below). + * On the other hand, LVD devices need some delay + * to settle and report actual BUS mode in STEST4. + */ +static void sym_chip_reset (hcb_p np) +{ + OUTB (nc_istat, SRST); + UDELAY (10); + OUTB (nc_istat, 0); + UDELAY(2000); /* For BUS MODE to settle */ +} + +/* + * Soft reset the chip. + * + * Some 896 and 876 chip revisions may hang-up if we set + * the SRST (soft reset) bit at the wrong time when SCRIPTS + * are running. + * So, we need to abort the current operation prior to + * soft resetting the chip. + */ +static void sym_soft_reset (hcb_p np) +{ + u_char istat; + int i; + + OUTB (nc_istat, CABRT); + for (i = 1000000 ; i ; --i) { + istat = INB (nc_istat); + if (istat & SIP) { + INW (nc_sist); + continue; + } + if (istat & DIP) { + OUTB (nc_istat, 0); + INB (nc_dstat); + break; + } + } + if (!i) + printf("%s: unable to abort current chip operation.\n", + sym_name(np)); + sym_chip_reset (np); +} + +/* + * Start reset process. + * + * The interrupt handler will reinitialize the chip. + */ +static void sym_start_reset(hcb_p np) +{ + (void) sym_reset_scsi_bus(np, 1); +} + +static int sym_reset_scsi_bus(hcb_p np, int enab_int) +{ + u32 term; + int retv = 0; + + sym_soft_reset(np); /* Soft reset the chip */ + if (enab_int) + OUTW (nc_sien, RST); + /* + * Enable Tolerant, reset IRQD if present and + * properly set IRQ mode, prior to resetting the bus. + */ + OUTB (nc_stest3, TE); + OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); + OUTB (nc_scntl1, CRST); + UDELAY (200); + + if (!SYM_SETUP_SCSI_BUS_CHECK) + goto out; + /* + * Check for no terminators or SCSI bus shorts to ground. + * Read SCSI data bus, data parity bits and control signals. + * We are expecting RESET to be TRUE and other signals to be + * FALSE. + */ + term = INB(nc_sstat0); + term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ + term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ + ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ + ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ + INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ + + if (!(np->features & FE_WIDE)) + term &= 0x3ffff; + + if (term != (2<<7)) { + printf("%s: suspicious SCSI data while resetting the BUS.\n", + sym_name(np)); + printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " + "0x%lx, expecting 0x%lx\n", + sym_name(np), + (np->features & FE_WIDE) ? "dp1,d15-8," : "", + (u_long)term, (u_long)(2<<7)); + if (SYM_SETUP_SCSI_BUS_CHECK == 1) + retv = 1; + } +out: + OUTB (nc_scntl1, 0); + /* MDELAY(100); */ + return retv; +} + +/* + * The chip may have completed jobs. Look at the DONE QUEUE. + * + * On architectures that may reorder LOAD/STORE operations, + * a memory barrier may be needed after the reading of the + * so-called `flag' and prior to dealing with the data. + */ +static int sym_wakeup_done (hcb_p np) +{ + ccb_p cp; + int i, n; + u32 dsa; + + n = 0; + i = np->dqueueget; + while (1) { + dsa = scr_to_cpu(np->dqueue[i]); + if (!dsa) + break; + np->dqueue[i] = 0; + if ((i = i+2) >= MAX_QUEUE*2) + i = 0; + + cp = sym_ccb_from_dsa(np, dsa); + if (cp) { + MEMORY_BARRIER(); + sym_complete_ok (np, cp); + ++n; + } + else + printf ("%s: bad DSA (%x) in done queue.\n", + sym_name(np), (u_int) dsa); + } + np->dqueueget = i; + + return n; +} + +/* + * Complete all active CCBs with error. + * Used on CHIP/SCSI RESET. + */ +static void sym_flush_busy_queue (hcb_p np, int cam_status) +{ + /* + * Move all active CCBs to the COMP queue + * and flush this queue. + */ + sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); + sym_que_init(&np->busy_ccbq); + sym_flush_comp_queue(np, cam_status); +} + +/* + * Start chip. + * + * 'reason' means: + * 0: initialisation. + * 1: SCSI BUS RESET delivered or received. + * 2: SCSI BUS MODE changed. + */ +static void sym_init (hcb_p np, int reason) +{ + int i; + u32 phys; + + /* + * Reset chip if asked, otherwise just clear fifos. + */ + if (reason == 1) + sym_soft_reset(np); + else { + OUTB (nc_stest3, TE|CSF); + OUTONB (nc_ctest3, CLF); + } + + /* + * Clear Start Queue + */ + phys = np->squeue_ba; + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->squeue[i] = cpu_to_scr(np->idletask_ba); + np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->squeueput = 0; + + /* + * Clear Done Queue + */ + phys = np->dqueue_ba; + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->dqueue[i] = 0; + np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->dqueueget = 0; + + /* + * Install patches in scripts. + * This also let point to first position the start + * and done queue pointers used from SCRIPTS. + */ + np->fw_patch(np); + + /* + * Wakeup all pending jobs. + */ + sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); + + /* + * Init chip. + */ + OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ + UDELAY (2000); /* The 895 needs time for the bus mode to settle */ + + OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); + /* full arb., ena parity, par->ATN */ + OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ + + sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ + + OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ + OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ + OUTB (nc_istat , SIGP ); /* Signal Process */ + OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ + OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ + + OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ + OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ + OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ + + /* Extended Sreq/Sack filtering not supported on the C10 */ + if (np->features & FE_C10) + OUTB (nc_stest2, np->rv_stest2); + else + OUTB (nc_stest2, EXT|np->rv_stest2); + + OUTB (nc_stest3, TE); /* TolerANT enable */ + OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ + + /* + * For now, disable AIP generation on C1010-66. + */ + if (np->device_id == PCI_ID_LSI53C1010_2) + OUTB (nc_aipcntl1, DISAIP); + + /* + * C10101 Errata. + * Errant SGE's when in narrow. Write bits 4 & 5 of + * STEST1 register to disable SGE. We probably should do + * that from SCRIPTS for each selection/reselection, but + * I just don't want. :) + */ + if (np->device_id == PCI_ID_LSI53C1010 && + /* np->revision_id < 0xff */ 1) + OUTB (nc_stest1, INB(nc_stest1) | 0x30); + + /* + * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. + * Disable overlapped arbitration for some dual function devices, + * regardless revision id (kind of post-chip-design feature. ;-)) + */ + if (np->device_id == PCI_ID_SYM53C875) + OUTB (nc_ctest0, (1<<5)); + else if (np->device_id == PCI_ID_SYM53C896) + np->rv_ccntl0 |= DPR; + + /* + * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing + * and/or hardware phase mismatch, since only such chips + * seem to support those IO registers. + */ + if (np->features & (FE_DAC|FE_NOPM)) { + OUTB (nc_ccntl0, np->rv_ccntl0); + OUTB (nc_ccntl1, np->rv_ccntl1); + } + + /* + * If phase mismatch handled by scripts (895A/896/1010), + * set PM jump addresses. + */ + if (np->features & FE_NOPM) { + OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); + OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); + } + + /* + * Enable GPIO0 pin for writing if LED support from SCRIPTS. + * Also set GPIO5 and clear GPIO6 if hardware LED control. + */ + if (np->features & FE_LED0) + OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); + else if (np->features & FE_LEDC) + OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); + + /* + * enable ints + */ + OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); + OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); + + /* + * For 895/6 enable SBMC interrupt and save current SCSI bus mode. + * Try to eat the spurious SBMC interrupt that may occur when + * we reset the chip but not the SCSI BUS (at initialization). + */ + if (np->features & (FE_ULTRA2|FE_ULTRA3)) { + OUTONW (nc_sien, SBMC); + if (reason == 0) { + MDELAY(100); + INW (nc_sist); + } + np->scsi_mode = INB (nc_stest4) & SMODE; + } + + /* + * Fill in target structure. + * Reinitialize usrsync. + * Reinitialize usrwide. + * Prepare sync negotiation according to actual SCSI bus mode. + */ + for (i=0;i<SYM_CONF_MAX_TARGET;i++) { + tcb_p tp = &np->target[i]; + + tp->to_reset = 0; + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + + tp->tinfo.current.period = 0; + tp->tinfo.current.offset = 0; + tp->tinfo.current.width = BUS_8_BIT; + tp->tinfo.current.options = 0; + } + + /* + * Download SCSI SCRIPTS to on-chip RAM if present, + * and start script processor. + */ + if (np->ram_ba) { + if (sym_verbose > 1) + printf ("%s: Downloading SCSI SCRIPTS.\n", + sym_name(np)); + if (np->ram_ws == 8192) { + OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); + OUTL (nc_mmws, np->scr_ram_seg); + OUTL (nc_mmrs, np->scr_ram_seg); + OUTL (nc_sfs, np->scr_ram_seg); + phys = SCRIPTB_BA (np, start64); + } + else + phys = SCRIPTA_BA (np, init); + OUTRAM_OFF(0, np->scripta0, np->scripta_sz); + } + else + phys = SCRIPTA_BA (np, init); + + np->istat_sem = 0; + + OUTL (nc_dsa, np->hcb_ba); + OUTL_DSP (phys); + + /* + * Notify the XPT about the RESET condition. + */ + if (reason != 0) + xpt_async(AC_BUS_RESET, np->path, NULL); +} + +/* + * Get clock factor and sync divisor for a given + * synchronous factor period. + */ +static int +sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) +{ + u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ + int div = np->clock_divn; /* Number of divisors supported */ + u32 fak; /* Sync factor in sxfer */ + u32 per; /* Period in tenths of ns */ + u32 kpc; /* (per * clk) */ + int ret; + + /* + * Compute the synchronous period in tenths of nano-seconds + */ + if (dt && sfac <= 9) per = 125; + else if (sfac <= 10) per = 250; + else if (sfac == 11) per = 303; + else if (sfac == 12) per = 500; + else per = 40 * sfac; + ret = per; + + kpc = per * clk; + if (dt) + kpc <<= 1; + + /* + * For earliest C10 revision 0, we cannot use extra + * clocks for the setting of the SCSI clocking. + * Note that this limits the lowest sync data transfer + * to 5 Mega-transfers per second and may result in + * using higher clock divisors. + */ +#if 1 + if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { + /* + * Look for the lowest clock divisor that allows an + * output speed not faster than the period. + */ + while (div > 0) { + --div; + if (kpc > (div_10M[div] << 2)) { + ++div; + break; + } + } + fak = 0; /* No extra clocks */ + if (div == np->clock_divn) { /* Are we too fast ? */ + ret = -1; + } + *divp = div; + *fakp = fak; + return ret; + } +#endif + + /* + * Look for the greatest clock divisor that allows an + * input speed faster than the period. + */ + while (div-- > 0) + if (kpc >= (div_10M[div] << 2)) break; + + /* + * Calculate the lowest clock factor that allows an output + * speed not faster than the period, and the max output speed. + * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. + * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. + */ + if (dt) { + fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; + /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ + } + else { + fak = (kpc - 1) / div_10M[div] + 1 - 4; + /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ + } + + /* + * Check against our hardware limits, or bugs :). + */ + if (fak < 0) {fak = 0; ret = -1;} + if (fak > 2) {fak = 2; ret = -1;} + + /* + * Compute and return sync parameters. + */ + *divp = div; + *fakp = fak; + + return ret; +} + +/* + * Tell the SCSI layer about the new transfer parameters. + */ +static void +sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) +{ + struct ccb_trans_settings cts; + struct cam_path *path; + int sts; + tcb_p tp = &np->target[target]; + + sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, + CAM_LUN_WILDCARD); + if (sts != CAM_REQ_CMP) + return; + + bzero(&cts, sizeof(cts)); + +#ifdef FreeBSD_New_Tran_Settings +#define cts__scsi (cts.proto_specific.scsi) +#define cts__spi (cts.xport_specific.spi) + + cts.type = CTS_TYPE_CURRENT_SETTINGS; + cts.protocol = PROTO_SCSI; + cts.transport = XPORT_SPI; + cts.protocol_version = tp->tinfo.current.scsi_version; + cts.transport_version = tp->tinfo.current.spi_version; + + cts__spi.valid = spi_valid; + if (spi_valid & CTS_SPI_VALID_SYNC_RATE) + cts__spi.sync_period = tp->tinfo.current.period; + if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) + cts__spi.sync_offset = tp->tinfo.current.offset; + if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) + cts__spi.bus_width = tp->tinfo.current.width; + if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) + cts__spi.ppr_options = tp->tinfo.current.options; +#undef cts__spi +#undef cts__scsi +#else + cts.valid = spi_valid; + if (spi_valid & CCB_TRANS_SYNC_RATE_VALID) + cts.sync_period = tp->tinfo.current.period; + if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID) + cts.sync_offset = tp->tinfo.current.offset; + if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID) + cts.bus_width = tp->tinfo.current.width; +#endif + xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); + xpt_async(AC_TRANSFER_NEG, path, &cts); + xpt_free_path(path); +} + +#ifdef FreeBSD_New_Tran_Settings +#define SYM_SPI_VALID_WDTR \ + CTS_SPI_VALID_BUS_WIDTH | \ + CTS_SPI_VALID_SYNC_RATE | \ + CTS_SPI_VALID_SYNC_OFFSET +#define SYM_SPI_VALID_SDTR \ + CTS_SPI_VALID_SYNC_RATE | \ + CTS_SPI_VALID_SYNC_OFFSET +#define SYM_SPI_VALID_PPR \ + CTS_SPI_VALID_PPR_OPTIONS | \ + CTS_SPI_VALID_BUS_WIDTH | \ + CTS_SPI_VALID_SYNC_RATE | \ + CTS_SPI_VALID_SYNC_OFFSET +#else +#define SYM_SPI_VALID_WDTR \ + CCB_TRANS_BUS_WIDTH_VALID | \ + CCB_TRANS_SYNC_RATE_VALID | \ + CCB_TRANS_SYNC_OFFSET_VALID +#define SYM_SPI_VALID_SDTR \ + CCB_TRANS_SYNC_RATE_VALID | \ + CCB_TRANS_SYNC_OFFSET_VALID +#define SYM_SPI_VALID_PPR \ + CCB_TRANS_BUS_WIDTH_VALID | \ + CCB_TRANS_SYNC_RATE_VALID | \ + CCB_TRANS_SYNC_OFFSET_VALID +#endif + +/* + * We received a WDTR. + * Let everything be aware of the changes. + */ +static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) +{ + tcb_p tp = &np->target[cp->target]; + + sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); + + /* + * Tell the SCSI layer about the new transfer parameters. + */ + tp->tinfo.goal.width = tp->tinfo.current.width = wide; + tp->tinfo.current.offset = 0; + tp->tinfo.current.period = 0; + tp->tinfo.current.options = 0; + + sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); +} + +/* + * We received a SDTR. + * Let everything be aware of the changes. + */ +static void +sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) +{ + tcb_p tp = &np->target[cp->target]; + u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; + + sym_settrans(np, cp, 0, ofs, per, wide, div, fak); + + /* + * Tell the SCSI layer about the new transfer parameters. + */ + tp->tinfo.goal.period = tp->tinfo.current.period = per; + tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; + tp->tinfo.goal.options = tp->tinfo.current.options = 0; + + sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); +} + +/* + * We received a PPR. + * Let everything be aware of the changes. + */ +static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + tcb_p tp = &np->target[cp->target]; + + sym_settrans(np, cp, dt, ofs, per, wide, div, fak); + + /* + * Tell the SCSI layer about the new transfer parameters. + */ + tp->tinfo.goal.width = tp->tinfo.current.width = wide; + tp->tinfo.goal.period = tp->tinfo.current.period = per; + tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; + tp->tinfo.goal.options = tp->tinfo.current.options = dt; + + sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); +} + +/* + * Switch trans mode for current job and it's target. + */ +static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + SYM_QUEHEAD *qp; + union ccb *ccb; + tcb_p tp; + u_char target = INB (nc_sdid) & 0x0f; + u_char sval, wval, uval; + + assert (cp); + if (!cp) return; + ccb = cp->cam_ccb; + assert (ccb); + if (!ccb) return; + assert (target == (cp->target & 0xf)); + tp = &np->target[target]; + + sval = tp->head.sval; + wval = tp->head.wval; + uval = tp->head.uval; + +#if 0 + printf("XXXX sval=%x wval=%x uval=%x (%x)\n", + sval, wval, uval, np->rv_scntl3); +#endif + /* + * Set the offset. + */ + if (!(np->features & FE_C10)) + sval = (sval & ~0x1f) | ofs; + else + sval = (sval & ~0x3f) | ofs; + + /* + * Set the sync divisor and extra clock factor. + */ + if (ofs != 0) { + wval = (wval & ~0x70) | ((div+1) << 4); + if (!(np->features & FE_C10)) + sval = (sval & ~0xe0) | (fak << 5); + else { + uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); + if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); + if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); + } + } + + /* + * Set the bus width. + */ + wval = wval & ~EWS; + if (wide != 0) + wval |= EWS; + + /* + * Set misc. ultra enable bits. + */ + if (np->features & FE_C10) { + uval = uval & ~(U3EN|AIPCKEN); + if (dt) { + assert(np->features & FE_U3EN); + uval |= U3EN; + } + } + else { + wval = wval & ~ULTRA; + if (per <= 12) wval |= ULTRA; + } + + /* + * Stop there if sync parameters are unchanged. + */ + if (tp->head.sval == sval && + tp->head.wval == wval && + tp->head.uval == uval) + return; + tp->head.sval = sval; + tp->head.wval = wval; + tp->head.uval = uval; + + /* + * Disable extended Sreq/Sack filtering if per < 50. + * Not supported on the C1010. + */ + if (per < 50 && !(np->features & FE_C10)) + OUTOFFB (nc_stest2, EXT); + + /* + * set actual value and sync_status + */ + OUTB (nc_sxfer, tp->head.sval); + OUTB (nc_scntl3, tp->head.wval); + + if (np->features & FE_C10) { + OUTB (nc_scntl4, tp->head.uval); + } + + /* + * patch ALL busy ccbs of this target. + */ + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->target != target) + continue; + cp->phys.select.sel_scntl3 = tp->head.wval; + cp->phys.select.sel_sxfer = tp->head.sval; + if (np->features & FE_C10) { + cp->phys.select.sel_scntl4 = tp->head.uval; + } + } +} + +/* + * log message for real hard errors + * + * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). + * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. + * + * exception register: + * ds: dstat + * si: sist + * + * SCSI bus lines: + * so: control lines as driven by chip. + * si: control lines as seen by chip. + * sd: scsi data lines as seen by chip. + * + * wide/fastmode: + * sxfer: (see the manual) + * scntl3: (see the manual) + * + * current script command: + * dsp: script address (relative to start of script). + * dbc: first word of script command. + * + * First 24 register of the chip: + * r0..rf + */ +static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) +{ + u32 dsp; + int script_ofs; + int script_size; + char *script_name; + u_char *script_base; + int i; + + dsp = INL (nc_dsp); + + if (dsp > np->scripta_ba && + dsp <= np->scripta_ba + np->scripta_sz) { + script_ofs = dsp - np->scripta_ba; + script_size = np->scripta_sz; + script_base = (u_char *) np->scripta0; + script_name = "scripta"; + } + else if (np->scriptb_ba < dsp && + dsp <= np->scriptb_ba + np->scriptb_sz) { + script_ofs = dsp - np->scriptb_ba; + script_size = np->scriptb_sz; + script_base = (u_char *) np->scriptb0; + script_name = "scriptb"; + } else { + script_ofs = dsp; + script_size = 0; + script_base = 0; + script_name = "mem"; + } + + printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", + sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, + (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), + (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), + (unsigned)INB (nc_scntl3), script_name, script_ofs, + (unsigned)INL (nc_dbc)); + + if (((script_ofs & 3) == 0) && + (unsigned)script_ofs < script_size) { + printf ("%s: script cmd = %08x\n", sym_name(np), + scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); + } + + printf ("%s: regdump:", sym_name(np)); + for (i=0; i<24;i++) + printf (" %02x", (unsigned)INB_OFF(i)); + printf (".