summaryrefslogtreecommitdiffstats
path: root/sys/dev/sym/sym_hipd.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/sym/sym_hipd.c')
-rw-r--r--sys/dev/sym/sym_hipd.c10414
1 files changed, 10414 insertions, 0 deletions
diff --git a/sys/dev/sym/sym_hipd.c b/sys/dev/sym/sym_hipd.c
new file mode 100644
index 0000000..31e8b9c
--- /dev/null
+++ b/sys/dev/sym/sym_hipd.c
@@ -0,0 +1,10414 @@
+/*
+ * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
+ * PCI-SCSI controllers.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver also supports the following Symbios/LSI PCI-SCSI chips:
+ * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
+ * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode.
+ *
+ *
+ * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-1999 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * The initialisation code, and part of the code that addresses
+ * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
+ * written by Justin T. Gibbs.
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/* $FreeBSD$ */
+
+#define SYM_DRIVER_NAME "sym-1.6.5-20000902"
+
+/* #define SYM_DEBUG_GENERIC_SUPPORT */
+/* #define CAM_NEW_TRAN_CODE */
+
+#include <sys/param.h>
+
+/*
+ * Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
+ * Note that the old BUS stuff also works for FreeBSD 4 and spares
+ * about 1 KB for the driver object file.
+ */
+#if __FreeBSD_version >= 400000
+#define FreeBSD_Bus_Dma_Abstraction
+#define FreeBSD_Bus_Io_Abstraction
+#define FreeBSD_Bus_Space_Abstraction
+#endif
+
+/*
+ * Driver configuration options.
+ */
+#include "opt_sym.h"
+#include <dev/sym/sym_conf.h>
+
+#ifndef FreeBSD_Bus_Io_Abstraction
+#include "ncr.h" /* To know if the ncr has been configured */
+#endif
+
+#include <sys/systm.h>
+#include <sys/malloc.h>
+#include <sys/endian.h>
+#include <sys/kernel.h>
+#ifdef FreeBSD_Bus_Io_Abstraction
+#include <sys/module.h>
+#include <sys/bus.h>
+#endif
+
+#include <sys/proc.h>
+
+#include <pci/pcireg.h>
+#include <pci/pcivar.h>
+
+#ifdef FreeBSD_Bus_Space_Abstraction
+#include <machine/bus_memio.h>
+/*
+ * Only include bus_pio if needed.
+ * This avoids bus space primitives to be uselessly bloated
+ * by out-of-age PIO operations.
+ */
+#ifdef SYM_CONF_IOMAPPED
+#include <machine/bus_pio.h>
+#endif
+#endif
+#include <machine/bus.h>
+
+#ifdef FreeBSD_Bus_Io_Abstraction
+#include <machine/resource.h>
+#include <sys/rman.h>
+#endif
+
+#include <cam/cam.h>
+#include <cam/cam_ccb.h>
+#include <cam/cam_sim.h>
+#include <cam/cam_xpt_sim.h>
+#include <cam/cam_debug.h>
+
+#include <cam/scsi/scsi_all.h>
+#include <cam/scsi/scsi_message.h>
+
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/pmap.h>
+
+/* Short and quite clear integer types */
+typedef int8_t s8;
+typedef int16_t s16;
+typedef int32_t s32;
+typedef u_int8_t u8;
+typedef u_int16_t u16;
+typedef u_int32_t u32;
+
+/*
+ * From 'cam.error_recovery_diffs.20010313.context' patch.
+ */
+#ifdef CAM_NEW_TRAN_CODE
+#define FreeBSD_New_Tran_Settings
+#endif /* CAM_NEW_TRAN_CODE */
+
+/*
+ * Driver definitions.
+ */
+#include <dev/sym/sym_defs.h>
+#include <dev/sym/sym_fw.h>
+
+/*
+ * IA32 architecture does not reorder STORES and prevents
+ * LOADS from passing STORES. It is called `program order'
+ * by Intel and allows device drivers to deal with memory
+ * ordering by only ensuring that the code is not reordered
+ * by the compiler when ordering is required.
+ * Other architectures implement a weaker ordering that
+ * requires memory barriers (and also IO barriers when they
+ * make sense) to be used.
+ */
+
+#if defined __i386__
+#define MEMORY_BARRIER() do { ; } while(0)
+#elif defined __alpha__
+#define MEMORY_BARRIER() alpha_mb()
+#elif defined __powerpc__
+#define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory")
+#elif defined __ia64__
+#define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory")
+#elif defined __sparc64__
+#define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory")
+#else
+#error "Not supported platform"
+#endif
+
+/*
+ * Portable but silly implemented byte order primitives.
+ * We define the primitives we need, since FreeBSD doesn't
+ * seem to have them yet.
+ */
+#if BYTE_ORDER == BIG_ENDIAN
+
+#define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \
+ (((u16)(x) & (u16)0xff00U) >> 8) )
+#define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \
+ (((u32)(x) & 0x0000ff00U) << 8) | \
+ (((u32)(x) & 0x00ff0000U) >> 8) | \
+ (((u32)(x) & 0xff000000U) >> 24) )
+
+#define __htole16(v) __revb16(v)
+#define __htole32(v) __revb32(v)
+#define __le16toh(v) __htole16(v)
+#define __le32toh(v) __htole32(v)
+
+static __inline u16 _htole16(u16 v) { return __htole16(v); }
+static __inline u32 _htole32(u32 v) { return __htole32(v); }
+#define _le16toh _htole16
+#define _le32toh _htole32
+
+#else /* LITTLE ENDIAN */
+
+#define __htole16(v) (v)
+#define __htole32(v) (v)
+#define __le16toh(v) (v)
+#define __le32toh(v) (v)
+
+#define _htole16(v) (v)
+#define _htole32(v) (v)
+#define _le16toh(v) (v)
+#define _le32toh(v) (v)
+
+#endif /* BYTE_ORDER */
+
+/*
+ * A la VMS/CAM-3 queue management.
+ */
+
+typedef struct sym_quehead {
+ struct sym_quehead *flink; /* Forward pointer */
+ struct sym_quehead *blink; /* Backward pointer */
+} SYM_QUEHEAD;
+
+#define sym_que_init(ptr) do { \
+ (ptr)->flink = (ptr); (ptr)->blink = (ptr); \
+} while (0)
+
+static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
+{
+ return (head->flink == head) ? 0 : head->flink;
+}
+
+static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
+{
+ return (head->blink == head) ? 0 : head->blink;
+}
+
+static __inline void __sym_que_add(struct sym_quehead * new,
+ struct sym_quehead * blink,
+ struct sym_quehead * flink)
+{
+ flink->blink = new;
+ new->flink = flink;
+ new->blink = blink;
+ blink->flink = new;
+}
+
+static __inline void __sym_que_del(struct sym_quehead * blink,
+ struct sym_quehead * flink)
+{
+ flink->blink = blink;
+ blink->flink = flink;
+}
+
+static __inline int sym_que_empty(struct sym_quehead *head)
+{
+ return head->flink == head;
+}
+
+static __inline void sym_que_splice(struct sym_quehead *list,
+ struct sym_quehead *head)
+{
+ struct sym_quehead *first = list->flink;
+
+ if (first != list) {
+ struct sym_quehead *last = list->blink;
+ struct sym_quehead *at = head->flink;
+
+ first->blink = head;
+ head->flink = first;
+
+ last->flink = at;
+ at->blink = last;
+ }
+}
+
+#define sym_que_entry(ptr, type, member) \
+ ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
+
+
+#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
+
+#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
+
+#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
+
+static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
+{
+ struct sym_quehead *elem = head->flink;
+
+ if (elem != head)
+ __sym_que_del(head, elem->flink);
+ else
+ elem = 0;
+ return elem;
+}
+
+#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
+
+static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
+{
+ struct sym_quehead *elem = head->blink;
+
+ if (elem != head)
+ __sym_que_del(elem->blink, head);
+ else
+ elem = 0;
+ return elem;
+}
+
+/*
+ * This one may be useful.
+ */
+#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
+ for (qp = (head)->flink; qp != (head); qp = qp->flink)
+/*
+ * FreeBSD does not offer our kind of queue in the CAM CCB.
+ * So, we have to cast.
+ */
+#define sym_qptr(p) ((struct sym_quehead *) (p))
+
+/*
+ * Simple bitmap operations.
+ */
+#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
+#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
+#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
+
+/*
+ * Number of tasks per device we want to handle.
+ */
+#if SYM_CONF_MAX_TAG_ORDER > 8
+#error "more than 256 tags per logical unit not allowed."
+#endif
+#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
+
+/*
+ * Donnot use more tasks that we can handle.
+ */
+#ifndef SYM_CONF_MAX_TAG
+#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
+#endif
+#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
+#undef SYM_CONF_MAX_TAG
+#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
+#endif
+
+/*
+ * This one means 'NO TAG for this job'
+ */
+#define NO_TAG (256)
+
+/*
+ * Number of SCSI targets.
+ */
+#if SYM_CONF_MAX_TARGET > 16
+#error "more than 16 targets not allowed."
+#endif
+
+/*
+ * Number of logical units per target.
+ */
+#if SYM_CONF_MAX_LUN > 64
+#error "more than 64 logical units per target not allowed."
+#endif
+
+/*
+ * Asynchronous pre-scaler (ns). Shall be 40 for
+ * the SCSI timings to be compliant.
+ */
+#define SYM_CONF_MIN_ASYNC (40)
+
+/*
+ * Number of entries in the START and DONE queues.
+ *
+ * We limit to 1 PAGE in order to succeed allocation of
+ * these queues. Each entry is 8 bytes long (2 DWORDS).
+ */
+#ifdef SYM_CONF_MAX_START
+#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
+#else
+#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
+#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
+#endif
+
+#if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
+#undef SYM_CONF_MAX_QUEUE
+#define SYM_CONF_MAX_QUEUE PAGE_SIZE/8
+#undef SYM_CONF_MAX_START
+#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
+#endif
+
+/*
+ * For this one, we want a short name :-)
+ */
+#define MAX_QUEUE SYM_CONF_MAX_QUEUE
+
+/*
+ * These ones should have been already defined.
+ */
+#ifndef MIN
+#define MIN(a, b) (((a) < (b)) ? (a) : (b))
+#endif
+
+/*
+ * Active debugging tags and verbosity.
+ */
+#define DEBUG_ALLOC (0x0001)
+#define DEBUG_PHASE (0x0002)
+#define DEBUG_POLL (0x0004)
+#define DEBUG_QUEUE (0x0008)
+#define DEBUG_RESULT (0x0010)
+#define DEBUG_SCATTER (0x0020)
+#define DEBUG_SCRIPT (0x0040)
+#define DEBUG_TINY (0x0080)
+#define DEBUG_TIMING (0x0100)
+#define DEBUG_NEGO (0x0200)
+#define DEBUG_TAGS (0x0400)
+#define DEBUG_POINTER (0x0800)
+
+#if 0
+static int sym_debug = 0;
+ #define DEBUG_FLAGS sym_debug
+#else
+/* #define DEBUG_FLAGS (0x0631) */
+ #define DEBUG_FLAGS (0x0000)
+
+#endif
+#define sym_verbose (np->verbose)
+
+/*
+ * Insert a delay in micro-seconds and milli-seconds.
+ */
+static void UDELAY(int us) { DELAY(us); }
+static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
+
+/*
+ * Simple power of two buddy-like allocator.
+ *
+ * This simple code is not intended to be fast, but to
+ * provide power of 2 aligned memory allocations.
+ * Since the SCRIPTS processor only supplies 8 bit arithmetic,
+ * this allocator allows simple and fast address calculations
+ * from the SCRIPTS code. In addition, cache line alignment
+ * is guaranteed for power of 2 cache line size.
+ *
+ * This allocator has been developped for the Linux sym53c8xx
+ * driver, since this O/S does not provide naturally aligned
+ * allocations.
+ * It has the advantage of allowing the driver to use private
+ * pages of memory that will be useful if we ever need to deal
+ * with IO MMUs for PCI.
+ */
+
+#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
+#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
+#if 0
+#define MEMO_FREE_UNUSED /* Free unused pages immediately */
+#endif
+#define MEMO_WARN 1
+#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
+#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
+#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
+
+#define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
+#define free_pages(p) free((p), M_DEVBUF)
+
+typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
+
+typedef struct m_link { /* Link between free memory chunks */
+ struct m_link *next;
+} m_link_s;
+
+#ifdef FreeBSD_Bus_Dma_Abstraction
+typedef struct m_vtob { /* Virtual to Bus address translation */
+ struct m_vtob *next;
+ bus_dmamap_t dmamap; /* Map for this chunk */
+ m_addr_t vaddr; /* Virtual address */
+ m_addr_t baddr; /* Bus physical address */
+} m_vtob_s;
+/* Hash this stuff a bit to speed up translations */
+#define VTOB_HASH_SHIFT 5
+#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
+#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
+#define VTOB_HASH_CODE(m) \
+ ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
+#endif
+
+typedef struct m_pool { /* Memory pool of a given kind */
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ bus_dma_tag_t dev_dmat; /* Identifies the pool */
+ bus_dma_tag_t dmat; /* Tag for our fixed allocations */
+ m_addr_t (*getp)(struct m_pool *);
+#ifdef MEMO_FREE_UNUSED
+ void (*freep)(struct m_pool *, m_addr_t);
+#endif
+#define M_GETP() mp->getp(mp)
+#define M_FREEP(p) mp->freep(mp, p)
+ int nump;
+ m_vtob_s *(vtob[VTOB_HASH_SIZE]);
+ struct m_pool *next;
+#else
+#define M_GETP() get_pages()
+#define M_FREEP(p) free_pages(p)
+#endif /* FreeBSD_Bus_Dma_Abstraction */
+ struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
+} m_pool_s;
+
+static void *___sym_malloc(m_pool_s *mp, int size)
+{
+ int i = 0;
+ int s = (1 << MEMO_SHIFT);
+ int j;
+ m_addr_t a;
+ m_link_s *h = mp->h;
+
+ if (size > MEMO_CLUSTER_SIZE)
+ return 0;
+
+ while (size > s) {
+ s <<= 1;
+ ++i;
+ }
+
+ j = i;
+ while (!h[j].next) {
+ if (s == MEMO_CLUSTER_SIZE) {
+ h[j].next = (m_link_s *) M_GETP();
+ if (h[j].next)
+ h[j].next->next = 0;
+ break;
+ }
+ ++j;
+ s <<= 1;
+ }
+ a = (m_addr_t) h[j].next;
+ if (a) {
+ h[j].next = h[j].next->next;
+ while (j > i) {
+ j -= 1;
+ s >>= 1;
+ h[j].next = (m_link_s *) (a+s);
+ h[j].next->next = 0;
+ }
+ }
+#ifdef DEBUG
+ printf("___sym_malloc(%d) = %p\n", size, (void *) a);
+#endif
+ return (void *) a;
+}
+
+static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
+{
+ int i = 0;
+ int s = (1 << MEMO_SHIFT);
+ m_link_s *q;
+ m_addr_t a, b;
+ m_link_s *h = mp->h;
+
+#ifdef DEBUG
+ printf("___sym_mfree(%p, %d)\n", ptr, size);
+#endif
+
+ if (size > MEMO_CLUSTER_SIZE)
+ return;
+
+ while (size > s) {
+ s <<= 1;
+ ++i;
+ }
+
+ a = (m_addr_t) ptr;
+
+ while (1) {
+#ifdef MEMO_FREE_UNUSED
+ if (s == MEMO_CLUSTER_SIZE) {
+ M_FREEP(a);
+ break;
+ }
+#endif
+ b = a ^ s;
+ q = &h[i];
+ while (q->next && q->next != (m_link_s *) b) {
+ q = q->next;
+ }
+ if (!q->next) {
+ ((m_link_s *) a)->next = h[i].next;
+ h[i].next = (m_link_s *) a;
+ break;
+ }
+ q->next = q->next->next;
+ a = a & b;
+ s <<= 1;
+ ++i;
+ }
+}
+
+static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
+{
+ void *p;
+
+ p = ___sym_malloc(mp, size);
+
+ if (DEBUG_FLAGS & DEBUG_ALLOC)
+ printf ("new %-10s[%4d] @%p.\n", name, size, p);
+
+ if (p)
+ bzero(p, size);
+ else if (uflags & MEMO_WARN)
+ printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
+
+ return p;
+}
+
+#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN)
+
+static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
+{
+ if (DEBUG_FLAGS & DEBUG_ALLOC)
+ printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
+
+ ___sym_mfree(mp, ptr, size);
+
+}
+
+/*
+ * Default memory pool we donnot need to involve in DMA.
+ */
+#ifndef FreeBSD_Bus_Dma_Abstraction
+/*
+ * Without the `bus dma abstraction', all the memory is assumed
+ * DMAable and a single pool is all what we need.
+ */
+static m_pool_s mp0;
+
+#else
+/*
+ * With the `bus dma abstraction', we use a separate pool for
+ * memory we donnot need to involve in DMA.
+ */
+static m_addr_t ___mp0_getp(m_pool_s *mp)
+{
+ m_addr_t m = (m_addr_t) get_pages();
+ if (m)
+ ++mp->nump;
+ return m;
+}
+
+#ifdef MEMO_FREE_UNUSED
+static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
+{
+ free_pages(m);
+ --mp->nump;
+}
+#endif
+
+#ifdef MEMO_FREE_UNUSED
+static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
+#else
+static m_pool_s mp0 = {0, 0, ___mp0_getp};
+#endif
+
+#endif /* FreeBSD_Bus_Dma_Abstraction */
+
+/*
+ * Actual memory allocation routine for non-DMAed memory.
+ */
+static void *sym_calloc(int size, char *name)
+{
+ void *m;
+ /* Lock */
+ m = __sym_calloc(&mp0, size, name);
+ /* Unlock */
+ return m;
+}
+
+/*
+ * Actual memory allocation routine for non-DMAed memory.
+ */
+static void sym_mfree(void *ptr, int size, char *name)
+{
+ /* Lock */
+ __sym_mfree(&mp0, ptr, size, name);
+ /* Unlock */
+}
+
+/*
+ * DMAable pools.
+ */
+#ifndef FreeBSD_Bus_Dma_Abstraction
+/*
+ * Without `bus dma abstraction', all the memory is DMAable, and
+ * only a single pool is needed (vtophys() is our friend).
+ */
+#define __sym_calloc_dma(b, s, n) sym_calloc(s, n)
+#define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n)
+#ifdef __alpha__
+#define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p))
+#else /*__i386__, __sparc64__*/
+#define __vtobus(b, p) vtophys(p)
+#endif
+
+#else
+/*
+ * With `bus dma abstraction', we use a separate pool per parent
+ * BUS handle. A reverse table (hashed) is maintained for virtual
+ * to BUS address translation.
+ */
+static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
+{
+ bus_addr_t *baddr;
+ baddr = (bus_addr_t *)arg;
+ *baddr = segs->ds_addr;
+}
+
+static m_addr_t ___dma_getp(m_pool_s *mp)
+{
+ m_vtob_s *vbp;
+ void *vaddr = 0;
+ bus_addr_t baddr = 0;
+
+ vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
+ if (!vbp)
+ goto out_err;
+
+ if (bus_dmamem_alloc(mp->dmat, &vaddr,
+ BUS_DMA_NOWAIT, &vbp->dmamap))
+ goto out_err;
+ bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
+ MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
+ if (baddr) {
+ int hc = VTOB_HASH_CODE(vaddr);
+ vbp->vaddr = (m_addr_t) vaddr;
+ vbp->baddr = (m_addr_t) baddr;
+ vbp->next = mp->vtob[hc];
+ mp->vtob[hc] = vbp;
+ ++mp->nump;
+ return (m_addr_t) vaddr;
+ }
+out_err:
+ if (baddr)
+ bus_dmamap_unload(mp->dmat, vbp->dmamap);
+ if (vaddr)
+ bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
+ if (vbp->dmamap)
+ bus_dmamap_destroy(mp->dmat, vbp->dmamap);
+ if (vbp)
+ __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
+ return 0;
+}
+
+#ifdef MEMO_FREE_UNUSED
+static void ___dma_freep(m_pool_s *mp, m_addr_t m)
+{
+ m_vtob_s **vbpp, *vbp;
+ int hc = VTOB_HASH_CODE(m);
+
+ vbpp = &mp->vtob[hc];
+ while (*vbpp && (*vbpp)->vaddr != m)
+ vbpp = &(*vbpp)->next;
+ if (*vbpp) {
+ vbp = *vbpp;
+ *vbpp = (*vbpp)->next;
+ bus_dmamap_unload(mp->dmat, vbp->dmamap);
+ bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
+ bus_dmamap_destroy(mp->dmat, vbp->dmamap);
+ __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
+ --mp->nump;
+ }
+}
+#endif
+
+static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
+{
+ m_pool_s *mp;
+ for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
+ return mp;
+}
+
+static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
+{
+ m_pool_s *mp = 0;
+
+ mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
+ if (mp) {
+ mp->dev_dmat = dev_dmat;
+ if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
+ BUS_SPACE_MAXADDR_32BIT,
+ BUS_SPACE_MAXADDR_32BIT,
+ NULL, NULL, MEMO_CLUSTER_SIZE, 1,
+ MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
+ mp->getp = ___dma_getp;
+#ifdef MEMO_FREE_UNUSED
+ mp->freep = ___dma_freep;
+#endif
+ mp->next = mp0.next;
+ mp0.next = mp;
+ return mp;
+ }
+ }
+ if (mp)
+ __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
+ return 0;
+}
+
+#ifdef MEMO_FREE_UNUSED
+static void ___del_dma_pool(m_pool_s *p)
+{
+ struct m_pool **pp = &mp0.next;
+
+ while (*pp && *pp != p)
+ pp = &(*pp)->next;
+ if (*pp) {
+ *pp = (*pp)->next;
+ bus_dma_tag_destroy(p->dmat);
+ __sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
+ }
+}
+#endif
+
+static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
+{
+ struct m_pool *mp;
+ void *m = 0;
+
+ /* Lock */
+ mp = ___get_dma_pool(dev_dmat);
+ if (!mp)
+ mp = ___cre_dma_pool(dev_dmat);
+ if (mp)
+ m = __sym_calloc(mp, size, name);
+#ifdef MEMO_FREE_UNUSED
+ if (mp && !mp->nump)
+ ___del_dma_pool(mp);
+#endif
+ /* Unlock */
+
+ return m;
+}
+
+static void
+__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
+{
+ struct m_pool *mp;
+
+ /* Lock */
+ mp = ___get_dma_pool(dev_dmat);
+ if (mp)
+ __sym_mfree(mp, m, size, name);
+#ifdef MEMO_FREE_UNUSED
+ if (mp && !mp->nump)
+ ___del_dma_pool(mp);
+#endif
+ /* Unlock */
+}
+
+static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
+{
+ m_pool_s *mp;
+ int hc = VTOB_HASH_CODE(m);
+ m_vtob_s *vp = 0;
+ m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
+
+ /* Lock */
+ mp = ___get_dma_pool(dev_dmat);
+ if (mp) {
+ vp = mp->vtob[hc];
+ while (vp && (m_addr_t) vp->vaddr != a)
+ vp = vp->next;
+ }
+ /* Unlock */
+ if (!vp)
+ panic("sym: VTOBUS FAILED!\n");
+ return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
+}
+
+#endif /* FreeBSD_Bus_Dma_Abstraction */
+
+/*
+ * Verbs for DMAable memory handling.