\n"); + + /* + * PCI BUS error, read the PCI ststus register. + */ + if (dstat & (MDPE|BF)) { + u_short pci_sts; +#ifdef FreeBSD_Bus_Io_Abstraction + pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); +#else + pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); +#endif + if (pci_sts & 0xf900) { +#ifdef FreeBSD_Bus_Io_Abstraction + pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); +#else + pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); +#endif + printf("%s: PCI STATUS = 0x%04x\n", + sym_name(np), pci_sts & 0xf900); + } + } +} + +/* + * chip interrupt handler + * + * In normal situations, interrupt conditions occur one at + * a time. But when something bad happens on the SCSI BUS, + * the chip may raise several interrupt flags before + * stopping and interrupting the CPU. The additionnal + * interrupt flags are stacked in some extra registers + * after the SIP and/or DIP flag has been raised in the + * ISTAT. After the CPU has read the interrupt condition + * flag from SIST or DSTAT, the chip unstacks the other + * interrupt flags and sets the corresponding bits in + * SIST or DSTAT. Since the chip starts stacking once the + * SIP or DIP flag is set, there is a small window of time + * where the stacking does not occur. + * + * Typically, multiple interrupt conditions may happen in + * the following situations: + * + * - SCSI parity error + Phase mismatch (PAR|MA) + * When an parity error is detected in input phase + * and the device switches to msg-in phase inside a + * block MOV. + * - SCSI parity error + Unexpected disconnect (PAR|UDC) + * When a stupid device does not want to handle the + * recovery of an SCSI parity error. + * - Some combinations of STO, PAR, UDC, ... + * When using non compliant SCSI stuff, when user is + * doing non compliant hot tampering on the BUS, when + * something really bad happens to a device, etc ... + * + * The heuristic suggested by SYMBIOS to handle + * multiple interrupts is to try unstacking all + * interrupts conditions and to handle them on some + * priority based on error severity. + * This will work when the unstacking has been + * successful, but we cannot be 100 % sure of that, + * since the CPU may have been faster to unstack than + * the chip is able to stack. Hmmm ... But it seems that + * such a situation is very unlikely to happen. + * + * If this happen, for example STO caught by the CPU + * then UDC happenning before the CPU have restarted + * the SCRIPTS, the driver may wrongly complete the + * same command on UDC, since the SCRIPTS didn't restart + * and the DSA still points to the same command. + * We avoid this situation by setting the DSA to an + * invalid value when the CCB is completed and before + * restarting the SCRIPTS. + * + * Another issue is that we need some section of our + * recovery procedures to be somehow uninterruptible but + * the SCRIPTS processor does not provides such a + * feature. For this reason, we handle recovery preferently + * from the C code and check against some SCRIPTS critical + * sections from the C code. + * + * Hopefully, the interrupt handling of the driver is now + * able to resist to weird BUS error conditions, but donnot + * ask me for any guarantee that it will never fail. :-) + * Use at your own decision and risk. + */ + +static void sym_intr1 (hcb_p np) +{ + u_char istat, istatc; + u_char dstat; + u_short sist; + + /* + * interrupt on the fly ? + * + * A `dummy read' is needed to ensure that the + * clear of the INTF flag reaches the device + * before the scanning of the DONE queue. + */ + istat = INB (nc_istat); + if (istat & INTF) { + OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); + istat = INB (nc_istat); /* DUMMY READ */ + if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); + (void)sym_wakeup_done (np); + }; + + if (!(istat & (SIP|DIP))) + return; + +#if 0 /* We should never get this one */ + if (istat & CABRT) + OUTB (nc_istat, CABRT); +#endif + + /* + * PAR and MA interrupts may occur at the same time, + * and we need to know of both in order to handle + * this situation properly. We try to unstack SCSI + * interrupts for that reason. BTW, I dislike a LOT + * such a loop inside the interrupt routine. + * Even if DMA interrupt stacking is very unlikely to + * happen, we also try unstacking these ones, since + * this has no performance impact. + */ + sist = 0; + dstat = 0; + istatc = istat; + do { + if (istatc & SIP) + sist |= INW (nc_sist); + if (istatc & DIP) + dstat |= INB (nc_dstat); + istatc = INB (nc_istat); + istat |= istatc; + } while (istatc & (SIP|DIP)); + + if (DEBUG_FLAGS & DEBUG_TINY) + printf ("<%d|%x:%x|%x:%x>", + (int)INB(nc_scr0), + dstat,sist, + (unsigned)INL(nc_dsp), + (unsigned)INL(nc_dbc)); + /* + * On paper, a memory barrier may be needed here. + * And since we are paranoid ... :) + */ + MEMORY_BARRIER(); + + /* + * First, interrupts we want to service cleanly. + * + * Phase mismatch (MA) is the most frequent interrupt + * for chip earlier than the 896 and so we have to service + * it as quickly as possible. + * A SCSI parity error (PAR) may be combined with a phase + * mismatch condition (MA). + * Programmed interrupts (SIR) are used to call the C code + * from SCRIPTS. + * The single step interrupt (SSI) is not used in this + * driver. + */ + if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & PAR) sym_int_par (np, sist); + else if (sist & MA) sym_int_ma (np); + else if (dstat & SIR) sym_int_sir (np); + else if (dstat & SSI) OUTONB_STD (); + else goto unknown_int; + return; + }; + + /* + * Now, interrupts that donnot happen in normal + * situations and that we may need to recover from. + * + * On SCSI RESET (RST), we reset everything. + * On SCSI BUS MODE CHANGE (SBMC), we complete all + * active CCBs with RESET status, prepare all devices + * for negotiating again and restart the SCRIPTS. + * On STO and UDC, we complete the CCB with the corres- + * ponding status and restart the SCRIPTS. + */ + if (sist & RST) { + xpt_print_path(np->path); + printf("SCSI BUS reset detected.\n"); + sym_init (np, 1); + return; + }; + + OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ + + if (!(sist & (GEN|HTH|SGE)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & SBMC) sym_int_sbmc (np); + else if (sist & STO) sym_int_sto (np); + else if (sist & UDC) sym_int_udc (np); + else goto unknown_int; + return; + }; + + /* + * Now, interrupts we are not able to recover cleanly. + * + * Log message for hard errors. + * Reset everything. + */ + + sym_log_hard_error(np, sist, dstat); + + if ((sist & (GEN|HTH|SGE)) || + (dstat & (MDPE|BF|ABRT|IID))) { + sym_start_reset(np); + return; + }; + +unknown_int: + /* + * We just miss the cause of the interrupt. :( + * Print a message. The timeout will do the real work. + */ + printf( "%s: unknown interrupt(s) ignored, " + "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", + sym_name(np), istat, dstat, sist); +} + +static void sym_intr(void *arg) +{ + if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); + sym_intr1((hcb_p) arg); + if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); + return; +} + +static void sym_poll(struct cam_sim *sim) +{ + int s = splcam(); + sym_intr(cam_sim_softc(sim)); + splx(s); +} + + +/* + * generic recovery from scsi interrupt + * + * The doc says that when the chip gets an SCSI interrupt, + * it tries to stop in an orderly fashion, by completing + * an instruction fetch that had started or by flushing + * the DMA fifo for a write to memory that was executing. + * Such a fashion is not enough to know if the instruction + * that was just before the current DSP value has been + * executed or not. + * + * There are some small SCRIPTS sections that deal with + * the start queue and the done queue that may break any + * assomption from the C code if we are interrupted + * inside, so we reset if this happens. Btw, since these + * SCRIPTS sections are executed while the SCRIPTS hasn't + * started SCSI operations, it is very unlikely to happen. + * + * All the driver data structures are supposed to be + * allocated from the same 4 GB memory window, so there + * is a 1 to 1 relationship between DSA and driver data + * structures. Since we are careful :) to invalidate the + * DSA when we complete a command or when the SCRIPTS + * pushes a DSA into a queue, we can trust it when it + * points to a CCB. + */ +static void sym_recover_scsi_int (hcb_p np, u_char hsts) +{ + u32 dsp = INL (nc_dsp); + u32 dsa = INL (nc_dsa); + ccb_p cp = sym_ccb_from_dsa(np, dsa); + + /* + * If we haven't been interrupted inside the SCRIPTS + * critical pathes, we can safely restart the SCRIPTS + * and trust the DSA value if it matches a CCB. + */ + if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && + dsp < SCRIPTA_BA (np, getjob_end) + 1)) && + (!(dsp > SCRIPTA_BA (np, ungetjob) && + dsp < SCRIPTA_BA (np, reselect) + 1)) && + (!(dsp > SCRIPTB_BA (np, sel_for_abort) && + dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && + (!(dsp > SCRIPTA_BA (np, done) && + dsp < SCRIPTA_BA (np, done_end) + 1))) { + OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ + /* + * If we have a CCB, let the SCRIPTS call us back for + * the handling of the error with SCRATCHA filled with + * STARTPOS. This way, we will be able to freeze the + * device queue and requeue awaiting IOs. + */ + if (cp) { + cp->host_status = hsts; + OUTL_DSP (SCRIPTA_BA (np, complete_error)); + } + /* + * Otherwise just restart the SCRIPTS. + */ + else { + OUTL (nc_dsa, 0xffffff); + OUTL_DSP (SCRIPTA_BA (np, start)); + } + } + else + goto reset_all; + + return; + +reset_all: + sym_start_reset(np); +} + +/* + * chip exception handler for selection timeout + */ +static void sym_int_sto (hcb_p np) +{ + u32 dsp = INL (nc_dsp); + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); + + if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) + sym_recover_scsi_int(np, HS_SEL_TIMEOUT); + else + sym_start_reset(np); +} + +/* + * chip exception handler for unexpected disconnect + */ +static void sym_int_udc (hcb_p np) +{ + printf ("%s: unexpected disconnect\n", sym_name(np)); + sym_recover_scsi_int(np, HS_UNEXPECTED); +} + +/* + * chip exception handler for SCSI bus mode change + * + * spi2-r12 11.2.3 says a transceiver mode change must + * generate a reset event and a device that detects a reset + * event shall initiate a hard reset. It says also that a + * device that detects a mode change shall set data transfer + * mode to eight bit asynchronous, etc... + * So, just reinitializing all except chip should be enough. + */ +static void sym_int_sbmc (hcb_p np) +{ + u_char scsi_mode = INB (nc_stest4) & SMODE; + + /* + * Notify user. + */ + xpt_print_path(np->path); + printf("SCSI BUS mode change from %s to %s.\n", + sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); + + /* + * Should suspend command processing for a few seconds and + * reinitialize all except the chip. + */ + sym_init (np, 2); +} + +/* + * chip exception handler for SCSI parity error. + * + * When the chip detects a SCSI parity error and is + * currently executing a (CH)MOV instruction, it does + * not interrupt immediately, but tries to finish the + * transfer of the current scatter entry before + * interrupting. The following situations may occur: + * + * - The complete scatter entry has been transferred + * without the device having changed phase. + * The chip will then interrupt with the DSP pointing + * to the instruction that follows the MOV. + * + * - A phase mismatch occurs before the MOV finished + * and phase errors are to be handled by the C code. + * The chip will then interrupt with both PAR and MA + * conditions set. + * + * - A phase mismatch occurs before the MOV finished and + * phase errors are to be handled by SCRIPTS. + * The chip will load the DSP with the phase mismatch + * JUMP address and interrupt the host processor. + */ +static void sym_int_par (hcb_p np, u_short sist) +{ + u_char hsts = INB (HS_PRT); + u32 dsp = INL (nc_dsp); + u32 dbc = INL (nc_dbc); + u32 dsa = INL (nc_dsa); + u_char sbcl = INB (nc_sbcl); + u_char cmd = dbc >> 24; + int phase = cmd & 7; + ccb_p cp = sym_ccb_from_dsa(np, dsa); + + printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", + sym_name(np), hsts, dbc, sbcl); + + /* + * Check that the chip is connected to the SCSI BUS. + */ + if (!(INB (nc_scntl1) & ISCON)) { + sym_recover_scsi_int(np, HS_UNEXPECTED); + return; + } + + /* + * If the nexus is not clearly identified, reset the bus. + * We will try to do better later. + */ + if (!cp) + goto reset_all; + + /* + * Check instruction was a MOV, direction was INPUT and + * ATN is asserted. + */ + if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) + goto reset_all; + + /* + * Keep track of the parity error. + */ + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_PARITY_ERR; + + /* + * Prepare the message to send to the device. + */ + np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; + + /* + * If the old phase was DATA IN phase, we have to deal with + * the 3 situations described above. + * For other input phases (MSG IN and STATUS), the device + * must resend the whole thing that failed parity checking + * or signal error. So, jumping to dispatcher should be OK. + */ + if (phase == 1 || phase == 5) { + /* Phase mismatch handled by SCRIPTS */ + if (dsp == SCRIPTB_BA (np, pm_handle)) + OUTL_DSP (dsp); + /* Phase mismatch handled by the C code */ + else if (sist & MA) + sym_int_ma (np); + /* No phase mismatch occurred */ + else { + OUTL (nc_temp, dsp); + OUTL_DSP (SCRIPTA_BA (np, dispatch)); + } + } + else + OUTL_DSP (SCRIPTA_BA (np, clrack)); + return; + +reset_all: + sym_start_reset(np); + return; +} + +/* + * chip exception handler for phase errors. + * + * We have to construct a new transfer descriptor, + * to transfer the rest of the current block. + */ +static void sym_int_ma (hcb_p np) +{ + u32 dbc; + u32 rest; + u32 dsp; + u32 dsa; + u32 nxtdsp; + u32 *vdsp; + u32 oadr, olen; + u32 *tblp; + u32 newcmd; + u_int delta; + u_char cmd; + u_char hflags, hflags0; + struct sym_pmc *pm; + ccb_p cp; + + dsp = INL (nc_dsp); + dbc = INL (nc_dbc); + dsa = INL (nc_dsa); + + cmd = dbc >> 24; + rest = dbc & 0xffffff; + delta = 0; + + /* + * locate matching cp if any. + */ + cp = sym_ccb_from_dsa(np, dsa); + + /* + * Donnot take into account dma fifo and various buffers in + * INPUT phase since the chip flushes everything before + * raising the MA interrupt for interrupted INPUT phases. + * For DATA IN phase, we will check for the SWIDE later. + */ + if ((cmd & 7) != 1 && (cmd & 7) != 5) { + u_char ss0, ss2; + + if (np->features & FE_DFBC) + delta = INW (nc_dfbc); + else { + u32 dfifo; + + /* + * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. + */ + dfifo = INL(nc_dfifo); + + /* + * Calculate remaining bytes in DMA fifo. + * (CTEST5 = dfifo >> 16) + */ + if (dfifo & (DFS << 16)) + delta = ((((dfifo >> 8) & 0x300) | + (dfifo & 0xff)) - rest) & 0x3ff; + else + delta = ((dfifo & 0xff) - rest) & 0x7f; + } + + /* + * The data in the dma fifo has not been transfered to + * the target -> add the amount to the rest + * and clear the data. + * Check the sstat2 register in case of wide transfer. + */ + rest += delta; + ss0 = INB (nc_sstat0); + if (ss0 & OLF) rest++; + if (!(np->features & FE_C10)) + if (ss0 & ORF) rest++; + if (cp && (cp->phys.select.sel_scntl3 & EWS)) { + ss2 = INB (nc_sstat2); + if (ss2 & OLF1) rest++; + if (!(np->features & FE_C10)) + if (ss2 & ORF1) rest++; + }; + + /* + * Clear fifos. + */ + OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ + OUTB (nc_stest3, TE|CSF); /* scsi fifo */ + } + + /* + * log the information + */ + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) + printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, + (unsigned) rest, (unsigned) delta); + + /* + * try to find the interrupted script command, + * and the address at which to continue. + */ + vdsp = 0; + nxtdsp = 0; + if (dsp > np->scripta_ba && + dsp <= np->scripta_ba + np->scripta_sz) { + vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); + nxtdsp = dsp; + } + else if (dsp > np->scriptb_ba && + dsp <= np->scriptb_ba + np->scriptb_sz) { + vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); + nxtdsp = dsp; + } + + /* + * log the information + */ + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", + cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); + }; + + if (!vdsp) { + printf ("%s: interrupted SCRIPT address not found.\n", + sym_name (np)); + goto reset_all; + } + + if (!cp) { + printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", + sym_name (np)); + goto reset_all; + } + + /* + * get old startaddress and old length. + */ + oadr = scr_to_cpu(vdsp[1]); + + if (cmd & 0x10) { /* Table indirect */ + tblp = (u32 *) ((char*) &cp->phys + oadr); + olen = scr_to_cpu(tblp[0]); + oadr = scr_to_cpu(tblp[1]); + } else { + tblp = (u32 *) 0; + olen = scr_to_cpu(vdsp[0]) & 0xffffff; + }; + + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", + (unsigned) (scr_to_cpu(vdsp[0]) >> 24), + tblp, + (unsigned) olen, + (unsigned) oadr); + }; + + /* + * check cmd against assumed interrupted script command. + * If dt data phase, the MOVE instruction hasn't bit 4 of + * the phase. + */ + if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { + PRINT_ADDR(cp); + printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", + (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); + + goto reset_all; + }; + + /* + * if old phase not dataphase, leave here. + */ + if (cmd & 2) { + PRINT_ADDR(cp); + printf ("phase change %x-%x %d@%08x resid=%d.\n", + cmd&7, INB(nc_sbcl)&7, (unsigned)olen, + (unsigned)oadr, (unsigned)rest); + goto unexpected_phase; + }; + + /* + * Choose the correct PM save area. + * + * Look at the PM_SAVE SCRIPT if you want to understand + * this stuff. The equivalent code is implemented in + * SCRIPTS for the 895A, 896 and 1010 that are able to + * handle PM from the SCRIPTS processor. + */ + hflags0 = INB (HF_PRT); + hflags = hflags0; + + if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { + if (hflags & HF_IN_PM0) + nxtdsp = scr_to_cpu(cp->phys.pm0.ret); + else if (hflags & HF_IN_PM1) + nxtdsp = scr_to_cpu(cp->phys.pm1.ret); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + } + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + newcmd = SCRIPTA_BA (np, pm0_data); + } + else { + pm = &cp->phys.pm1; + newcmd = SCRIPTA_BA (np, pm1_data); + } + + hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); + if (hflags != hflags0) + OUTB (HF_PRT, hflags); + + /* + * fillin the phase mismatch context + */ + pm->sg.addr = cpu_to_scr(oadr + olen - rest); + pm->sg.size = cpu_to_scr(rest); + pm->ret = cpu_to_scr(nxtdsp); + + /* + * If we have a SWIDE, + * - prepare the address to write the SWIDE from SCRIPTS, + * - compute the SCRIPTS address to restart from, + * - move current data pointer context by one byte. + */ + nxtdsp = SCRIPTA_BA (np, dispatch); + if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && + (INB (nc_scntl2) & WSR)) { + u32 tmp; + + /* + * Set up the table indirect for the MOVE + * of the residual byte and adjust the data + * pointer context. + */ + tmp = scr_to_cpu(pm->sg.addr); + cp->phys.wresid.addr = cpu_to_scr(tmp); + pm->sg.addr = cpu_to_scr(tmp + 1); + tmp = scr_to_cpu(pm->sg.size); + cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); + pm->sg.size = cpu_to_scr(tmp - 1); + + /* + * If only the residual byte is to be moved, + * no PM context is needed. + */ + if ((tmp&0xffffff) == 1) + newcmd = pm->ret; + + /* + * Prepare the address of SCRIPTS that will + * move the residual byte to memory. + */ + nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); + } + + if (DEBUG_FLAGS & DEBUG_PHASE) { + PRINT_ADDR(cp); + printf ("PM %x %x %x / %x %x %x.\n", + hflags0, hflags, newcmd, + (unsigned)scr_to_cpu(pm->sg.addr), + (unsigned)scr_to_cpu(pm->sg.size), + (unsigned)scr_to_cpu(pm->ret)); + } + + /* + * Restart the SCRIPTS processor. + */ + OUTL (nc_temp, newcmd); + OUTL_DSP (nxtdsp); + return; + + /* + * Unexpected phase changes that occurs when the current phase + * is not a DATA IN or DATA OUT phase are due to error conditions. + * Such event may only happen when the SCRIPTS is using a + * multibyte SCSI MOVE. + * + * Phase change Some possible cause + * + * COMMAND --> MSG IN SCSI parity error detected by target. + * COMMAND --> STATUS Bad command or refused by target. + * MSG OUT --> MSG IN Message rejected by target. + * MSG OUT --> COMMAND Bogus target that discards extended + * negotiation messages. + * + * The code below does not care of the new phase and so + * trusts the target. Why to annoy it ? + * If the interrupted phase is COMMAND phase, we restart at + * dispatcher. + * If a target does not get all the messages after selection, + * the code assumes blindly that the target discards extended + * messages and clears the negotiation status. + * If the target does not want all our response to negotiation, + * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids + * bloat for such a should_not_happen situation). + * In all other situation, we reset the BUS. + * Are these assumptions reasonnable ? (Wait and see ...) + */ +unexpected_phase: + dsp -= 8; + nxtdsp = 0; + + switch (cmd & 7) { + case 2: /* COMMAND phase */ + nxtdsp = SCRIPTA_BA (np, dispatch); + break; +#if 0 + case 3: /* STATUS phase */ + nxtdsp = SCRIPTA_BA (np, dispatch); + break; +#endif + case 6: /* MSG OUT phase */ + /* + * If the device may want to use untagged when we want + * tagged, we prepare an IDENTIFY without disc. granted, + * since we will not be able to handle reselect. + * Otherwise, we just don't care. + */ + if (dsp == SCRIPTA_BA (np, send_ident)) { + if (cp->tag != NO_TAG && olen - rest <= 3) { + cp->host_status = HS_BUSY; + np->msgout[0] = M_IDENTIFY | cp->lun; + nxtdsp = SCRIPTB_BA (np, ident_break_atn); + } + else + nxtdsp = SCRIPTB_BA (np, ident_break); + } + else if (dsp == SCRIPTB_BA (np, send_wdtr) || + dsp == SCRIPTB_BA (np, send_sdtr) || + dsp == SCRIPTB_BA (np, send_ppr)) { + nxtdsp = SCRIPTB_BA (np, nego_bad_phase); + } + break; +#if 0 + case 7: /* MSG IN phase */ + nxtdsp = SCRIPTA_BA (np, clrack); + break; +#endif + } + + if (nxtdsp) { + OUTL_DSP (nxtdsp); + return; + } + +reset_all: + sym_start_reset(np); +} + +/* + * Dequeue from the START queue all CCBs that match + * a given target/lun/task condition (-1 means all), + * and move them from the BUSY queue to the COMP queue + * with CAM_REQUEUE_REQ status condition. + * This function is used during error handling/recovery. + * It is called with SCRIPTS not running. + */ +static int +sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) +{ + int j; + ccb_p cp; + + /* + * Make sure the starting index is within range. + */ + assert((i >= 0) && (i < 2*MAX_QUEUE)); + + /* + * Walk until end of START queue and dequeue every job + * that matches the target/lun/task condition. + */ + j = i; + while (i != np->squeueput) { + cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); + assert(cp); +#ifdef SYM_CONF_IARB_SUPPORT + /* Forget hints for IARB, they may be no longer relevant */ + cp->host_flags &= ~HF_HINT_IARB; +#endif + if ((target == -1 || cp->target == target) && + (lun == -1 || cp->lun == lun) && + (task == -1 || cp->tag == task)) { + sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); + sym_remque(&cp->link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + } + else { + if (i != j) + np->squeue[j] = np->squeue[i]; + if ((j += 2) >= MAX_QUEUE*2) j = 0; + } + if ((i += 2) >= MAX_QUEUE*2) i = 0; + } + if (i != j) /* Copy back the idle task if needed */ + np->squeue[j] = np->squeue[i]; + np->squeueput = j; /* Update our current start queue pointer */ + + return (i - j) / 2; +} + +/* + * Complete all CCBs queued to the COMP queue. + * + * These CCBs are assumed: + * - Not to be referenced either by devices or + * SCRIPTS-related queues and datas. + * - To have to be completed with an error condition + * or requeued. + * + * The device queue freeze count is incremented + * for each CCB that does not prevent this. + * This function is called when all CCBs involved + * in error handling/recovery have been reaped. + */ +static void +sym_flush_comp_queue(hcb_p np, int cam_status) +{ + SYM_QUEHEAD *qp; + ccb_p cp; + + while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { + union ccb *ccb; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + /* Leave quiet CCBs waiting for resources */ + if (cp->host_status == HS_WAIT) + continue; + ccb = cp->cam_ccb; + if (cam_status) + sym_set_cam_status(ccb, cam_status); + sym_free_ccb(np, cp); + sym_freeze_cam_ccb(ccb); + sym_xpt_done(np, ccb); + } +} + +/* + * chip handler for bad SCSI status condition + * + * In case of bad SCSI status, we unqueue all the tasks + * currently queued to the controller but not yet started + * and then restart the SCRIPTS processor immediately. + * + * QUEUE FULL and BUSY conditions are handled the same way. + * Basically all the not yet started tasks are requeued in + * device queue and the queue is frozen until a completion. + * + * For CHECK CONDITION and COMMAND TERMINATED status, we use + * the CCB of the failed command to prepare a REQUEST SENSE + * SCSI command and queue it to the controller queue. + * + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) +{ + tcb_p tp = &np->target[cp->target]; + u32 startp; + u_char s_status = cp->ssss_status; + u_char h_flags = cp->host_flags; + int msglen; + int nego; + int i; + + /* + * Compute the index of the next job to start from SCRIPTS. + */ + i = (INL (nc_scratcha) - np->squeue_ba) / 4; + + /* + * The last CCB queued used for IARB hint may be + * no longer relevant. Forget it. + */ +#ifdef SYM_CONF_IARB_SUPPORT + if (np->last_cp) + np->last_cp = 0; +#endif + + /* + * Now deal with the SCSI status. + */ + switch(s_status) { + case S_BUSY: + case S_QUEUE_FULL: + if (sym_verbose >= 2) { + PRINT_ADDR(cp); + printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); + } + default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ + sym_complete_error (np, cp); + break; + case S_TERMINATED: + case S_CHECK_COND: + /* + * If we get an SCSI error when requesting sense, give up. + */ + if (h_flags & HF_SENSE) { + sym_complete_error (np, cp); + break; + } + + /* + * Dequeue all queued CCBs for that device not yet started, + * and restart the SCRIPTS processor immediately. + */ + (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + OUTL_DSP (SCRIPTA_BA (np, start)); + + /* + * Save some info of the actual IO. + * Compute the data residual. + */ + cp->sv_scsi_status = cp->ssss_status; + cp->sv_xerr_status = cp->xerr_status; + cp->sv_resid = sym_compute_residual(np, cp); + + /* + * Prepare all needed data structures for + * requesting sense data. + */ + + /* + * identify message + */ + cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; + msglen = 1; + + /* + * If we are currently using anything different from + * async. 8 bit data transfers with that target, + * start a negotiation, since the device may want + * to report us a UNIT ATTENTION condition due to + * a cause we currently ignore, and we donnot want + * to be stuck with WIDE and/or SYNC data transfer. + * + * cp->nego_status is filled by sym_prepare_nego(). + */ + cp->nego_status = 0; + nego = 0; + if (tp->tinfo.current.options & PPR_OPT_MASK) + nego = NS_PPR; + else if (tp->tinfo.current.width != BUS_8_BIT) + nego = NS_WIDE; + else if (tp->tinfo.current.offset != 0) + nego = NS_SYNC; + if (nego) + msglen += + sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); + /* + * Message table indirect structure. + */ + cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * sense command + */ + cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); + cp->phys.cmd.size = cpu_to_scr(6); + + /* + * patch requested size into sense command + */ + cp->sensecmd[0] = 0x03; + cp->sensecmd[1] = cp->lun << 5; +#ifdef FreeBSD_New_Tran_Settings + if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) + cp->sensecmd[1] = 0; +#endif + cp->sensecmd[4] = SYM_SNS_BBUF_LEN; + cp->data_len = SYM_SNS_BBUF_LEN; + + /* + * sense data + */ + bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); + cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); + cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); + + /* + * requeue the command. + */ + startp = SCRIPTB_BA (np, sdata_in); + + cp->phys.head.savep = cpu_to_scr(startp); + cp->phys.head.goalp = cpu_to_scr(startp + 16); + cp->phys.head.lastp = cpu_to_scr(startp); + cp->startp = cpu_to_scr(startp); + + cp->actualquirks = SYM_QUIRK_AUTOSAVE; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->host_flags = (HF_SENSE|HF_DATA_IN); + cp->xerr_status = 0; + cp->extra_bytes = 0; + + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); + + /* + * Requeue the command. + */ + sym_put_start_queue(np, cp); + + /* + * Give back to upper layer everything we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + } +} + +/* + * After a device has accepted some management message + * as BUS DEVICE RESET, ABORT TASK, etc ..., or when + * a device signals a UNIT ATTENTION condition, some + * tasks are thrown away by the device. We are required + * to reflect that on our tasks list since the device + * will never complete these tasks. + * + * This function move from the BUSY queue to the COMP + * queue all disconnected CCBs for a given target that + * match the following criteria: + * - lun=-1 means any logical UNIT otherwise a given one. + * - task=-1 means any task, otherwise a given one. + */ +static int +sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) +{ + SYM_QUEHEAD qtmp, *qp; + int i = 0; + ccb_p cp; + + /* + * Move the entire BUSY queue to our temporary queue. + */ + sym_que_init(&qtmp); + sym_que_splice(&np->busy_ccbq, &qtmp); + sym_que_init(&np->busy_ccbq); + + /* + * Put all CCBs that matches our criteria into + * the COMP queue and put back other ones into + * the BUSY queue. + */ + while ((qp = sym_remque_head(&qtmp)) != 0) { + union ccb *ccb; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + ccb = cp->cam_ccb; + if (cp->host_status != HS_DISCONNECT || + cp->target != target || + (lun != -1 && cp->lun != lun) || + (task != -1 && + (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + continue; + } + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + + /* Preserve the software timeout condition */ + if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) + sym_set_cam_status(ccb, cam_status); + ++i; +#if 0 +printf("XXXX TASK @%p CLEARED\n", cp); +#endif + } + return i; +} + +/* + * chip handler for TASKS recovery + * + * We cannot safely abort a command, while the SCRIPTS + * processor is running, since we just would be in race + * with it. + * + * As long as we have tasks to abort, we keep the SEM + * bit set in the ISTAT. When this bit is set, the + * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) + * each time it enters the scheduler. + * + * If we have to reset a target, clear tasks of a unit, + * or to perform the abort of a disconnected job, we + * restart the SCRIPTS for selecting the target. Once + * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). + * If it loses arbitration, the SCRIPTS will interrupt again + * the next time it will enter its scheduler, and so on ... + * + * On SIR_TARGET_SELECTED, we scan for the more + * appropriate thing to do: + * + * - If nothing, we just sent a M_ABORT message to the + * target to get rid of the useless SCSI bus ownership. + * According to the specs, no tasks shall be affected. + * - If the target is to be reset, we send it a M_RESET + * message. + * - If a logical UNIT is to be cleared , we send the + * IDENTIFY(lun) + M_ABORT. + * - If an untagged task is to be aborted, we send the + * IDENTIFY(lun) + M_ABORT. + * - If a tagged task is to be aborted, we send the + * IDENTIFY(lun) + task attributes + M_ABORT_TAG. + * + * Once our 'kiss of death' :) message has been accepted + * by the target, the SCRIPTS interrupts again + * (SIR_ABORT_SENT). On this interrupt, we complete + * all the CCBs that should have been aborted by the + * target according to our message. + */ +static void sym_sir_task_recovery(hcb_p np, int num) +{ + SYM_QUEHEAD *qp; + ccb_p cp; + tcb_p tp; + int target=-1, lun=-1, task; + int i, k; + + switch(num) { + /* + * The SCRIPTS processor stopped before starting + * the next command in order to allow us to perform + * some task recovery. + */ + case SIR_SCRIPT_STOPPED: + /* + * Do we have any target to reset or unit to clear ? + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + tp = &np->target[i]; + if (tp->to_reset || + (tp->lun0p && tp->lun0p->to_clear)) { + target = i; + break; + } + if (!tp->lunmp) + continue; + for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + target = i; + break; + } + } + if (target != -1) + break; + } + + /* + * If not, walk the busy queue for any + * disconnected CCB to be aborted. + */ + if (target == -1) { + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->to_abort) { + target = cp->target; + break; + } + } + } + + /* + * If some target is to be selected, + * prepare and start the selection. + */ + if (target != -1) { + tp = &np->target[target]; + np->abrt_sel.sel_id = target; + np->abrt_sel.sel_scntl3 = tp->head.wval; + np->abrt_sel.sel_sxfer = tp->head.sval; + OUTL(nc_dsa, np->hcb_ba); + OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); + return; + } + + /* + * Now look for a CCB to abort that haven't started yet. + * Btw, the SCRIPTS processor is still stopped, so + * we are not in race. + */ + i = 0; + cp = 0; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_BUSY && + cp->host_status != HS_NEGOTIATE) + continue; + if (!cp->to_abort) + continue; +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If we are using IMMEDIATE ARBITRATION, we donnot + * want to cancel the last queued CCB, since the + * SCRIPTS may have anticipated the selection. + */ + if (cp == np->last_cp) { + cp->to_abort = 0; + continue; + } +#endif + i = 1; /* Means we have found some */ + break; + } + if (!i) { + /* + * We are done, so we donnot need + * to synchronize with the SCRIPTS anylonger. + * Remove the SEM flag from the ISTAT. + */ + np->istat_sem = 0; + OUTB (nc_istat, SIGP); + break; + } + /* + * Compute index of next position in the start + * queue the SCRIPTS intends to start and dequeue + * all CCBs for that device that haven't been started. + */ + i = (INL (nc_scratcha) - np->squeue_ba) / 4; + i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + + /* + * Make sure at least our IO to abort has been dequeued. + */ + assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); + + /* + * Keep track in cam status of the reason of the abort. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); + else + sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); + + /* + * Complete with error everything that we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + /* + * The SCRIPTS processor has selected a target + * we may have some manual recovery to perform for. + */ + case SIR_TARGET_SELECTED: + target = (INB (nc_sdid) & 0xf); + tp = &np->target[target]; + + np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); + + /* + * If the target is to be reset, prepare a + * M_RESET message and clear the to_reset flag + * since we donnot expect this operation to fail. + */ + if (tp->to_reset) { + np->abrt_msg[0] = M_RESET; + np->abrt_tbl.size = 1; + tp->to_reset = 0; + break; + } + + /* + * Otherwise, look for some logical unit to be cleared. + */ + if (tp->lun0p && tp->lun0p->to_clear) + lun = 0; + else if (tp->lunmp) { + for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + lun = k; + break; + } + } + } + + /* + * If a logical unit is to be cleared, prepare + * an IDENTIFY(lun) + ABORT MESSAGE. + */ + if (lun != -1) { + lcb_p lp = sym_lp(np, tp, lun); + lp->to_clear = 0; /* We donnot expect to fail here */ + np->abrt_msg[0] = M_IDENTIFY | lun; + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + break; + } + + /* + * Otherwise, look for some disconnected job to + * abort for this target. + */ + i = 0; + cp = 0; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->target != target) + continue; + if (!cp->to_abort) + continue; + i = 1; /* Means we have some */ + break; + } + + /* + * If we have none, probably since the device has + * completed the command before we won abitration, + * send a M_ABORT message without IDENTIFY. + * According to the specs, the device must just + * disconnect the BUS and not abort any task. + */ + if (!i) { + np->abrt_msg[0] = M_ABORT; + np->abrt_tbl.size = 1; + break; + } + + /* + * We have some task to abort. + * Set the IDENTIFY(lun) + */ + np->abrt_msg[0] = M_IDENTIFY | cp->lun; + + /* + * If we want to abort an untagged command, we + * will send a IDENTIFY + M_ABORT. + * Otherwise (tagged command), we will send + * a IDENTITFY + task attributes + ABORT TAG. + */ + if (cp->tag == NO_TAG) { + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + } + else { + np->abrt_msg[1] = cp->scsi_smsg[1]; + np->abrt_msg[2] = cp->scsi_smsg[2]; + np->abrt_msg[3] = M_ABORT_TAG; + np->abrt_tbl.size = 4; + } + /* + * Keep track of software timeout condition, since the + * peripheral driver may not count retries on abort + * conditions not due to timeout. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); + cp->to_abort = 0; /* We donnot expect to fail here */ + break; + + /* + * The target has accepted our message and switched + * to BUS FREE phase as we expected. + */ + case SIR_ABORT_SENT: + target = (INB (nc_sdid) & 0xf); + tp = &np->target[target]; + + /* + ** If we didn't abort anything, leave here. + */ + if (np->abrt_msg[0] == M_ABORT) + break; + + /* + * If we sent a M_RESET, then a hardware reset has + * been performed by the target. + * - Reset everything to async 8 bit + * - Tell ourself to negotiate next time :-) + * - Prepare to clear all disconnected CCBs for + * this target from our task list (lun=task=-1) + */ + lun = -1; + task = -1; + if (np->abrt_msg[0] == M_RESET) { + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + tp->tinfo.current.period = 0; + tp->tinfo.current.offset = 0; + tp->tinfo.current.width = BUS_8_BIT; + tp->tinfo.current.options = 0; + } + + /* + * Otherwise, check for the LUN and TASK(s) + * concerned by the cancelation. + * If it is not ABORT_TAG then it is CLEAR_QUEUE + * or an ABORT message :-) + */ + else { + lun = np->abrt_msg[0] & 0x3f; + if (np->abrt_msg[1] == M_ABORT_TAG) + task = np->abrt_msg[2]; + } + + /* + * Complete all the CCBs the device should have + * aborted due to our 'kiss of death' message. + */ + i = (INL (nc_scratcha) - np->squeue_ba) / 4; + (void) sym_dequeue_from_squeue(np, i, target, lun, -1); + (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); + sym_flush_comp_queue(np, 0); + + /* + * If we sent a BDR, make uper layer aware of that. + */ + if (np->abrt_msg[0] == M_RESET) + xpt_async(AC_SENT_BDR, np->path, NULL); + break; + } + + /* + * Print to the log the message we intend to send. + */ + if (num == SIR_TARGET_SELECTED) { + PRINT_TARGET(np, target); + sym_printl_hex("control msgout:", np->abrt_msg, + np->abrt_tbl.size); + np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); + } + + /* + * Let the SCRIPTS processor continue. + */ + OUTONB_STD (); +} + +/* + * Gerard's alchemy:) that deals with with the data + * pointer for both MDP and the residual calculation. + * + * I didn't want to bloat the code by more than 200 + * lignes for the handling of both MDP and the residual. + * This has been achieved by using a data pointer + * representation consisting in an index in the data + * array (dp_sg) and a negative offset (dp_ofs) that + * have the following meaning: + * + * - dp_sg = SYM_CONF_MAX_SG + * we are at the end of the data script. + * - dp_sg < SYM_CONF_MAX_SG + * dp_sg points to the next entry of the scatter array + * we want to transfer. + * - dp_ofs < 0 + * dp_ofs represents the residual of bytes of the + * previous entry scatter entry we will send first. + * - dp_ofs = 0 + * no residual to send first. + * + * The function sym_evaluate_dp() accepts an arbitray + * offset (basically from the MDP message) and returns + * the corresponding values of dp_sg and dp_ofs. + */ + +static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) +{ + u32 dp_scr; + int dp_ofs, dp_sg, dp_sgmin; + int tmp; + struct sym_pmc *pm; + + /* + * Compute the resulted data pointer in term of a script + * address within some DATA script and a signed byte offset. + */ + dp_scr = scr; + dp_ofs = *ofs; + if (dp_scr == SCRIPTA_BA (np, pm0_data)) + pm = &cp->phys.pm0; + else if (dp_scr == SCRIPTA_BA (np, pm1_data)) + pm = &cp->phys.pm1; + else + pm = 0; + + if (pm) { + dp_scr = scr_to_cpu(pm->ret); + dp_ofs -= scr_to_cpu(pm->sg.size); + } + + /* + * If we are auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + *ofs = dp_ofs; + return 0; + } + + /* + * Deduce the index of the sg entry. + * Keep track of the index of the first valid entry. + * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the + * end of the data. + */ + tmp = scr_to_cpu(cp->phys.head.goalp); + dp_sg = SYM_CONF_MAX_SG; + if (dp_scr != tmp) + dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); + dp_sgmin = SYM_CONF_MAX_SG - cp->segments; + + /* + * Move to the sg entry the data pointer belongs to. + * + * If we are inside the data area, we expect result to be: + * + * Either, + * dp_ofs = 0 and dp_sg is the index of the sg entry + * the data pointer belongs to (or the end of the data) + * Or, + * dp_ofs < 0 and dp_sg is the index of the sg entry + * the data pointer belongs to + 1. + */ + if (dp_ofs < 0) { + int n; + while (dp_sg > dp_sgmin) { + --dp_sg; + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + n = dp_ofs + (tmp & 0xffffff); + if (n > 0) { + ++dp_sg; + break; + } + dp_ofs = n; + } + } + else if (dp_ofs > 0) { + while (dp_sg < SYM_CONF_MAX_SG) { + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + dp_ofs -= (tmp & 0xffffff); + ++dp_sg; + if (dp_ofs <= 0) + break; + } + } + + /* + * Make sure the data pointer is inside the data area. + * If not, return some error. + */ + if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) + goto out_err; + else if (dp_sg > SYM_CONF_MAX_SG || + (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) + goto out_err; + + /* + * Save the extreme pointer if needed. + */ + if (dp_sg > cp->ext_sg || + (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { + cp->ext_sg = dp_sg; + cp->ext_ofs = dp_ofs; + } + + /* + * Return data. + */ + *ofs = dp_ofs; + return dp_sg; + +out_err: + return -1; +} + +/* + * chip handler for MODIFY DATA POINTER MESSAGE + * + * We also call this function on IGNORE WIDE RESIDUE + * messages that do not match a SWIDE full condition. + * Btw, we assume in that situation that such a message + * is equivalent to a MODIFY DATA POINTER (offset=-1). + */ + +static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) +{ + int dp_ofs = ofs; + u32 dp_scr = INL (nc_temp); + u32 dp_ret; + u32 tmp; + u_char hflags; + int dp_sg; + struct sym_pmc *pm; + + /* + * Not supported for auto-sense. + */ + if (cp->host_flags & HF_SENSE) + goto out_reject; + + /* + * Apply our alchemy:) (see comments in sym_evaluate_dp()), + * to the resulted data pointer. + */ + dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); + if (dp_sg < 0) + goto out_reject; + + /* + * And our alchemy:) allows to easily calculate the data + * script address we want to return for the next data phase. + */ + dp_ret = cpu_to_scr(cp->phys.head.goalp); + dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); + + /* + * If offset / scatter entry is zero we donnot need + * a context for the new current data pointer. + */ + if (dp_ofs == 0) { + dp_scr = dp_ret; + goto out_ok; + } + + /* + * Get a context for the new current data pointer. + */ + hflags = INB (HF_PRT); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + dp_scr = SCRIPTA_BA (np, pm0_data); + } + else { + pm = &cp->phys.pm1; + dp_scr = SCRIPTA_BA (np, pm1_data); + } + + hflags &= ~(HF_DP_SAVED); + + OUTB (HF_PRT, hflags); + + /* + * Set up the new current data pointer. + * ofs < 0 there, and for the next data phase, we + * want to transfer part of the data of the sg entry + * corresponding to index dp_sg-1 prior to returning + * to the main data script. + */ + pm->ret = cpu_to_scr(dp_ret); + tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); + tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; + pm->sg.addr = cpu_to_scr(tmp); + pm->sg.size = cpu_to_scr(-dp_ofs); + +out_ok: + OUTL (nc_temp, dp_scr); + OUTL_DSP (SCRIPTA_BA (np, clrack)); + return; + +out_reject: + OUTL_DSP (SCRIPTB_BA (np, msg_bad)); +} + + +/* + * chip calculation of the data residual. + * + * As I used to say, the requirement of data residual + * in SCSI is broken, useless and cannot be achieved + * without huge complexity. + * But most OSes and even the official CAM require it. + * When stupidity happens to be so widely spread inside + * a community, it gets hard to convince. + * + * Anyway, I don't care, since I am not going to use + * any software that considers this data residual as + * a relevant information. :) + */ + +static int sym_compute_residual(hcb_p np, ccb_p cp) +{ + int dp_sg, dp_sgmin, resid = 0; + int dp_ofs = 0; + + /* + * Check for some data lost or just thrown away. + * We are not required to be quite accurate in this + * situation. Btw, if we are odd for output and the + * device claims some more data, it may well happen + * than our residual be zero. :-) + */ + if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { + if (cp->xerr_status & XE_EXTRA_DATA) + resid -= cp->extra_bytes; + if (cp->xerr_status & XE_SODL_UNRUN) + ++resid; + if (cp->xerr_status & XE_SWIDE_OVRUN) + --resid; + } + + /* + * If all data has been transferred, + * there is no residual. + */ + if (cp->phys.head.lastp == cp->phys.head.goalp) + return resid; + + /* + * If no data transfer occurs, or if the data + * pointer is weird, return full residual. + */ + if (cp->startp == cp->phys.head.lastp || + sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), + &dp_ofs) < 0) { + return cp->data_len; + } + + /* + * If we were auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + return -dp_ofs; + } + + /* + * We are now full comfortable in the computation + * of the data residual (2's complement). + */ + dp_sgmin = SYM_CONF_MAX_SG - cp->segments; + resid = -cp->ext_ofs; + for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { + u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + resid += (tmp & 0xffffff); + } + + /* + * Hopefully, the result is not too wrong. + */ + return resid; +} + +/* + * Print out the content of a SCSI message. + */ + +static int sym_show_msg (u_char * msg) +{ + u_char i; + printf ("%x",*msg); + if (*msg==M_EXTENDED) { + for (i=1;i<8;i++) { + if (i-1>msg[1]) break; + printf ("-%x",msg[i]); + }; + return (i+1); + } else if ((*msg & 0xf0) == 0x20) { + printf ("-%x",msg[1]); + return (2); + }; + return (1); +} + +static void sym_print_msg (ccb_p cp, char *label, u_char *msg) +{ + PRINT_ADDR(cp); + if (label) + printf ("%s: ", label); + + (void) sym_show_msg (msg); + printf (".