+ * The _uvptv_ macro avoids a nasty warning about pointer to volatile
+ * being discarded.
+ */
+#define _uvptv_(p) ((void *)((vm_offset_t)(p)))
+#define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n)
+#define _sym_mfree_dma(np, p, s, n) \
+ __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
+#define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n)
+#define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n)
+#define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p))
+#define vtobus(p) _vtobus(np, p)
+
+
+/*
+ * Print a buffer in hexadecimal format.
+ */
+static void sym_printb_hex (u_char *p, int n)
+{
+ while (n-- > 0)
+ printf (" %x", *p++);
+}
+
+/*
+ * Same with a label at beginning and .\n at end.
+ */
+static void sym_printl_hex (char *label, u_char *p, int n)
+{
+ printf ("%s", label);
+ sym_printb_hex (p, n);
+ printf (".\n");
+}
+
+/*
+ * Return a string for SCSI BUS mode.
+ */
+static char *sym_scsi_bus_mode(int mode)
+{
+ switch(mode) {
+ case SMODE_HVD: return "HVD";
+ case SMODE_SE: return "SE";
+ case SMODE_LVD: return "LVD";
+ }
+ return "??";
+}
+
+/*
+ * Some poor and bogus sync table that refers to Tekram NVRAM layout.
+ */
+#ifdef SYM_CONF_NVRAM_SUPPORT
+static u_char Tekram_sync[16] =
+ {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
+#endif
+
+/*
+ * Union of supported NVRAM formats.
+ */
+struct sym_nvram {
+ int type;
+#define SYM_SYMBIOS_NVRAM (1)
+#define SYM_TEKRAM_NVRAM (2)
+#ifdef SYM_CONF_NVRAM_SUPPORT
+ union {
+ Symbios_nvram Symbios;
+ Tekram_nvram Tekram;
+ } data;
+#endif
+};
+
+/*
+ * This one is hopefully useless, but actually useful. :-)
+ */
+#ifndef assert
+#define assert(expression) { \
+ if (!(expression)) { \
+ (void)panic( \
+ "assertion \"%s\" failed: file \"%s\", line %d\n", \
+ #expression, \
+ __FILE__, __LINE__); \
+ } \
+}
+#endif
+
+/*
+ * Some provision for a possible big endian mode supported by
+ * Symbios chips (never seen, by the way).
+ * For now, this stuff does not deserve any comments. :)
+ */
+
+#define sym_offb(o) (o)
+#define sym_offw(o) (o)
+
+/*
+ * Some provision for support for BIG ENDIAN CPU.
+ * Btw, FreeBSD does not seem to be ready yet for big endian.
+ */
+
+#if BYTE_ORDER == BIG_ENDIAN
+#define cpu_to_scr(dw) _htole32(dw)
+#define scr_to_cpu(dw) _le32toh(dw)
+#else
+#define cpu_to_scr(dw) (dw)
+#define scr_to_cpu(dw) (dw)
+#endif
+
+/*
+ * Access to the chip IO registers and on-chip RAM.
+ * We use the `bus space' interface under FreeBSD-4 and
+ * later kernel versions.
+ */
+
+#ifdef FreeBSD_Bus_Space_Abstraction
+
+#if defined(SYM_CONF_IOMAPPED)
+
+#define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o)
+#define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o)
+#define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o)
+
+#define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
+#define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
+#define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
+
+#else /* Memory mapped IO */
+
+#define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
+#define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
+#define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
+
+#define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
+#define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
+#define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
+
+#endif /* SYM_CONF_IOMAPPED */
+
+#define OUTRAM_OFF(o, a, l) \
+ bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
+
+#else /* not defined FreeBSD_Bus_Space_Abstraction */
+
+#if BYTE_ORDER == BIG_ENDIAN
+#error "BIG ENDIAN support requires bus space kernel interface"
+#endif
+
+/*
+ * Access to the chip IO registers and on-chip RAM.
+ * We use legacy MMIO and IO interface for FreeBSD 3.X versions.
+ */
+
+/*
+ * Define some understable verbs for IO and MMIO.
+ */
+#define io_read8(p) scr_to_cpu(inb((p)))
+#define io_read16(p) scr_to_cpu(inw((p)))
+#define io_read32(p) scr_to_cpu(inl((p)))
+#define io_write8(p, v) outb((p), cpu_to_scr(v))
+#define io_write16(p, v) outw((p), cpu_to_scr(v))
+#define io_write32(p, v) outl((p), cpu_to_scr(v))
+
+#ifdef __alpha__
+
+#define mmio_read8(a) readb(a)
+#define mmio_read16(a) readw(a)
+#define mmio_read32(a) readl(a)
+#define mmio_write8(a, b) writeb(a, b)
+#define mmio_write16(a, b) writew(a, b)
+#define mmio_write32(a, b) writel(a, b)
+#define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n))
+
+#else /*__i386__, __sparc64__*/
+
+#define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a)))
+#define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a)))
+#define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a)))
+#define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
+#define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
+#define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
+#define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n))
+
+#endif
+
+/*
+ * Normal IO
+ */
+#if defined(SYM_CONF_IOMAPPED)
+
+#define INB_OFF(o) io_read8(np->io_port + sym_offb(o))
+#define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v))
+
+#define INW_OFF(o) io_read16(np->io_port + sym_offw(o))
+#define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v))
+
+#define INL_OFF(o) io_read32(np->io_port + (o))
+#define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v))
+
+#else /* Memory mapped IO */
+
+#define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o))
+#define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v))
+
+#define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o))
+#define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v))
+
+#define INL_OFF(o) mmio_read32(np->mmio_va + (o))
+#define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v))
+
+#endif
+
+#define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l))
+
+#endif /* FreeBSD_Bus_Space_Abstraction */
+
+/*
+ * Common definitions for both bus space and legacy IO methods.
+ */
+#define INB(r) INB_OFF(offsetof(struct sym_reg,r))
+#define INW(r) INW_OFF(offsetof(struct sym_reg,r))
+#define INL(r) INL_OFF(offsetof(struct sym_reg,r))
+
+#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v))
+#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v))
+#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v))
+
+#define OUTONB(r, m) OUTB(r, INB(r) | (m))
+#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m))
+#define OUTONW(r, m) OUTW(r, INW(r) | (m))
+#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m))
+#define OUTONL(r, m) OUTL(r, INL(r) | (m))
+#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m))
+
+/*
+ * We normally want the chip to have a consistent view
+ * of driver internal data structures when we restart it.
+ * Thus these macros.
+ */
+#define OUTL_DSP(v) \
+ do { \
+ MEMORY_BARRIER(); \
+ OUTL (nc_dsp, (v)); \
+ } while (0)
+
+#define OUTONB_STD() \
+ do { \
+ MEMORY_BARRIER(); \
+ OUTONB (nc_dcntl, (STD|NOCOM)); \
+ } while (0)
+
+/*
+ * Command control block states.
+ */
+#define HS_IDLE (0)
+#define HS_BUSY (1)
+#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
+#define HS_DISCONNECT (3) /* Disconnected by target */
+#define HS_WAIT (4) /* waiting for resource */
+
+#define HS_DONEMASK (0x80)
+#define HS_COMPLETE (4|HS_DONEMASK)
+#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
+#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
+#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
+
+/*
+ * Software Interrupt Codes
+ */
+#define SIR_BAD_SCSI_STATUS (1)
+#define SIR_SEL_ATN_NO_MSG_OUT (2)
+#define SIR_MSG_RECEIVED (3)
+#define SIR_MSG_WEIRD (4)
+#define SIR_NEGO_FAILED (5)
+#define SIR_NEGO_PROTO (6)
+#define SIR_SCRIPT_STOPPED (7)
+#define SIR_REJECT_TO_SEND (8)
+#define SIR_SWIDE_OVERRUN (9)
+#define SIR_SODL_UNDERRUN (10)
+#define SIR_RESEL_NO_MSG_IN (11)
+#define SIR_RESEL_NO_IDENTIFY (12)
+#define SIR_RESEL_BAD_LUN (13)
+#define SIR_TARGET_SELECTED (14)
+#define SIR_RESEL_BAD_I_T_L (15)
+#define SIR_RESEL_BAD_I_T_L_Q (16)
+#define SIR_ABORT_SENT (17)
+#define SIR_RESEL_ABORTED (18)
+#define SIR_MSG_OUT_DONE (19)
+#define SIR_COMPLETE_ERROR (20)
+#define SIR_DATA_OVERRUN (21)
+#define SIR_BAD_PHASE (22)
+#define SIR_MAX (22)
+
+/*
+ * Extended error bit codes.
+ * xerr_status field of struct sym_ccb.
+ */
+#define XE_EXTRA_DATA (1) /* unexpected data phase */
+#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
+#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
+#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
+#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
+
+/*
+ * Negotiation status.
+ * nego_status field of struct sym_ccb.
+ */
+#define NS_SYNC (1)
+#define NS_WIDE (2)
+#define NS_PPR (3)
+
+/*
+ * A CCB hashed table is used to retrieve CCB address
+ * from DSA value.
+ */
+#define CCB_HASH_SHIFT 8
+#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
+#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
+#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
+
+/*
+ * Device flags.
+ */
+#define SYM_DISC_ENABLED (1)
+#define SYM_TAGS_ENABLED (1<<1)
+#define SYM_SCAN_BOOT_DISABLED (1<<2)
+#define SYM_SCAN_LUNS_DISABLED (1<<3)
+
+/*
+ * Host adapter miscellaneous flags.
+ */
+#define SYM_AVOID_BUS_RESET (1)
+#define SYM_SCAN_TARGETS_HILO (1<<1)
+
+/*
+ * Device quirks.
+ * Some devices, for example the CHEETAH 2 LVD, disconnects without
+ * saving the DATA POINTER then reselects and terminates the IO.
+ * On reselection, the automatic RESTORE DATA POINTER makes the
+ * CURRENT DATA POINTER not point at the end of the IO.
+ * This behaviour just breaks our calculation of the residual.
+ * For now, we just force an AUTO SAVE on disconnection and will
+ * fix that in a further driver version.
+ */
+#define SYM_QUIRK_AUTOSAVE 1
+
+/*
+ * Misc.
+ */
+#define SYM_SNOOP_TIMEOUT (10000000)
+#define SYM_PCI_IO PCIR_MAPS
+#define SYM_PCI_MMIO (PCIR_MAPS + 4)
+#define SYM_PCI_RAM (PCIR_MAPS + 8)
+#define SYM_PCI_RAM64 (PCIR_MAPS + 12)
+
+/*
+ * Back-pointer from the CAM CCB to our data structures.
+ */
+#define sym_hcb_ptr spriv_ptr0
+/* #define sym_ccb_ptr spriv_ptr1 */
+
+/*
+ * We mostly have to deal with pointers.
+ * Thus these typedef's.
+ */
+typedef struct sym_tcb *tcb_p;
+typedef struct sym_lcb *lcb_p;
+typedef struct sym_ccb *ccb_p;
+typedef struct sym_hcb *hcb_p;
+
+/*
+ * Gather negotiable parameters value
+ */
+struct sym_trans {
+#ifdef FreeBSD_New_Tran_Settings
+ u8 scsi_version;
+ u8 spi_version;
+#endif
+ u8 period;
+ u8 offset;
+ u8 width;
+ u8 options; /* PPR options */
+};
+
+struct sym_tinfo {
+ struct sym_trans current;
+ struct sym_trans goal;
+ struct sym_trans user;
+};
+
+#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT
+#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT
+
+/*
+ * Global TCB HEADER.
+ *
+ * Due to lack of indirect addressing on earlier NCR chips,
+ * this substructure is copied from the TCB to a global
+ * address after selection.
+ * For SYMBIOS chips that support LOAD/STORE this copy is
+ * not needed and thus not performed.
+ */
+struct sym_tcbh {
+ /*
+ * Scripts bus addresses of LUN table accessed from scripts.
+ * LUN #0 is a special case, since multi-lun devices are rare,
+ * and we we want to speed-up the general case and not waste
+ * resources.
+ */
+ u32 luntbl_sa; /* bus address of this table */
+ u32 lun0_sa; /* bus address of LCB #0 */
+ /*
+ * Actual SYNC/WIDE IO registers value for this target.
+ * 'sval', 'wval' and 'uval' are read from SCRIPTS and
+ * so have alignment constraints.
+ */
+/*0*/ u_char uval; /* -> SCNTL4 register */
+/*1*/ u_char sval; /* -> SXFER io register */
+/*2*/ u_char filler1;
+/*3*/ u_char wval; /* -> SCNTL3 io register */
+};
+
+/*
+ * Target Control Block
+ */
+struct sym_tcb {
+ /*
+ * TCB header.
+ * Assumed at offset 0.
+ */
+/*0*/ struct sym_tcbh head;
+
+ /*
+ * LUN table used by the SCRIPTS processor.
+ * An array of bus addresses is used on reselection.
+ */
+ u32 *luntbl; /* LCBs bus address table */
+
+ /*
+ * LUN table used by the C code.
+ */
+ lcb_p lun0p; /* LCB of LUN #0 (usual case) */
+#if SYM_CONF_MAX_LUN > 1
+ lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */
+#endif
+
+ /*
+ * Bitmap that tells about LUNs that succeeded at least
+ * 1 IO and therefore assumed to be a real device.
+ * Avoid useless allocation of the LCB structure.
+ */
+ u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
+
+ /*
+ * Bitmap that tells about LUNs that haven't yet an LCB
+ * allocated (not discovered or LCB allocation failed).
+ */
+ u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
+
+ /*
+ * Transfer capabilities (SIP)
+ */
+ struct sym_tinfo tinfo;
+
+ /*
+ * Keep track of the CCB used for the negotiation in order
+ * to ensure that only 1 negotiation is queued at a time.
+ */
+ ccb_p nego_cp; /* CCB used for the nego */
+
+ /*
+ * Set when we want to reset the device.
+ */
+ u_char to_reset;
+
+ /*
+ * Other user settable limits and options.
+ * These limits are read from the NVRAM if present.
+ */
+ u_char usrflags;
+ u_short usrtags;
+};
+
+/*
+ * Global LCB HEADER.
+ *
+ * Due to lack of indirect addressing on earlier NCR chips,
+ * this substructure is copied from the LCB to a global
+ * address after selection.
+ * For SYMBIOS chips that support LOAD/STORE this copy is
+ * not needed and thus not performed.
+ */
+struct sym_lcbh {
+ /*
+ * SCRIPTS address jumped by SCRIPTS on reselection.
+ * For not probed logical units, this address points to
+ * SCRIPTS that deal with bad LU handling (must be at
+ * offset zero of the LCB for that reason).
+ */
+/*0*/ u32 resel_sa;
+
+ /*
+ * Task (bus address of a CCB) read from SCRIPTS that points
+ * to the unique ITL nexus allowed to be disconnected.
+ */
+ u32 itl_task_sa;
+
+ /*
+ * Task table bus address (read from SCRIPTS).
+ */
+ u32 itlq_tbl_sa;
+};
+
+/*
+ * Logical Unit Control Block
+ */
+struct sym_lcb {
+ /*
+ * TCB header.
+ * Assumed at offset 0.
+ */
+/*0*/ struct sym_lcbh head;
+
+ /*
+ * Task table read from SCRIPTS that contains pointers to
+ * ITLQ nexuses. The bus address read from SCRIPTS is
+ * inside the header.
+ */
+ u32 *itlq_tbl; /* Kernel virtual address */
+
+ /*
+ * Busy CCBs management.
+ */
+ u_short busy_itlq; /* Number of busy tagged CCBs */
+ u_short busy_itl; /* Number of busy untagged CCBs */
+
+ /*
+ * Circular tag allocation buffer.
+ */
+ u_short ia_tag; /* Tag allocation index */
+ u_short if_tag; /* Tag release index */
+ u_char *cb_tags; /* Circular tags buffer */
+
+ /*
+ * Set when we want to clear all tasks.
+ */
+ u_char to_clear;
+
+ /*
+ * Capabilities.
+ */
+ u_char user_flags;
+ u_char current_flags;
+};
+
+/*
+ * Action from SCRIPTS on a task.
+ * Is part of the CCB, but is also used separately to plug
+ * error handling action to perform from SCRIPTS.
+ */
+struct sym_actscr {
+ u32 start; /* Jumped by SCRIPTS after selection */
+ u32 restart; /* Jumped by SCRIPTS on relection */
+};
+
+/*
+ * Phase mismatch context.
+ *
+ * It is part of the CCB and is used as parameters for the
+ * DATA pointer. We need two contexts to handle correctly the
+ * SAVED DATA POINTER.
+ */
+struct sym_pmc {
+ struct sym_tblmove sg; /* Updated interrupted SG block */
+ u32 ret; /* SCRIPT return address */
+};
+
+/*
+ * LUN control block lookup.
+ * We use a direct pointer for LUN #0, and a table of
+ * pointers which is only allocated for devices that support
+ * LUN(s) > 0.
+ */
+#if SYM_CONF_MAX_LUN <= 1
+#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
+#else
+#define sym_lp(np, tp, lun) \
+ (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
+#endif
+
+/*
+ * Status are used by the host and the script processor.
+ *
+ * The last four bytes (status[4]) are copied to the
+ * scratchb register (declared as scr0..scr3) just after the
+ * select/reselect, and copied back just after disconnecting.
+ * Inside the script the XX_REG are used.
+ */
+
+/*
+ * Last four bytes (script)
+ */
+#define QU_REG scr0
+#define HS_REG scr1
+#define HS_PRT nc_scr1
+#define SS_REG scr2
+#define SS_PRT nc_scr2
+#define HF_REG scr3
+#define HF_PRT nc_scr3
+
+/*
+ * Last four bytes (host)
+ */
+#define actualquirks phys.head.status[0]
+#define host_status phys.head.status[1]
+#define ssss_status phys.head.status[2]
+#define host_flags phys.head.status[3]
+
+/*
+ * Host flags
+ */
+#define HF_IN_PM0 1u
+#define HF_IN_PM1 (1u<<1)
+#define HF_ACT_PM (1u<<2)
+#define HF_DP_SAVED (1u<<3)
+#define HF_SENSE (1u<<4)
+#define HF_EXT_ERR (1u<<5)
+#define HF_DATA_IN (1u<<6)
+#ifdef SYM_CONF_IARB_SUPPORT
+#define HF_HINT_IARB (1u<<7)
+#endif
+
+/*
+ * Global CCB HEADER.
+ *
+ * Due to lack of indirect addressing on earlier NCR chips,
+ * this substructure is copied from the ccb to a global
+ * address after selection (or reselection) and copied back
+ * before disconnect.
+ * For SYMBIOS chips that support LOAD/STORE this copy is
+ * not needed and thus not performed.
+ */
+
+struct sym_ccbh {
+ /*
+ * Start and restart SCRIPTS addresses (must be at 0).
+ */
+/*0*/ struct sym_actscr go;
+
+ /*
+ * SCRIPTS jump address that deal with data pointers.
+ * 'savep' points to the position in the script responsible
+ * for the actual transfer of data.
+ * It's written on reception of a SAVE_DATA_POINTER message.
+ */
+ u32 savep; /* Jump address to saved data pointer */
+ u32 lastp; /* SCRIPTS address at end of data */
+ u32 goalp; /* Not accessed for now from SCRIPTS */
+
+ /*
+ * Status fields.
+ */
+ u8 status[4];
+};
+
+/*
+ * Data Structure Block
+ *
+ * During execution of a ccb by the script processor, the
+ * DSA (data structure address) register points to this
+ * substructure of the ccb.
+ */
+struct sym_dsb {
+ /*
+ * CCB header.
+ * Also assumed at offset 0 of the sym_ccb structure.
+ */
+/*0*/ struct sym_ccbh head;
+
+ /*
+ * Phase mismatch contexts.
+ * We need two to handle correctly the SAVED DATA POINTER.
+ * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
+ * for address calculation from SCRIPTS.
+ */
+ struct sym_pmc pm0;
+ struct sym_pmc pm1;
+
+ /*
+ * Table data for Script
+ */
+ struct sym_tblsel select;
+ struct sym_tblmove smsg;
+ struct sym_tblmove smsg_ext;
+ struct sym_tblmove cmd;
+ struct sym_tblmove sense;
+ struct sym_tblmove wresid;
+ struct sym_tblmove data [SYM_CONF_MAX_SG];
+};
+
+/*
+ * Our Command Control Block
+ */
+struct sym_ccb {
+ /*
+ * This is the data structure which is pointed by the DSA
+ * register when it is executed by the script processor.
+ * It must be the first entry.
+ */
+ struct sym_dsb phys;
+
+ /*
+ * Pointer to CAM ccb and related stuff.