\n"); +} + +/* + * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. + * + * When we try to negotiate, we append the negotiation message + * to the identify and (maybe) simple tag message. + * The host status field is set to HS_NEGOTIATE to mark this + * situation. + * + * If the target doesn't answer this message immediately + * (as required by the standard), the SIR_NEGO_FAILED interrupt + * will be raised eventually. + * The handler removes the HS_NEGOTIATE status, and sets the + * negotiated value to the default (async / nowide). + * + * If we receive a matching answer immediately, we check it + * for validity, and set the values. + * + * If we receive a Reject message immediately, we assume the + * negotiation has failed, and fall back to standard values. + * + * If we receive a negotiation message while not in HS_NEGOTIATE + * state, it's a target initiated negotiation. We prepare a + * (hopefully) valid answer, set our parameters, and send back + * this answer to the target. + * + * If the target doesn't fetch the answer (no message out phase), + * we assume the negotiation has failed, and fall back to default + * settings (SIR_NEGO_PROTO interrupt). + * + * When we set the values, we adjust them in all ccbs belonging + * to this target, in the controller's register, and in the "phys" + * field of the controller's struct sym_hcb. + */ + +/* + * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. + */ +static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) +{ + u_char chg, ofs, per, fak, div; + int req = 1; + + /* + * Synchronous request message received. + */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msgin", np->msgin); + }; + + /* + * request or answer ? + */ + if (INB (HS_PRT) == HS_NEGOTIATE) { + OUTB (HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_SYNC) + goto reject_it; + req = 0; + } + + /* + * get requested values. + */ + chg = 0; + per = np->msgin[3]; + ofs = np->msgin[4]; + + /* + * check values against our limits. + */ + if (ofs) { + if (ofs > np->maxoffs) + {chg = 1; ofs = np->maxoffs;} + if (req) { + if (ofs > tp->tinfo.user.offset) + {chg = 1; ofs = tp->tinfo.user.offset;} + } + } + + if (ofs) { + if (per < np->minsync) + {chg = 1; per = np->minsync;} + if (req) { + if (per < tp->tinfo.user.period) + {chg = 1; per = tp->tinfo.user.period;} + } + } + + div = fak = 0; + if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) + goto reject_it; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + PRINT_ADDR(cp); + printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", + ofs, per, div, fak, chg); + } + + /* + * This was an answer message + */ + if (req == 0) { + if (chg) /* Answer wasn't acceptable. */ + goto reject_it; + sym_setsync (np, cp, ofs, per, div, fak); + OUTL_DSP (SCRIPTA_BA (np, clrack)); + return; + } + + /* + * It was a request. Set value and + * prepare an answer message + */ + sym_setsync (np, cp, ofs, per, div, fak); + + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 3; + np->msgout[2] = M_X_SYNC_REQ; + np->msgout[3] = per; + np->msgout[4] = ofs; + + cp->nego_status = NS_SYNC; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); + return; +reject_it: + sym_setsync (np, cp, 0, 0, 0, 0); + OUTL_DSP (SCRIPTB_BA (np, msg_bad)); +} + +/* + * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. + */ +static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) +{ + u_char chg, ofs, per, fak, dt, div, wide; + int req = 1; + + /* + * Synchronous request message received. + */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "ppr msgin", np->msgin); + }; + + /* + * get requested values. + */ + chg = 0; + per = np->msgin[3]; + ofs = np->msgin[5]; + wide = np->msgin[6]; + dt = np->msgin[7] & PPR_OPT_DT; + + /* + * request or answer ? + */ + if (INB (HS_PRT) == HS_NEGOTIATE) { + OUTB (HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_PPR) + goto reject_it; + req = 0; + } + + /* + * check values against our limits. + */ + if (wide > np->maxwide) + {chg = 1; wide = np->maxwide;} + if (!wide || !(np->features & FE_ULTRA3)) + dt &= ~PPR_OPT_DT; + if (req) { + if (wide > tp->tinfo.user.width) + {chg = 1; wide = tp->tinfo.user.width;} + } + + if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ + dt &= ~PPR_OPT_DT; + + if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; + + if (ofs) { + if (dt) { + if (ofs > np->maxoffs_dt) + {chg = 1; ofs = np->maxoffs_dt;} + } + else if (ofs > np->maxoffs) + {chg = 1; ofs = np->maxoffs;} + if (req) { + if (ofs > tp->tinfo.user.offset) + {chg = 1; ofs = tp->tinfo.user.offset;} + } + } + + if (ofs) { + if (dt) { + if (per < np->minsync_dt) + {chg = 1; per = np->minsync_dt;} + } + else if (per < np->minsync) + {chg = 1; per = np->minsync;} + if (req) { + if (per < tp->tinfo.user.period) + {chg = 1; per = tp->tinfo.user.period;} + } + } + + div = fak = 0; + if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) + goto reject_it; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + PRINT_ADDR(cp); + printf ("ppr: " + "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", + dt, ofs, per, wide, div, fak, chg); + } + + /* + * It was an answer. + */ + if (req == 0) { + if (chg) /* Answer wasn't acceptable */ + goto reject_it; + sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); + OUTL_DSP (SCRIPTA_BA (np, clrack)); + return; + } + + /* + * It was a request. Set value and + * prepare an answer message + */ + sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); + + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 6; + np->msgout[2] = M_X_PPR_REQ; + np->msgout[3] = per; + np->msgout[4] = 0; + np->msgout[5] = ofs; + np->msgout[6] = wide; + np->msgout[7] = dt; + + cp->nego_status = NS_PPR; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "ppr msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); + return; +reject_it: + sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); + OUTL_DSP (SCRIPTB_BA (np, msg_bad)); + /* + * If it was a device response that should result in + * ST, we may want to try a legacy negotiation later. + */ + if (!req && !dt) { + tp->tinfo.goal.options = 0; + tp->tinfo.goal.width = wide; + tp->tinfo.goal.period = per; + tp->tinfo.goal.offset = ofs; + } + return; +} + +/* + * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. + */ +static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) +{ + u_char chg, wide; + int req = 1; + + /* + * Wide request message received. + */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "wide msgin", np->msgin); + }; + + /* + * Is it an request from the device? + */ + if (INB (HS_PRT) == HS_NEGOTIATE) { + OUTB (HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_WIDE) + goto reject_it; + req = 0; + } + + /* + * get requested values. + */ + chg = 0; + wide = np->msgin[3]; + + /* + * check values against driver limits. + */ + if (wide > np->maxwide) + {chg = 1; wide = np->maxwide;} + if (req) { + if (wide > tp->tinfo.user.width) + {chg = 1; wide = tp->tinfo.user.width;} + } + + if (DEBUG_FLAGS & DEBUG_NEGO) { + PRINT_ADDR(cp); + printf ("wdtr: wide=%d chg=%d.\n", wide, chg); + } + + /* + * This was an answer message + */ + if (req == 0) { + if (chg) /* Answer wasn't acceptable. */ + goto reject_it; + sym_setwide (np, cp, wide); + + /* + * Negotiate for SYNC immediately after WIDE response. + * This allows to negotiate for both WIDE and SYNC on + * a single SCSI command (Suggested by Justin Gibbs). + */ + if (tp->tinfo.goal.offset) { + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 3; + np->msgout[2] = M_X_SYNC_REQ; + np->msgout[3] = tp->tinfo.goal.period; + np->msgout[4] = tp->tinfo.goal.offset; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msgout", np->msgout); + } + + cp->nego_status = NS_SYNC; + OUTB (HS_PRT, HS_NEGOTIATE); + OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); + return; + } + + OUTL_DSP (SCRIPTA_BA (np, clrack)); + return; + }; + + /* + * It was a request, set value and + * prepare an answer message + */ + sym_setwide (np, cp, wide); + + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 2; + np->msgout[2] = M_X_WIDE_REQ; + np->msgout[3] = wide; + + np->msgin [0] = M_NOOP; + + cp->nego_status = NS_WIDE; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "wide msgout", np->msgout); + } + + OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); + return; +reject_it: + OUTL_DSP (SCRIPTB_BA (np, msg_bad)); +} + +/* + * Reset SYNC or WIDE to default settings. + * + * Called when a negotiation does not succeed either + * on rejection or on protocol error. + * + * If it was a PPR that made problems, we may want to + * try a legacy negotiation later. + */ +static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) +{ + /* + * any error in negotiation: + * fall back to default mode. + */ + switch (cp->nego_status) { + case NS_PPR: +#if 0 + sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); +#else + tp->tinfo.goal.options = 0; + if (tp->tinfo.goal.period < np->minsync) + tp->tinfo.goal.period = np->minsync; + if (tp->tinfo.goal.offset > np->maxoffs) + tp->tinfo.goal.offset = np->maxoffs; +#endif + break; + case NS_SYNC: + sym_setsync (np, cp, 0, 0, 0, 0); + break; + case NS_WIDE: + sym_setwide (np, cp, 0); + break; + }; + np->msgin [0] = M_NOOP; + np->msgout[0] = M_NOOP; + cp->nego_status = 0; +} + +/* + * chip handler for MESSAGE REJECT received in response to + * a WIDE or SYNCHRONOUS negotiation. + */ +static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) +{ + sym_nego_default(np, tp, cp); + OUTB (HS_PRT, HS_BUSY); +} + +/* + * chip exception handler for programmed interrupts. + */ +static void sym_int_sir (hcb_p np) +{ + u_char num = INB (nc_dsps); + u32 dsa = INL (nc_dsa); + ccb_p cp = sym_ccb_from_dsa(np, dsa); + u_char target = INB (nc_sdid) & 0x0f; + tcb_p tp = &np->target[target]; + int tmp; + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); + + switch (num) { + /* + * Command has been completed with error condition + * or has been auto-sensed. + */ + case SIR_COMPLETE_ERROR: + sym_complete_error(np, cp); + return; + /* + * The C code is currently trying to recover from something. + * Typically, user want to abort some command. + */ + case SIR_SCRIPT_STOPPED: + case SIR_TARGET_SELECTED: + case SIR_ABORT_SENT: + sym_sir_task_recovery(np, num); + return; + /* + * The device didn't go to MSG OUT phase after having + * been selected with ATN. We donnot want to handle + * that. + */ + case SIR_SEL_ATN_NO_MSG_OUT: + printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", + sym_name (np), target); + goto out_stuck; + /* + * The device didn't switch to MSG IN phase after + * having reseleted the initiator. + */ + case SIR_RESEL_NO_MSG_IN: + printf ("%s:%d: No MSG IN phase after reselection.\n", + sym_name (np), target); + goto out_stuck; + /* + * After reselection, the device sent a message that wasn't + * an IDENTIFY. + */ + case SIR_RESEL_NO_IDENTIFY: + printf ("%s:%d: No IDENTIFY after reselection.\n", + sym_name (np), target); + goto out_stuck; + /* + * The device reselected a LUN we donnot know about. + */ + case SIR_RESEL_BAD_LUN: + np->msgout[0] = M_RESET; + goto out; + /* + * The device reselected for an untagged nexus and we + * haven't any. + */ + case SIR_RESEL_BAD_I_T_L: + np->msgout[0] = M_ABORT; + goto out; + /* + * The device reselected for a tagged nexus that we donnot + * have. + */ + case SIR_RESEL_BAD_I_T_L_Q: + np->msgout[0] = M_ABORT_TAG; + goto out; + /* + * The SCRIPTS let us know that the device has grabbed + * our message and will abort the job. + */ + case SIR_RESEL_ABORTED: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + printf ("%s:%d: message %x sent on bad reselection.\n", + sym_name (np), target, np->lastmsg); + goto out; + /* + * The SCRIPTS let us know that a message has been + * successfully sent to the device. + */ + case SIR_MSG_OUT_DONE: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + /* Should we really care of that */ + if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { + if (cp) { + cp->xerr_status &= ~XE_PARITY_ERR; + if (!cp->xerr_status) + OUTOFFB (HF_PRT, HF_EXT_ERR); + } + } + goto out; + /* + * The device didn't send a GOOD SCSI status. + * We may have some work to do prior to allow + * the SCRIPTS processor to continue. + */ + case SIR_BAD_SCSI_STATUS: + if (!cp) + goto out; + sym_sir_bad_scsi_status(np, num, cp); + return; + /* + * We are asked by the SCRIPTS to prepare a + * REJECT message. + */ + case SIR_REJECT_TO_SEND: + sym_print_msg(cp, "M_REJECT to send for ", np->msgin); + np->msgout[0] = M_REJECT; + goto out; + /* + * We have been ODD at the end of a DATA IN + * transfer and the device didn't send a + * IGNORE WIDE RESIDUE message. + * It is a data overrun condition. + */ + case SIR_SWIDE_OVERRUN: + if (cp) { + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SWIDE_OVRUN; + } + goto out; + /* + * We have been ODD at the end of a DATA OUT + * transfer. + * It is a data underrun condition. + */ + case SIR_SODL_UNDERRUN: + if (cp) { + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SODL_UNRUN; + } + goto out; + /* + * The device wants us to tranfer more data than + * expected or in the wrong direction. + * The number of extra bytes is in scratcha. + * It is a data overrun condition. + */ + case SIR_DATA_OVERRUN: + if (cp) { + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_EXTRA_DATA; + cp->extra_bytes += INL (nc_scratcha); + } + goto out; + /* + * The device switched to an illegal phase (4/5). + */ + case SIR_BAD_PHASE: + if (cp) { + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_BAD_PHASE; + } + goto out; + /* + * We received a message. + */ + case SIR_MSG_RECEIVED: + if (!cp) + goto out_stuck; + switch (np->msgin [0]) { + /* + * We received an extended message. + * We handle MODIFY DATA POINTER, SDTR, WDTR + * and reject all other extended messages. + */ + case M_EXTENDED: + switch (np->msgin [2]) { + case M_X_MODIFY_DP: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp,"modify DP",np->msgin); + tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + + (np->msgin[5]<<8) + (np->msgin[6]); + sym_modify_dp(np, tp, cp, tmp); + return; + case M_X_SYNC_REQ: + sym_sync_nego(np, tp, cp); + return; + case M_X_PPR_REQ: + sym_ppr_nego(np, tp, cp); + return; + case M_X_WIDE_REQ: + sym_wide_nego(np, tp, cp); + return; + default: + goto out_reject; + } + break; + /* + * We received a 1/2 byte message not handled from SCRIPTS. + * We are only expecting MESSAGE REJECT and IGNORE WIDE + * RESIDUE messages that haven't been anticipated by + * SCRIPTS on SWIDE full condition. Unanticipated IGNORE + * WIDE RESIDUE messages are aliased as MODIFY DP (-1). + */ + case M_IGN_RESIDUE: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp,"ign wide residue", np->msgin); + sym_modify_dp(np, tp, cp, -1); + return; + case M_REJECT: + if (INB (HS_PRT) == HS_NEGOTIATE) + sym_nego_rejected(np, tp, cp); + else { + PRINT_ADDR(cp); + printf ("M_REJECT received (%x:%x).\n", + scr_to_cpu(np->lastmsg), np->msgout[0]); + } + goto out_clrack; + break; + default: + goto out_reject; + } + break; + /* + * We received an unknown message. + * Ignore all MSG IN phases and reject it. + */ + case SIR_MSG_WEIRD: + sym_print_msg(cp, "WEIRD message received", np->msgin); + OUTL_DSP (SCRIPTB_BA (np, msg_weird)); + return; + /* + * Negotiation failed. + * Target does not send us the reply. + * Remove the HS_NEGOTIATE status. + */ + case SIR_NEGO_FAILED: + OUTB (HS_PRT, HS_BUSY); + /* + * Negotiation failed. + * Target does not want answer message. + */ + case SIR_NEGO_PROTO: + sym_nego_default(np, tp, cp); + goto out; + }; + +out: + OUTONB_STD (); + return; +out_reject: + OUTL_DSP (SCRIPTB_BA (np, msg_bad)); + return; +out_clrack: + OUTL_DSP (SCRIPTA_BA (np, clrack)); + return; +out_stuck: + return; +} + +/* + * Acquire a control block + */ +static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) +{ + tcb_p tp = &np->target[tn]; + lcb_p lp = sym_lp(np, tp, ln); + u_short tag = NO_TAG; + SYM_QUEHEAD *qp; + ccb_p cp = (ccb_p) 0; + + /* + * Look for a free CCB + */ + if (sym_que_empty(&np->free_ccbq)) + (void) sym_alloc_ccb(np); + qp = sym_remque_head(&np->free_ccbq); + if (!qp) + goto out; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + + /* + * If the LCB is not yet available and the LUN + * has been probed ok, try to allocate the LCB. + */ + if (!lp && sym_is_bit(tp->lun_map, ln)) { + lp = sym_alloc_lcb(np, tn, ln); + if (!lp) + goto out_free; + } + + /* + * If the LCB is not available here, then the + * logical unit is not yet discovered. For those + * ones only accept 1 SCSI IO per logical unit, + * since we cannot allow disconnections. + */ + if (!lp) { + if (!sym_is_bit(tp->busy0_map, ln)) + sym_set_bit(tp->busy0_map, ln); + else + goto out_free; + } else { + /* + * If we have been asked for a tagged command. + */ + if (tag_order) { + /* + * Debugging purpose. + */ + assert(lp->busy_itl == 0); + /* + * Allocate resources for tags if not yet. + */ + if (!lp->cb_tags) { + sym_alloc_lcb_tags(np, tn, ln); + if (!lp->cb_tags) + goto out_free; + } + /* + * Get a tag for this SCSI IO and set up + * the CCB bus address for reselection, + * and count it for this LUN. + * Toggle reselect path to tagged. + */ + if (lp->busy_itlq < SYM_CONF_MAX_TASK) { + tag = lp->cb_tags[lp->ia_tag]; + if (++lp->ia_tag == SYM_CONF_MAX_TASK) + lp->ia_tag = 0; + lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); + ++lp->busy_itlq; + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA (np, resel_tag)); + } + else + goto out_free; + } + /* + * This command will not be tagged. + * If we already have either a tagged or untagged + * one, refuse to overlap this untagged one. + */ + else { + /* + * Debugging purpose. + */ + assert(lp->busy_itl == 0 && lp->busy_itlq == 0); + /* + * Count this nexus for this LUN. + * Set up the CCB bus address for reselection. + * Toggle reselect path to untagged. + */ + if (++lp->busy_itl == 1) { + lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); + } + else + goto out_free; + } + } + /* + * Put the CCB into the busy queue. + */ + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + + /* + * Remember all informations needed to free this CCB. + */ + cp->to_abort = 0; + cp->tag = tag; + cp->target = tn; + cp->lun = ln; + + if (DEBUG_FLAGS & DEBUG_TAGS) { + PRINT_LUN(np, tn, ln); + printf ("ccb @%p using tag %d.