+ */
+ union ccb *cam_ccb; /* CAM scsiio ccb */
+ u8 cdb_buf[16]; /* Copy of CDB */
+ u8 *sns_bbuf; /* Bounce buffer for sense data */
+#define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data)
+ int data_len; /* Total data length */
+ int segments; /* Number of SG segments */
+
+ /*
+ * Miscellaneous status'.
+ */
+ u_char nego_status; /* Negotiation status */
+ u_char xerr_status; /* Extended error flags */
+ u32 extra_bytes; /* Extraneous bytes transferred */
+
+ /*
+ * Message areas.
+ * We prepare a message to be sent after selection.
+ * We may use a second one if the command is rescheduled
+ * due to CHECK_CONDITION or COMMAND TERMINATED.
+ * Contents are IDENTIFY and SIMPLE_TAG.
+ * While negotiating sync or wide transfer,
+ * a SDTR or WDTR message is appended.
+ */
+ u_char scsi_smsg [12];
+ u_char scsi_smsg2[12];
+
+ /*
+ * Auto request sense related fields.
+ */
+ u_char sensecmd[6]; /* Request Sense command */
+ u_char sv_scsi_status; /* Saved SCSI status */
+ u_char sv_xerr_status; /* Saved extended status */
+ int sv_resid; /* Saved residual */
+
+ /*
+ * Map for the DMA of user data.
+ */
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ void *arg; /* Argument for some callback */
+ bus_dmamap_t dmamap; /* DMA map for user data */
+ u_char dmamapped;
+#define SYM_DMA_NONE 0
+#define SYM_DMA_READ 1
+#define SYM_DMA_WRITE 2
+#endif
+ /*
+ * Other fields.
+ */
+ u32 ccb_ba; /* BUS address of this CCB */
+ u_short tag; /* Tag for this transfer */
+ /* NO_TAG means no tag */
+ u_char target;
+ u_char lun;
+ ccb_p link_ccbh; /* Host adapter CCB hash chain */
+ SYM_QUEHEAD
+ link_ccbq; /* Link to free/busy CCB queue */
+ u32 startp; /* Initial data pointer */
+ int ext_sg; /* Extreme data pointer, used */
+ int ext_ofs; /* to calculate the residual. */
+ u_char to_abort; /* Want this IO to be aborted */
+};
+
+#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
+
+/*
+ * Host Control Block
+ */
+struct sym_hcb {
+ /*
+ * Global headers.
+ * Due to poorness of addressing capabilities, earlier
+ * chips (810, 815, 825) copy part of the data structures
+ * (CCB, TCB and LCB) in fixed areas.
+ */
+#ifdef SYM_CONF_GENERIC_SUPPORT
+ struct sym_ccbh ccb_head;
+ struct sym_tcbh tcb_head;
+ struct sym_lcbh lcb_head;
+#endif
+ /*
+ * Idle task and invalid task actions and
+ * their bus addresses.
+ */
+ struct sym_actscr idletask, notask, bad_itl, bad_itlq;
+ vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
+
+ /*
+ * Dummy lun table to protect us against target
+ * returning bad lun number on reselection.
+ */
+ u32 *badluntbl; /* Table physical address */
+ u32 badlun_sa; /* SCRIPT handler BUS address */
+
+ /*
+ * Bus address of this host control block.
+ */
+ u32 hcb_ba;
+
+ /*
+ * Bit 32-63 of the on-chip RAM bus address in LE format.
+ * The START_RAM64 script loads the MMRS and MMWS from this
+ * field.
+ */
+ u32 scr_ram_seg;
+
+ /*
+ * Chip and controller indentification.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ device_t device;
+#else
+ pcici_t pci_tag;
+#endif
+ int unit;
+ char inst_name[8];
+
+ /*
+ * Initial value of some IO register bits.
+ * These values are assumed to have been set by BIOS, and may
+ * be used to probe adapter implementation differences.
+ */
+ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
+ sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
+ sv_stest1;
+
+ /*
+ * Actual initial value of IO register bits used by the
+ * driver. They are loaded at initialisation according to
+ * features that are to be enabled/disabled.
+ */
+ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
+ rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
+
+ /*
+ * Target data.
+ */
+ struct sym_tcb target[SYM_CONF_MAX_TARGET];
+
+ /*
+ * Target control block bus address array used by the SCRIPT
+ * on reselection.
+ */
+ u32 *targtbl;
+ u32 targtbl_ba;
+
+ /*
+ * CAM SIM information for this instance.
+ */
+ struct cam_sim *sim;
+ struct cam_path *path;
+
+ /*
+ * Allocated hardware resources.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ struct resource *irq_res;
+ struct resource *io_res;
+ struct resource *mmio_res;
+ struct resource *ram_res;
+ int ram_id;
+ void *intr;
+#endif
+
+ /*
+ * Bus stuff.
+ *
+ * My understanding of PCI is that all agents must share the
+ * same addressing range and model.
+ * But some hardware architecture guys provide complex and
+ * brain-deaded stuff that makes shit.
+ * This driver only support PCI compliant implementations and
+ * deals with part of the BUS stuff complexity only to fit O/S
+ * requirements.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ bus_space_handle_t io_bsh;
+ bus_space_tag_t io_tag;
+ bus_space_handle_t mmio_bsh;
+ bus_space_tag_t mmio_tag;
+ bus_space_handle_t ram_bsh;
+ bus_space_tag_t ram_tag;
+#endif
+
+ /*
+ * DMA stuff.
+ */
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */
+ bus_dma_tag_t data_dmat; /* DMA tag for user data */
+#endif
+ /*
+ * Virtual and physical bus addresses of the chip.
+ */
+ vm_offset_t mmio_va; /* MMIO kernel virtual address */
+ vm_offset_t mmio_pa; /* MMIO CPU physical address */
+ vm_offset_t mmio_ba; /* MMIO BUS address */
+ int mmio_ws; /* MMIO Window size */
+
+ vm_offset_t ram_va; /* RAM kernel virtual address */
+ vm_offset_t ram_pa; /* RAM CPU physical address */
+ vm_offset_t ram_ba; /* RAM BUS address */
+ int ram_ws; /* RAM window size */
+ u32 io_port; /* IO port address */
+
+ /*
+ * SCRIPTS virtual and physical bus addresses.
+ * 'script' is loaded in the on-chip RAM if present.
+ * 'scripth' stays in main memory for all chips except the
+ * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
+ */
+ u_char *scripta0; /* Copies of script and scripth */
+ u_char *scriptb0; /* Copies of script and scripth */
+ vm_offset_t scripta_ba; /* Actual script and scripth */
+ vm_offset_t scriptb_ba; /* bus addresses. */
+ vm_offset_t scriptb0_ba;
+ u_short scripta_sz; /* Actual size of script A */
+ u_short scriptb_sz; /* Actual size of script B */
+
+ /*
+ * Bus addresses, setup and patch methods for
+ * the selected firmware.
+ */
+ struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
+ struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
+ void (*fw_setup)(hcb_p np, struct sym_fw *fw);
+ void (*fw_patch)(hcb_p np);
+ char *fw_name;
+
+ /*
+ * General controller parameters and configuration.
+ */
+ u_short device_id; /* PCI device id */
+ u_char revision_id; /* PCI device revision id */
+ u_int features; /* Chip features map */
+ u_char myaddr; /* SCSI id of the adapter */
+ u_char maxburst; /* log base 2 of dwords burst */
+ u_char maxwide; /* Maximum transfer width */
+ u_char minsync; /* Min sync period factor (ST) */
+ u_char maxsync; /* Max sync period factor (ST) */
+ u_char maxoffs; /* Max scsi offset (ST) */
+ u_char minsync_dt; /* Min sync period factor (DT) */
+ u_char maxsync_dt; /* Max sync period factor (DT) */
+ u_char maxoffs_dt; /* Max scsi offset (DT) */
+ u_char multiplier; /* Clock multiplier (1,2,4) */
+ u_char clock_divn; /* Number of clock divisors */
+ u32 clock_khz; /* SCSI clock frequency in KHz */
+ u32 pciclk_khz; /* Estimated PCI clock in KHz */
+ /*
+ * Start queue management.
+ * It is filled up by the host processor and accessed by the
+ * SCRIPTS processor in order to start SCSI commands.
+ */
+ volatile /* Prevent code optimizations */
+ u32 *squeue; /* Start queue virtual address */
+ u32 squeue_ba; /* Start queue BUS address */
+ u_short squeueput; /* Next free slot of the queue */
+ u_short actccbs; /* Number of allocated CCBs */
+
+ /*
+ * Command completion queue.
+ * It is the same size as the start queue to avoid overflow.
+ */
+ u_short dqueueget; /* Next position to scan */
+ volatile /* Prevent code optimizations */
+ u32 *dqueue; /* Completion (done) queue */
+ u32 dqueue_ba; /* Done queue BUS address */
+
+ /*
+ * Miscellaneous buffers accessed by the scripts-processor.
+ * They shall be DWORD aligned, because they may be read or
+ * written with a script command.
+ */
+ u_char msgout[8]; /* Buffer for MESSAGE OUT */
+ u_char msgin [8]; /* Buffer for MESSAGE IN */
+ u32 lastmsg; /* Last SCSI message sent */
+ u_char scratch; /* Scratch for SCSI receive */
+
+ /*
+ * Miscellaneous configuration and status parameters.
+ */
+ u_char usrflags; /* Miscellaneous user flags */
+ u_char scsi_mode; /* Current SCSI BUS mode */
+ u_char verbose; /* Verbosity for this controller*/
+ u32 cache; /* Used for cache test at init. */
+
+ /*
+ * CCB lists and queue.
+ */
+ ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */
+ SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
+ SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
+
+ /*
+ * During error handling and/or recovery,
+ * active CCBs that are to be completed with
+ * error or requeued are moved from the busy_ccbq
+ * to the comp_ccbq prior to completion.
+ */
+ SYM_QUEHEAD comp_ccbq;
+
+ /*
+ * CAM CCB pending queue.
+ */
+ SYM_QUEHEAD cam_ccbq;
+
+ /*
+ * IMMEDIATE ARBITRATION (IARB) control.
+ *
+ * We keep track in 'last_cp' of the last CCB that has been
+ * queued to the SCRIPTS processor and clear 'last_cp' when
+ * this CCB completes. If last_cp is not zero at the moment
+ * we queue a new CCB, we set a flag in 'last_cp' that is
+ * used by the SCRIPTS as a hint for setting IARB.
+ * We donnot set more than 'iarb_max' consecutive hints for
+ * IARB in order to leave devices a chance to reselect.
+ * By the way, any non zero value of 'iarb_max' is unfair. :)
+ */
+#ifdef SYM_CONF_IARB_SUPPORT
+ u_short iarb_max; /* Max. # consecutive IARB hints*/
+ u_short iarb_count; /* Actual # of these hints */
+ ccb_p last_cp;
+#endif
+
+ /*
+ * Command abort handling.
+ * We need to synchronize tightly with the SCRIPTS
+ * processor in order to handle things correctly.
+ */
+ u_char abrt_msg[4]; /* Message to send buffer */
+ struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
+ struct sym_tblsel abrt_sel; /* Sync params for selection */
+ u_char istat_sem; /* Tells the chip to stop (SEM) */
+};
+
+#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
+
+/*
+ * Return the name of the controller.
+ */
+static __inline char *sym_name(hcb_p np)
+{
+ return np->inst_name;
+}
+
+/*--------------------------------------------------------------------------*/
+/*------------------------------ FIRMWARES ---------------------------------*/
+/*--------------------------------------------------------------------------*/
+
+/*
+ * This stuff will be moved to a separate source file when
+ * the driver will be broken into several source modules.
+ */
+
+/*
+ * Macros used for all firmwares.
+ */
+#define SYM_GEN_A(s, label) ((short) offsetof(s, label)),
+#define SYM_GEN_B(s, label) ((short) offsetof(s, label)),
+#define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
+#define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
+
+
+#ifdef SYM_CONF_GENERIC_SUPPORT
+/*
+ * Allocate firmware #1 script area.
+ */
+#define SYM_FWA_SCR sym_fw1a_scr
+#define SYM_FWB_SCR sym_fw1b_scr
+#include <dev/sym/sym_fw1.h>
+struct sym_fwa_ofs sym_fw1a_ofs = {
+ SYM_GEN_FW_A(struct SYM_FWA_SCR)
+};
+struct sym_fwb_ofs sym_fw1b_ofs = {
+ SYM_GEN_FW_B(struct SYM_FWB_SCR)
+};
+#undef SYM_FWA_SCR
+#undef SYM_FWB_SCR
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+
+/*
+ * Allocate firmware #2 script area.
+ */
+#define SYM_FWA_SCR sym_fw2a_scr
+#define SYM_FWB_SCR sym_fw2b_scr
+#include <dev/sym/sym_fw2.h>
+struct sym_fwa_ofs sym_fw2a_ofs = {
+ SYM_GEN_FW_A(struct SYM_FWA_SCR)
+};
+struct sym_fwb_ofs sym_fw2b_ofs = {
+ SYM_GEN_FW_B(struct SYM_FWB_SCR)
+ SYM_GEN_B(struct SYM_FWB_SCR, start64)
+ SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
+};
+#undef SYM_FWA_SCR
+#undef SYM_FWB_SCR
+
+#undef SYM_GEN_A
+#undef SYM_GEN_B
+#undef PADDR_A
+#undef PADDR_B
+
+#ifdef SYM_CONF_GENERIC_SUPPORT
+/*
+ * Patch routine for firmware #1.
+ */
+static void
+sym_fw1_patch(hcb_p np)
+{
+ struct sym_fw1a_scr *scripta0;
+ struct sym_fw1b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw1a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
+
+ /*
+ * Remove LED support if not needed.
+ */
+ if (!(np->features & FE_LED0)) {
+ scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
+ }
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user does not want to use IMMEDIATE ARBITRATION
+ * when we are reselected while attempting to arbitrate,
+ * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
+ */
+ if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
+ scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
+#endif
+ /*
+ * Patch some data in SCRIPTS.
+ * - start and done queue initial bus address.
+ * - target bus address table bus address.
+ */
+ scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
+ scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
+ scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
+}
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+
+/*
+ * Patch routine for firmware #2.
+ */
+static void
+sym_fw2_patch(hcb_p np)
+{
+ struct sym_fw2a_scr *scripta0;
+ struct sym_fw2b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw2a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
+
+ /*
+ * Remove LED support if not needed.
+ */
+ if (!(np->features & FE_LED0)) {
+ scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
+ }
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user does not want to use IMMEDIATE ARBITRATION
+ * when we are reselected while attempting to arbitrate,
+ * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
+ */
+ if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
+ scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
+#endif
+ /*
+ * Patch some variable in SCRIPTS.
+ * - start and done queue initial bus address.
+ * - target bus address table bus address.
+ */
+ scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
+ scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
+ scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
+
+ /*
+ * Remove the load of SCNTL4 on reselection if not a C10.
+ */
+ if (!(np->features & FE_C10)) {
+ scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->resel_scntl4[1] = cpu_to_scr(0);
+ }
+
+ /*
+ * Remove a couple of work-arounds specific to C1010 if
+ * they are not desirable. See `sym_fw2.h' for more details.
+ */
+ if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
+ np->revision_id < 0x1 &&
+ np->pciclk_khz < 60000)) {
+ scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->datao_phase[1] = cpu_to_scr(0);
+ }
+ if (!(np->device_id == PCI_ID_LSI53C1010 &&
+ /* np->revision_id < 0xff */ 1)) {
+ scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->sel_done[1] = cpu_to_scr(0);
+ }
+
+ /*
+ * Patch some other variables in SCRIPTS.
+ * These ones are loaded by the SCRIPTS processor.
+ */
+ scriptb0->pm0_data_addr[0] =
+ cpu_to_scr(np->scripta_ba +
+ offsetof(struct sym_fw2a_scr, pm0_data));
+ scriptb0->pm1_data_addr[0] =
+ cpu_to_scr(np->scripta_ba +
+ offsetof(struct sym_fw2a_scr, pm1_data));
+}
+
+/*
+ * Fill the data area in scripts.
+ * To be done for all firmwares.
+ */
+static void
+sym_fw_fill_data (u32 *in, u32 *out)
+{
+ int i;
+
+ for (i = 0; i < SYM_CONF_MAX_SG; i++) {
+ *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN;
+ *in++ = offsetof (struct sym_dsb, data[i]);
+ *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
+ *out++ = offsetof (struct sym_dsb, data[i]);
+ }
+}
+
+/*
+ * Setup useful script bus addresses.
+ * To be done for all firmwares.
+ */
+static void
+sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
+{
+ u32 *pa;
+ u_short *po;
+ int i;
+
+ /*
+ * Build the bus address table for script A
+ * from the script A offset table.
+ */
+ po = (u_short *) fw->a_ofs;
+ pa = (u32 *) &np->fwa_bas;
+ for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
+ pa[i] = np->scripta_ba + po[i];
+
+ /*
+ * Same for script B.
+ */
+ po = (u_short *) fw->b_ofs;
+ pa = (u32 *) &np->fwb_bas;
+ for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
+ pa[i] = np->scriptb_ba + po[i];
+}
+
+#ifdef SYM_CONF_GENERIC_SUPPORT
+/*
+ * Setup routine for firmware #1.
+ */
+static void
+sym_fw1_setup(hcb_p np, struct sym_fw *fw)
+{
+ struct sym_fw1a_scr *scripta0;
+ struct sym_fw1b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw1a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
+
+ /*
+ * Fill variable parts in scripts.
+ */
+ sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
+
+ /*
+ * Setup bus addresses used from the C code..
+ */
+ sym_fw_setup_bus_addresses(np, fw);
+}
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+
+/*
+ * Setup routine for firmware #2.
+ */
+static void
+sym_fw2_setup(hcb_p np, struct sym_fw *fw)
+{
+ struct sym_fw2a_scr *scripta0;
+ struct sym_fw2b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw2a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
+
+ /*
+ * Fill variable parts in scripts.
+ */
+ sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
+
+ /*
+ * Setup bus addresses used from the C code..
+ */
+ sym_fw_setup_bus_addresses(np, fw);
+}
+
+/*
+ * Allocate firmware descriptors.
+ */
+#ifdef SYM_CONF_GENERIC_SUPPORT
+static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
+
+/*
+ * Find the most appropriate firmware for a chip.
+ */
+static struct sym_fw *
+sym_find_firmware(struct sym_pci_chip *chip)
+{
+ if (chip->features & FE_LDSTR)
+ return &sym_fw2;
+#ifdef SYM_CONF_GENERIC_SUPPORT
+ else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
+ return &sym_fw1;
+#endif
+ else
+ return 0;
+}
+
+/*
+ * Bind a script to physical addresses.
+ */
+static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
+{
+ u32 opcode, new, old, tmp1, tmp2;
+ u32 *end, *cur;
+ int relocs;
+
+ cur = start;
+ end = start + len/4;
+
+ while (cur < end) {
+
+ opcode = *cur;
+
+ /*
+ * If we forget to change the length
+ * in scripts, a field will be
+ * padded with 0. This is an illegal
+ * command.
+ */
+ if (opcode == 0) {
+ printf ("%s: ERROR0 IN SCRIPT at %d.\n",
+ sym_name(np), (int) (cur-start));
+ MDELAY (10000);
+ ++cur;
+ continue;
+ };
+
+ /*
+ * We use the bogus value 0xf00ff00f ;-)
+ * to reserve data area in SCRIPTS.
+ */
+ if (opcode == SCR_DATA_ZERO) {
+ *cur++ = 0;
+ continue;
+ }
+
+ if (DEBUG_FLAGS & DEBUG_SCRIPT)
+ printf ("%d: <%x>\n", (int) (cur-start),
+ (unsigned)opcode);
+
+ /*
+ * We don't have to decode ALL commands
+ */
+ switch (opcode >> 28) {
+ case 0xf:
+ /*
+ * LOAD / STORE DSA relative, don't relocate.
+ */
+ relocs = 0;
+ break;
+ case 0xe:
+ /*
+ * LOAD / STORE absolute.
+ */
+ relocs = 1;
+ break;
+ case 0xc:
+ /*
+ * COPY has TWO arguments.
+ */
+ relocs = 2;
+ tmp1 = cur[1];
+ tmp2 = cur[2];
+ if ((tmp1 ^ tmp2) & 3) {
+ printf ("%s: ERROR1 IN SCRIPT at %d.\n",
+ sym_name(np), (int) (cur-start));
+ MDELAY (10000);
+ }
+ /*
+ * If PREFETCH feature not enabled, remove
+ * the NO FLUSH bit if present.
+ */
+ if ((opcode & SCR_NO_FLUSH) &&
+ !(np->features & FE_PFEN)) {
+ opcode = (opcode & ~SCR_NO_FLUSH);
+ }
+ break;
+ case 0x0:
+ /*
+ * MOVE/CHMOV (absolute address)
+ */
+ if (!(np->features & FE_WIDE))
+ opcode = (opcode | OPC_MOVE);
+ relocs = 1;
+ break;
+ case 0x1:
+ /*
+ * MOVE/CHMOV (table indirect)
+ */
+ if (!(np->features & FE_WIDE))
+ opcode = (opcode | OPC_MOVE);
+ relocs = 0;
+ break;
+ case 0x8:
+ /*
+ * JUMP / CALL
+ * dont't relocate if relative :-)
+ */
+ if (opcode & 0x00800000)
+ relocs = 0;
+ else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
+ relocs = 2;
+ else
+ relocs = 1;
+ break;
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ relocs = 1;
+ break;
+ default:
+ relocs = 0;
+ break;
+ };
+
+ /*
+ * Scriptify:) the opcode.
+ */
+ *cur++ = cpu_to_scr(opcode);
+
+ /*
+ * If no relocation, assume 1 argument
+ * and just scriptize:) it.
+ */
+ if (!relocs) {
+ *cur = cpu_to_scr(*cur);
+ ++cur;
+ continue;
+ }
+
+ /*
+ * Otherwise performs all needed relocations.
+ */
+ while (relocs--) {
+ old = *cur;
+
+ switch (old & RELOC_MASK) {
+ case RELOC_REGISTER:
+ new = (old & ~RELOC_MASK) + np->mmio_ba;
+ break;
+ case RELOC_LABEL_A:
+ new = (old & ~RELOC_MASK) + np->scripta_ba;
+ break;
+ case RELOC_LABEL_B:
+ new = (old & ~RELOC_MASK) + np->scriptb_ba;
+ break;
+ case RELOC_SOFTC:
+ new = (old & ~RELOC_MASK) + np->hcb_ba;
+ break;
+ case 0:
+ /*
+ * Don't relocate a 0 address.
+ * They are mostly used for patched or
+ * script self-modified areas.
+ */
+ if (old == 0) {
+ new = old;
+ break;
+ }
+ /* fall through */
+ default:
+ new = 0;
+ panic("sym_fw_bind_script: "
+ "weird relocation %x\n", old);
+ break;
+ }
+
+ *cur++ = cpu_to_scr(new);
+ }
+ };
+}
+
+/*--------------------------------------------------------------------------*/
+/*--------------------------- END OF FIRMARES -----------------------------*/
+/*--------------------------------------------------------------------------*/
+
+/*
+ * Function prototypes.
+ */
+static void sym_save_initial_setting (hcb_p np);
+static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
+static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
+static void sym_put_start_queue (hcb_p np, ccb_p cp);
+static void sym_chip_reset (hcb_p np);
+static void sym_soft_reset (hcb_p np);
+static void sym_start_reset (hcb_p np);
+static int sym_reset_scsi_bus (hcb_p np, int enab_int);
+static int sym_wakeup_done (hcb_p np);
+static void sym_flush_busy_queue (hcb_p np, int cam_status);
+static void sym_flush_comp_queue (hcb_p np, int cam_status);
+static void sym_init (hcb_p np, int reason);
+static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
+ u_char *fakp);
+static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
+ u_char div, u_char fak);
+static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
+static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak);
+static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak);
+static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
+static void sym_intr (void *arg);
+static void sym_poll (struct cam_sim *sim);
+static void sym_recover_scsi_int (hcb_p np, u_char hsts);
+static void sym_int_sto (hcb_p np);
+static void sym_int_udc (hcb_p np);
+static void sym_int_sbmc (hcb_p np);
+static void sym_int_par (hcb_p np, u_short sist);
+static void sym_int_ma (hcb_p np);
+static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
+ int task);
+static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
+static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
+static void sym_sir_task_recovery (hcb_p np, int num);
+static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
+static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
+static int sym_compute_residual (hcb_p np, ccb_p cp);
+static int sym_show_msg (u_char * msg);
+static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
+static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
+static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
+static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
+static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
+static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
+static void sym_int_sir (hcb_p np);
+static void sym_free_ccb (hcb_p np, ccb_p cp);
+static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
+static ccb_p sym_alloc_ccb (hcb_p np);
+static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
+static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
+static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
+static int sym_snooptest (hcb_p np);
+static void sym_selectclock(hcb_p np, u_char scntl3);
+static void sym_getclock (hcb_p np, int mult);
+static int sym_getpciclock (hcb_p np);
+static void sym_complete_ok (hcb_p np, ccb_p cp);
+static void sym_complete_error (hcb_p np, ccb_p cp);
+static void sym_timeout (void *arg);
+static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
+static void sym_reset_dev (hcb_p np, union ccb *ccb);
+static void sym_action (struct cam_sim *sim, union ccb *ccb);
+static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
+static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
+static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
+ ccb_p cp);
+#ifdef FreeBSD_Bus_Dma_Abstraction
+static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
+ bus_dma_segment_t *psegs, int nsegs);
+#else
+static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
+ vm_size_t len);
+static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
+ bus_dma_segment_t *psegs, int nsegs);
+static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
+ vm_size_t len);
+#endif
+static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
+ bus_dma_segment_t *psegs, int nsegs);
+static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
+static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
+ struct ccb_trans_settings *cts);
+static void sym_update_dflags(hcb_p np, u_char *flags,
+ struct ccb_trans_settings *cts);
+
+#ifdef FreeBSD_Bus_Io_Abstraction
+static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
+static int sym_pci_probe (device_t dev);
+static int sym_pci_attach (device_t dev);
+#else
+static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
+static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
+static void sym_pci_attach (pcici_t tag, int unit);
+static int sym_pci_attach2 (pcici_t tag, int unit);
+#endif
+
+static void sym_pci_free (hcb_p np);
+static int sym_cam_attach (hcb_p np);
+static void sym_cam_free (hcb_p np);
+
+static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
+static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
+static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
+
+/*
+ * Print something which allows to retrieve the controler type,
+ * unit, target, lun concerned by a kernel message.
+ */
+static void PRINT_TARGET (hcb_p np, int target)
+{
+ printf ("%s:%d:", sym_name(np), target);
+}
+
+static void PRINT_LUN(hcb_p np, int target, int lun)
+{
+ printf ("%s:%d:%d:", sym_name(np), target, lun);
+}
+
+static void PRINT_ADDR (ccb_p cp)
+{
+ if (cp && cp->cam_ccb)
+ xpt_print_path(cp->cam_ccb->ccb_h.path);
+}
+
+/*
+ * Take into account this ccb in the freeze count.
+ */
+static void sym_freeze_cam_ccb(union ccb *ccb)
+{
+ if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
+ if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
+ ccb->ccb_h.status |= CAM_DEV_QFRZN;
+ xpt_freeze_devq(ccb->ccb_h.path, 1);
+ }
+ }
+}
+
+/*
+ * Set the status field of a CAM CCB.
+ */
+static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
+{
+ ccb->ccb_h.status &= ~CAM_STATUS_MASK;
+ ccb->ccb_h.status |= status;
+}
+
+/*
+ * Get the status field of a CAM CCB.
+ */
+static __inline int sym_get_cam_status(union ccb *ccb)
+{
+ return ccb->ccb_h.status & CAM_STATUS_MASK;
+}
+
+/*
+ * Enqueue a CAM CCB.
+ */
+static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
+{
+ assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
+ ccb->ccb_h.status = CAM_REQ_INPROG;
+
+ ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
+ ccb->ccb_h.timeout*hz/1000);
+ ccb->ccb_h.status |= CAM_SIM_QUEUED;
+ ccb->ccb_h.sym_hcb_ptr = np;
+
+ sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
+}
+
+/*
+ * Complete a pending CAM CCB.
+ */
+static void sym_xpt_done(hcb_p np, union ccb *ccb)
+{
+ if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
+ untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
+ sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
+ ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
+ ccb->ccb_h.sym_hcb_ptr = 0;
+ }
+ if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
+ sym_freeze_cam_ccb(ccb);
+ xpt_done(ccb);
+}
+
+static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
+{
+ sym_set_cam_status(ccb, cam_status);
+ sym_xpt_done(np, ccb);
+}
+
+/*
+ * SYMBIOS chip clock divisor table.
+ *
+ * Divisors are multiplied by 10,000,000 in order to make
+ * calculations more simple.
+ */
+#define _5M 5000000
+static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
+
+/*
+ * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
+ * 128 transfers. All chips support at least 16 transfers
+ * bursts. The 825A, 875 and 895 chips support bursts of up
+ * to 128 transfers and the 895A and 896 support bursts of up
+ * to 64 transfers. All other chips support up to 16
+ * transfers bursts.
+ *
+ * For PCI 32 bit data transfers each transfer is a DWORD.
+ * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
+ *
+ * We use log base 2 (burst length) as internal code, with
+ * value 0 meaning "burst disabled".
+ */
+
+/*
+ * Burst length from burst code.
+ */
+#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
+
+/*
+ * Burst code from io register bits.
+ */
+#define burst_code(dmode, ctest4, ctest5) \
+ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
+
+/*
+ * Set initial io register bits from burst code.
+ */
+static __inline void sym_init_burst(hcb_p np, u_char bc)
+{
+ np->rv_ctest4 &= ~0x80;
+ np->rv_dmode &= ~(0x3 << 6);
+ np->rv_ctest5 &= ~0x4;
+
+ if (!bc) {
+ np->rv_ctest4 |= 0x80;
+ }
+ else {
+ --bc;
+ np->rv_dmode |= ((bc & 0x3) << 6);
+ np->rv_ctest5 |= (bc & 0x4);
+ }
+}
+
+
+/*
+ * Print out the list of targets that have some flag disabled by user.
+ */
+static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
+{
+ int cnt;
+ int i;
+
+ for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ if (i == np->myaddr)
+ continue;
+ if (np->target[i].usrflags & mask) {
+ if (!cnt++)
+ printf("%s: %s disabled for targets",
+ sym_name(np), msg);
+ printf(" %d", i);
+ }
+ }
+ if (cnt)
+ printf(".\n");
+}
+
+/*
+ * Save initial settings of some IO registers.
+ * Assumed to have been set by BIOS.
+ * We cannot reset the chip prior to reading the
+ * IO registers, since informations will be lost.
+ * Since the SCRIPTS processor may be running, this
+ * is not safe on paper, but it seems to work quite
+ * well. :)
+ */
+static void sym_save_initial_setting (hcb_p np)
+{
+ np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
+ np->sv_scntl3 = INB(nc_scntl3) & 0x07;
+ np->sv_dmode = INB(nc_dmode) & 0xce;
+ np->sv_dcntl = INB(nc_dcntl) & 0xa8;
+ np->sv_ctest3 = INB(nc_ctest3) & 0x01;
+ np->sv_ctest4 = INB(nc_ctest4) & 0x80;
+ np->sv_gpcntl = INB(nc_gpcntl);
+ np->sv_stest1 = INB(nc_stest1);
+ np->sv_stest2 = INB(nc_stest2) & 0x20;
+ np->sv_stest4 = INB(nc_stest4);
+ if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
+ np->sv_scntl4 = INB(nc_scntl4);
+ np->sv_ctest5 = INB(nc_ctest5) & 0x04;
+ }
+ else
+ np->sv_ctest5 = INB(nc_ctest5) & 0x24;
+}
+
+/*
+ * Prepare io register values used by sym_init() according
+ * to selected and supported features.
+ */
+static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
+{
+ u_char burst_max;
+ u32 period;
+ int i;
+
+ /*
+ * Wide ?
+ */
+ np->maxwide = (np->features & FE_WIDE)? 1 : 0;
+
+ /*
+ * Get the frequency of the chip's clock.
+ */
+ if (np->features & FE_QUAD)
+ np->multiplier = 4;
+ else if (np->features & FE_DBLR)
+ np->multiplier = 2;
+ else
+ np->multiplier = 1;
+
+ np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000;
+ np->clock_khz *= np->multiplier;
+
+ if (np->clock_khz != 40000)
+ sym_getclock(np, np->multiplier);
+
+ /*
+ * Divisor to be used for async (timer pre-scaler).
+ */
+ i = np->clock_divn - 1;
+ while (--i >= 0) {
+ if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
+ ++i;
+ break;
+ }
+ }
+ np->rv_scntl3 = i+1;
+
+ /*
+ * The C1010 uses hardwired divisors for async.
+ * So, we just throw away, the async. divisor.:-)
+ */
+ if (np->features & FE_C10)
+ np->rv_scntl3 = 0;
+
+ /*
+ * Minimum synchronous period factor supported by the chip.
+ * Btw, 'period' is in tenths of nanoseconds.
+ */
+ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
+ if (period <= 250) np->minsync = 10;
+ else if (period <= 303) np->minsync = 11;
+ else if (period <= 500) np->minsync = 12;
+ else np->minsync = (period + 40 - 1) / 40;
+
+ /*
+ * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
+ */
+ if (np->minsync < 25 &&
+ !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
+ np->minsync = 25;
+ else if (np->minsync < 12 &&
+ !(np->features & (FE_ULTRA2|FE_ULTRA3)))
+ np->minsync = 12;
+
+ /*
+ * Maximum synchronous period factor supported by the chip.
+ */
+ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
+ np->maxsync = period > 2540 ? 254 : period / 10;
+
+ /*
+ * If chip is a C1010, guess the sync limits in DT mode.
+ */
+ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
+ if (np->clock_khz == 160000) {
+ np->minsync_dt = 9;
+ np->maxsync_dt = 50;
+ np->maxoffs_dt = 62;
+ }
+ }
+
+ /*
+ * 64 bit addressing (895A/896/1010) ?
+ */
+ if (np->features & FE_DAC)
+#if BITS_PER_LONG > 32
+ np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
+#else
+ np->rv_ccntl1 |= (DDAC);
+#endif
+
+ /*
+ * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
+ */
+ if (np->features & FE_NOPM)
+ np->rv_ccntl0 |= (ENPMJ);
+
+ /*
+ * C1010 Errata.
+ * In dual channel mode, contention occurs if internal cycles
+ * are used. Disable internal cycles.
+ */
+ if (np->device_id == PCI_ID_LSI53C1010 &&
+ np->revision_id < 0x2)
+ np->rv_ccntl0 |= DILS;
+
+ /*
+ * Select burst length (dwords)
+ */
+ burst_max = SYM_SETUP_BURST_ORDER;
+ if (burst_max == 255)
+ burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
+ np->sv_ctest5);
+ if (burst_max > 7)
+ burst_max = 7;
+ if (burst_max > np->maxburst)
+ burst_max = np->maxburst;
+
+ /*
+ * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
+ * This chip and the 860 Rev 1 may wrongly use PCI cache line
+ * based transactions on LOAD/STORE instructions. So we have
+ * to prevent these chips from using such PCI transactions in
+ * this driver. The generic ncr driver that does not use
+ * LOAD/STORE instructions does not need this work-around.
+ */
+ if ((np->device_id == PCI_ID_SYM53C810 &&
+ np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
+ (np->device_id == PCI_ID_SYM53C860 &&
+ np->revision_id <= 0x1))
+ np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
+
+ /*
+ * Select all supported special features.
+ * If we are using on-board RAM for scripts, prefetch (PFEN)
+ * does not help, but burst op fetch (BOF) does.
+ * Disabling PFEN makes sure BOF will be used.
+ */
+ if (np->features & FE_ERL)
+ np->rv_dmode |= ERL; /* Enable Read Line */
+ if (np->features & FE_BOF)
+ np->rv_dmode |= BOF; /* Burst Opcode Fetch */
+ if (np->features & FE_ERMP)
+ np->rv_dmode |= ERMP; /* Enable Read Multiple */
+#if 1
+ if ((np->features & FE_PFEN) && !np->ram_ba)
+#else
+ if (np->features & FE_PFEN)
+#endif
+ np->rv_dcntl |= PFEN; /* Prefetch Enable */
+ if (np->features & FE_CLSE)
+ np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
+ if (np->features & FE_WRIE)
+ np->rv_ctest3 |= WRIE; /* Write and Invalidate */
+ if (np->features & FE_DFS)
+ np->rv_ctest5 |= DFS; /* Dma Fifo Size */
+
+ /*
+ * Select some other
+ */
+ if (SYM_SETUP_PCI_PARITY)
+ np->rv_ctest4 |= MPEE; /* Master parity checking */
+ if (SYM_SETUP_SCSI_PARITY)
+ np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
+
+ /*
+ * Get parity checking, host ID and verbose mode from NVRAM
+ */
+ np->myaddr = 255;
+ sym_nvram_setup_host (np, nvram);
+
+ /*
+ * Get SCSI addr of host adapter (set by bios?).
+ */
+ if (np->myaddr == 255) {
+ np->myaddr = INB(nc_scid) & 0x07;
+ if (!np->myaddr)
+ np->myaddr = SYM_SETUP_HOST_ID;
+ }
+
+ /*
+ * Prepare initial io register bits for burst length
+ */
+ sym_init_burst(np, burst_max);
+
+ /*
+ * Set SCSI BUS mode.
+ * - LVD capable chips (895/895A/896/1010) report the
+ * current BUS mode through the STEST4 IO register.
+ * - For previous generation chips (825/825A/875),
+ * user has to tell us how to check against HVD,
+ * since a 100% safe algorithm is not possible.
+ */
+ np->scsi_mode = SMODE_SE;
+ if (np->features & (FE_ULTRA2|FE_ULTRA3))
+ np->scsi_mode = (np->sv_stest4 & SMODE);
+ else if (np->features & FE_DIFF) {
+ if (SYM_SETUP_SCSI_DIFF == 1) {
+ if (np->sv_scntl3) {
+ if (np->sv_stest2 & 0x20)
+ np->scsi_mode = SMODE_HVD;
+ }
+ else if (nvram->type == SYM_SYMBIOS_NVRAM) {
+ if (!(INB(nc_gpreg) & 0x08))
+ np->scsi_mode = SMODE_HVD;
+ }
+ }
+ else if (SYM_SETUP_SCSI_DIFF == 2)
+ np->scsi_mode = SMODE_HVD;
+ }
+ if (np->scsi_mode == SMODE_HVD)
+ np->rv_stest2 |= 0x20;
+
+ /*
+ * Set LED support from SCRIPTS.
+ * Ignore this feature for boards known to use a
+ * specific GPIO wiring and for the 895A, 896
+ * and 1010 that drive the LED directly.
+ */
+ if ((SYM_SETUP_SCSI_LED ||
+ (nvram->type == SYM_SYMBIOS_NVRAM ||
+ (nvram->type == SYM_TEKRAM_NVRAM &&
+ np->device_id == PCI_ID_SYM53C895))) &&
+ !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
+ np->features |= FE_LED0;
+
+ /*
+ * Set irq mode.
+ */
+ switch(SYM_SETUP_IRQ_MODE & 3) {
+ case 2:
+ np->rv_dcntl |= IRQM;
+ break;
+ case 1:
+ np->rv_dcntl |= (np->sv_dcntl & IRQM);
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Configure targets according to driver setup.
+ * If NVRAM present get targets setup from NVRAM.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ tcb_p tp = &np->target[i];
+
+#ifdef FreeBSD_New_Tran_Settings
+ tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
+ tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2;
+#endif
+ tp->tinfo.user.period = np->minsync;
+ tp->tinfo.user.offset = np->maxoffs;
+ tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
+ tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
+ tp->usrtags = SYM_SETUP_MAX_TAG;
+
+ sym_nvram_setup_target (np, i, nvram);
+
+ /*
+ * For now, guess PPR/DT support from the period
+ * and BUS width.
+ */
+ if (np->features & FE_ULTRA3) {
+ if (tp->tinfo.user.period <= 9 &&
+ tp->tinfo.user.width == BUS_16_BIT) {
+ tp->tinfo.user.options |= PPR_OPT_DT;
+ tp->tinfo.user.offset = np->maxoffs_dt;
+#ifdef FreeBSD_New_Tran_Settings
+ tp->tinfo.user.spi_version = 3;
+#endif
+ }
+ }
+
+ if (!tp->usrtags)
+ tp->usrflags &= ~SYM_TAGS_ENABLED;
+ }
+
+ /*
+ * Let user know about the settings.
+ */
+ i = nvram->type;
+ printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
+ i == SYM_SYMBIOS_NVRAM ? "Symbios" :
+ (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
+ np->myaddr,
+ (np->features & FE_ULTRA3) ? 80 :
+ (np->features & FE_ULTRA2) ? 40 :
+ (np->features & FE_ULTRA) ? 20 : 10,
+ sym_scsi_bus_mode(np->scsi_mode),
+ (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
+ /*
+ * Tell him more on demand.
+ */
+ if (sym_verbose) {
+ printf("%s: %s IRQ line driver%s\n",
+ sym_name(np),
+ np->rv_dcntl & IRQM ? "totem pole" : "open drain",
+ np->ram_ba ? ", using on-chip SRAM" : "");
+ printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
+ if (np->features & FE_NOPM)
+ printf("%s: handling phase mismatch from SCRIPTS.\n",
+ sym_name(np));
+ }
+ /*
+ * And still more.
+ */
+ if (sym_verbose > 1) {
+ printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
+ "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
+ sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
+ np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
+
+ printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
+ "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
+ sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
+ np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
+ }
+ /*
+ * Let user be aware of targets that have some disable flags set.
+ */
+ sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
+ if (sym_verbose)
+ sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
+ "SCAN FOR LUNS");
+
+ return 0;
+}
+
+/*
+ * Prepare the next negotiation message if needed.
+ *
+ * Fill in the part of message buffer that contains the
+ * negotiation and the nego_status field of the CCB.
+ * Returns the size of the message in bytes.
+ */
+
+static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
+{
+ tcb_p tp = &np->target[cp->target];
+ int msglen = 0;
+
+ /*
+ * Early C1010 chips need a work-around for DT
+ * data transfer to work.
+ */
+ if (!(np->features & FE_U3EN))
+ tp->tinfo.goal.options = 0;
+ /*
+ * negotiate using PPR ?
+ */
+ if (tp->tinfo.goal.options & PPR_OPT_MASK)
+ nego = NS_PPR;
+ /*
+ * negotiate wide transfers ?
+ */
+ else if (tp->tinfo.current.width != tp->tinfo.goal.width)
+ nego = NS_WIDE;
+ /*
+ * negotiate synchronous transfers?
+ */
+ else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
+ tp->tinfo.current.offset != tp->tinfo.goal.offset)
+ nego = NS_SYNC;
+
+ switch (nego) {
+ case NS_SYNC:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 3;
+ msgptr[msglen++] = M_X_SYNC_REQ;
+ msgptr[msglen++] = tp->tinfo.goal.period;
+ msgptr[msglen++] = tp->tinfo.goal.offset;
+ break;
+ case NS_WIDE:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 2;
+ msgptr[msglen++] = M_X_WIDE_REQ;
+ msgptr[msglen++] = tp->tinfo.goal.width;
+ break;
+ case NS_PPR:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 6;
+ msgptr[msglen++] = M_X_PPR_REQ;
+ msgptr[msglen++] = tp->tinfo.goal.period;
+ msgptr[msglen++] = 0;
+ msgptr[msglen++] = tp->tinfo.goal.offset;
+ msgptr[msglen++] = tp->tinfo.goal.width;
+ msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
+ break;
+ };
+
+ cp->nego_status = nego;
+
+ if (nego) {
+ tp->nego_cp = cp; /* Keep track a nego will be performed */
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
+ nego == NS_WIDE ? "wide msgout" :
+ "ppr msgout", msgptr);
+ };
+ };
+
+ return msglen;
+}
+
+/*
+ * Insert a job into the start queue.