\n", cp, tag); + } + +out: + return cp; +out_free: + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + return (ccb_p) 0; +} + +/* + * Release one control block + */ +static void sym_free_ccb (hcb_p np, ccb_p cp) +{ + tcb_p tp = &np->target[cp->target]; + lcb_p lp = sym_lp(np, tp, cp->lun); + + if (DEBUG_FLAGS & DEBUG_TAGS) { + PRINT_LUN(np, cp->target, cp->lun); + printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); + } + + /* + * If LCB available, + */ + if (lp) { + /* + * If tagged, release the tag, set the relect path + */ + if (cp->tag != NO_TAG) { + /* + * Free the tag value. + */ + lp->cb_tags[lp->if_tag] = cp->tag; + if (++lp->if_tag == SYM_CONF_MAX_TASK) + lp->if_tag = 0; + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); + --lp->busy_itlq; + } else { /* Untagged */ + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); + --lp->busy_itl; + } + /* + * If no JOB active, make the LUN reselect path invalid. + */ + if (lp->busy_itlq == 0 && lp->busy_itl == 0) + lp->head.resel_sa = + cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); + } + /* + * Otherwise, we only accept 1 IO per LUN. + * Clear the bit that keeps track of this IO. + */ + else + sym_clr_bit(tp->busy0_map, cp->lun); + + /* + * We donnot queue more than 1 ccb per target + * with negotiation at any time. If this ccb was + * used for negotiation, clear this info in the tcb. + */ + if (cp == tp->nego_cp) + tp->nego_cp = 0; + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If we just complete the last queued CCB, + * clear this info that is no longer relevant. + */ + if (cp == np->last_cp) + np->last_cp = 0; +#endif + +#ifdef FreeBSD_Bus_Dma_Abstraction + /* + * Unmap user data from DMA map if needed. + */ + if (cp->dmamapped) { + bus_dmamap_unload(np->data_dmat, cp->dmamap); + cp->dmamapped = 0; + } +#endif + + /* + * Make this CCB available. + */ + cp->cam_ccb = 0; + cp->host_status = HS_IDLE; + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); +} + +/* + * Allocate a CCB from memory and initialize its fixed part. + */ +static ccb_p sym_alloc_ccb(hcb_p np) +{ + ccb_p cp = 0; + int hcode; + + /* + * Prevent from allocating more CCBs than we can + * queue to the controller. + */ + if (np->actccbs >= SYM_CONF_MAX_START) + return 0; + + /* + * Allocate memory for this CCB. + */ + cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); + if (!cp) + goto out_free; + + /* + * Allocate a bounce buffer for sense data. + */ + cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); + if (!cp->sns_bbuf) + goto out_free; + + /* + * Allocate a map for the DMA of user data. + */ +#ifdef FreeBSD_Bus_Dma_Abstraction + if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) + goto out_free; +#endif + /* + * Count it. + */ + np->actccbs++; + + /* + * Compute the bus address of this ccb. + */ + cp->ccb_ba = vtobus(cp); + + /* + * Insert this ccb into the hashed list. + */ + hcode = CCB_HASH_CODE(cp->ccb_ba); + cp->link_ccbh = np->ccbh[hcode]; + np->ccbh[hcode] = cp; + + /* + * Initialyze the start and restart actions. + */ + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); + cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); + + /* + * Initilialyze some other fields. + */ + cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); + + /* + * Chain into free ccb queue. + */ + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + + return cp; +out_free: + if (cp) { + if (cp->sns_bbuf) + sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); + sym_mfree_dma(cp, sizeof(*cp), "CCB"); + } + return 0; +} + +/* + * Look up a CCB from a DSA value. + */ +static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) +{ + int hcode; + ccb_p cp; + + hcode = CCB_HASH_CODE(dsa); + cp = np->ccbh[hcode]; + while (cp) { + if (cp->ccb_ba == dsa) + break; + cp = cp->link_ccbh; + } + + return cp; +} + +/* + * Target control block initialisation. + * Nothing important to do at the moment. + */ +static void sym_init_tcb (hcb_p np, u_char tn) +{ + /* + * Check some alignments required by the chip. + */ + assert (((offsetof(struct sym_reg, nc_sxfer) ^ + offsetof(struct sym_tcb, head.sval)) &3) == 0); + assert (((offsetof(struct sym_reg, nc_scntl3) ^ + offsetof(struct sym_tcb, head.wval)) &3) == 0); +} + +/* + * Lun control block allocation and initialization. + */ +static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) +{ + tcb_p tp = &np->target[tn]; + lcb_p lp = sym_lp(np, tp, ln); + + /* + * Already done, just return. + */ + if (lp) + return lp; + /* + * Check against some race. + */ + assert(!sym_is_bit(tp->busy0_map, ln)); + + /* + * Initialize the target control block if not yet. + */ + sym_init_tcb (np, tn); + + /* + * Allocate the LCB bus address array. + * Compute the bus address of this table. + */ + if (ln && !tp->luntbl) { + int i; + + tp->luntbl = sym_calloc_dma(256, "LUNTBL"); + if (!tp->luntbl) + goto fail; + for (i = 0 ; i < 64 ; i++) + tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); + tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); + } + + /* + * Allocate the table of pointers for LUN(s) > 0, if needed. + */ + if (ln && !tp->lunmp) { + tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), + "LUNMP"); + if (!tp->lunmp) + goto fail; + } + + /* + * Allocate the lcb. + * Make it available to the chip. + */ + lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); + if (!lp) + goto fail; + if (ln) { + tp->lunmp[ln] = lp; + tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); + } + else { + tp->lun0p = lp; + tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); + } + + /* + * Let the itl task point to error handling. + */ + lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); + + /* + * Set the reselect pattern to our default. :) + */ + lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); + + /* + * Set user capabilities. + */ + lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + +fail: + return lp; +} + +/* + * Allocate LCB resources for tagged command queuing. + */ +static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) +{ + tcb_p tp = &np->target[tn]; + lcb_p lp = sym_lp(np, tp, ln); + int i; + + /* + * If LCB not available, try to allocate it. + */ + if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) + goto fail; + + /* + * Allocate the task table and and the tag allocation + * circular buffer. We want both or none. + */ + lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + if (!lp->itlq_tbl) + goto fail; + lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); + if (!lp->cb_tags) { + sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + lp->itlq_tbl = 0; + goto fail; + } + + /* + * Initialize the task table with invalid entries. + */ + for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) + lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); + + /* + * Fill up the tag buffer with tag numbers. + */ + for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) + lp->cb_tags[i] = i; + + /* + * Make the task table available to SCRIPTS, + * And accept tagged commands now. + */ + lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); + + return; +fail: + return; +} + +/* + * Test the pci bus snoop logic :-( + * + * Has to be called with interrupts disabled. + */ +#ifndef SYM_CONF_IOMAPPED +static int sym_regtest (hcb_p np) +{ + register volatile u32 data; + /* + * chip registers may NOT be cached. + * write 0xffffffff to a read only register area, + * and try to read it back. + */ + data = 0xffffffff; + OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); + data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); +#if 1 + if (data == 0xffffffff) { +#else + if ((data & 0xe2f0fffd) != 0x02000080) { +#endif + printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", + (unsigned) data); + return (0x10); + }; + return (0); +} +#endif + +static int sym_snooptest (hcb_p np) +{ + u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; + int i, err=0; +#ifndef SYM_CONF_IOMAPPED + err |= sym_regtest (np); + if (err) return (err); +#endif +restart_test: + /* + * Enable Master Parity Checking as we intend + * to enable it for normal operations. + */ + OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); + /* + * init + */ + pc = SCRIPTB0_BA (np, snooptest); + host_wr = 1; + sym_wr = 2; + /* + * Set memory and register. + */ + np->cache = cpu_to_scr(host_wr); + OUTL (nc_temp, sym_wr); + /* + * Start script (exchange values) + */ + OUTL (nc_dsa, np->hcb_ba); + OUTL_DSP (pc); + /* + * Wait 'til done (with timeout) + */ + for (i=0; i<SYM_SNOOP_TIMEOUT; i++) + if (INB(nc_istat) & (INTF|SIP|DIP)) + break; + if (i>=SYM_SNOOP_TIMEOUT) { + printf ("CACHE TEST FAILED: timeout.\n"); + return (0x20); + }; + /* + * Check for fatal DMA errors. + */ + dstat = INB (nc_dstat); +#if 1 /* Band aiding for broken hardwares that fail PCI parity */ + if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { + printf ("%s: PCI DATA PARITY ERROR DETECTED - " + "DISABLING MASTER DATA PARITY CHECKING.\n", + sym_name(np)); + np->rv_ctest4 &= ~MPEE; + goto restart_test; + } +#endif + if (dstat & (MDPE|BF|IID)) { + printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); + return (0x80); + } + /* + * Save termination position. + */ + pc = INL (nc_dsp); + /* + * Read memory and register. + */ + host_rd = scr_to_cpu(np->cache); + sym_rd = INL (nc_scratcha); + sym_bk = INL (nc_temp); + + /* + * Check termination position. + */ + if (pc != SCRIPTB0_BA (np, snoopend)+8) { + printf ("CACHE TEST FAILED: script execution failed.\n"); + printf ("start=%08lx, pc=%08lx, end=%08lx\n", + (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, + (u_long) SCRIPTB0_BA (np, snoopend) +8); + return (0x40); + }; + /* + * Show results. + */ + if (host_wr != sym_rd) { + printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", + (int) host_wr, (int) sym_rd); + err |= 1; + }; + if (host_rd != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", + (int) sym_wr, (int) host_rd); + err |= 2; + }; + if (sym_bk != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", + (int) sym_wr, (int) sym_bk); + err |= 4; + }; + + return (err); +} + +/* + * Determine the chip's clock frequency. + * + * This is essential for the negotiation of the synchronous + * transfer rate. + * + * Note: we have to return the correct value. + * THERE IS NO SAFE DEFAULT VALUE. + * + * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. + * 53C860 and 53C875 rev. 1 support fast20 transfers but + * do not have a clock doubler and so are provided with a + * 80 MHz clock. All other fast20 boards incorporate a doubler + * and so should be delivered with a 40 MHz clock. + * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base + * clock and provide a clock quadrupler (160 Mhz). + */ + +/* + * Select SCSI clock frequency + */ +static void sym_selectclock(hcb_p np, u_char scntl3) +{ + /* + * If multiplier not present or not selected, leave here. + */ + if (np->multiplier <= 1) { + OUTB(nc_scntl3, scntl3); + return; + } + + if (sym_verbose >= 2) + printf ("%s: enabling clock multiplier\n", sym_name(np)); + + OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ + /* + * Wait for the LCKFRQ bit to be set if supported by the chip. + * Otherwise wait 20 micro-seconds. + */ + if (np->features & FE_LCKFRQ) { + int i = 20; + while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) + UDELAY (20); + if (!i) + printf("%s: the chip cannot lock the frequency\n", + sym_name(np)); + } else + UDELAY (20); + OUTB(nc_stest3, HSC); /* Halt the scsi clock */ + OUTB(nc_scntl3, scntl3); + OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ + OUTB(nc_stest3, 0x00); /* Restart scsi clock */ +} + +/* + * calculate SCSI clock frequency (in KHz) + */ +static unsigned getfreq (hcb_p np, int gen) +{ + unsigned int ms = 0; + unsigned int f; + + /* + * Measure GEN timer delay in order + * to calculate SCSI clock frequency + * + * This code will never execute too + * many loop iterations (if DELAY is + * reasonably correct). It could get + * too low a delay (too high a freq.) + * if the CPU is slow executing the + * loop for some reason (an NMI, for + * example). For this reason we will + * if multiple measurements are to be + * performed trust the higher delay + * (lower frequency returned). + */ + OUTW (nc_sien , 0); /* mask all scsi interrupts */ + (void) INW (nc_sist); /* clear pending scsi interrupt */ + OUTB (nc_dien , 0); /* mask all dma interrupts */ + (void) INW (nc_sist); /* another one, just to be sure :) */ + OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ + OUTB (nc_stime1, 0); /* disable general purpose timer */ + OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ + while (!(INW(nc_sist) & GEN) && ms++ < 100000) + UDELAY (1000); /* count ms */ + OUTB (nc_stime1, 0); /* disable general purpose timer */ + /* + * set prescaler to divide by whatever 0 means + * 0 ought to choose divide by 2, but appears + * to set divide by 3.5 mode in my 53c810 ... + */ + OUTB (nc_scntl3, 0); + + /* + * adjust for prescaler, and convert into KHz + */ + f = ms ? ((1 << gen) * 4340) / ms : 0; + + if (sym_verbose >= 2) + printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", + sym_name(np), gen, ms, f); + + return f; +} + +static unsigned sym_getfreq (hcb_p np) +{ + u_int f1, f2; + int gen = 11; + + (void) getfreq (np, gen); /* throw away first result */ + f1 = getfreq (np, gen); + f2 = getfreq (np, gen); + if (f1 > f2) f1 = f2; /* trust lower result */ + return f1; +} + +/* + * Get/probe chip SCSI clock frequency + */ +static void sym_getclock (hcb_p np, int mult) +{ + unsigned char scntl3 = np->sv_scntl3; + unsigned char stest1 = np->sv_stest1; + unsigned f1; + + /* + * For the C10 core, assume 40 MHz. + */ + if (np->features & FE_C10) { + np->multiplier = mult; + np->clock_khz = 40000 * mult; + return; + } + + np->multiplier = 1; + f1 = 40000; + /* + * True with 875/895/896/895A with clock multiplier selected + */ + if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier found\n", sym_name(np)); + np->multiplier = mult; + } + + /* + * If multiplier not found or scntl3 not 7,5,3, + * reset chip and get frequency from general purpose timer. + * Otherwise trust scntl3 BIOS setting. + */ + if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { + OUTB (nc_stest1, 0); /* make sure doubler is OFF */ + f1 = sym_getfreq (np); + + if (sym_verbose) + printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); + + if (f1 < 45000) f1 = 40000; + else if (f1 < 55000) f1 = 50000; + else f1 = 80000; + + if (f1 < 80000 && mult > 1) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier assumed\n", + sym_name(np)); + np->multiplier = mult; + } + } else { + if ((scntl3 & 7) == 3) f1 = 40000; + else if ((scntl3 & 7) == 5) f1 = 80000; + else f1 = 160000; + + f1 /= np->multiplier; + } + + /* + * Compute controller synchronous parameters. + */ + f1 *= np->multiplier; + np->clock_khz = f1; +} + +/* + * Get/probe PCI clock frequency + */ +static int sym_getpciclock (hcb_p np) +{ + int f = 0; + + /* + * For the C1010-33, this doesn't work. + * For the C1010-66, this will be tested when I'll have + * such a beast to play with. + */ + if (!(np->features & FE_C10)) { + OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ + f = (int) sym_getfreq (np); + OUTB (nc_stest1, 0); + } + np->pciclk_khz = f; + + return f; +} + +/*============= DRIVER ACTION/COMPLETION ====================*/ + +/* + * Print something that tells about extended errors. + */ +static void sym_print_xerr(ccb_p cp, int x_status) +{ + if (x_status & XE_PARITY_ERR) { + PRINT_ADDR(cp); + printf ("unrecovered SCSI parity error.\n"); + } + if (x_status & XE_EXTRA_DATA) { + PRINT_ADDR(cp); + printf ("extraneous data discarded.\n"); + } + if (x_status & XE_BAD_PHASE) { + PRINT_ADDR(cp); + printf ("illegal scsi phase (4/5).\n"); + } + if (x_status & XE_SODL_UNRUN) { + PRINT_ADDR(cp); + printf ("ODD transfer in DATA OUT phase.\n"); + } + if (x_status & XE_SWIDE_OVRUN) { + PRINT_ADDR(cp); + printf ("ODD transfer in DATA IN phase.\n"); + } +} + +/* + * Choose the more appropriate CAM status if + * the IO encountered an extended error. + */ +static int sym_xerr_cam_status(int cam_status, int x_status) +{ + if (x_status) { + if (x_status & XE_PARITY_ERR) + cam_status = CAM_UNCOR_PARITY; + else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) + cam_status = CAM_DATA_RUN_ERR; + else if (x_status & XE_BAD_PHASE) + cam_status = CAM_REQ_CMP_ERR; + else + cam_status = CAM_REQ_CMP_ERR; + } + return cam_status; +} + +/* + * Complete execution of a SCSI command with extented + * error, SCSI status error, or having been auto-sensed. + * + * The SCRIPTS processor is not running there, so we + * can safely access IO registers and remove JOBs from + * the START queue. + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +static void sym_complete_error (hcb_p np, ccb_p cp) +{ + struct ccb_scsiio *csio; + u_int cam_status; + int i; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cam_ccb) + return; + + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { + printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, + cp->host_status, cp->ssss_status, cp->host_flags, + cp->target, cp->lun); + MDELAY(100); + } + + /* + * Get CAM command pointer. + */ + csio = &cp->cam_ccb->csio; + + /* + * Check for extended errors. + */ + if (cp->xerr_status) { + if (sym_verbose) + sym_print_xerr(cp, cp->xerr_status); + if (cp->host_status == HS_COMPLETE) + cp->host_status = HS_COMP_ERR; + } + + /* + * Calculate the residual. + */ + csio->sense_resid = 0; + csio->resid = sym_compute_residual(np, cp); + + if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ + csio->resid = 0; /* throw them away. :) */ + cp->sv_resid = 0; + } + + if (cp->host_flags & HF_SENSE) { /* Auto sense */ + csio->scsi_status = cp->sv_scsi_status; /* Restore status */ + csio->sense_resid = csio->resid; /* Swap residuals */ + csio->resid = cp->sv_resid; + cp->sv_resid = 0; + if (sym_verbose && cp->sv_xerr_status) + sym_print_xerr(cp, cp->sv_xerr_status); + if (cp->host_status == HS_COMPLETE && + cp->ssss_status == S_GOOD && + cp->xerr_status == 0) { + cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, + cp->sv_xerr_status); + cam_status |= CAM_AUTOSNS_VALID; + /* + * Bounce back the sense data to user and + * fix the residual. + */ + bzero(&csio->sense_data, csio->sense_len); + bcopy(cp->sns_bbuf, &csio->sense_data, + MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); + csio->sense_resid += csio->sense_len; + csio->sense_resid -= SYM_SNS_BBUF_LEN; +#if 0 + /* + * If the device reports a UNIT ATTENTION condition + * due to a RESET condition, we should consider all + * disconnect CCBs for this unit as aborted. + */ + if (1) { + u_char *p; + p = (u_char *) csio->sense_data; + if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) + sym_clear_tasks(np, CAM_REQ_ABORTED, + cp->target,cp->lun, -1); + } +#endif + } + else + cam_status = CAM_AUTOSENSE_FAIL; + } + else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ + csio->scsi_status = cp->ssss_status; + cam_status = CAM_SCSI_STATUS_ERROR; + } + else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ + cam_status = CAM_SEL_TIMEOUT; + else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ + cam_status = CAM_UNEXP_BUSFREE; + else { /* Extended error */ + if (sym_verbose) { + PRINT_ADDR(cp); + printf ("COMMAND FAILED (%x %x %x).\n", + cp->host_status, cp->ssss_status, + cp->xerr_status); + } + csio->scsi_status = cp->ssss_status; + /* + * Set the most appropriate value for CAM status. + */ + cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, + cp->xerr_status); + } + + /* + * Dequeue all queued CCBs for that device + * not yet started by SCRIPTS. + */ + i = (INL (nc_scratcha) - np->squeue_ba) / 4; + (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + + /* + * Restart the SCRIPTS processor. + */ + OUTL_DSP (SCRIPTA_BA (np, start)); + +#ifdef FreeBSD_Bus_Dma_Abstraction + /* + * Synchronize DMA map if needed. + */ + if (cp->dmamapped) { + bus_dmamap_sync(np->data_dmat, cp->dmamap, + (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? + BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); + } +#endif + /* + * Add this one to the COMP queue. + * Complete all those commands with either error + * or requeue condition. + */ + sym_set_cam_status((union ccb *) csio, cam_status); + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); + sym_flush_comp_queue(np, 0); +} + +/* + * Complete execution of a successful SCSI command. + * + * Only successful commands go to the DONE queue, + * since we need to have the SCRIPTS processor + * stopped on any error condition. + * The SCRIPTS processor is running while we are + * completing successful commands. + */ +static void sym_complete_ok (hcb_p np, ccb_p cp) +{ + struct ccb_scsiio *csio; + tcb_p tp; + lcb_p lp; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cam_ccb) + return; + assert (cp->host_status == HS_COMPLETE); + + /* + * Get command, target and lun pointers. + */ + csio = &cp->cam_ccb->csio; + tp = &np->target[cp->target]; + lp = sym_lp(np, tp, cp->lun); + + /* + * Assume device discovered on first success. + */ + if (!lp) + sym_set_bit(tp->lun_map, cp->lun); + + /* + * If all data have been transferred, given than no + * extended error did occur, there is no residual. + */ + csio->resid = 0; + if (cp->phys.head.lastp != cp->phys.head.goalp) + csio->resid = sym_compute_residual(np, cp); + + /* + * Wrong transfer residuals may be worse than just always + * returning zero. User can disable this feature from + * sym_conf.h. Residual support is enabled by default. + */ + if (!SYM_CONF_RESIDUAL_SUPPORT) + csio->resid = 0; + +#ifdef FreeBSD_Bus_Dma_Abstraction + /* + * Synchronize DMA map if needed. + */ + if (cp->dmamapped) { + bus_dmamap_sync(np->data_dmat, cp->dmamap, + (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? + BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); + } +#endif + /* + * Set status and complete the command. + */ + csio->scsi_status = cp->ssss_status; + sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); + sym_free_ccb (np, cp); + sym_xpt_done(np, (union ccb *) csio); +} + +/* + * Our timeout handler. + */ +static void sym_timeout1(void *arg) +{ + union ccb *ccb = (union ccb *) arg; + hcb_p np = ccb->ccb_h.sym_hcb_ptr; + + /* + * Check that the CAM CCB is still queued. + */ + if (!np) + return; + + switch(ccb->ccb_h.func_code) { + case XPT_SCSI_IO: + (void) sym_abort_scsiio(np, ccb, 1); + break; + default: + break; + } +} + +static void sym_timeout(void *arg) +{ + int s = splcam(); + sym_timeout1(arg); + splx(s); +} + +/* + * Abort an SCSI IO. + */ +static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) +{ + ccb_p cp; + SYM_QUEHEAD *qp; + + /* + * Look up our CCB control block. + */ + cp = 0; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp2->cam_ccb == ccb) { + cp = cp2; + break; + } + } + if (!cp || cp->host_status == HS_WAIT) + return -1; + + /* + * If a previous abort didn't succeed in time, + * perform a BUS reset. + */ + if (cp->to_abort) { + sym_reset_scsi_bus(np, 1); + return 0; + } + + /* + * Mark the CCB for abort and allow time for. + */ + cp->to_abort = timed_out ? 