+ */
+static void sym_put_start_queue(hcb_p np, ccb_p cp)
+{
+ u_short qidx;
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If the previously queued CCB is not yet done,
+ * set the IARB hint. The SCRIPTS will go with IARB
+ * for this job when starting the previous one.
+ * We leave devices a chance to win arbitration by
+ * not using more than 'iarb_max' consecutive
+ * immediate arbitrations.
+ */
+ if (np->last_cp && np->iarb_count < np->iarb_max) {
+ np->last_cp->host_flags |= HF_HINT_IARB;
+ ++np->iarb_count;
+ }
+ else
+ np->iarb_count = 0;
+ np->last_cp = cp;
+#endif
+
+ /*
+ * Insert first the idle task and then our job.
+ * The MB should ensure proper ordering.
+ */
+ qidx = np->squeueput + 2;
+ if (qidx >= MAX_QUEUE*2) qidx = 0;
+
+ np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
+ MEMORY_BARRIER();
+ np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
+
+ np->squeueput = qidx;
+
+ if (DEBUG_FLAGS & DEBUG_QUEUE)
+ printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
+
+ /*
+ * Script processor may be waiting for reselect.
+ * Wake it up.
+ */
+ MEMORY_BARRIER();
+ OUTB (nc_istat, SIGP|np->istat_sem);
+}
+
+
+/*
+ * Soft reset the chip.
+ *
+ * Raising SRST when the chip is running may cause
+ * problems on dual function chips (see below).
+ * On the other hand, LVD devices need some delay
+ * to settle and report actual BUS mode in STEST4.
+ */
+static void sym_chip_reset (hcb_p np)
+{
+ OUTB (nc_istat, SRST);
+ UDELAY (10);
+ OUTB (nc_istat, 0);
+ UDELAY(2000); /* For BUS MODE to settle */
+}
+
+/*
+ * Soft reset the chip.
+ *
+ * Some 896 and 876 chip revisions may hang-up if we set
+ * the SRST (soft reset) bit at the wrong time when SCRIPTS
+ * are running.
+ * So, we need to abort the current operation prior to
+ * soft resetting the chip.
+ */
+static void sym_soft_reset (hcb_p np)
+{
+ u_char istat;
+ int i;
+
+ OUTB (nc_istat, CABRT);
+ for (i = 1000000 ; i ; --i) {
+ istat = INB (nc_istat);
+ if (istat & SIP) {
+ INW (nc_sist);
+ continue;
+ }
+ if (istat & DIP) {
+ OUTB (nc_istat, 0);
+ INB (nc_dstat);
+ break;
+ }
+ }
+ if (!i)
+ printf("%s: unable to abort current chip operation.\n",
+ sym_name(np));
+ sym_chip_reset (np);
+}
+
+/*
+ * Start reset process.
+ *
+ * The interrupt handler will reinitialize the chip.
+ */
+static void sym_start_reset(hcb_p np)
+{
+ (void) sym_reset_scsi_bus(np, 1);
+}
+
+static int sym_reset_scsi_bus(hcb_p np, int enab_int)
+{
+ u32 term;
+ int retv = 0;
+
+ sym_soft_reset(np); /* Soft reset the chip */
+ if (enab_int)
+ OUTW (nc_sien, RST);
+ /*
+ * Enable Tolerant, reset IRQD if present and
+ * properly set IRQ mode, prior to resetting the bus.
+ */
+ OUTB (nc_stest3, TE);
+ OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
+ OUTB (nc_scntl1, CRST);
+ UDELAY (200);
+
+ if (!SYM_SETUP_SCSI_BUS_CHECK)
+ goto out;
+ /*
+ * Check for no terminators or SCSI bus shorts to ground.
+ * Read SCSI data bus, data parity bits and control signals.
+ * We are expecting RESET to be TRUE and other signals to be
+ * FALSE.
+ */
+ term = INB(nc_sstat0);
+ term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
+ term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
+ ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
+ ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
+ INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
+
+ if (!(np->features & FE_WIDE))
+ term &= 0x3ffff;
+
+ if (term != (2<<7)) {
+ printf("%s: suspicious SCSI data while resetting the BUS.\n",
+ sym_name(np));
+ printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
+ "0x%lx, expecting 0x%lx\n",
+ sym_name(np),
+ (np->features & FE_WIDE) ? "dp1,d15-8," : "",
+ (u_long)term, (u_long)(2<<7));
+ if (SYM_SETUP_SCSI_BUS_CHECK == 1)
+ retv = 1;
+ }
+out:
+ OUTB (nc_scntl1, 0);
+ /* MDELAY(100); */
+ return retv;
+}
+
+/*
+ * The chip may have completed jobs. Look at the DONE QUEUE.
+ *
+ * On architectures that may reorder LOAD/STORE operations,
+ * a memory barrier may be needed after the reading of the
+ * so-called `flag' and prior to dealing with the data.
+ */
+static int sym_wakeup_done (hcb_p np)
+{
+ ccb_p cp;
+ int i, n;
+ u32 dsa;
+
+ n = 0;
+ i = np->dqueueget;
+ while (1) {
+ dsa = scr_to_cpu(np->dqueue[i]);
+ if (!dsa)
+ break;
+ np->dqueue[i] = 0;
+ if ((i = i+2) >= MAX_QUEUE*2)
+ i = 0;
+
+ cp = sym_ccb_from_dsa(np, dsa);
+ if (cp) {
+ MEMORY_BARRIER();
+ sym_complete_ok (np, cp);
+ ++n;
+ }
+ else
+ printf ("%s: bad DSA (%x) in done queue.\n",
+ sym_name(np), (u_int) dsa);
+ }
+ np->dqueueget = i;
+
+ return n;
+}
+
+/*
+ * Complete all active CCBs with error.
+ * Used on CHIP/SCSI RESET.
+ */
+static void sym_flush_busy_queue (hcb_p np, int cam_status)
+{
+ /*
+ * Move all active CCBs to the COMP queue
+ * and flush this queue.
+ */
+ sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
+ sym_que_init(&np->busy_ccbq);
+ sym_flush_comp_queue(np, cam_status);
+}
+
+/*
+ * Start chip.
+ *
+ * 'reason' means:
+ * 0: initialisation.
+ * 1: SCSI BUS RESET delivered or received.
+ * 2: SCSI BUS MODE changed.
+ */
+static void sym_init (hcb_p np, int reason)
+{
+ int i;
+ u32 phys;
+
+ /*
+ * Reset chip if asked, otherwise just clear fifos.
+ */
+ if (reason == 1)
+ sym_soft_reset(np);
+ else {
+ OUTB (nc_stest3, TE|CSF);
+ OUTONB (nc_ctest3, CLF);
+ }
+
+ /*
+ * Clear Start Queue
+ */
+ phys = np->squeue_ba;
+ for (i = 0; i < MAX_QUEUE*2; i += 2) {
+ np->squeue[i] = cpu_to_scr(np->idletask_ba);
+ np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
+ }
+ np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
+
+ /*
+ * Start at first entry.
+ */
+ np->squeueput = 0;
+
+ /*
+ * Clear Done Queue
+ */
+ phys = np->dqueue_ba;
+ for (i = 0; i < MAX_QUEUE*2; i += 2) {
+ np->dqueue[i] = 0;
+ np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
+ }
+ np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
+
+ /*
+ * Start at first entry.
+ */
+ np->dqueueget = 0;
+
+ /*
+ * Install patches in scripts.
+ * This also let point to first position the start
+ * and done queue pointers used from SCRIPTS.
+ */
+ np->fw_patch(np);
+
+ /*
+ * Wakeup all pending jobs.
+ */
+ sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
+
+ /*
+ * Init chip.
+ */
+ OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
+ UDELAY (2000); /* The 895 needs time for the bus mode to settle */
+
+ OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
+ /* full arb., ena parity, par->ATN */
+ OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
+
+ sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
+
+ OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
+ OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
+ OUTB (nc_istat , SIGP ); /* Signal Process */
+ OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
+ OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
+
+ OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
+ OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
+ OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
+
+ /* Extended Sreq/Sack filtering not supported on the C10 */
+ if (np->features & FE_C10)
+ OUTB (nc_stest2, np->rv_stest2);
+ else
+ OUTB (nc_stest2, EXT|np->rv_stest2);
+
+ OUTB (nc_stest3, TE); /* TolerANT enable */
+ OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
+
+ /*
+ * For now, disable AIP generation on C1010-66.
+ */
+ if (np->device_id == PCI_ID_LSI53C1010_2)
+ OUTB (nc_aipcntl1, DISAIP);
+
+ /*
+ * C10101 Errata.
+ * Errant SGE's when in narrow. Write bits 4 & 5 of
+ * STEST1 register to disable SGE. We probably should do
+ * that from SCRIPTS for each selection/reselection, but
+ * I just don't want. :)
+ */
+ if (np->device_id == PCI_ID_LSI53C1010 &&
+ /* np->revision_id < 0xff */ 1)
+ OUTB (nc_stest1, INB(nc_stest1) | 0x30);
+
+ /*
+ * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
+ * Disable overlapped arbitration for some dual function devices,
+ * regardless revision id (kind of post-chip-design feature. ;-))
+ */
+ if (np->device_id == PCI_ID_SYM53C875)
+ OUTB (nc_ctest0, (1<<5));
+ else if (np->device_id == PCI_ID_SYM53C896)
+ np->rv_ccntl0 |= DPR;
+
+ /*
+ * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
+ * and/or hardware phase mismatch, since only such chips
+ * seem to support those IO registers.
+ */
+ if (np->features & (FE_DAC|FE_NOPM)) {
+ OUTB (nc_ccntl0, np->rv_ccntl0);
+ OUTB (nc_ccntl1, np->rv_ccntl1);
+ }
+
+ /*
+ * If phase mismatch handled by scripts (895A/896/1010),
+ * set PM jump addresses.
+ */
+ if (np->features & FE_NOPM) {
+ OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
+ OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
+ }
+
+ /*
+ * Enable GPIO0 pin for writing if LED support from SCRIPTS.
+ * Also set GPIO5 and clear GPIO6 if hardware LED control.
+ */
+ if (np->features & FE_LED0)
+ OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
+ else if (np->features & FE_LEDC)
+ OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
+
+ /*
+ * enable ints
+ */
+ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
+ OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
+
+ /*
+ * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
+ * Try to eat the spurious SBMC interrupt that may occur when
+ * we reset the chip but not the SCSI BUS (at initialization).
+ */
+ if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
+ OUTONW (nc_sien, SBMC);
+ if (reason == 0) {
+ MDELAY(100);
+ INW (nc_sist);
+ }
+ np->scsi_mode = INB (nc_stest4) & SMODE;
+ }
+
+ /*
+ * Fill in target structure.
+ * Reinitialize usrsync.
+ * Reinitialize usrwide.
+ * Prepare sync negotiation according to actual SCSI bus mode.
+ */
+ for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
+ tcb_p tp = &np->target[i];
+
+ tp->to_reset = 0;
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+
+ tp->tinfo.current.period = 0;
+ tp->tinfo.current.offset = 0;
+ tp->tinfo.current.width = BUS_8_BIT;
+ tp->tinfo.current.options = 0;
+ }
+
+ /*
+ * Download SCSI SCRIPTS to on-chip RAM if present,
+ * and start script processor.
+ */
+ if (np->ram_ba) {
+ if (sym_verbose > 1)
+ printf ("%s: Downloading SCSI SCRIPTS.\n",
+ sym_name(np));
+ if (np->ram_ws == 8192) {
+ OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
+ OUTL (nc_mmws, np->scr_ram_seg);
+ OUTL (nc_mmrs, np->scr_ram_seg);
+ OUTL (nc_sfs, np->scr_ram_seg);
+ phys = SCRIPTB_BA (np, start64);
+ }
+ else
+ phys = SCRIPTA_BA (np, init);
+ OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
+ }
+ else
+ phys = SCRIPTA_BA (np, init);
+
+ np->istat_sem = 0;
+
+ OUTL (nc_dsa, np->hcb_ba);
+ OUTL_DSP (phys);
+
+ /*
+ * Notify the XPT about the RESET condition.
+ */
+ if (reason != 0)
+ xpt_async(AC_BUS_RESET, np->path, NULL);
+}
+
+/*
+ * Get clock factor and sync divisor for a given
+ * synchronous factor period.
+ */
+static int
+sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
+{
+ u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
+ int div = np->clock_divn; /* Number of divisors supported */
+ u32 fak; /* Sync factor in sxfer */
+ u32 per; /* Period in tenths of ns */
+ u32 kpc; /* (per * clk) */
+ int ret;
+
+ /*
+ * Compute the synchronous period in tenths of nano-seconds
+ */
+ if (dt && sfac <= 9) per = 125;
+ else if (sfac <= 10) per = 250;
+ else if (sfac == 11) per = 303;
+ else if (sfac == 12) per = 500;
+ else per = 40 * sfac;
+ ret = per;
+
+ kpc = per * clk;
+ if (dt)
+ kpc <<= 1;
+
+ /*
+ * For earliest C10 revision 0, we cannot use extra
+ * clocks for the setting of the SCSI clocking.
+ * Note that this limits the lowest sync data transfer
+ * to 5 Mega-transfers per second and may result in
+ * using higher clock divisors.
+ */
+#if 1
+ if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
+ /*
+ * Look for the lowest clock divisor that allows an
+ * output speed not faster than the period.
+ */
+ while (div > 0) {
+ --div;
+ if (kpc > (div_10M[div] << 2)) {
+ ++div;
+ break;
+ }
+ }
+ fak = 0; /* No extra clocks */
+ if (div == np->clock_divn) { /* Are we too fast ? */
+ ret = -1;
+ }
+ *divp = div;
+ *fakp = fak;
+ return ret;
+ }
+#endif
+
+ /*
+ * Look for the greatest clock divisor that allows an
+ * input speed faster than the period.
+ */
+ while (div-- > 0)
+ if (kpc >= (div_10M[div] << 2)) break;
+
+ /*
+ * Calculate the lowest clock factor that allows an output
+ * speed not faster than the period, and the max output speed.
+ * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
+ * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
+ */
+ if (dt) {
+ fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
+ /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
+ }
+ else {
+ fak = (kpc - 1) / div_10M[div] + 1 - 4;
+ /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
+ }
+
+ /*
+ * Check against our hardware limits, or bugs :).
+ */
+ if (fak < 0) {fak = 0; ret = -1;}
+ if (fak > 2) {fak = 2; ret = -1;}
+
+ /*
+ * Compute and return sync parameters.
+ */
+ *divp = div;
+ *fakp = fak;
+
+ return ret;
+}
+
+/*
+ * Tell the SCSI layer about the new transfer parameters.
+ */
+static void
+sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
+{
+ struct ccb_trans_settings cts;
+ struct cam_path *path;
+ int sts;
+ tcb_p tp = &np->target[target];
+
+ sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
+ CAM_LUN_WILDCARD);
+ if (sts != CAM_REQ_CMP)
+ return;
+
+ bzero(&cts, sizeof(cts));
+
+#ifdef FreeBSD_New_Tran_Settings
+#define cts__scsi (cts.proto_specific.scsi)
+#define cts__spi (cts.xport_specific.spi)
+
+ cts.type = CTS_TYPE_CURRENT_SETTINGS;
+ cts.protocol = PROTO_SCSI;
+ cts.transport = XPORT_SPI;
+ cts.protocol_version = tp->tinfo.current.scsi_version;
+ cts.transport_version = tp->tinfo.current.spi_version;
+
+ cts__spi.valid = spi_valid;
+ if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
+ cts__spi.sync_period = tp->tinfo.current.period;
+ if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
+ cts__spi.sync_offset = tp->tinfo.current.offset;
+ if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
+ cts__spi.bus_width = tp->tinfo.current.width;
+ if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
+ cts__spi.ppr_options = tp->tinfo.current.options;
+#undef cts__spi
+#undef cts__scsi
+#else
+ cts.valid = spi_valid;
+ if (spi_valid & CCB_TRANS_SYNC_RATE_VALID)
+ cts.sync_period = tp->tinfo.current.period;
+ if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID)
+ cts.sync_offset = tp->tinfo.current.offset;
+ if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID)
+ cts.bus_width = tp->tinfo.current.width;
+#endif
+ xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
+ xpt_async(AC_TRANSFER_NEG, path, &cts);
+ xpt_free_path(path);
+}
+
+#ifdef FreeBSD_New_Tran_Settings
+#define SYM_SPI_VALID_WDTR \
+ CTS_SPI_VALID_BUS_WIDTH | \
+ CTS_SPI_VALID_SYNC_RATE | \
+ CTS_SPI_VALID_SYNC_OFFSET
+#define SYM_SPI_VALID_SDTR \
+ CTS_SPI_VALID_SYNC_RATE | \
+ CTS_SPI_VALID_SYNC_OFFSET
+#define SYM_SPI_VALID_PPR \
+ CTS_SPI_VALID_PPR_OPTIONS | \
+ CTS_SPI_VALID_BUS_WIDTH | \
+ CTS_SPI_VALID_SYNC_RATE | \
+ CTS_SPI_VALID_SYNC_OFFSET
+#else
+#define SYM_SPI_VALID_WDTR \
+ CCB_TRANS_BUS_WIDTH_VALID | \
+ CCB_TRANS_SYNC_RATE_VALID | \
+ CCB_TRANS_SYNC_OFFSET_VALID
+#define SYM_SPI_VALID_SDTR \
+ CCB_TRANS_SYNC_RATE_VALID | \
+ CCB_TRANS_SYNC_OFFSET_VALID
+#define SYM_SPI_VALID_PPR \
+ CCB_TRANS_BUS_WIDTH_VALID | \
+ CCB_TRANS_SYNC_RATE_VALID | \
+ CCB_TRANS_SYNC_OFFSET_VALID
+#endif
+
+/*
+ * We received a WDTR.
+ * Let everything be aware of the changes.
+ */
+static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
+{
+ tcb_p tp = &np->target[cp->target];
+
+ sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
+
+ /*
+ * Tell the SCSI layer about the new transfer parameters.
+ */
+ tp->tinfo.goal.width = tp->tinfo.current.width = wide;
+ tp->tinfo.current.offset = 0;
+ tp->tinfo.current.period = 0;
+ tp->tinfo.current.options = 0;
+
+ sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
+}
+
+/*
+ * We received a SDTR.
+ * Let everything be aware of the changes.
+ */
+static void
+sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
+{
+ tcb_p tp = &np->target[cp->target];
+ u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
+
+ sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
+
+ /*
+ * Tell the SCSI layer about the new transfer parameters.
+ */
+ tp->tinfo.goal.period = tp->tinfo.current.period = per;
+ tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
+ tp->tinfo.goal.options = tp->tinfo.current.options = 0;
+
+ sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
+}
+
+/*
+ * We received a PPR.
+ * Let everything be aware of the changes.
+ */
+static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak)
+{
+ tcb_p tp = &np->target[cp->target];
+
+ sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
+
+ /*
+ * Tell the SCSI layer about the new transfer parameters.
+ */
+ tp->tinfo.goal.width = tp->tinfo.current.width = wide;
+ tp->tinfo.goal.period = tp->tinfo.current.period = per;
+ tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
+ tp->tinfo.goal.options = tp->tinfo.current.options = dt;
+
+ sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
+}
+
+/*
+ * Switch trans mode for current job and it's target.
+ */
+static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak)
+{
+ SYM_QUEHEAD *qp;
+ union ccb *ccb;
+ tcb_p tp;
+ u_char target = INB (nc_sdid) & 0x0f;
+ u_char sval, wval, uval;
+
+ assert (cp);
+ if (!cp) return;
+ ccb = cp->cam_ccb;
+ assert (ccb);
+ if (!ccb) return;
+ assert (target == (cp->target & 0xf));
+ tp = &np->target[target];
+
+ sval = tp->head.sval;
+ wval = tp->head.wval;
+ uval = tp->head.uval;
+
+#if 0
+ printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
+ sval, wval, uval, np->rv_scntl3);
+#endif
+ /*
+ * Set the offset.
+ */
+ if (!(np->features & FE_C10))
+ sval = (sval & ~0x1f) | ofs;
+ else
+ sval = (sval & ~0x3f) | ofs;
+
+ /*
+ * Set the sync divisor and extra clock factor.
+ */
+ if (ofs != 0) {
+ wval = (wval & ~0x70) | ((div+1) << 4);
+ if (!(np->features & FE_C10))
+ sval = (sval & ~0xe0) | (fak << 5);
+ else {
+ uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
+ if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
+ if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
+ }
+ }
+
+ /*
+ * Set the bus width.
+ */
+ wval = wval & ~EWS;
+ if (wide != 0)
+ wval |= EWS;
+
+ /*
+ * Set misc. ultra enable bits.
+ */
+ if (np->features & FE_C10) {
+ uval = uval & ~(U3EN|AIPCKEN);
+ if (dt) {
+ assert(np->features & FE_U3EN);
+ uval |= U3EN;
+ }
+ }
+ else {
+ wval = wval & ~ULTRA;
+ if (per <= 12) wval |= ULTRA;
+ }
+
+ /*
+ * Stop there if sync parameters are unchanged.
+ */
+ if (tp->head.sval == sval &&
+ tp->head.wval == wval &&
+ tp->head.uval == uval)
+ return;
+ tp->head.sval = sval;
+ tp->head.wval = wval;
+ tp->head.uval = uval;
+
+ /*
+ * Disable extended Sreq/Sack filtering if per < 50.
+ * Not supported on the C1010.
+ */
+ if (per < 50 && !(np->features & FE_C10))
+ OUTOFFB (nc_stest2, EXT);
+
+ /*
+ * set actual value and sync_status
+ */
+ OUTB (nc_sxfer, tp->head.sval);
+ OUTB (nc_scntl3, tp->head.wval);
+
+ if (np->features & FE_C10) {
+ OUTB (nc_scntl4, tp->head.uval);
+ }
+
+ /*
+ * patch ALL busy ccbs of this target.
+ */
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->target != target)
+ continue;
+ cp->phys.select.sel_scntl3 = tp->head.wval;
+ cp->phys.select.sel_sxfer = tp->head.sval;
+ if (np->features & FE_C10) {
+ cp->phys.select.sel_scntl4 = tp->head.uval;
+ }
+ }
+}
+
+/*
+ * log message for real hard errors
+ *
+ * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
+ * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
+ *
+ * exception register:
+ * ds: dstat
+ * si: sist
+ *
+ * SCSI bus lines:
+ * so: control lines as driven by chip.
+ * si: control lines as seen by chip.
+ * sd: scsi data lines as seen by chip.
+ *
+ * wide/fastmode:
+ * sxfer: (see the manual)
+ * scntl3: (see the manual)
+ *
+ * current script command:
+ * dsp: script address (relative to start of script).
+ * dbc: first word of script command.
+ *
+ * First 24 register of the chip:
+ * r0..rf
+ */
+static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
+{
+ u32 dsp;
+ int script_ofs;
+ int script_size;
+ char *script_name;
+ u_char *script_base;
+ int i;
+
+ dsp = INL (nc_dsp);
+
+ if (dsp > np->scripta_ba &&
+ dsp <= np->scripta_ba + np->scripta_sz) {
+ script_ofs = dsp - np->scripta_ba;
+ script_size = np->scripta_sz;
+ script_base = (u_char *) np->scripta0;
+ script_name = "scripta";
+ }
+ else if (np->scriptb_ba < dsp &&
+ dsp <= np->scriptb_ba + np->scriptb_sz) {
+ script_ofs = dsp - np->scriptb_ba;
+ script_size = np->scriptb_sz;
+ script_base = (u_char *) np->scriptb0;
+ script_name = "scriptb";
+ } else {
+ script_ofs = dsp;
+ script_size = 0;
+ script_base = 0;
+ script_name = "mem";
+ }
+
+ printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
+ sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
+ (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
+ (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
+ (unsigned)INB (nc_scntl3), script_name, script_ofs,
+ (unsigned)INL (nc_dbc));
+
+ if (((script_ofs & 3) == 0) &&
+ (unsigned)script_ofs < script_size) {
+ printf ("%s: script cmd = %08x\n", sym_name(np),
+ scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
+ }
+
+ printf ("%s: regdump:", sym_name(np));
+ for (i=0; i<24;i++)
+ printf (" %02x", (unsigned)INB_OFF(i));
+ printf (".\n");
+
+ /*
+ * PCI BUS error, read the PCI ststus register.
+ */
+ if (dstat & (MDPE|BF)) {
+ u_short pci_sts;
+#ifdef FreeBSD_Bus_Io_Abstraction
+ pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
+#else
+ pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
+#endif
+ if (pci_sts & 0xf900) {
+#ifdef FreeBSD_Bus_Io_Abstraction
+ pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
+#else
+ pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
+#endif
+ printf("%s: PCI STATUS = 0x%04x\n",
+ sym_name(np), pci_sts & 0xf900);
+ }
+ }
+}
+
+/*
+ * chip interrupt handler
+ *
+ * In normal situations, interrupt conditions occur one at
+ * a time. But when something bad happens on the SCSI BUS,
+ * the chip may raise several interrupt flags before
+ * stopping and interrupting the CPU. The additionnal
+ * interrupt flags are stacked in some extra registers
+ * after the SIP and/or DIP flag has been raised in the
+ * ISTAT. After the CPU has read the interrupt condition
+ * flag from SIST or DSTAT, the chip unstacks the other
+ * interrupt flags and sets the corresponding bits in
+ * SIST or DSTAT. Since the chip starts stacking once the
+ * SIP or DIP flag is set, there is a small window of time
+ * where the stacking does not occur.
+ *
+ * Typically, multiple interrupt conditions may happen in
+ * the following situations:
+ *
+ * - SCSI parity error + Phase mismatch (PAR|MA)
+ * When an parity error is detected in input phase
+ * and the device switches to msg-in phase inside a
+ * block MOV.
+ * - SCSI parity error + Unexpected disconnect (PAR|UDC)
+ * When a stupid device does not want to handle the
+ * recovery of an SCSI parity error.
+ * - Some combinations of STO, PAR, UDC, ...
+ * When using non compliant SCSI stuff, when user is
+ * doing non compliant hot tampering on the BUS, when
+ * something really bad happens to a device, etc ...
+ *
+ * The heuristic suggested by SYMBIOS to handle
+ * multiple interrupts is to try unstacking all
+ * interrupts conditions and to handle them on some
+ * priority based on error severity.
+ * This will work when the unstacking has been
+ * successful, but we cannot be 100 % sure of that,
+ * since the CPU may have been faster to unstack than
+ * the chip is able to stack. Hmmm ... But it seems that
+ * such a situation is very unlikely to happen.
+ *
+ * If this happen, for example STO caught by the CPU
+ * then UDC happenning before the CPU have restarted
+ * the SCRIPTS, the driver may wrongly complete the
+ * same command on UDC, since the SCRIPTS didn't restart
+ * and the DSA still points to the same command.
+ * We avoid this situation by setting the DSA to an
+ * invalid value when the CCB is completed and before
+ * restarting the SCRIPTS.
+ *
+ * Another issue is that we need some section of our
+ * recovery procedures to be somehow uninterruptible but
+ * the SCRIPTS processor does not provides such a
+ * feature. For this reason, we handle recovery preferently
+ * from the C code and check against some SCRIPTS critical
+ * sections from the C code.
+ *
+ * Hopefully, the interrupt handling of the driver is now
+ * able to resist to weird BUS error conditions, but donnot
+ * ask me for any guarantee that it will never fail. :-)
+ * Use at your own decision and risk.
+ */
+
+static void sym_intr1 (hcb_p np)
+{
+ u_char istat, istatc;
+ u_char dstat;
+ u_short sist;
+
+ /*
+ * interrupt on the fly ?
+ *
+ * A `dummy read' is needed to ensure that the
+ * clear of the INTF flag reaches the device
+ * before the scanning of the DONE queue.
+ */
+ istat = INB (nc_istat);
+ if (istat & INTF) {
+ OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
+ istat = INB (nc_istat); /* DUMMY READ */
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
+ (void)sym_wakeup_done (np);
+ };
+
+ if (!(istat & (SIP|DIP)))
+ return;
+
+#if 0 /* We should never get this one */
+ if (istat & CABRT)
+ OUTB (nc_istat, CABRT);
+#endif
+
+ /*
+ * PAR and MA interrupts may occur at the same time,
+ * and we need to know of both in order to handle
+ * this situation properly. We try to unstack SCSI
+ * interrupts for that reason. BTW, I dislike a LOT
+ * such a loop inside the interrupt routine.
+ * Even if DMA interrupt stacking is very unlikely to
+ * happen, we also try unstacking these ones, since
+ * this has no performance impact.
+ */
+ sist = 0;
+ dstat = 0;
+ istatc = istat;
+ do {
+ if (istatc & SIP)
+ sist |= INW (nc_sist);
+ if (istatc & DIP)
+ dstat |= INB (nc_dstat);
+ istatc = INB (nc_istat);
+ istat |= istatc;
+ } while (istatc & (SIP|DIP));
+
+ if (DEBUG_FLAGS & DEBUG_TINY)
+ printf ("<%d|%x:%x|%x:%x>",
+ (int)INB(nc_scr0),
+ dstat,sist,
+ (unsigned)INL(nc_dsp),
+ (unsigned)INL(nc_dbc));
+ /*
+ * On paper, a memory barrier may be needed here.
+ * And since we are paranoid ... :)
+ */
+ MEMORY_BARRIER();
+
+ /*
+ * First, interrupts we want to service cleanly.
+ *
+ * Phase mismatch (MA) is the most frequent interrupt
+ * for chip earlier than the 896 and so we have to service
+ * it as quickly as possible.
+ * A SCSI parity error (PAR) may be combined with a phase
+ * mismatch condition (MA).
+ * Programmed interrupts (SIR) are used to call the C code
+ * from SCRIPTS.
+ * The single step interrupt (SSI) is not used in this
+ * driver.
+ */
+ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
+ !(dstat & (MDPE|BF|ABRT|IID))) {
+ if (sist & PAR) sym_int_par (np, sist);
+ else if (sist & MA) sym_int_ma (np);
+ else if (dstat & SIR) sym_int_sir (np);
+ else if (dstat & SSI) OUTONB_STD ();
+ else goto unknown_int;
+ return;
+ };
+
+ /*
+ * Now, interrupts that donnot happen in normal
+ * situations and that we may need to recover from.
+ *
+ * On SCSI RESET (RST), we reset everything.
+ * On SCSI BUS MODE CHANGE (SBMC), we complete all
+ * active CCBs with RESET status, prepare all devices
+ * for negotiating again and restart the SCRIPTS.
+ * On STO and UDC, we complete the CCB with the corres-
+ * ponding status and restart the SCRIPTS.
+ */
+ if (sist & RST) {
+ xpt_print_path(np->path);
+ printf("SCSI BUS reset detected.\n");
+ sym_init (np, 1);
+ return;
+ };
+
+ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
+ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
+
+ if (!(sist & (GEN|HTH|SGE)) &&
+ !(dstat & (MDPE|BF|ABRT|IID))) {
+ if (sist & SBMC) sym_int_sbmc (np);
+ else if (sist & STO) sym_int_sto (np);
+ else if (sist & UDC) sym_int_udc (np);
+ else goto unknown_int;
+ return;
+ };
+
+ /*
+ * Now, interrupts we are not able to recover cleanly.
+ *
+ * Log message for hard errors.
+ * Reset everything.
+ */
+
+ sym_log_hard_error(np, sist, dstat);
+
+ if ((sist & (GEN|HTH|SGE)) ||
+ (dstat & (MDPE|BF|ABRT|IID))) {
+ sym_start_reset(np);
+ return;
+ };
+
+unknown_int:
+ /*
+ * We just miss the cause of the interrupt. :(
+ * Print a message. The timeout will do the real work.
+ */
+ printf( "%s: unknown interrupt(s) ignored, "
+ "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
+ sym_name(np), istat, dstat, sist);
+}
+
+static void sym_intr(void *arg)
+{
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
+ sym_intr1((hcb_p) arg);
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
+ return;
+}
+
+static void sym_poll(struct cam_sim *sim)
+{
+ int s = splcam();
+ sym_intr(cam_sim_softc(sim));
+ splx(s);
+}
+
+
+/*
+ * generic recovery from scsi interrupt
+ *
+ * The doc says that when the chip gets an SCSI interrupt,
+ * it tries to stop in an orderly fashion, by completing
+ * an instruction fetch that had started or by flushing
+ * the DMA fifo for a write to memory that was executing.
+ * Such a fashion is not enough to know if the instruction
+ * that was just before the current DSP value has been
+ * executed or not.
+ *
+ * There are some small SCRIPTS sections that deal with
+ * the start queue and the done queue that may break any
+ * assomption from the C code if we are interrupted
+ * inside, so we reset if this happens. Btw, since these
+ * SCRIPTS sections are executed while the SCRIPTS hasn't
+ * started SCSI operations, it is very unlikely to happen.
+ *
+ * All the driver data structures are supposed to be
+ * allocated from the same 4 GB memory window, so there
+ * is a 1 to 1 relationship between DSA and driver data
+ * structures. Since we are careful :) to invalidate the
+ * DSA when we complete a command or when the SCRIPTS
+ * pushes a DSA into a queue, we can trust it when it
+ * points to a CCB.
+ */
+static void sym_recover_scsi_int (hcb_p np, u_char hsts)
+{
+ u32 dsp = INL (nc_dsp);
+ u32 dsa = INL (nc_dsa);
+ ccb_p cp = sym_ccb_from_dsa(np, dsa);
+
+ /*
+ * If we haven't been interrupted inside the SCRIPTS
+ * critical pathes, we can safely restart the SCRIPTS
+ * and trust the DSA value if it matches a CCB.
+ */
+ if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
+ dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
+ (!(dsp > SCRIPTA_BA (np, ungetjob) &&
+ dsp < SCRIPTA_BA (np, reselect) + 1)) &&
+ (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
+ dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
+ (!(dsp > SCRIPTA_BA (np, done) &&
+ dsp < SCRIPTA_BA (np, done_end) + 1))) {
+ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
+ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
+ /*
+ * If we have a CCB, let the SCRIPTS call us back for
+ * the handling of the error with SCRATCHA filled with
+ * STARTPOS. This way, we will be able to freeze the
+ * device queue and requeue awaiting IOs.
+ */
+ if (cp) {
+ cp->host_status = hsts;
+ OUTL_DSP (SCRIPTA_BA (np, complete_error));
+ }
+ /*
+ * Otherwise just restart the SCRIPTS.
+ */
+ else {
+ OUTL (nc_dsa, 0xffffff);
+ OUTL_DSP (SCRIPTA_BA (np, start));
+ }
+ }
+ else
+ goto reset_all;
+
+ return;
+
+reset_all:
+ sym_start_reset(np);
+}
+
+/*
+ * chip exception handler for selection timeout
+ */
+static void sym_int_sto (hcb_p np)
+{
+ u32 dsp = INL (nc_dsp);
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
+
+ if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
+ sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
+ else
+ sym_start_reset(np);
+}
+
+/*
+ * chip exception handler for unexpected disconnect
+ */
+static void sym_int_udc (hcb_p np)
+{
+ printf ("%s: unexpected disconnect\n", sym_name(np));
+ sym_recover_scsi_int(np, HS_UNEXPECTED);
+}
+
+/*
+ * chip exception handler for SCSI bus mode change
+ *
+ * spi2-r12 11.2.3 says a transceiver mode change must
+ * generate a reset event and a device that detects a reset
+ * event shall initiate a hard reset. It says also that a
+ * device that detects a mode change shall set data transfer
+ * mode to eight bit asynchronous, etc...
+ * So, just reinitializing all except chip should be enough.
+ */
+static void sym_int_sbmc (hcb_p np)
+{
+ u_char scsi_mode = INB (nc_stest4) & SMODE;
+
+ /*
+ * Notify user.
+ */
+ xpt_print_path(np->path);
+ printf("SCSI BUS mode change from %s to %s.\n",
+ sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
+
+ /*
+ * Should suspend command processing for a few seconds and
+ * reinitialize all except the chip.
+ */
+ sym_init (np, 2);
+}
+
+/*
+ * chip exception handler for SCSI parity error.
+ *
+ * When the chip detects a SCSI parity error and is
+ * currently executing a (CH)MOV instruction, it does
+ * not interrupt immediately, but tries to finish the
+ * transfer of the current scatter entry before
+ * interrupting. The following situations may occur:
+ *
+ * - The complete scatter entry has been transferred
+ * without the device having changed phase.
+ * The chip will then interrupt with the DSP pointing
+ * to the instruction that follows the MOV.
+ *
+ * - A phase mismatch occurs before the MOV finished
+ * and phase errors are to be handled by the C code.
+ * The chip will then interrupt with both PAR and MA
+ * conditions set.
+ *
+ * - A phase mismatch occurs before the MOV finished and
+ * phase errors are to be handled by SCRIPTS.
+ * The chip will load the DSP with the phase mismatch
+ * JUMP address and interrupt the host processor.
+ */
+static void sym_int_par (hcb_p np, u_short sist)
+{
+ u_char hsts = INB (HS_PRT);
+ u32 dsp = INL (nc_dsp);
+ u32 dbc = INL (nc_dbc);
+ u32 dsa = INL (nc_dsa);
+ u_char sbcl = INB (nc_sbcl);
+ u_char cmd = dbc >> 24;
+ int phase = cmd & 7;
+ ccb_p cp = sym_ccb_from_dsa(np, dsa);
+
+ printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
+ sym_name(np), hsts, dbc, sbcl);
+
+ /*
+ * Check that the chip is connected to the SCSI BUS.
+ */
+ if (!(INB (nc_scntl1) & ISCON)) {
+ sym_recover_scsi_int(np, HS_UNEXPECTED);
+ return;
+ }
+
+ /*
+ * If the nexus is not clearly identified, reset the bus.
+ * We will try to do better later.
+ */
+ if (!cp)
+ goto reset_all;
+
+ /*
+ * Check instruction was a MOV, direction was INPUT and
+ * ATN is asserted.
+ */
+ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
+ goto reset_all;
+
+ /*
+ * Keep track of the parity error.
+ */
+ OUTONB (HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_PARITY_ERR;
+
+ /*
+ * Prepare the message to send to the device.
+ */
+ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
+
+ /*
+ * If the old phase was DATA IN phase, we have to deal with
+ * the 3 situations described above.
+ * For other input phases (MSG IN and STATUS), the device
+ * must resend the whole thing that failed parity checking
+ * or signal error. So, jumping to dispatcher should be OK.
+ */
+ if (phase == 1 || phase == 5) {
+ /* Phase mismatch handled by SCRIPTS */
+ if (dsp == SCRIPTB_BA (np, pm_handle))
+ OUTL_DSP (dsp);
+ /* Phase mismatch handled by the C code */
+ else if (sist & MA)
+ sym_int_ma (np);
+ /* No phase mismatch occurred */
+ else {
+ OUTL (nc_temp, dsp);
+ OUTL_DSP (SCRIPTA_BA (np, dispatch));
+ }
+ }
+ else
+ OUTL_DSP (SCRIPTA_BA (np, clrack));
+ return;
+
+reset_all:
+ sym_start_reset(np);
+ return;
+}
+
+/*
+ * chip exception handler for phase errors.
+ *
+ * We have to construct a new transfer descriptor,
+ * to transfer the rest of the current block.
+ */
+static void sym_int_ma (hcb_p np)
+{
+ u32 dbc;
+ u32 rest;
+ u32 dsp;
+ u32 dsa;
+ u32 nxtdsp;
+ u32 *vdsp;
+ u32 oadr, olen;
+ u32 *tblp;
+ u32 newcmd;
+ u_int delta;
+ u_char cmd;
+ u_char hflags, hflags0;
+ struct sym_pmc *pm;
+ ccb_p cp;
+
+ dsp = INL (nc_dsp);
+ dbc = INL (nc_dbc);
+ dsa = INL (nc_dsa);
+
+ cmd = dbc >> 24;
+ rest = dbc & 0xffffff;
+ delta = 0;
+
+ /*
+ * locate matching cp if any.
+ */
+ cp = sym_ccb_from_dsa(np, dsa);
+
+ /*
+ * Donnot take into account dma fifo and various buffers in
+ * INPUT phase since the chip flushes everything before
+ * raising the MA interrupt for interrupted INPUT phases.
+ * For DATA IN phase, we will check for the SWIDE later.
+ */
+ if ((cmd & 7) != 1 && (cmd & 7) != 5) {
+ u_char ss0, ss2;
+
+ if (np->features & FE_DFBC)
+ delta = INW (nc_dfbc);
+ else {
+ u32 dfifo;
+
+ /*
+ * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
+ */
+ dfifo = INL(nc_dfifo);
+
+ /*
+ * Calculate remaining bytes in DMA fifo.
+ * (CTEST5 = dfifo >> 16)
+ */
+ if (dfifo & (DFS << 16))
+ delta = ((((dfifo >> 8) & 0x300) |
+ (dfifo & 0xff)) - rest) & 0x3ff;
+ else
+ delta = ((dfifo & 0xff) - rest) & 0x7f;
+ }
+
+ /*
+ * The data in the dma fifo has not been transfered to
+ * the target -> add the amount to the rest
+ * and clear the data.
+ * Check the sstat2 register in case of wide transfer.
+ */
+ rest += delta;
+ ss0 = INB (nc_sstat0);
+ if (ss0 & OLF) rest++;
+ if (!(np->features & FE_C10))
+ if (ss0 & ORF) rest++;
+ if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
+ ss2 = INB (nc_sstat2);
+ if (ss2 & OLF1) rest++;
+ if (!(np->features & FE_C10))
+ if (ss2 & ORF1) rest++;
+ };
+
+ /*
+ * Clear fifos.
+ */
+ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
+ OUTB (nc_stest3, TE|CSF); /* scsi fifo */
+ }
+
+ /*
+ * log the information
+ */
+ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
+ printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
+ (unsigned) rest, (unsigned) delta);
+
+ /*
+ * try to find the interrupted script command,
+ * and the address at which to continue.
+ */
+ vdsp = 0;
+ nxtdsp = 0;
+ if (dsp > np->scripta_ba &&
+ dsp <= np->scripta_ba + np->scripta_sz) {
+ vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
+ nxtdsp = dsp;
+ }
+ else if (dsp > np->scriptb_ba &&
+ dsp <= np->scriptb_ba + np->scriptb_sz) {
+ vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
+ nxtdsp = dsp;
+ }
+
+ /*
+ * log the information
+ */
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
+ cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
+ };
+
+ if (!vdsp) {
+ printf ("%s: interrupted SCRIPT address not found.\n",
+ sym_name (np));
+ goto reset_all;
+ }
+
+ if (!cp) {
+ printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
+ sym_name (np));
+ goto reset_all;
+ }
+
+ /*
+ * get old startaddress and old length.
+ */
+ oadr = scr_to_cpu(vdsp[1]);
+
+ if (cmd & 0x10) { /* Table indirect */
+ tblp = (u32 *) ((char*) &cp->phys + oadr);
+ olen = scr_to_cpu(tblp[0]);
+ oadr = scr_to_cpu(tblp[1]);
+ } else {
+ tblp = (u32 *) 0;
+ olen = scr_to_cpu(vdsp[0]) & 0xffffff;
+ };
+
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
+ (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
+ tblp,
+ (unsigned) olen,
+ (unsigned) oadr);
+ };
+
+ /*
+ * check cmd against assumed interrupted script command.
+ * If dt data phase, the MOVE instruction hasn't bit 4 of
+ * the phase.
+ */
+ if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
+ PRINT_ADDR(cp);
+ printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
+ (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
+
+ goto reset_all;
+ };
+
+ /*
+ * if old phase not dataphase, leave here.
+ */
+ if (cmd & 2) {
+ PRINT_ADDR(cp);
+ printf ("phase change %x-%x %d@%08x resid=%d.\n",
+ cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
+ (unsigned)oadr, (unsigned)rest);
+ goto unexpected_phase;
+ };
+
+ /*
+ * Choose the correct PM save area.