2 : 1; + ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); + + /* + * Tell the SCRIPTS processor to stop and synchronize with us. + */ + np->istat_sem = SEM; + OUTB (nc_istat, SIGP|SEM); + return 0; +} + +/* + * Reset a SCSI device (all LUNs of a target). + */ +static void sym_reset_dev(hcb_p np, union ccb *ccb) +{ + tcb_p tp; + struct ccb_hdr *ccb_h = &ccb->ccb_h; + + if (ccb_h->target_id == np->myaddr || + ccb_h->target_id >= SYM_CONF_MAX_TARGET || + ccb_h->target_lun >= SYM_CONF_MAX_LUN) { + sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); + return; + } + + tp = &np->target[ccb_h->target_id]; + + tp->to_reset = 1; + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + + np->istat_sem = SEM; + OUTB (nc_istat, SIGP|SEM); + return; +} + +/* + * SIM action entry point. + */ +static void sym_action(struct cam_sim *sim, union ccb *ccb) +{ + int s = splcam(); + sym_action1(sim, ccb); + splx(s); +} + +static void sym_action1(struct cam_sim *sim, union ccb *ccb) +{ + hcb_p np; + tcb_p tp; + lcb_p lp; + ccb_p cp; + int tmp; + u_char idmsg, *msgptr; + u_int msglen; + struct ccb_scsiio *csio; + struct ccb_hdr *ccb_h; + + CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); + + /* + * Retrieve our controller data structure. + */ + np = (hcb_p) cam_sim_softc(sim); + + /* + * The common case is SCSI IO. + * We deal with other ones elsewhere. + */ + if (ccb->ccb_h.func_code != XPT_SCSI_IO) { + sym_action2(sim, ccb); + return; + } + csio = &ccb->csio; + ccb_h = &csio->ccb_h; + + /* + * Work around races. + */ + if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { + xpt_done(ccb); + return; + } + + /* + * Minimal checkings, so that we will not + * go outside our tables. + */ + if (ccb_h->target_id == np->myaddr || + ccb_h->target_id >= SYM_CONF_MAX_TARGET || + ccb_h->target_lun >= SYM_CONF_MAX_LUN) { + sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); + return; + } + + /* + * Retreive the target and lun descriptors. + */ + tp = &np->target[ccb_h->target_id]; + lp = sym_lp(np, tp, ccb_h->target_lun); + + /* + * Complete the 1st INQUIRY command with error + * condition if the device is flagged NOSCAN + * at BOOT in the NVRAM. This may speed up + * the boot and maintain coherency with BIOS + * device numbering. Clearing the flag allows + * user to rescan skipped devices later. + * We also return error for devices not flagged + * for SCAN LUNS in the NVRAM since some mono-lun + * devices behave badly when asked for some non + * zero LUN. Btw, this is an absolute hack.:-) + */ + if (!(ccb_h->flags & CAM_CDB_PHYS) && + (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? + csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { + if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || + ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && + ccb_h->target_lun != 0)) { + tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; + sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); + return; + } + } + + /* + * Get a control block for this IO. + */ + tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); + cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); + if (!cp) { + sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); + return; + } + + /* + * Keep track of the IO in our CCB. + */ + cp->cam_ccb = ccb; + + /* + * Build the IDENTIFY message. + */ + idmsg = M_IDENTIFY | cp->lun; + if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) + idmsg |= 0x40; + + msgptr = cp->scsi_smsg; + msglen = 0; + msgptr[msglen++] = idmsg; + + /* + * Build the tag message if present. + */ + if (cp->tag != NO_TAG) { + u_char order = csio->tag_action; + + switch(order) { + case M_ORDERED_TAG: + break; + case M_HEAD_TAG: + break; + default: + order = M_SIMPLE_TAG; + } + msgptr[msglen++] = order; + + /* + * For less than 128 tags, actual tags are numbered + * 1,3,5,..2*MAXTAGS+1,since we may have to deal + * with devices that have problems with #TAG 0 or too + * great #TAG numbers. For more tags (up to 256), + * we use directly our tag number. + */ +#if SYM_CONF_MAX_TASK > (512/4) + msgptr[msglen++] = cp->tag; +#else + msgptr[msglen++] = (cp->tag << 1) + 1; +#endif + } + + /* + * Build a negotiation message if needed. + * (nego_status is filled by sym_prepare_nego()) + */ + cp->nego_status = 0; + if (tp->tinfo.current.width != tp->tinfo.goal.width || + tp->tinfo.current.period != tp->tinfo.goal.period || + tp->tinfo.current.offset != tp->tinfo.goal.offset || + tp->tinfo.current.options != tp->tinfo.goal.options) { + if (!tp->nego_cp && lp) + msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); + } + + /* + * Fill in our ccb + */ + + /* + * Startqueue + */ + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); + cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); + + /* + * select + */ + cp->phys.select.sel_id = cp->target; + cp->phys.select.sel_scntl3 = tp->head.wval; + cp->phys.select.sel_sxfer = tp->head.sval; + cp->phys.select.sel_scntl4 = tp->head.uval; + + /* + * message + */ + cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * command + */ + if (sym_setup_cdb(np, csio, cp) < 0) { + sym_free_ccb(np, cp); + sym_xpt_done(np, ccb); + return; + } + + /* + * status + */ +#if 0 /* Provision */ + cp->actualquirks = tp->quirks; +#endif + cp->actualquirks = SYM_QUIRK_AUTOSAVE; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->xerr_status = 0; + cp->host_flags = 0; + cp->extra_bytes = 0; + + /* + * extreme data pointer. + * shall be positive, so -1 is lower than lowest.:) + */ + cp->ext_sg = -1; + cp->ext_ofs = 0; + + /* + * Build the data descriptor block + * and start the IO. + */ + sym_setup_data_and_start(np, csio, cp); +} + +/* + * Setup buffers and pointers that address the CDB. + * I bet, physical CDBs will never be used on the planet, + * since they can be bounced without significant overhead. + */ +static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) +{ + struct ccb_hdr *ccb_h; + u32 cmd_ba; + int cmd_len; + + ccb_h = &csio->ccb_h; + + /* + * CDB is 16 bytes max. + */ + if (csio->cdb_len > sizeof(cp->cdb_buf)) { + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + return -1; + } + cmd_len = csio->cdb_len; + + if (ccb_h->flags & CAM_CDB_POINTER) { + /* CDB is a pointer */ + if (!(ccb_h->flags & CAM_CDB_PHYS)) { + /* CDB pointer is virtual */ + bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); + cmd_ba = CCB_BA (cp, cdb_buf[0]); + } else { + /* CDB pointer is physical */ +#if 0 + cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; +#else + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + return -1; +#endif + } + } else { + /* CDB is in the CAM ccb (buffer) */ + bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); + cmd_ba = CCB_BA (cp, cdb_buf[0]); + } + + cp->phys.cmd.addr = cpu_to_scr(cmd_ba); + cp->phys.cmd.size = cpu_to_scr(cmd_len); + + return 0; +} + +/* + * Set up data pointers used by SCRIPTS. + */ +static void __inline +sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) +{ + u32 lastp, goalp; + + /* + * No segments means no data. + */ + if (!cp->segments) + dir = CAM_DIR_NONE; + + /* + * Set the data pointer. + */ + switch(dir) { + case CAM_DIR_OUT: + goalp = SCRIPTA_BA (np, data_out2) + 8; + lastp = goalp - 8 - (cp->segments * (2*4)); + break; + case CAM_DIR_IN: + cp->host_flags |= HF_DATA_IN; + goalp = SCRIPTA_BA (np, data_in2) + 8; + lastp = goalp - 8 - (cp->segments * (2*4)); + break; + case CAM_DIR_NONE: + default: + lastp = goalp = SCRIPTB_BA (np, no_data); + break; + } + + cp->phys.head.lastp = cpu_to_scr(lastp); + cp->phys.head.goalp = cpu_to_scr(goalp); + cp->phys.head.savep = cpu_to_scr(lastp); + cp->startp = cp->phys.head.savep; +} + + +#ifdef FreeBSD_Bus_Dma_Abstraction +/* + * Call back routine for the DMA map service. + * If bounce buffers are used (why ?), we may sleep and then + * be called there in another context. + */ +static void +sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) +{ + ccb_p cp; + hcb_p np; + union ccb *ccb; + int s; + + s = splcam(); + + cp = (ccb_p) arg; + ccb = cp->cam_ccb; + np = (hcb_p) cp->arg; + + /* + * Deal with weird races. + */ + if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) + goto out_abort; + + /* + * Deal with weird errors. + */ + if (error) { + cp->dmamapped = 0; + sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); + goto out_abort; + } + + /* + * Build the data descriptor for the chip. + */ + if (nsegs) { + int retv; + /* 896 rev 1 requires to be careful about boundaries */ + if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) + retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); + else + retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); + if (retv < 0) { + sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); + goto out_abort; + } + } + + /* + * Synchronize the DMA map only if we have + * actually mapped the data. + */ + if (cp->dmamapped) { + bus_dmamap_sync(np->data_dmat, cp->dmamap, + (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? + BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); + } + + /* + * Set host status to busy state. + * May have been set back to HS_WAIT to avoid a race. + */ + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + + /* + * Set data pointers. + */ + sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); + + /* + * Enqueue this IO in our pending queue. + */ + sym_enqueue_cam_ccb(np, ccb); + + /* + * When `#ifed 1', the code below makes the driver + * panic on the first attempt to write to a SCSI device. + * It is the first test we want to do after a driver + * change that does not seem obviously safe. :) + */ +#if 0 + switch (cp->cdb_buf[0]) { + case 0x0A: case 0x2A: case 0xAA: + panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); + MDELAY(10000); + break; + default: + break; + } +#endif + /* + * Activate this job. + */ + sym_put_start_queue(np, cp); +out: + splx(s); + return; +out_abort: + sym_free_ccb(np, cp); + sym_xpt_done(np, ccb); + goto out; +} + +/* + * How complex it gets to deal with the data in CAM. + * The Bus Dma stuff makes things still more complex. + */ +static void +sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) +{ + struct ccb_hdr *ccb_h; + int dir, retv; + + ccb_h = &csio->ccb_h; + + /* + * Now deal with the data. + */ + cp->data_len = csio->dxfer_len; + cp->arg = np; + + /* + * No direction means no data. + */ + dir = (ccb_h->flags & CAM_DIR_MASK); + if (dir == CAM_DIR_NONE) { + sym_execute_ccb(cp, NULL, 0, 0); + return; + } + + if (!(ccb_h->flags & CAM_SCATTER_VALID)) { + /* Single buffer */ + if (!(ccb_h->flags & CAM_DATA_PHYS)) { + /* Buffer is virtual */ + int s; + + cp->dmamapped = (dir == CAM_DIR_IN) ? + SYM_DMA_READ : SYM_DMA_WRITE; + s = splsoftvm(); + retv = bus_dmamap_load(np->data_dmat, cp->dmamap, + csio->data_ptr, csio->dxfer_len, + sym_execute_ccb, cp, 0); + if (retv == EINPROGRESS) { + cp->host_status = HS_WAIT; + xpt_freeze_simq(np->sim, 1); + csio->ccb_h.status |= CAM_RELEASE_SIMQ; + } + splx(s); + } else { + /* Buffer is physical */ + struct bus_dma_segment seg; + + seg.ds_addr = (bus_addr_t) csio->data_ptr; + sym_execute_ccb(cp, &seg, 1, 0); + } + } else { + /* Scatter/gather list */ + struct bus_dma_segment *segs; + + if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { + /* The SG list pointer is physical */ + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + goto out_abort; + } + + if (!(ccb_h->flags & CAM_DATA_PHYS)) { + /* SG buffer pointers are virtual */ + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + goto out_abort; + } + + /* SG buffer pointers are physical */ + segs = (struct bus_dma_segment *)csio->data_ptr; + sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); + } + return; +out_abort: + sym_free_ccb(np, cp); + sym_xpt_done(np, (union ccb *) csio); +} + +/* + * Move the scatter list to our data block. + */ +static int +sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, + bus_dma_segment_t *psegs, int nsegs) +{ + struct sym_tblmove *data; + bus_dma_segment_t *psegs2; + + if (nsegs > SYM_CONF_MAX_SG) + return -1; + + data = &cp->phys.data[SYM_CONF_MAX_SG-1]; + psegs2 = &psegs[nsegs-1]; + cp->segments = nsegs; + + while (1) { + data->addr = cpu_to_scr(psegs2->ds_addr); + data->size = cpu_to_scr(psegs2->ds_len); + if (DEBUG_FLAGS & DEBUG_SCATTER) { + printf ("%s scatter: paddr=%lx len=%ld\n", + sym_name(np), (long) psegs2->ds_addr, + (long) psegs2->ds_len); + } + if (psegs2 != psegs) { + --data; + --psegs2; + continue; + } + break; + } + return 0; +} + +#else /* FreeBSD_Bus_Dma_Abstraction */ + +/* + * How complex it gets to deal with the data in CAM. + * Variant without the Bus Dma Abstraction option. + */ +static void +sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) +{ + struct ccb_hdr *ccb_h; + int dir, retv; + + ccb_h = &csio->ccb_h; + + /* + * Now deal with the data. + */ + cp->data_len = 0; + cp->segments = 0; + + /* + * No direction means no data. + */ + dir = (ccb_h->flags & CAM_DIR_MASK); + if (dir == CAM_DIR_NONE) + goto end_scatter; + + if (!(ccb_h->flags & CAM_SCATTER_VALID)) { + /* Single buffer */ + if (!(ccb_h->flags & CAM_DATA_PHYS)) { + /* Buffer is virtual */ + retv = sym_scatter_virtual(np, cp, + (vm_offset_t) csio->data_ptr, + (vm_size_t) csio->dxfer_len); + } else { + /* Buffer is physical */ + retv = sym_scatter_physical(np, cp, + (vm_offset_t) csio->data_ptr, + (vm_size_t) csio->dxfer_len); + } + } else { + /* Scatter/gather list */ + int nsegs; + struct bus_dma_segment *segs; + segs = (struct bus_dma_segment *)csio->data_ptr; + nsegs = csio->sglist_cnt; + + if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { + /* The SG list pointer is physical */ + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + goto out_abort; + } + if (!(ccb_h->flags & CAM_DATA_PHYS)) { + /* SG buffer pointers are virtual */ + retv = sym_scatter_sg_virtual(np, cp, segs, nsegs); + } else { + /* SG buffer pointers are physical */ + retv = sym_scatter_sg_physical(np, cp, segs, nsegs); + } + } + if (retv < 0) { + sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); + goto out_abort; + } + +end_scatter: + /* + * Set data pointers. + */ + sym_setup_data_pointers(np, cp, dir); + + /* + * Enqueue this IO in our pending queue. + */ + sym_enqueue_cam_ccb(np, (union ccb *) csio); + + /* + * Activate this job. + */ + sym_put_start_queue(np, cp); + + /* + * Command is successfully queued. + */ + return; +out_abort: + sym_free_ccb(np, cp); + sym_xpt_done(np, (union ccb *) csio); +} + +/* + * Scatter a virtual buffer into bus addressable chunks. + */ +static int +sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) +{ + u_long pe, pn; + u_long n, k; + int s; + + cp->data_len += len; + + pe = vaddr + len; + n = len; + s = SYM_CONF_MAX_SG - 1 - cp->segments; + + while (n && s >= 0) { + pn = (pe - 1) & ~PAGE_MASK; + k = pe - pn; + if (k > n) { + k = n; + pn = pe - n; + } + if (DEBUG_FLAGS & DEBUG_SCATTER) { + printf ("%s scatter: va=%lx pa=%lx siz=%ld\n", + sym_name(np), pn, (u_long) vtobus(pn), k); + } + cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); + cp->phys.data[s].size = cpu_to_scr(k); + pe = pn; + n -= k; + --s; + } + cp->segments = SYM_CONF_MAX_SG - 1 - s; + + return n ? -1 : 0; +} + +/* + * Scatter a SG list with virtual addresses into bus addressable chunks. + */ +static int +sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) +{ + int i, retv = 0; + + for (i = nsegs - 1 ; i >= 0 ; --i) { + retv = sym_scatter_virtual(np, cp, + psegs[i].ds_addr, psegs[i].ds_len); + if (retv < 0) + break; + } + return retv; +} + +/* + * Scatter a physical buffer into bus addressable chunks. + */ +static int +sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len) +{ + struct bus_dma_segment seg; + + seg.ds_addr = paddr; + seg.ds_len = len; + return sym_scatter_sg_physical(np, cp, &seg, 1); +} + +#endif /* FreeBSD_Bus_Dma_Abstraction */ + +/* + * Scatter a SG list with physical addresses into bus addressable chunks. + * We need to ensure 16MB boundaries not to be crossed during DMA of + * each segment, due to some chips being flawed. + */ +#define BOUND_MASK ((1UL<<24)-1) +static int +sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) +{ + u_long ps, pe, pn; + u_long k; + int s, t; + +#ifndef FreeBSD_Bus_Dma_Abstraction + s = SYM_CONF_MAX_SG - 1 - cp->segments; +#else + s = SYM_CONF_MAX_SG - 1; +#endif + t = nsegs - 1; + ps = psegs[t].ds_addr; + pe = ps + psegs[t].ds_len; + + while (s >= 0) { + pn = (pe - 1) & ~BOUND_MASK; + if (pn <= ps) + pn = ps; + k = pe - pn; + if (DEBUG_FLAGS & DEBUG_SCATTER) { + printf ("%s scatter: paddr=%lx len=%ld\n", + sym_name(np), pn, k); + } + cp->phys.data[s].addr = cpu_to_scr(pn); + cp->phys.data[s].size = cpu_to_scr(k); +#ifndef FreeBSD_Bus_Dma_Abstraction + cp->data_len += k; +#endif + --s; + if (pn == ps) { + if (--t < 0) + break; + ps = psegs[t].ds_addr; + pe = ps + psegs[t].ds_len; + } + else + pe = pn; + } + + cp->segments = SYM_CONF_MAX_SG - 1 - s; + + return t >= 0 ? -1 : 0; +} +#undef BOUND_MASK + +/* + * SIM action for non performance critical stuff. + */ +static void sym_action2(struct cam_sim *sim, union ccb *ccb) +{ + hcb_p np; + tcb_p tp; + lcb_p lp; + struct ccb_hdr *ccb_h; + + /* + * Retrieve our controller data structure. + */ + np = (hcb_p) cam_sim_softc(sim); + + ccb_h = &ccb->ccb_h; + + switch (ccb_h->func_code) { + case XPT_SET_TRAN_SETTINGS: + { + struct ccb_trans_settings *cts; + + cts = &ccb->cts; + tp = &np->target[ccb_h->target_id]; + + /* + * Update SPI transport settings in TARGET control block. + * Update SCSI device settings in LUN control block. + */ + lp = sym_lp(np, tp, ccb_h->target_lun); +#ifdef FreeBSD_New_Tran_Settings + if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { +#else + if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { +#endif + sym_update_trans(np, tp, &tp->tinfo.goal, cts); + if (lp) + sym_update_dflags(np, &lp->current_flags, cts); + } +#ifdef FreeBSD_New_Tran_Settings + if (cts->type == CTS_TYPE_USER_SETTINGS) { +#else + if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { +#endif + sym_update_trans(np, tp, &tp->tinfo.user, cts); + if (lp) + sym_update_dflags(np, &lp->user_flags, cts); + } + + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_GET_TRAN_SETTINGS: + { + struct ccb_trans_settings *cts; + struct sym_trans *tip; + u_char dflags; + + cts = &ccb->cts; + tp = &np->target[ccb_h->target_id]; + lp = sym_lp(np, tp, ccb_h->target_lun); + +#ifdef FreeBSD_New_Tran_Settings +#define cts__scsi (&cts->proto_specific.scsi) +#define cts__spi (&cts->xport_specific.spi) + if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { + tip = &tp->tinfo.current; + dflags = lp ? lp->current_flags : 0; + } + else { + tip = &tp->tinfo.user; + dflags = lp ? lp->user_flags : tp->usrflags; + } + + cts->protocol = PROTO_SCSI; + cts->transport = XPORT_SPI; + cts->protocol_version = tip->scsi_version; + cts->transport_version = tip->spi_version; + + cts__spi->sync_period = tip->period; + cts__spi->sync_offset = tip->offset; + cts__spi->bus_width = tip->width; + cts__spi->ppr_options = tip->options; + + cts__spi->valid = CTS_SPI_VALID_SYNC_RATE + | CTS_SPI_VALID_SYNC_OFFSET + | CTS_SPI_VALID_BUS_WIDTH + | CTS_SPI_VALID_PPR_OPTIONS; + + cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; + if (dflags & SYM_DISC_ENABLED) + cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; + cts__spi->valid |= CTS_SPI_VALID_DISC; + + cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; + if (dflags & SYM_TAGS_ENABLED) + cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; + cts__scsi->valid |= CTS_SCSI_VALID_TQ; +#undef cts__spi +#undef cts__scsi +#else + if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { + tip = &tp->tinfo.current; + dflags = lp ? lp->current_flags : 0; + } + else { + tip = &tp->tinfo.user; + dflags = lp ? lp->user_flags : tp->usrflags; + } + + cts->sync_period = tip->period; + cts->sync_offset = tip->offset; + cts->bus_width = tip->width; + + cts->valid = CCB_TRANS_SYNC_RATE_VALID + | CCB_TRANS_SYNC_OFFSET_VALID + | CCB_TRANS_BUS_WIDTH_VALID; + + cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); + + if (dflags & SYM_DISC_ENABLED) + cts->flags |= CCB_TRANS_DISC_ENB; + + if (dflags & SYM_TAGS_ENABLED) + cts->flags |= CCB_TRANS_TAG_ENB; + + cts->valid |= CCB_TRANS_DISC_VALID; + cts->valid |= CCB_TRANS_TQ_VALID; +#endif + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_CALC_GEOMETRY: + { + struct ccb_calc_geometry *ccg; + u32 size_mb; + u32 secs_per_cylinder; + int extended; + + /* + * Silly DOS geometry. + */ + ccg = &ccb->ccg; + size_mb = ccg->volume_size + / ((1024L * 1024L) / ccg->block_size); + extended = 1; + + if (size_mb > 1024 && extended) { + ccg->heads = 255; + ccg->secs_per_track = 63; + } else { + ccg->heads = 64; + ccg->secs_per_track = 32; + } + secs_per_cylinder = ccg->heads * ccg->secs_per_track; + ccg->cylinders = ccg->volume_size / secs_per_cylinder; + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_PATH_INQ: + { + struct ccb_pathinq *cpi = &ccb->cpi; + cpi->version_num = 1; + cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; + if ((np->features & FE_WIDE) != 0) + cpi->hba_inquiry |= PI_WIDE_16; + cpi->target_sprt = 0; + cpi->hba_misc = 0; + if (np->usrflags & SYM_SCAN_TARGETS_HILO) + cpi->hba_misc |= PIM_SCANHILO; + if (np->usrflags & SYM_AVOID_BUS_RESET) + cpi->hba_misc |= PIM_NOBUSRESET; + cpi->hba_eng_cnt = 0; + cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; + /* Semantic problem:)LUN number max = max number of LUNs - 1 */ + cpi->max_lun = SYM_CONF_MAX_LUN-1; + if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) + cpi->max_lun = SYM_SETUP_MAX_LUN-1; + cpi->bus_id = cam_sim_bus(sim); + cpi->initiator_id = np->myaddr; + cpi->base_transfer_speed = 3300; + strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); + strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); + strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); + cpi->unit_number = cam_sim_unit(sim); + +#ifdef FreeBSD_New_Tran_Settings + cpi->protocol = PROTO_SCSI; + cpi->protocol_version = SCSI_REV_2; + cpi->transport = XPORT_SPI; + cpi->transport_version = 2; + cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; + if (np->features & FE_ULTRA3) { + cpi->transport_version = 3; + cpi->xport_specific.spi.ppr_options = + SID_SPI_CLOCK_DT_ST; + } +#endif + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_ABORT: + { + union ccb *abort_ccb = ccb->cab.abort_ccb; + switch(abort_ccb->ccb_h.func_code) { + case XPT_SCSI_IO: + if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + default: + sym_xpt_done2(np, ccb, CAM_UA_ABORT); + break; + } + break; + } + case XPT_RESET_DEV: + { + sym_reset_dev(np, ccb); + break; + } + case XPT_RESET_BUS: + { + sym_reset_scsi_bus(np, 0); + if (sym_verbose) { + xpt_print_path(np->path); + printf("SCSI BUS reset delivered.