+ *
+ * Look at the PM_SAVE SCRIPT if you want to understand
+ * this stuff. The equivalent code is implemented in
+ * SCRIPTS for the 895A, 896 and 1010 that are able to
+ * handle PM from the SCRIPTS processor.
+ */
+ hflags0 = INB (HF_PRT);
+ hflags = hflags0;
+
+ if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
+ if (hflags & HF_IN_PM0)
+ nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
+ else if (hflags & HF_IN_PM1)
+ nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
+
+ if (hflags & HF_DP_SAVED)
+ hflags ^= HF_ACT_PM;
+ }
+
+ if (!(hflags & HF_ACT_PM)) {
+ pm = &cp->phys.pm0;
+ newcmd = SCRIPTA_BA (np, pm0_data);
+ }
+ else {
+ pm = &cp->phys.pm1;
+ newcmd = SCRIPTA_BA (np, pm1_data);
+ }
+
+ hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
+ if (hflags != hflags0)
+ OUTB (HF_PRT, hflags);
+
+ /*
+ * fillin the phase mismatch context
+ */
+ pm->sg.addr = cpu_to_scr(oadr + olen - rest);
+ pm->sg.size = cpu_to_scr(rest);
+ pm->ret = cpu_to_scr(nxtdsp);
+
+ /*
+ * If we have a SWIDE,
+ * - prepare the address to write the SWIDE from SCRIPTS,
+ * - compute the SCRIPTS address to restart from,
+ * - move current data pointer context by one byte.
+ */
+ nxtdsp = SCRIPTA_BA (np, dispatch);
+ if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
+ (INB (nc_scntl2) & WSR)) {
+ u32 tmp;
+
+ /*
+ * Set up the table indirect for the MOVE
+ * of the residual byte and adjust the data
+ * pointer context.
+ */
+ tmp = scr_to_cpu(pm->sg.addr);
+ cp->phys.wresid.addr = cpu_to_scr(tmp);
+ pm->sg.addr = cpu_to_scr(tmp + 1);
+ tmp = scr_to_cpu(pm->sg.size);
+ cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
+ pm->sg.size = cpu_to_scr(tmp - 1);
+
+ /*
+ * If only the residual byte is to be moved,
+ * no PM context is needed.
+ */
+ if ((tmp&0xffffff) == 1)
+ newcmd = pm->ret;
+
+ /*
+ * Prepare the address of SCRIPTS that will
+ * move the residual byte to memory.
+ */
+ nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
+ }
+
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ PRINT_ADDR(cp);
+ printf ("PM %x %x %x / %x %x %x.\n",
+ hflags0, hflags, newcmd,
+ (unsigned)scr_to_cpu(pm->sg.addr),
+ (unsigned)scr_to_cpu(pm->sg.size),
+ (unsigned)scr_to_cpu(pm->ret));
+ }
+
+ /*
+ * Restart the SCRIPTS processor.
+ */
+ OUTL (nc_temp, newcmd);
+ OUTL_DSP (nxtdsp);
+ return;
+
+ /*
+ * Unexpected phase changes that occurs when the current phase
+ * is not a DATA IN or DATA OUT phase are due to error conditions.
+ * Such event may only happen when the SCRIPTS is using a
+ * multibyte SCSI MOVE.
+ *
+ * Phase change Some possible cause
+ *
+ * COMMAND --> MSG IN SCSI parity error detected by target.
+ * COMMAND --> STATUS Bad command or refused by target.
+ * MSG OUT --> MSG IN Message rejected by target.
+ * MSG OUT --> COMMAND Bogus target that discards extended
+ * negotiation messages.
+ *
+ * The code below does not care of the new phase and so
+ * trusts the target. Why to annoy it ?
+ * If the interrupted phase is COMMAND phase, we restart at
+ * dispatcher.
+ * If a target does not get all the messages after selection,
+ * the code assumes blindly that the target discards extended
+ * messages and clears the negotiation status.
+ * If the target does not want all our response to negotiation,
+ * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
+ * bloat for such a should_not_happen situation).
+ * In all other situation, we reset the BUS.
+ * Are these assumptions reasonnable ? (Wait and see ...)
+ */
+unexpected_phase:
+ dsp -= 8;
+ nxtdsp = 0;
+
+ switch (cmd & 7) {
+ case 2: /* COMMAND phase */
+ nxtdsp = SCRIPTA_BA (np, dispatch);
+ break;
+#if 0
+ case 3: /* STATUS phase */
+ nxtdsp = SCRIPTA_BA (np, dispatch);
+ break;
+#endif
+ case 6: /* MSG OUT phase */
+ /*
+ * If the device may want to use untagged when we want
+ * tagged, we prepare an IDENTIFY without disc. granted,
+ * since we will not be able to handle reselect.
+ * Otherwise, we just don't care.
+ */
+ if (dsp == SCRIPTA_BA (np, send_ident)) {
+ if (cp->tag != NO_TAG && olen - rest <= 3) {
+ cp->host_status = HS_BUSY;
+ np->msgout[0] = M_IDENTIFY | cp->lun;
+ nxtdsp = SCRIPTB_BA (np, ident_break_atn);
+ }
+ else
+ nxtdsp = SCRIPTB_BA (np, ident_break);
+ }
+ else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
+ dsp == SCRIPTB_BA (np, send_sdtr) ||
+ dsp == SCRIPTB_BA (np, send_ppr)) {
+ nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
+ }
+ break;
+#if 0
+ case 7: /* MSG IN phase */
+ nxtdsp = SCRIPTA_BA (np, clrack);
+ break;
+#endif
+ }
+
+ if (nxtdsp) {
+ OUTL_DSP (nxtdsp);
+ return;
+ }
+
+reset_all:
+ sym_start_reset(np);
+}
+
+/*
+ * Dequeue from the START queue all CCBs that match
+ * a given target/lun/task condition (-1 means all),
+ * and move them from the BUSY queue to the COMP queue
+ * with CAM_REQUEUE_REQ status condition.
+ * This function is used during error handling/recovery.
+ * It is called with SCRIPTS not running.
+ */
+static int
+sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
+{
+ int j;
+ ccb_p cp;
+
+ /*
+ * Make sure the starting index is within range.
+ */
+ assert((i >= 0) && (i < 2*MAX_QUEUE));
+
+ /*
+ * Walk until end of START queue and dequeue every job
+ * that matches the target/lun/task condition.
+ */
+ j = i;
+ while (i != np->squeueput) {
+ cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
+ assert(cp);
+#ifdef SYM_CONF_IARB_SUPPORT
+ /* Forget hints for IARB, they may be no longer relevant */
+ cp->host_flags &= ~HF_HINT_IARB;
+#endif
+ if ((target == -1 || cp->target == target) &&
+ (lun == -1 || cp->lun == lun) &&
+ (task == -1 || cp->tag == task)) {
+ sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
+ sym_remque(&cp->link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+ }
+ else {
+ if (i != j)
+ np->squeue[j] = np->squeue[i];
+ if ((j += 2) >= MAX_QUEUE*2) j = 0;
+ }
+ if ((i += 2) >= MAX_QUEUE*2) i = 0;
+ }
+ if (i != j) /* Copy back the idle task if needed */
+ np->squeue[j] = np->squeue[i];
+ np->squeueput = j; /* Update our current start queue pointer */
+
+ return (i - j) / 2;
+}
+
+/*
+ * Complete all CCBs queued to the COMP queue.
+ *
+ * These CCBs are assumed:
+ * - Not to be referenced either by devices or
+ * SCRIPTS-related queues and datas.
+ * - To have to be completed with an error condition
+ * or requeued.
+ *
+ * The device queue freeze count is incremented
+ * for each CCB that does not prevent this.
+ * This function is called when all CCBs involved
+ * in error handling/recovery have been reaped.
+ */
+static void
+sym_flush_comp_queue(hcb_p np, int cam_status)
+{
+ SYM_QUEHEAD *qp;
+ ccb_p cp;
+
+ while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
+ union ccb *ccb;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+ /* Leave quiet CCBs waiting for resources */
+ if (cp->host_status == HS_WAIT)
+ continue;
+ ccb = cp->cam_ccb;
+ if (cam_status)
+ sym_set_cam_status(ccb, cam_status);
+ sym_free_ccb(np, cp);
+ sym_freeze_cam_ccb(ccb);
+ sym_xpt_done(np, ccb);
+ }
+}
+
+/*
+ * chip handler for bad SCSI status condition
+ *
+ * In case of bad SCSI status, we unqueue all the tasks
+ * currently queued to the controller but not yet started
+ * and then restart the SCRIPTS processor immediately.
+ *
+ * QUEUE FULL and BUSY conditions are handled the same way.
+ * Basically all the not yet started tasks are requeued in
+ * device queue and the queue is frozen until a completion.
+ *
+ * For CHECK CONDITION and COMMAND TERMINATED status, we use
+ * the CCB of the failed command to prepare a REQUEST SENSE
+ * SCSI command and queue it to the controller queue.
+ *
+ * SCRATCHA is assumed to have been loaded with STARTPOS
+ * before the SCRIPTS called the C code.
+ */
+static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
+{
+ tcb_p tp = &np->target[cp->target];
+ u32 startp;
+ u_char s_status = cp->ssss_status;
+ u_char h_flags = cp->host_flags;
+ int msglen;
+ int nego;
+ int i;
+
+ /*
+ * Compute the index of the next job to start from SCRIPTS.
+ */
+ i = (INL (nc_scratcha) - np->squeue_ba) / 4;
+
+ /*
+ * The last CCB queued used for IARB hint may be
+ * no longer relevant. Forget it.
+ */
+#ifdef SYM_CONF_IARB_SUPPORT
+ if (np->last_cp)
+ np->last_cp = 0;
+#endif
+
+ /*
+ * Now deal with the SCSI status.
+ */
+ switch(s_status) {
+ case S_BUSY:
+ case S_QUEUE_FULL:
+ if (sym_verbose >= 2) {
+ PRINT_ADDR(cp);
+ printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
+ }
+ default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
+ sym_complete_error (np, cp);
+ break;
+ case S_TERMINATED:
+ case S_CHECK_COND:
+ /*
+ * If we get an SCSI error when requesting sense, give up.
+ */
+ if (h_flags & HF_SENSE) {
+ sym_complete_error (np, cp);
+ break;
+ }
+
+ /*
+ * Dequeue all queued CCBs for that device not yet started,
+ * and restart the SCRIPTS processor immediately.
+ */
+ (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+ OUTL_DSP (SCRIPTA_BA (np, start));
+
+ /*
+ * Save some info of the actual IO.
+ * Compute the data residual.
+ */
+ cp->sv_scsi_status = cp->ssss_status;
+ cp->sv_xerr_status = cp->xerr_status;
+ cp->sv_resid = sym_compute_residual(np, cp);
+
+ /*
+ * Prepare all needed data structures for
+ * requesting sense data.
+ */
+
+ /*
+ * identify message
+ */
+ cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
+ msglen = 1;
+
+ /*
+ * If we are currently using anything different from
+ * async. 8 bit data transfers with that target,
+ * start a negotiation, since the device may want
+ * to report us a UNIT ATTENTION condition due to
+ * a cause we currently ignore, and we donnot want
+ * to be stuck with WIDE and/or SYNC data transfer.
+ *
+ * cp->nego_status is filled by sym_prepare_nego().
+ */
+ cp->nego_status = 0;
+ nego = 0;
+ if (tp->tinfo.current.options & PPR_OPT_MASK)
+ nego = NS_PPR;
+ else if (tp->tinfo.current.width != BUS_8_BIT)
+ nego = NS_WIDE;
+ else if (tp->tinfo.current.offset != 0)
+ nego = NS_SYNC;
+ if (nego)
+ msglen +=
+ sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
+ /*
+ * Message table indirect structure.
+ */
+ cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
+ cp->phys.smsg.size = cpu_to_scr(msglen);
+
+ /*
+ * sense command
+ */
+ cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
+ cp->phys.cmd.size = cpu_to_scr(6);
+
+ /*
+ * patch requested size into sense command
+ */
+ cp->sensecmd[0] = 0x03;
+ cp->sensecmd[1] = cp->lun << 5;
+#ifdef FreeBSD_New_Tran_Settings
+ if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
+ cp->sensecmd[1] = 0;
+#endif
+ cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
+ cp->data_len = SYM_SNS_BBUF_LEN;
+
+ /*
+ * sense data
+ */
+ bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
+ cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
+ cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
+
+ /*
+ * requeue the command.
+ */
+ startp = SCRIPTB_BA (np, sdata_in);
+
+ cp->phys.head.savep = cpu_to_scr(startp);
+ cp->phys.head.goalp = cpu_to_scr(startp + 16);
+ cp->phys.head.lastp = cpu_to_scr(startp);
+ cp->startp = cpu_to_scr(startp);
+
+ cp->actualquirks = SYM_QUIRK_AUTOSAVE;
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+ cp->host_flags = (HF_SENSE|HF_DATA_IN);
+ cp->xerr_status = 0;
+ cp->extra_bytes = 0;
+
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
+
+ /*
+ * Requeue the command.
+ */
+ sym_put_start_queue(np, cp);
+
+ /*
+ * Give back to upper layer everything we have dequeued.
+ */
+ sym_flush_comp_queue(np, 0);
+ break;
+ }
+}
+
+/*
+ * After a device has accepted some management message
+ * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
+ * a device signals a UNIT ATTENTION condition, some
+ * tasks are thrown away by the device. We are required
+ * to reflect that on our tasks list since the device
+ * will never complete these tasks.
+ *
+ * This function move from the BUSY queue to the COMP
+ * queue all disconnected CCBs for a given target that
+ * match the following criteria:
+ * - lun=-1 means any logical UNIT otherwise a given one.
+ * - task=-1 means any task, otherwise a given one.
+ */
+static int
+sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
+{
+ SYM_QUEHEAD qtmp, *qp;
+ int i = 0;
+ ccb_p cp;
+
+ /*
+ * Move the entire BUSY queue to our temporary queue.
+ */
+ sym_que_init(&qtmp);
+ sym_que_splice(&np->busy_ccbq, &qtmp);
+ sym_que_init(&np->busy_ccbq);
+
+ /*
+ * Put all CCBs that matches our criteria into
+ * the COMP queue and put back other ones into
+ * the BUSY queue.
+ */
+ while ((qp = sym_remque_head(&qtmp)) != 0) {
+ union ccb *ccb;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ ccb = cp->cam_ccb;
+ if (cp->host_status != HS_DISCONNECT ||
+ cp->target != target ||
+ (lun != -1 && cp->lun != lun) ||
+ (task != -1 &&
+ (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+ continue;
+ }
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+
+ /* Preserve the software timeout condition */
+ if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
+ sym_set_cam_status(ccb, cam_status);
+ ++i;
+#if 0
+printf("XXXX TASK @%p CLEARED\n", cp);
+#endif
+ }
+ return i;
+}
+
+/*
+ * chip handler for TASKS recovery
+ *
+ * We cannot safely abort a command, while the SCRIPTS
+ * processor is running, since we just would be in race
+ * with it.
+ *
+ * As long as we have tasks to abort, we keep the SEM
+ * bit set in the ISTAT. When this bit is set, the
+ * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
+ * each time it enters the scheduler.
+ *
+ * If we have to reset a target, clear tasks of a unit,
+ * or to perform the abort of a disconnected job, we
+ * restart the SCRIPTS for selecting the target. Once
+ * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
+ * If it loses arbitration, the SCRIPTS will interrupt again
+ * the next time it will enter its scheduler, and so on ...
+ *
+ * On SIR_TARGET_SELECTED, we scan for the more
+ * appropriate thing to do:
+ *
+ * - If nothing, we just sent a M_ABORT message to the
+ * target to get rid of the useless SCSI bus ownership.
+ * According to the specs, no tasks shall be affected.
+ * - If the target is to be reset, we send it a M_RESET
+ * message.
+ * - If a logical UNIT is to be cleared , we send the
+ * IDENTIFY(lun) + M_ABORT.
+ * - If an untagged task is to be aborted, we send the
+ * IDENTIFY(lun) + M_ABORT.
+ * - If a tagged task is to be aborted, we send the
+ * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
+ *
+ * Once our 'kiss of death' :) message has been accepted
+ * by the target, the SCRIPTS interrupts again
+ * (SIR_ABORT_SENT). On this interrupt, we complete
+ * all the CCBs that should have been aborted by the
+ * target according to our message.
+ */
+static void sym_sir_task_recovery(hcb_p np, int num)
+{
+ SYM_QUEHEAD *qp;
+ ccb_p cp;
+ tcb_p tp;
+ int target=-1, lun=-1, task;
+ int i, k;
+
+ switch(num) {
+ /*
+ * The SCRIPTS processor stopped before starting
+ * the next command in order to allow us to perform
+ * some task recovery.
+ */
+ case SIR_SCRIPT_STOPPED:
+ /*
+ * Do we have any target to reset or unit to clear ?
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ tp = &np->target[i];
+ if (tp->to_reset ||
+ (tp->lun0p && tp->lun0p->to_clear)) {
+ target = i;
+ break;
+ }
+ if (!tp->lunmp)
+ continue;
+ for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
+ if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
+ target = i;
+ break;
+ }
+ }
+ if (target != -1)
+ break;
+ }
+
+ /*
+ * If not, walk the busy queue for any
+ * disconnected CCB to be aborted.
+ */
+ if (target == -1) {
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
+ if (cp->host_status != HS_DISCONNECT)
+ continue;
+ if (cp->to_abort) {
+ target = cp->target;
+ break;
+ }
+ }
+ }
+
+ /*
+ * If some target is to be selected,
+ * prepare and start the selection.
+ */
+ if (target != -1) {
+ tp = &np->target[target];
+ np->abrt_sel.sel_id = target;
+ np->abrt_sel.sel_scntl3 = tp->head.wval;
+ np->abrt_sel.sel_sxfer = tp->head.sval;
+ OUTL(nc_dsa, np->hcb_ba);
+ OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
+ return;
+ }
+
+ /*
+ * Now look for a CCB to abort that haven't started yet.
+ * Btw, the SCRIPTS processor is still stopped, so
+ * we are not in race.
+ */
+ i = 0;
+ cp = 0;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->host_status != HS_BUSY &&
+ cp->host_status != HS_NEGOTIATE)
+ continue;
+ if (!cp->to_abort)
+ continue;
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If we are using IMMEDIATE ARBITRATION, we donnot
+ * want to cancel the last queued CCB, since the
+ * SCRIPTS may have anticipated the selection.
+ */
+ if (cp == np->last_cp) {
+ cp->to_abort = 0;
+ continue;
+ }
+#endif
+ i = 1; /* Means we have found some */
+ break;
+ }
+ if (!i) {
+ /*
+ * We are done, so we donnot need
+ * to synchronize with the SCRIPTS anylonger.
+ * Remove the SEM flag from the ISTAT.
+ */
+ np->istat_sem = 0;
+ OUTB (nc_istat, SIGP);
+ break;
+ }
+ /*
+ * Compute index of next position in the start
+ * queue the SCRIPTS intends to start and dequeue
+ * all CCBs for that device that haven't been started.
+ */
+ i = (INL (nc_scratcha) - np->squeue_ba) / 4;
+ i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+
+ /*
+ * Make sure at least our IO to abort has been dequeued.
+ */
+ assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
+
+ /*
+ * Keep track in cam status of the reason of the abort.
+ */
+ if (cp->to_abort == 2)
+ sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
+ else
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
+
+ /*
+ * Complete with error everything that we have dequeued.
+ */
+ sym_flush_comp_queue(np, 0);
+ break;
+ /*
+ * The SCRIPTS processor has selected a target
+ * we may have some manual recovery to perform for.
+ */
+ case SIR_TARGET_SELECTED:
+ target = (INB (nc_sdid) & 0xf);
+ tp = &np->target[target];
+
+ np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
+
+ /*
+ * If the target is to be reset, prepare a
+ * M_RESET message and clear the to_reset flag
+ * since we donnot expect this operation to fail.
+ */
+ if (tp->to_reset) {
+ np->abrt_msg[0] = M_RESET;
+ np->abrt_tbl.size = 1;
+ tp->to_reset = 0;
+ break;
+ }
+
+ /*
+ * Otherwise, look for some logical unit to be cleared.
+ */
+ if (tp->lun0p && tp->lun0p->to_clear)
+ lun = 0;
+ else if (tp->lunmp) {
+ for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
+ if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
+ lun = k;
+ break;
+ }
+ }
+ }
+
+ /*
+ * If a logical unit is to be cleared, prepare
+ * an IDENTIFY(lun) + ABORT MESSAGE.
+ */
+ if (lun != -1) {
+ lcb_p lp = sym_lp(np, tp, lun);
+ lp->to_clear = 0; /* We donnot expect to fail here */
+ np->abrt_msg[0] = M_IDENTIFY | lun;
+ np->abrt_msg[1] = M_ABORT;
+ np->abrt_tbl.size = 2;
+ break;
+ }
+
+ /*
+ * Otherwise, look for some disconnected job to
+ * abort for this target.
+ */
+ i = 0;
+ cp = 0;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->host_status != HS_DISCONNECT)
+ continue;
+ if (cp->target != target)
+ continue;
+ if (!cp->to_abort)
+ continue;
+ i = 1; /* Means we have some */
+ break;
+ }
+
+ /*
+ * If we have none, probably since the device has
+ * completed the command before we won abitration,
+ * send a M_ABORT message without IDENTIFY.
+ * According to the specs, the device must just
+ * disconnect the BUS and not abort any task.
+ */
+ if (!i) {
+ np->abrt_msg[0] = M_ABORT;
+ np->abrt_tbl.size = 1;
+ break;
+ }
+
+ /*
+ * We have some task to abort.
+ * Set the IDENTIFY(lun)
+ */
+ np->abrt_msg[0] = M_IDENTIFY | cp->lun;
+
+ /*
+ * If we want to abort an untagged command, we
+ * will send a IDENTIFY + M_ABORT.
+ * Otherwise (tagged command), we will send
+ * a IDENTITFY + task attributes + ABORT TAG.