\n"); + } + sym_init (np, 1); + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_ACCEPT_TARGET_IO: + case XPT_CONT_TARGET_IO: + case XPT_EN_LUN: + case XPT_NOTIFY_ACK: + case XPT_IMMED_NOTIFY: + case XPT_TERM_IO: + default: + sym_xpt_done2(np, ccb, CAM_REQ_INVALID); + break; + } +} + +/* + * Asynchronous notification handler. + */ +static void +sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) +{ + hcb_p np; + struct cam_sim *sim; + u_int tn; + tcb_p tp; + int s; + + s = splcam(); + + sim = (struct cam_sim *) cb_arg; + np = (hcb_p) cam_sim_softc(sim); + + switch (code) { + case AC_LOST_DEVICE: + tn = xpt_path_target_id(path); + if (tn >= SYM_CONF_MAX_TARGET) + break; + + tp = &np->target[tn]; + + tp->to_reset = 0; + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + + tp->tinfo.current.period = tp->tinfo.goal.period = 0; + tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; + tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; + tp->tinfo.current.options = tp->tinfo.goal.options = 0; + + break; + default: + break; + } + + splx(s); +} + +/* + * Update transfer settings of a target. + */ +static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, + struct ccb_trans_settings *cts) +{ + /* + * Update the infos. + */ +#ifdef FreeBSD_New_Tran_Settings +#define cts__spi (&cts->xport_specific.spi) + if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) + tip->width = cts__spi->bus_width; + if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) + tip->offset = cts__spi->sync_offset; + if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) + tip->period = cts__spi->sync_period; + if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) + tip->options = (cts__spi->ppr_options & PPR_OPT_DT); + if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && + cts->protocol_version != PROTO_VERSION_UNKNOWN) + tip->scsi_version = cts->protocol_version; + if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && + cts->transport_version != XPORT_VERSION_UNKNOWN) + tip->spi_version = cts->transport_version; +#undef cts__spi +#else + if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) + tip->width = cts->bus_width; + if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) + tip->offset = cts->sync_offset; + if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) + tip->period = cts->sync_period; +#endif + /* + * Scale against driver configuration limits. + */ + if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; + if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; + if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; + + /* + * Scale against actual controller BUS width. + */ + if (tip->width > np->maxwide) + tip->width = np->maxwide; + +#ifdef FreeBSD_New_Tran_Settings + /* + * Only accept DT if controller supports and SYNC/WIDE asked. + */ + if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || + !(tip->width == BUS_16_BIT && tip->offset)) { + tip->options &= ~PPR_OPT_DT; + } +#else + /* + * For now, only assume DT if period <= 9, BUS 16 and offset != 0. + */ + tip->options = 0; + if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && + tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { + tip->options |= PPR_OPT_DT; + } +#endif + + /* + * Scale period factor and offset against controller limits. + */ + if (tip->options & PPR_OPT_DT) { + if (tip->period < np->minsync_dt) + tip->period = np->minsync_dt; + if (tip->period > np->maxsync_dt) + tip->period = np->maxsync_dt; + if (tip->offset > np->maxoffs_dt) + tip->offset = np->maxoffs_dt; + } + else { + if (tip->period < np->minsync) + tip->period = np->minsync; + if (tip->period > np->maxsync) + tip->period = np->maxsync; + if (tip->offset > np->maxoffs) + tip->offset = np->maxoffs; + } +} + +/* + * Update flags for a device (logical unit). + */ +static void +sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) +{ +#ifdef FreeBSD_New_Tran_Settings +#define cts__scsi (&cts->proto_specific.scsi) +#define cts__spi (&cts->xport_specific.spi) + if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { + if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) + *flags |= SYM_DISC_ENABLED; + else + *flags &= ~SYM_DISC_ENABLED; + } + + if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { + if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) + *flags |= SYM_TAGS_ENABLED; + else + *flags &= ~SYM_TAGS_ENABLED; + } +#undef cts__spi +#undef cts__scsi +#else + if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { + if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) + *flags |= SYM_DISC_ENABLED; + else + *flags &= ~SYM_DISC_ENABLED; + } + + if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { + if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) + *flags |= SYM_TAGS_ENABLED; + else + *flags &= ~SYM_TAGS_ENABLED; + } +#endif +} + + +/*============= DRIVER INITIALISATION ==================*/ + +#ifdef FreeBSD_Bus_Io_Abstraction + +static device_method_t sym_pci_methods[] = { + DEVMETHOD(device_probe, sym_pci_probe), + DEVMETHOD(device_attach, sym_pci_attach), + { 0, 0 } +}; + +static driver_t sym_pci_driver = { + "sym", + sym_pci_methods, + sizeof(struct sym_hcb) +}; + +static devclass_t sym_devclass; + +DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); + +#else /* Pre-FreeBSD_Bus_Io_Abstraction */ + +static u_long sym_unit; + +static struct pci_device sym_pci_driver = { + "sym", + sym_pci_probe, + sym_pci_attach, + &sym_unit, + NULL +}; + +#if __FreeBSD_version >= 400000 +COMPAT_PCI_DRIVER (sym, sym_pci_driver); +#else +DATA_SET (pcidevice_set, sym_pci_driver); +#endif + +#endif /* FreeBSD_Bus_Io_Abstraction */ + +static struct sym_pci_chip sym_pci_dev_table[] = { + {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, + FE_ERL} + , +#ifdef SYM_DEBUG_GENERIC_SUPPORT + {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, + FE_BOF} + , +#else + {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, + FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} + , +#endif + {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, + FE_BOF|FE_ERL} + , + {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, + FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} + , + {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, + FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, + FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} + , + {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , +#ifdef SYM_DEBUG_GENERIC_SUPPORT + {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| + FE_RAM|FE_LCKFRQ} + , +#else + {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_LCKFRQ} + , +#endif + {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| + FE_C10} + , + {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_IO256|FE_LEDC} +}; + +#define sym_pci_num_devs \ + (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) + +/* + * Look up the chip table. + * + * Return a pointer to the chip entry if found, + * zero otherwise. + */ +static struct sym_pci_chip * +#ifdef FreeBSD_Bus_Io_Abstraction +sym_find_pci_chip(device_t dev) +#else +sym_find_pci_chip(pcici_t pci_tag) +#endif +{ + struct sym_pci_chip *chip; + int i; + u_short device_id; + u_char revision; + +#ifdef FreeBSD_Bus_Io_Abstraction + if (pci_get_vendor(dev) != PCI_VENDOR_NCR) + return 0; + + device_id = pci_get_device(dev); + revision = pci_get_revid(dev); +#else + if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) + return 0; + + device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); + revision = pci_cfgread(pci_tag, PCIR_REVID, 1); +#endif + + for (i = 0; i < sym_pci_num_devs; i++) { + chip = &sym_pci_dev_table[i]; + if (device_id != chip->device_id) + continue; + if (revision > chip->revision_id) + continue; + return chip; + } + + return 0; +} + +/* + * Tell upper layer if the chip is supported. + */ +#ifdef FreeBSD_Bus_Io_Abstraction +static int +sym_pci_probe(device_t dev) +{ + struct sym_pci_chip *chip; + + chip = sym_find_pci_chip(dev); + if (chip && sym_find_firmware(chip)) { + device_set_desc(dev, chip->name); + return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0; + } + return ENXIO; +} +#else /* Pre-FreeBSD_Bus_Io_Abstraction */ +static const char * +sym_pci_probe(pcici_t pci_tag, pcidi_t type) +{ + struct sym_pci_chip *chip; + + chip = sym_find_pci_chip(pci_tag); + if (chip && sym_find_firmware(chip)) { +#if NNCR > 0 + /* Only claim chips we are allowed to take precedence over the ncr */ + if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)) +#else + if (1) +#endif + return chip->name; + } + return 0; +} +#endif + +/* + * Attach a sym53c8xx device. + */ +#ifdef FreeBSD_Bus_Io_Abstraction +static int +sym_pci_attach(device_t dev) +#else +static void +sym_pci_attach(pcici_t pci_tag, int unit) +{ + int err = sym_pci_attach2(pci_tag, unit); + if (err) + printf("sym: failed to attach unit %d - err=%d.\n", unit, err); +} +static int +sym_pci_attach2(pcici_t pci_tag, int unit) +#endif +{ + struct sym_pci_chip *chip; + u_short command; + u_char cachelnsz; + struct sym_hcb *np = 0; + struct sym_nvram nvram; + struct sym_fw *fw = 0; + int i; +#ifdef FreeBSD_Bus_Dma_Abstraction + bus_dma_tag_t bus_dmat; + + /* + * I expected to be told about a parent + * DMA tag, but didn't find any. + */ + bus_dmat = NULL; +#endif + + /* + * Only probed devices should be attached. + * We just enjoy being paranoid. :) + */ +#ifdef FreeBSD_Bus_Io_Abstraction + chip = sym_find_pci_chip(dev); +#else + chip = sym_find_pci_chip(pci_tag); +#endif + if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) + return (ENXIO); + + /* + * Allocate immediately the host control block, + * since we are only expecting to succeed. :) + * We keep track in the HCB of all the resources that + * are to be released on error. + */ +#ifdef FreeBSD_Bus_Dma_Abstraction + np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); + if (np) + np->bus_dmat = bus_dmat; + else + goto attach_failed; +#else + np = sym_calloc_dma(sizeof(*np), "HCB"); + if (!np) + goto attach_failed; +#endif + + /* + * Copy some useful infos to the HCB. + */ + np->hcb_ba = vtobus(np); + np->verbose = bootverbose; +#ifdef FreeBSD_Bus_Io_Abstraction + np->device = dev; + np->unit = device_get_unit(dev); + np->device_id = pci_get_device(dev); + np->revision_id = pci_get_revid(dev); +#else + np->pci_tag = pci_tag; + np->unit = unit; + np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); + np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); +#endif + np->features = chip->features; + np->clock_divn = chip->nr_divisor; + np->maxoffs = chip->offset_max; + np->maxburst = chip->burst_max; + np->scripta_sz = fw->a_size; + np->scriptb_sz = fw->b_size; + np->fw_setup = fw->setup; + np->fw_patch = fw->patch; + np->fw_name = fw->name; + + /* + * Edit its name. + */ + snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); + + /* + * Initialyze the CCB free and busy queues. + */ + sym_que_init(&np->free_ccbq); + sym_que_init(&np->busy_ccbq); + sym_que_init(&np->comp_ccbq); + sym_que_init(&np->cam_ccbq); + + /* + * Allocate a tag for the DMA of user data. + */ +#ifdef FreeBSD_Bus_Dma_Abstraction + if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), + BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, + NULL, NULL, + BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, + (1<<24), 0, &np->data_dmat)) { + device_printf(dev, "failed to create DMA tag.\n"); + goto attach_failed; + } +#endif + /* + * Read and apply some fix-ups to the PCI COMMAND + * register. We want the chip to be enabled for: + * - BUS mastering + * - PCI parity checking (reporting would also be fine) + * - Write And Invalidate. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + command = pci_read_config(dev, PCIR_COMMAND, 2); +#else + command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); +#endif + command |= PCIM_CMD_BUSMASTEREN; + command |= PCIM_CMD_PERRESPEN; + command |= /* PCIM_CMD_MWIEN */ 0x0010; +#ifdef FreeBSD_Bus_Io_Abstraction + pci_write_config(dev, PCIR_COMMAND, command, 2); +#else + pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); +#endif + + /* + * Let the device know about the cache line size, + * if it doesn't yet. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); +#else + cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); +#endif + if (!cachelnsz) { + cachelnsz = 8; +#ifdef FreeBSD_Bus_Io_Abstraction + pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); +#else + pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); +#endif + } + + /* + * Alloc/get/map/retrieve everything that deals with MMIO. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + if ((command & PCIM_CMD_MEMEN) != 0) { + int regs_id = SYM_PCI_MMIO; + np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, + 0, ~0, 1, RF_ACTIVE); + } + if (!np->mmio_res) { + device_printf(dev, "failed to allocate MMIO resources\n"); + goto attach_failed; + } + np->mmio_bsh = rman_get_bushandle(np->mmio_res); + np->mmio_tag = rman_get_bustag(np->mmio_res); + np->mmio_pa = rman_get_start(np->mmio_res); + np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); + np->mmio_ba = np->mmio_pa; +#else + if ((command & PCIM_CMD_MEMEN) != 0) { + vm_offset_t vaddr, paddr; + if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { + printf("%s: failed to map MMIO window\n", sym_name(np)); + goto attach_failed; + } + np->mmio_va = vaddr; + np->mmio_pa = paddr; + np->mmio_ba = paddr; + } +#endif + + /* + * Allocate the IRQ. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + i = 0; + np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, + 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); + if (!np->irq_res) { + device_printf(dev, "failed to allocate IRQ resource\n"); + goto attach_failed; + } +#endif + +#ifdef SYM_CONF_IOMAPPED + /* + * User want us to use normal IO with PCI. + * Alloc/get/map/retrieve everything that deals with IO. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + if ((command & PCI_COMMAND_IO_ENABLE) != 0) { + int regs_id = SYM_PCI_IO; + np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, + 0, ~0, 1, RF_ACTIVE); + } + if (!np->io_res) { + device_printf(dev, "failed to allocate IO resources\n"); + goto attach_failed; + } + np->io_bsh = rman_get_bushandle(np->io_res); + np->io_tag = rman_get_bustag(np->io_res); + np->io_port = rman_get_start(np->io_res); +#else + if ((command & PCI_COMMAND_IO_ENABLE) != 0) { + pci_port_t io_port; + if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) { + printf("%s: failed to map IO window\n", sym_name(np)); + goto attach_failed; + } + np->io_port = io_port; + } +#endif + +#endif /* SYM_CONF_IOMAPPED */ + + /* + * If the chip has RAM. + * Alloc/get/map/retrieve the corresponding resources. + */ + if ((np->features & (FE_RAM|FE_RAM8K)) && + (command & PCIM_CMD_MEMEN) != 0) { +#ifdef FreeBSD_Bus_Io_Abstraction + int regs_id = SYM_PCI_RAM; + if (np->features & FE_64BIT) + regs_id = SYM_PCI_RAM64; + np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, + 0, ~0, 1, RF_ACTIVE); + if (!np->ram_res) { + device_printf(dev,"failed to allocate RAM resources\n"); + goto attach_failed; + } + np->ram_id = regs_id; + np->ram_bsh = rman_get_bushandle(np->ram_res); + np->ram_tag = rman_get_bustag(np->ram_res); + np->ram_pa = rman_get_start(np->ram_res); + np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); + np->ram_ba = np->ram_pa; +#else + vm_offset_t vaddr, paddr; + int regs_id = SYM_PCI_RAM; + if (np->features & FE_64BIT) + regs_id = SYM_PCI_RAM64; + if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { + printf("%s: failed to map RAM window\n", sym_name(np)); + goto attach_failed; + } + np->ram_va = vaddr; + np->ram_pa = paddr; + np->ram_ba = paddr; +#endif + } + + /* + * Save setting of some IO registers, so we will + * be able to probe specific implementations. + */ + sym_save_initial_setting (np); + + /* + * Reset the chip now, since it has been reported + * that SCSI clock calibration may not work properly + * if the chip is currently active. + */ + sym_chip_reset (np); + + /* + * Try to read the user set-up. + */ + (void) sym_read_nvram(np, &nvram); + + /* + * Prepare controller and devices settings, according + * to chip features, user set-up and driver set-up. + */ + (void) sym_prepare_setting(np, &nvram); + + /* + * Check the PCI clock frequency. + * Must be performed after prepare_setting since it destroys + * STEST1 that is used to probe for the clock doubler. + */ + i = sym_getpciclock(np); + if (i > 37000) +#ifdef FreeBSD_Bus_Io_Abstraction + device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); +#else + printf("%s: PCI BUS clock seems too high: %u KHz.\n", + sym_name(np), i); +#endif + + /* + * Allocate the start queue. + */ + np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); + if (!np->squeue) + goto attach_failed; + np->squeue_ba = vtobus(np->squeue); + + /* + * Allocate the done queue. + */ + np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); + if (!np->dqueue) + goto attach_failed; + np->dqueue_ba = vtobus(np->dqueue); + + /* + * Allocate the target bus address array. + */ + np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); + if (!np->targtbl) + goto attach_failed; + np->targtbl_ba = vtobus(np->targtbl); + + /* + * Allocate SCRIPTS areas. + */ + np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); + np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); + if (!np->scripta0 || !np->scriptb0) + goto attach_failed; + + /* + * Allocate some CCB. We need at least ONE. + */ + if (!sym_alloc_ccb(np)) + goto attach_failed; + + /* + * Calculate BUS addresses where we are going + * to load the SCRIPTS. + */ + np->scripta_ba = vtobus(np->scripta0); + np->scriptb_ba = vtobus(np->scriptb0); + np->scriptb0_ba = np->scriptb_ba; + + if (np->ram_ba) { + np->scripta_ba = np->ram_ba; + if (np->features & FE_RAM8K) { + np->ram_ws = 8192; + np->scriptb_ba = np->scripta_ba + 4096; +#if BITS_PER_LONG > 32 + np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); +#endif + } + else + np->ram_ws = 4096; + } + + /* + * Copy scripts to controller instance. + */ + bcopy(fw->a_base, np->scripta0, np->scripta_sz); + bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); + + /* + * Setup variable parts in scripts and compute + * scripts bus addresses used from the C code. + */ + np->fw_setup(np, fw); + + /* + * Bind SCRIPTS with physical addresses usable by the + * SCRIPTS processor (as seen from the BUS = BUS addresses). + */ + sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); + sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user wants IARB to be set when we win arbitration + * and have other jobs, compute the max number of consecutive + * settings of IARB hints before we leave devices a chance to + * arbitrate for reselection. + */ +#ifdef SYM_SETUP_IARB_MAX + np->iarb_max = SYM_SETUP_IARB_MAX; +#else + np->iarb_max = 4; +#endif +#endif + + /* + * Prepare the idle and invalid task actions. + */ + np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); + np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); + np->idletask_ba = vtobus(&np->idletask); + + np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); + np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); + np->notask_ba = vtobus(&np->notask); + + np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); + np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); + np->bad_itl_ba = vtobus(&np->bad_itl); + + np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); + np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); + np->bad_itlq_ba = vtobus(&np->bad_itlq); + + /* + * Allocate and prepare the lun JUMP table that is used + * for a target prior the probing of devices (bad lun table). + * A private table will be allocated for the target on the + * first INQUIRY response received. + */ + np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); + if (!np->badluntbl) + goto attach_failed; + + np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); + for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ + np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); + + /* + * Prepare the bus address array that contains the bus + * address of each target control block. + * For now, assume all logical units are wrong. :) + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); + np->target[i].head.luntbl_sa = + cpu_to_scr(vtobus(np->badluntbl)); + np->target[i].head.lun0_sa = + cpu_to_scr(vtobus(&np->badlun_sa)); + } + + /* + * Now check the cache handling of the pci chipset. + */ + if (sym_snooptest (np)) { +#ifdef FreeBSD_Bus_Io_Abstraction + device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); +#else + printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); +#endif + goto attach_failed; + }; + + /* + * Now deal with CAM. + * Hopefully, we will succeed with that one.:) + */ + if (!sym_cam_attach(np)) + goto attach_failed; + + /* + * Sigh! we are done. + */ + return 0; + + /* + * We have failed. + * We will try to free all the resources we have + * allocated, but if we are a boot device, this + * will not help that much.;) + */ +attach_failed: + if (np) + sym_pci_free(np); + return ENXIO; +} + +/* + * Free everything that have been allocated for this device. + */ +static void sym_pci_free(hcb_p np) +{ + SYM_QUEHEAD *qp; + ccb_p cp; + tcb_p tp; + lcb_p lp; + int target, lun; + int s; + + /* + * First free CAM resources. + */ + s = splcam(); + sym_cam_free(np); + splx(s); + + /* + * Now every should be quiet for us to + * free other resources. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + if (np->ram_res) + bus_release_resource(np->device, SYS_RES_MEMORY, + np->ram_id, np->ram_res); + if (np->mmio_res) + bus_release_resource(np->device, SYS_RES_MEMORY, + SYM_PCI_MMIO, np->mmio_res); + if (np->io_res) + bus_release_resource(np->device, SYS_RES_IOPORT, + SYM_PCI_IO, np->io_res); + if (np->irq_res) + bus_release_resource(np->device, SYS_RES_IRQ, + 0, np->irq_res); +#else + /* + * YEAH!!! + * It seems there is no means to free MMIO resources. + */ +#endif + + if (np->scriptb0) + sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); + if (np->scripta0) + sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); + if (np->squeue) + sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); + if (np->dqueue) + sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); + + while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); +#ifdef FreeBSD_Bus_Dma_Abstraction + bus_dmamap_destroy(np->data_dmat, cp->dmamap); +#endif + sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); + sym_mfree_dma(cp, sizeof(*cp), "CCB"); + } + + if (np->badluntbl) + sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); + + for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { + tp = &np->target[target]; + for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { + lp = sym_lp(np, tp, lun); + if (!lp) + continue; + if (lp->itlq_tbl) + sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, + "ITLQ_TBL"); + if (lp->cb_tags) + sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, + "CB_TAGS"); + sym_mfree_dma(lp, sizeof(*lp), "LCB"); + } +#if SYM_CONF_MAX_LUN > 1 + if (tp->lunmp) + sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), + "LUNMP"); +#endif + } + if (np->targtbl) + sym_mfree_dma(np->targtbl, 256, "TARGTBL"); +#ifdef FreeBSD_Bus_Dma_Abstraction + if (np->data_dmat) + bus_dma_tag_destroy(np->data_dmat); +#endif + sym_mfree_dma(np, sizeof(*np), "HCB"); +} + +/* + * Allocate CAM resources and register a bus to CAM. + */ +static int sym_cam_attach(hcb_p np) +{ + struct cam_devq *devq = 0; + struct cam_sim *sim = 0; + struct cam_path *path = 0; + struct ccb_setasync csa; + int err, s; + + s = splcam(); + + /* + * Establish our interrupt handler. + */ +#ifdef FreeBSD_Bus_Io_Abstraction + err = bus_setup_intr(np->device, np->irq_res, + INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np, + &np->intr); + if (err) { + device_printf(np->device, "bus_setup_intr() failed: %d\n", + err); + goto fail; + } +#else + err = 0; + if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { + printf("%s: failed to map interrupt\n", sym_name(np)); + goto fail; + } +#endif + + /* + * Create the device queue for our sym SIM. + */ + devq = cam_simq_alloc(SYM_CONF_MAX_START); + if (!devq) + goto fail; + + /* + * Construct our SIM entry. + */ + sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, + 1, SYM_SETUP_MAX_TAG, devq); + if (!sim) + goto fail; + devq = 0; + + if (xpt_bus_register(sim, 0) != CAM_SUCCESS) + goto fail; + np->sim = sim; + sim = 0; + + if (xpt_create_path(&path, 0, + cam_sim_path(np->sim), CAM_TARGET_WILDCARD, + CAM_LUN_WILDCARD) != CAM_REQ_CMP) { + goto fail; + } + np->path = path; + + /* + * Hmmm... This should be useful, but I donnot want to + * know about. + */ +#if __FreeBSD_version < 400000 +#ifdef __alpha__ +#ifdef FreeBSD_Bus_Io_Abstraction + alpha_register_pci_scsi(pci_get_bus(np->device), + pci_get_slot(np->device), np->sim); +#else + alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim); +#endif +#endif +#endif + + /* + * Establish our async notification handler. + */ + xpt_setup_ccb(&csa.ccb_h, np->path, 5); + csa.ccb_h.func_code = XPT_SASYNC_CB; + csa.event_enable = AC_LOST_DEVICE; + csa.callback = sym_async; + csa.callback_arg = np->sim; + xpt_action((union ccb *)&csa); + + /* + * Start the chip now, without resetting the BUS, since + * it seems that this must stay under control of CAM. + * With LVD/SE capable chips and BUS in SE mode, we may + * get a spurious SMBC interrupt. + */ + sym_init (np, 0); + + splx(s); + return 1; +fail: + if (sim) + cam_sim_free(sim, FALSE); + if (devq) + cam_simq_free(devq); + + sym_cam_free(np); + + splx(s); + return 0; +} + +/* + * Free everything that deals with CAM. + */ +static void sym_cam_free(hcb_p np) +{ +#ifdef FreeBSD_Bus_Io_Abstraction + if (np->intr) + bus_teardown_intr(np->device, np->irq_res, np->intr); +#else + /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ +#endif + + if (np->sim) { + xpt_bus_deregister(cam_sim_path(np->sim)); + cam_sim_free(np->sim, /*free_devq*/ TRUE); + } + if (np->path) + xpt_free_path(np->path); +} + +/*============ OPTIONNAL NVRAM SUPPORT =================*/ + +/* + * Get host setup from NVRAM. + */ +static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) +{ +#ifdef SYM_CONF_NVRAM_SUPPORT + /* + * Get parity checking, host ID, verbose mode + * and miscellaneous host flags from NVRAM. + */ + switch(nvram->type) { + case SYM_SYMBIOS_NVRAM: + if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) + np->rv_scntl0 &= ~0x0a; + np->myaddr = nvram->data.Symbios.host_id & 0x0f; + if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) + np->verbose += 1; + if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) + np->usrflags |= SYM_SCAN_TARGETS_HILO; + if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) + np->usrflags |= SYM_AVOID_BUS_RESET; + break; + case SYM_TEKRAM_NVRAM: + np->myaddr = nvram->data.Tekram.host_id & 0x0f; + break; + default: + break; + } +#endif +} + +/* + * Get target setup from NVRAM. + */ +#ifdef SYM_CONF_NVRAM_SUPPORT +static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); +static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); +#endif + +static void +sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) +{ +#ifdef SYM_CONF_NVRAM_SUPPORT + switch(nvp->type) { + case SYM_SYMBIOS_NVRAM: + sym_Symbios_setup_target (np, target, &nvp->data.Symbios); + break; + case SYM_TEKRAM_NVRAM: + sym_Tekram_setup_target (np, target, &nvp->data.Tekram); + break; + default: + break; + } +#endif +} + +#ifdef SYM_CONF_NVRAM_SUPPORT +/* + * Get target set-up from Symbios format NVRAM. + */ +static void +sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) +{ + tcb_p tp = &np->target[target]; + Symbios_target *tn = &nvram->target[target]; + + tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; + tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; + tp->usrtags = + (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; + + if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) + tp->usrflags &= ~SYM_DISC_ENABLED; + if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) + tp->usrflags |= SYM_SCAN_BOOT_DISABLED; + if (!(tn->flags & SYMBIOS_SCAN_LUNS)) + tp->usrflags |= SYM_SCAN_LUNS_DISABLED; +} + +/* + * Get target set-up from Tekram format NVRAM. + */ +static void +sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) +{ + tcb_p tp = &np->target[target]; + struct Tekram_target *tn = &nvram->target[target]; + int i; + + if (tn->flags & TEKRAM_SYNC_NEGO) { + i = tn->sync_index & 0xf; + tp->tinfo.user.period = Tekram_sync[i]; + } + + tp->tinfo.user.width = + (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; + + if (tn->flags & TEKRAM_TAGGED_COMMANDS) { + tp->usrtags = 2 << nvram->max_tags_index; + } + + if (tn->flags & TEKRAM_DISCONNECT_ENABLE) + tp->usrflags |= SYM_DISC_ENABLED; + + /* If any device does not support parity, we will not use this option */ + if (!(tn->flags & TEKRAM_PARITY_CHECK)) + np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ +} + +#ifdef SYM_CONF_DEBUG_NVRAM +/* + * Dump Symbios format NVRAM for debugging purpose. + */ +static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) +{ + int i; + + /* display Symbios nvram host data */ + printf("%s: HOST ID=%d%s%s%s%s%s%s\n", + sym_name(np), nvram->host_id & 0x0f, + (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", + (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", + (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", + (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", + (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", + (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); + + /* display Symbios nvram drive data */ + for (i = 0 ; i < 15 ; i++) { + struct Symbios_target *tn = &nvram->target[i]; + printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", + sym_name(np), i, + (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", + (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", + (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", + (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", + tn->bus_width, + tn->sync_period / 4, + tn->timeout); + } +} + +/* + * Dump TEKRAM format NVRAM for debugging purpose. + */ +static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; +static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) +{ + int i, tags, boot_delay; + char *rem; + + /* display Tekram nvram host data */ + tags = 2 << nvram->max_tags_index; + boot_delay = 0; + if (nvram->boot_delay_index < 6) + boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; + switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { + default: + case 0: rem = ""; break; + case 1: rem = " REMOVABLE=boot device"; break; + case 2: rem = " REMOVABLE=all"; break; + } + + printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", + sym_name(np), nvram->host_id & 0x0f, + (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", + (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", + (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", + (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", + (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", + (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", + (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", + (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", + rem, boot_delay, tags); + + /* display Tekram nvram drive data */ + for (i = 0; i <= 15; i++) { + int sync, j; + struct Tekram_target *tn = &nvram->target[i]; + j = tn->sync_index & 0xf; + sync = Tekram_sync[j]; + printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", + sym_name(np), i, + (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", + (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", + (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", + (tn->flags & TEKRAM_START_CMD) ? " START" : "", + (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", + (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", + sync); + } +} +#endif /* SYM_CONF_DEBUG_NVRAM */ +#endif /* SYM_CONF_NVRAM_SUPPORT */ + + +/* + * Try reading Symbios or Tekram NVRAM + */ +#ifdef SYM_CONF_NVRAM_SUPPORT +static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); +static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); +#endif + +static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) +{ +#ifdef SYM_CONF_NVRAM_SUPPORT + /* + * Try to read SYMBIOS nvram. + * Try to read TEKRAM nvram if Symbios nvram not found. + */ + if (SYM_SETUP_SYMBIOS_NVRAM && + !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { + nvp->type = SYM_SYMBIOS_NVRAM; +#ifdef SYM_CONF_DEBUG_NVRAM + sym_display_Symbios_nvram(np, &nvp->data.Symbios); +#endif + } + else if (SYM_SETUP_TEKRAM_NVRAM && + !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { + nvp->type = SYM_TEKRAM_NVRAM; +#ifdef SYM_CONF_DEBUG_NVRAM + sym_display_Tekram_nvram(np, &nvp->data.Tekram); +#endif + } + else + nvp->type = 0; +#else + nvp->type = 0; +#endif + return nvp->type; +} + + +#ifdef SYM_CONF_NVRAM_SUPPORT +/* + * 24C16 EEPROM reading. + * + * GPOI0 - data in/data out + * GPIO1 - clock + * Symbios NVRAM wiring now also used by Tekram. + */ + +#define SET_BIT 0 +#define CLR_BIT 1 +#define SET_CLK 2 +#define CLR_CLK 3 + +/* + * Set/clear data/clock bit in GPIO0 + */ +static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, + int bit_mode) +{ + UDELAY (5); + switch (bit_mode){ + case SET_BIT: + *gpreg |= write_bit; + break; + case CLR_BIT: + *gpreg &= 0xfe; + break; + case SET_CLK: + *gpreg |= 0x02; + break; + case CLR_CLK: + *gpreg &= 0xfd; + break; + + } + OUTB (nc_gpreg, *gpreg); + UDELAY (5); +} + +/* + * Send START condition to NVRAM to wake it up. + */ +static void S24C16_start(hcb_p np, u_char *gpreg) +{ + S24C16_set_bit(np, 1, gpreg, SET_BIT); + S24C16_set_bit(np, 0, gpreg, SET_CLK); + S24C16_set_bit(np, 0, gpreg, CLR_BIT); + S24C16_set_bit(np, 0, gpreg, CLR_CLK); +} + +/* + * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! + */ +static void S24C16_stop(hcb_p np, u_char *gpreg) +{ + S24C16_set_bit(np, 0, gpreg, SET_CLK); + S24C16_set_bit(np, 1, gpreg, SET_BIT); +} + +/* + * Read or write a bit to the NVRAM, + * read if GPIO0 input else write if GPIO0 output + */ +static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, + u_char *gpreg) +{ + S24C16_set_bit(np, write_bit, gpreg, SET_BIT); + S24C16_set_bit(np, 0, gpreg, SET_CLK); + if (read_bit) + *read_bit = INB (nc_gpreg); + S24C16_set_bit(np, 0, gpreg, CLR_CLK); + S24C16_set_bit(np, 0, gpreg, CLR_BIT); +} + +/* + * Output an ACK to the NVRAM after reading, + * change GPIO0 to output and when done back to an input + */ +static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, + u_char *gpcntl) +{ + OUTB (nc_gpcntl, *gpcntl & 0xfe); + S24C16_do_bit(np, 0, write_bit, gpreg); + OUTB (nc_gpcntl, *gpcntl); +} + +/* + * Input an ACK from NVRAM after writing, + * change GPIO0 to input and when done back to an output + */ +static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, + u_char *gpcntl) +{ + OUTB (nc_gpcntl, *gpcntl | 0x01); + S24C16_do_bit(np, read_bit, 1, gpreg); + OUTB (nc_gpcntl, *gpcntl); +} + +/* + * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, + * GPIO0 must already be set as an output + */ +static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, + u_char *gpreg, u_char *gpcntl) +{ + int x; + + for (x = 0; x < 8; x++) + S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); + + S24C16_read_ack(np, ack_data, gpreg, gpcntl); +} + +/* + * READ a byte from the NVRAM and then send an ACK to say we have got it, + * GPIO0 must already be set as an input + */ +static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, + u_char *gpreg, u_char *gpcntl) +{ + int x; + u_char read_bit; + + *read_data = 0; + for (x = 0; x < 8; x++) { + S24C16_do_bit(np, &read_bit, 1, gpreg); + *read_data |= ((read_bit & 0x01) << (7 - x)); + } + + S24C16_write_ack(np, ack_data, gpreg, gpcntl); +} + +/* + * Read 'len' bytes starting at 'offset'. + */ +static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + u_char ack_data; + int retv = 1; + int x; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB (nc_gpreg); + old_gpcntl = INB (nc_gpcntl); + gpcntl = old_gpcntl & 0x1c; + + /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ + OUTB (nc_gpreg, old_gpreg); + OUTB (nc_gpcntl, gpcntl); + + /* this is to set NVRAM into a known state with GPIO0/1 both low */ + gpreg = old_gpreg; + S24C16_set_bit(np, 0, &gpreg, CLR_CLK); + S24C16_set_bit(np, 0, &gpreg, CLR_BIT); + + /* now set NVRAM inactive with GPIO0/1 both high */ + S24C16_stop(np, &gpreg); + + /* activate NVRAM */ + S24C16_start(np, &gpreg); + + /* write device code and random address MSB */ + S24C16_write_byte(np, &ack_data, + 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* write random address LSB */ + S24C16_write_byte(np, &ack_data, + offset & 0xff, &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* regenerate START state to set up for reading */ + S24C16_start(np, &gpreg); + + /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ + S24C16_write_byte(np, &ack_data, + 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* now set up GPIO0 for inputting data */ + gpcntl |= 0x01; + OUTB (nc_gpcntl, gpcntl); + + /* input all requested data - only part of total NVRAM */ + for (x = 0; x < len; x++) + S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); + + /* finally put NVRAM back in inactive mode */ + gpcntl &= 0xfe; + OUTB (nc_gpcntl, gpcntl); + S24C16_stop(np, &gpreg); + retv = 0; +out: + /* return GPIO0/1 to original states after having accessed NVRAM */ + OUTB (nc_gpcntl, old_gpcntl); + OUTB (nc_gpreg, old_gpreg); + + return retv; +} + +#undef SET_BIT /* 0 */ +#undef CLR_BIT /* 1 */ +#undef SET_CLK /* 2 */ +#undef CLR_CLK /* 3 */ + +/* + * Try reading Symbios NVRAM. + * Return 0 if OK. + */ +static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) +{ + static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; + u_char *data = (u_char *) nvram; + int len = sizeof(*nvram); + u_short csum; + int x; + + /* probe the 24c16 and read the SYMBIOS 24c16 area */ + if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) + return 1; + + /* check valid NVRAM signature, verify byte count and checksum */ + if (nvram->type != 0 || + bcmp(nvram->trailer, Symbios_trailer, 6) || + nvram->byte_count != len - 12) + return 1; + + /* verify checksum */ + for (x = 6, csum = 0; x < len - 6; x++) + csum += data[x]; + if (csum != nvram->checksum) + return 1; + + return 0; +} + +/* + * 93C46 EEPROM reading. + * + * GPOI0 - data in + * GPIO1 - data out + * GPIO2 - clock + * GPIO4 - chip select + * + * Used by Tekram. + */ + +/* + * Pulse clock bit in GPIO0 + */ +static void T93C46_Clk(hcb_p np, u_char *gpreg) +{ + OUTB (nc_gpreg, *gpreg | 0x04); + UDELAY (2); + OUTB (nc_gpreg, *gpreg); +} + +/* + * Read bit from NVRAM + */ +static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) +{ + UDELAY (2); + T93C46_Clk(np, gpreg); + *read_bit = INB (nc_gpreg); +} + +/* + * Write bit to GPIO0 + */ +static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) +{ + if (write_bit & 0x01) + *gpreg |= 0x02; + else + *gpreg &= 0xfd; + + *gpreg |= 0x10; + + OUTB (nc_gpreg, *gpreg); + UDELAY (2); + + T93C46_Clk(np, gpreg); +} + +/* + * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! + */ +static void T93C46_Stop(hcb_p np, u_char *gpreg) +{ + *gpreg &= 0xef; + OUTB (nc_gpreg, *gpreg); + UDELAY (2); + + T93C46_Clk(np, gpreg); +} + +/* + * Send read command and address to NVRAM + */ +static void T93C46_Send_Command(hcb_p np, u_short write_data, + u_char *read_bit, u_char *gpreg) +{ + int x; + + /* send 9 bits, start bit (1), command (2), address (6) */ + for (x = 0; x < 9; x++) + T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); + + *read_bit = INB (nc_gpreg); +} + +/* + * READ 2 bytes from the NVRAM + */ +static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) +{ + int x; + u_char read_bit; + + *nvram_data = 0; + for (x = 0; x < 16; x++) { + T93C46_Read_Bit(np, &read_bit, gpreg); + + if (read_bit & 0x01) + *nvram_data |= (0x01 << (15 - x)); + else + *nvram_data &= ~(0x01 << (15 - x)); + } +} + +/* + * Read Tekram NvRAM data. + */ +static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) +{ + u_char read_bit; + int x; + + for (x = 0; x < len; x++) { + + /* output read command and address */ + T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); + if (read_bit & 0x01) + return 1; /* Bad */ + T93C46_Read_Word(np, &data[x], gpreg); + T93C46_Stop(np, gpreg); + } + + return 0; +} + +/* + * Try reading 93C46 Tekram NVRAM. + */ +static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + int retv = 1; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB (nc_gpreg); + old_gpcntl = INB (nc_gpcntl); + + /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, + 1/2/4 out */ + gpreg = old_gpreg & 0xe9; + OUTB (nc_gpreg, gpreg); + gpcntl = (old_gpcntl & 0xe9) | 0x09; + OUTB (nc_gpcntl, gpcntl); + + /* input all of NVRAM, 64 words */ + retv = T93C46_Read_Data(np, (u_short *) nvram, + sizeof(*nvram) / sizeof(short), &gpreg); + + /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ + OUTB (nc_gpcntl, old_gpcntl); + OUTB (nc_gpreg, old_gpreg); + + return retv; +} + +/* + * Try reading Tekram NVRAM. + * Return 0 if OK. + */ +static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) +{ + u_char *data = (u_char *) nvram; + int len = sizeof(*nvram); + u_short csum; + int x; + + switch (np->device_id) { + case PCI_ID_SYM53C885: + case PCI_ID_SYM53C895: + case PCI_ID_SYM53C896: + x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, + data, len); + break; + case PCI_ID_SYM53C875: + x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, + data, len); + if (!x) + break; + default: + x = sym_read_T93C46_nvram(np, nvram); + break; + } + if (x) + return 1; + + /* verify checksum */ + for (x = 0, csum = 0; x < len - 1; x += 2) + csum += data[x] + (data[x+1] << 8); + if (csum != 0x1234) + return 1; + + return 0; +} + +#endif /* SYM_CONF_NVRAM_SUPPORT */ |