+ */
+ if (cp->tag == NO_TAG) {
+ np->abrt_msg[1] = M_ABORT;
+ np->abrt_tbl.size = 2;
+ }
+ else {
+ np->abrt_msg[1] = cp->scsi_smsg[1];
+ np->abrt_msg[2] = cp->scsi_smsg[2];
+ np->abrt_msg[3] = M_ABORT_TAG;
+ np->abrt_tbl.size = 4;
+ }
+ /*
+ * Keep track of software timeout condition, since the
+ * peripheral driver may not count retries on abort
+ * conditions not due to timeout.
+ */
+ if (cp->to_abort == 2)
+ sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
+ cp->to_abort = 0; /* We donnot expect to fail here */
+ break;
+
+ /*
+ * The target has accepted our message and switched
+ * to BUS FREE phase as we expected.
+ */
+ case SIR_ABORT_SENT:
+ target = (INB (nc_sdid) & 0xf);
+ tp = &np->target[target];
+
+ /*
+ ** If we didn't abort anything, leave here.
+ */
+ if (np->abrt_msg[0] == M_ABORT)
+ break;
+
+ /*
+ * If we sent a M_RESET, then a hardware reset has
+ * been performed by the target.
+ * - Reset everything to async 8 bit
+ * - Tell ourself to negotiate next time :-)
+ * - Prepare to clear all disconnected CCBs for
+ * this target from our task list (lun=task=-1)
+ */
+ lun = -1;
+ task = -1;
+ if (np->abrt_msg[0] == M_RESET) {
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+ tp->tinfo.current.period = 0;
+ tp->tinfo.current.offset = 0;
+ tp->tinfo.current.width = BUS_8_BIT;
+ tp->tinfo.current.options = 0;
+ }
+
+ /*
+ * Otherwise, check for the LUN and TASK(s)
+ * concerned by the cancelation.
+ * If it is not ABORT_TAG then it is CLEAR_QUEUE
+ * or an ABORT message :-)
+ */
+ else {
+ lun = np->abrt_msg[0] & 0x3f;
+ if (np->abrt_msg[1] == M_ABORT_TAG)
+ task = np->abrt_msg[2];
+ }
+
+ /*
+ * Complete all the CCBs the device should have
+ * aborted due to our 'kiss of death' message.
+ */
+ i = (INL (nc_scratcha) - np->squeue_ba) / 4;
+ (void) sym_dequeue_from_squeue(np, i, target, lun, -1);
+ (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
+ sym_flush_comp_queue(np, 0);
+
+ /*
+ * If we sent a BDR, make uper layer aware of that.
+ */
+ if (np->abrt_msg[0] == M_RESET)
+ xpt_async(AC_SENT_BDR, np->path, NULL);
+ break;
+ }
+
+ /*
+ * Print to the log the message we intend to send.
+ */
+ if (num == SIR_TARGET_SELECTED) {
+ PRINT_TARGET(np, target);
+ sym_printl_hex("control msgout:", np->abrt_msg,
+ np->abrt_tbl.size);
+ np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
+ }
+
+ /*
+ * Let the SCRIPTS processor continue.
+ */
+ OUTONB_STD ();
+}
+
+/*
+ * Gerard's alchemy:) that deals with with the data
+ * pointer for both MDP and the residual calculation.
+ *
+ * I didn't want to bloat the code by more than 200
+ * lignes for the handling of both MDP and the residual.
+ * This has been achieved by using a data pointer
+ * representation consisting in an index in the data
+ * array (dp_sg) and a negative offset (dp_ofs) that
+ * have the following meaning:
+ *
+ * - dp_sg = SYM_CONF_MAX_SG
+ * we are at the end of the data script.
+ * - dp_sg < SYM_CONF_MAX_SG
+ * dp_sg points to the next entry of the scatter array
+ * we want to transfer.
+ * - dp_ofs < 0
+ * dp_ofs represents the residual of bytes of the
+ * previous entry scatter entry we will send first.
+ * - dp_ofs = 0
+ * no residual to send first.
+ *
+ * The function sym_evaluate_dp() accepts an arbitray
+ * offset (basically from the MDP message) and returns
+ * the corresponding values of dp_sg and dp_ofs.
+ */
+
+static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
+{
+ u32 dp_scr;
+ int dp_ofs, dp_sg, dp_sgmin;
+ int tmp;
+ struct sym_pmc *pm;
+
+ /*
+ * Compute the resulted data pointer in term of a script
+ * address within some DATA script and a signed byte offset.
+ */
+ dp_scr = scr;
+ dp_ofs = *ofs;
+ if (dp_scr == SCRIPTA_BA (np, pm0_data))
+ pm = &cp->phys.pm0;
+ else if (dp_scr == SCRIPTA_BA (np, pm1_data))
+ pm = &cp->phys.pm1;
+ else
+ pm = 0;
+
+ if (pm) {
+ dp_scr = scr_to_cpu(pm->ret);
+ dp_ofs -= scr_to_cpu(pm->sg.size);
+ }
+
+ /*
+ * If we are auto-sensing, then we are done.
+ */
+ if (cp->host_flags & HF_SENSE) {
+ *ofs = dp_ofs;
+ return 0;
+ }
+
+ /*
+ * Deduce the index of the sg entry.
+ * Keep track of the index of the first valid entry.
+ * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
+ * end of the data.
+ */
+ tmp = scr_to_cpu(cp->phys.head.goalp);
+ dp_sg = SYM_CONF_MAX_SG;
+ if (dp_scr != tmp)
+ dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
+ dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
+
+ /*
+ * Move to the sg entry the data pointer belongs to.
+ *
+ * If we are inside the data area, we expect result to be:
+ *
+ * Either,
+ * dp_ofs = 0 and dp_sg is the index of the sg entry
+ * the data pointer belongs to (or the end of the data)
+ * Or,
+ * dp_ofs < 0 and dp_sg is the index of the sg entry
+ * the data pointer belongs to + 1.
+ */
+ if (dp_ofs < 0) {
+ int n;
+ while (dp_sg > dp_sgmin) {
+ --dp_sg;
+ tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ n = dp_ofs + (tmp & 0xffffff);
+ if (n > 0) {
+ ++dp_sg;
+ break;
+ }
+ dp_ofs = n;
+ }
+ }
+ else if (dp_ofs > 0) {
+ while (dp_sg < SYM_CONF_MAX_SG) {
+ tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ dp_ofs -= (tmp & 0xffffff);
+ ++dp_sg;
+ if (dp_ofs <= 0)
+ break;
+ }
+ }
+
+ /*
+ * Make sure the data pointer is inside the data area.
+ * If not, return some error.
+ */
+ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
+ goto out_err;
+ else if (dp_sg > SYM_CONF_MAX_SG ||
+ (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
+ goto out_err;
+
+ /*
+ * Save the extreme pointer if needed.
+ */
+ if (dp_sg > cp->ext_sg ||
+ (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
+ cp->ext_sg = dp_sg;
+ cp->ext_ofs = dp_ofs;
+ }
+
+ /*
+ * Return data.
+ */
+ *ofs = dp_ofs;
+ return dp_sg;
+
+out_err:
+ return -1;
+}
+
+/*
+ * chip handler for MODIFY DATA POINTER MESSAGE
+ *
+ * We also call this function on IGNORE WIDE RESIDUE
+ * messages that do not match a SWIDE full condition.
+ * Btw, we assume in that situation that such a message
+ * is equivalent to a MODIFY DATA POINTER (offset=-1).
+ */
+
+static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
+{
+ int dp_ofs = ofs;
+ u32 dp_scr = INL (nc_temp);
+ u32 dp_ret;
+ u32 tmp;
+ u_char hflags;
+ int dp_sg;
+ struct sym_pmc *pm;
+
+ /*
+ * Not supported for auto-sense.
+ */
+ if (cp->host_flags & HF_SENSE)
+ goto out_reject;
+
+ /*
+ * Apply our alchemy:) (see comments in sym_evaluate_dp()),
+ * to the resulted data pointer.
+ */
+ dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
+ if (dp_sg < 0)
+ goto out_reject;
+
+ /*
+ * And our alchemy:) allows to easily calculate the data
+ * script address we want to return for the next data phase.
+ */
+ dp_ret = cpu_to_scr(cp->phys.head.goalp);
+ dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
+
+ /*
+ * If offset / scatter entry is zero we donnot need
+ * a context for the new current data pointer.
+ */
+ if (dp_ofs == 0) {
+ dp_scr = dp_ret;
+ goto out_ok;
+ }
+
+ /*
+ * Get a context for the new current data pointer.
+ */
+ hflags = INB (HF_PRT);
+
+ if (hflags & HF_DP_SAVED)
+ hflags ^= HF_ACT_PM;
+
+ if (!(hflags & HF_ACT_PM)) {
+ pm = &cp->phys.pm0;
+ dp_scr = SCRIPTA_BA (np, pm0_data);
+ }
+ else {
+ pm = &cp->phys.pm1;
+ dp_scr = SCRIPTA_BA (np, pm1_data);
+ }
+
+ hflags &= ~(HF_DP_SAVED);
+
+ OUTB (HF_PRT, hflags);
+
+ /*
+ * Set up the new current data pointer.
+ * ofs < 0 there, and for the next data phase, we
+ * want to transfer part of the data of the sg entry
+ * corresponding to index dp_sg-1 prior to returning
+ * to the main data script.
+ */
+ pm->ret = cpu_to_scr(dp_ret);
+ tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
+ tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
+ pm->sg.addr = cpu_to_scr(tmp);
+ pm->sg.size = cpu_to_scr(-dp_ofs);
+
+out_ok:
+ OUTL (nc_temp, dp_scr);
+ OUTL_DSP (SCRIPTA_BA (np, clrack));
+ return;
+
+out_reject:
+ OUTL_DSP (SCRIPTB_BA (np, msg_bad));
+}
+
+
+/*
+ * chip calculation of the data residual.
+ *
+ * As I used to say, the requirement of data residual
+ * in SCSI is broken, useless and cannot be achieved
+ * without huge complexity.
+ * But most OSes and even the official CAM require it.
+ * When stupidity happens to be so widely spread inside
+ * a community, it gets hard to convince.
+ *
+ * Anyway, I don't care, since I am not going to use
+ * any software that considers this data residual as
+ * a relevant information. :)
+ */
+
+static int sym_compute_residual(hcb_p np, ccb_p cp)
+{
+ int dp_sg, dp_sgmin, resid = 0;
+ int dp_ofs = 0;
+
+ /*
+ * Check for some data lost or just thrown away.
+ * We are not required to be quite accurate in this
+ * situation. Btw, if we are odd for output and the
+ * device claims some more data, it may well happen
+ * than our residual be zero. :-)
+ */
+ if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
+ if (cp->xerr_status & XE_EXTRA_DATA)
+ resid -= cp->extra_bytes;
+ if (cp->xerr_status & XE_SODL_UNRUN)
+ ++resid;
+ if (cp->xerr_status & XE_SWIDE_OVRUN)
+ --resid;
+ }
+
+ /*
+ * If all data has been transferred,
+ * there is no residual.
+ */
+ if (cp->phys.head.lastp == cp->phys.head.goalp)
+ return resid;
+
+ /*
+ * If no data transfer occurs, or if the data
+ * pointer is weird, return full residual.
+ */
+ if (cp->startp == cp->phys.head.lastp ||
+ sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
+ &dp_ofs) < 0) {
+ return cp->data_len;
+ }
+
+ /*
+ * If we were auto-sensing, then we are done.
+ */
+ if (cp->host_flags & HF_SENSE) {
+ return -dp_ofs;
+ }
+
+ /*
+ * We are now full comfortable in the computation
+ * of the data residual (2's complement).
+ */
+ dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
+ resid = -cp->ext_ofs;
+ for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
+ u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ resid += (tmp & 0xffffff);
+ }
+
+ /*
+ * Hopefully, the result is not too wrong.
+ */
+ return resid;
+}
+
+/*
+ * Print out the content of a SCSI message.
+ */
+
+static int sym_show_msg (u_char * msg)
+{
+ u_char i;
+ printf ("%x",*msg);
+ if (*msg==M_EXTENDED) {
+ for (i=1;i<8;i++) {
+ if (i-1>msg[1]) break;
+ printf ("-%x",msg[i]);
+ };
+ return (i+1);
+ } else if ((*msg & 0xf0) == 0x20) {
+ printf ("-%x",msg[1]);
+ return (2);
+ };
+ return (1);
+}
+
+static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
+{
+ PRINT_ADDR(cp);
+ if (label)
+ printf ("%s: ", label);
+
+ (void) sym_show_msg (msg);
+ printf (".\n");
+}
+
+/*
+ * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
+ *
+ * When we try to negotiate, we append the negotiation message
+ * to the identify and (maybe) simple tag message.
+ * The host status field is set to HS_NEGOTIATE to mark this
+ * situation.
+ *
+ * If the target doesn't answer this message immediately
+ * (as required by the standard), the SIR_NEGO_FAILED interrupt
+ * will be raised eventually.
+ * The handler removes the HS_NEGOTIATE status, and sets the
+ * negotiated value to the default (async / nowide).
+ *
+ * If we receive a matching answer immediately, we check it
+ * for validity, and set the values.
+ *
+ * If we receive a Reject message immediately, we assume the
+ * negotiation has failed, and fall back to standard values.
+ *
+ * If we receive a negotiation message while not in HS_NEGOTIATE
+ * state, it's a target initiated negotiation. We prepare a
+ * (hopefully) valid answer, set our parameters, and send back
+ * this answer to the target.
+ *
+ * If the target doesn't fetch the answer (no message out phase),
+ * we assume the negotiation has failed, and fall back to default
+ * settings (SIR_NEGO_PROTO interrupt).
+ *
+ * When we set the values, we adjust them in all ccbs belonging
+ * to this target, in the controller's register, and in the "phys"
+ * field of the controller's struct sym_hcb.
+ */
+
+/*
+ * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
+ */
+static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
+{
+ u_char chg, ofs, per, fak, div;
+ int req = 1;
+
+ /*
+ * Synchronous request message received.
+ */
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "sync msgin", np->msgin);
+ };
+
+ /*
+ * request or answer ?
+ */
+ if (INB (HS_PRT) == HS_NEGOTIATE) {
+ OUTB (HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_SYNC)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * get requested values.
+ */
+ chg = 0;
+ per = np->msgin[3];
+ ofs = np->msgin[4];
+
+ /*
+ * check values against our limits.
+ */
+ if (ofs) {
+ if (ofs > np->maxoffs)
+ {chg = 1; ofs = np->maxoffs;}
+ if (req) {
+ if (ofs > tp->tinfo.user.offset)
+ {chg = 1; ofs = tp->tinfo.user.offset;}
+ }
+ }
+
+ if (ofs) {
+ if (per < np->minsync)
+ {chg = 1; per = np->minsync;}
+ if (req) {
+ if (per < tp->tinfo.user.period)
+ {chg = 1; per = tp->tinfo.user.period;}
+ }
+ }
+
+ div = fak = 0;
+ if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
+ goto reject_it;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ PRINT_ADDR(cp);
+ printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
+ ofs, per, div, fak, chg);
+ }
+
+ /*
+ * This was an answer message
+ */
+ if (req == 0) {
+ if (chg) /* Answer wasn't acceptable. */
+ goto reject_it;
+ sym_setsync (np, cp, ofs, per, div, fak);
+ OUTL_DSP (SCRIPTA_BA (np, clrack));
+ return;
+ }
+
+ /*
+ * It was a request. Set value and
+ * prepare an answer message
+ */
+ sym_setsync (np, cp, ofs, per, div, fak);
+
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 3;
+ np->msgout[2] = M_X_SYNC_REQ;
+ np->msgout[3] = per;
+ np->msgout[4] = ofs;
+
+ cp->nego_status = NS_SYNC;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "sync msgout", np->msgout);
+ }
+
+ np->msgin [0] = M_NOOP;
+
+ OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
+ return;
+reject_it:
+ sym_setsync (np, cp, 0, 0, 0, 0);
+ OUTL_DSP (SCRIPTB_BA (np, msg_bad));
+}
+
+/*
+ * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
+ */
+static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
+{
+ u_char chg, ofs, per, fak, dt, div, wide;
+ int req = 1;
+
+ /*
+ * Synchronous request message received.
+ */
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "ppr msgin", np->msgin);
+ };
+
+ /*
+ * get requested values.
+ */
+ chg = 0;
+ per = np->msgin[3];
+ ofs = np->msgin[5];
+ wide = np->msgin[6];
+ dt = np->msgin[7] & PPR_OPT_DT;
+
+ /*
+ * request or answer ?
+ */
+ if (INB (HS_PRT) == HS_NEGOTIATE) {
+ OUTB (HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_PPR)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * check values against our limits.
+ */
+ if (wide > np->maxwide)
+ {chg = 1; wide = np->maxwide;}
+ if (!wide || !(np->features & FE_ULTRA3))
+ dt &= ~PPR_OPT_DT;
+ if (req) {
+ if (wide > tp->tinfo.user.width)
+ {chg = 1; wide = tp->tinfo.user.width;}
+ }
+
+ if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
+ dt &= ~PPR_OPT_DT;
+
+ if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
+
+ if (ofs) {
+ if (dt) {
+ if (ofs > np->maxoffs_dt)
+ {chg = 1; ofs = np->maxoffs_dt;}
+ }
+ else if (ofs > np->maxoffs)
+ {chg = 1; ofs = np->maxoffs;}
+ if (req) {
+ if (ofs > tp->tinfo.user.offset)
+ {chg = 1; ofs = tp->tinfo.user.offset;}
+ }
+ }
+
+ if (ofs) {
+ if (dt) {
+ if (per < np->minsync_dt)
+ {chg = 1; per = np->minsync_dt;}
+ }
+ else if (per < np->minsync)
+ {chg = 1; per = np->minsync;}
+ if (req) {
+ if (per < tp->tinfo.user.period)
+ {chg = 1; per = tp->tinfo.user.period;}
+ }
+ }
+
+ div = fak = 0;
+ if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
+ goto reject_it;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ PRINT_ADDR(cp);
+ printf ("ppr: "
+ "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
+ dt, ofs, per, wide, div, fak, chg);
+ }
+
+ /*
+ * It was an answer.
+ */
+ if (req == 0) {
+ if (chg) /* Answer wasn't acceptable */
+ goto reject_it;
+ sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
+ OUTL_DSP (SCRIPTA_BA (np, clrack));
+ return;
+ }
+
+ /*
+ * It was a request. Set value and
+ * prepare an answer message
+ */
+ sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
+
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 6;
+ np->msgout[2] = M_X_PPR_REQ;
+ np->msgout[3] = per;
+ np->msgout[4] = 0;
+ np->msgout[5] = ofs;
+ np->msgout[6] = wide;
+ np->msgout[7] = dt;
+
+ cp->nego_status = NS_PPR;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "ppr msgout", np->msgout);
+ }
+
+ np->msgin [0] = M_NOOP;
+
+ OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
+ return;
+reject_it:
+ sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
+ OUTL_DSP (SCRIPTB_BA (np, msg_bad));
+ /*
+ * If it was a device response that should result in
+ * ST, we may want to try a legacy negotiation later.
+ */
+ if (!req && !dt) {
+ tp->tinfo.goal.options = 0;
+ tp->tinfo.goal.width = wide;
+ tp->tinfo.goal.period = per;
+ tp->tinfo.goal.offset = ofs;
+ }
+ return;
+}
+
+/*
+ * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
+ */
+static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
+{
+ u_char chg, wide;
+ int req = 1;
+
+ /*
+ * Wide request message received.
+ */
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "wide msgin", np->msgin);
+ };
+
+ /*
+ * Is it an request from the device?
+ */
+ if (INB (HS_PRT) == HS_NEGOTIATE) {
+ OUTB (HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_WIDE)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * get requested values.
+ */
+ chg = 0;
+ wide = np->msgin[3];
+
+ /*
+ * check values against driver limits.
+ */
+ if (wide > np->maxwide)
+ {chg = 1; wide = np->maxwide;}
+ if (req) {
+ if (wide > tp->tinfo.user.width)
+ {chg = 1; wide = tp->tinfo.user.width;}
+ }
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ PRINT_ADDR(cp);
+ printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
+ }
+
+ /*
+ * This was an answer message
+ */
+ if (req == 0) {
+ if (chg) /* Answer wasn't acceptable. */
+ goto reject_it;
+ sym_setwide (np, cp, wide);
+
+ /*
+ * Negotiate for SYNC immediately after WIDE response.
+ * This allows to negotiate for both WIDE and SYNC on
+ * a single SCSI command (Suggested by Justin Gibbs).
+ */
+ if (tp->tinfo.goal.offset) {
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 3;
+ np->msgout[2] = M_X_SYNC_REQ;
+ np->msgout[3] = tp->tinfo.goal.period;
+ np->msgout[4] = tp->tinfo.goal.offset;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "sync msgout", np->msgout);
+ }
+
+ cp->nego_status = NS_SYNC;
+ OUTB (HS_PRT, HS_NEGOTIATE);
+ OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
+ return;
+ }
+
+ OUTL_DSP (SCRIPTA_BA (np, clrack));
+ return;
+ };
+
+ /*
+ * It was a request, set value and
+ * prepare an answer message
+ */
+ sym_setwide (np, cp, wide);
+
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 2;
+ np->msgout[2] = M_X_WIDE_REQ;
+ np->msgout[3] = wide;
+
+ np->msgin [0] = M_NOOP;
+
+ cp->nego_status = NS_WIDE;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_msg(cp, "wide msgout", np->msgout);
+ }
+
+ OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
+ return;
+reject_it:
+ OUTL_DSP (SCRIPTB_BA (np, msg_bad));
+}
+
+/*
+ * Reset SYNC or WIDE to default settings.
+ *
+ * Called when a negotiation does not succeed either
+ * on rejection or on protocol error.
+ *
+ * If it was a PPR that made problems, we may want to
+ * try a legacy negotiation later.
+ */
+static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
+{
+ /*
+ * any error in negotiation:
+ * fall back to default mode.
+ */
+ switch (cp->nego_status) {
+ case NS_PPR:
+#if 0
+ sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
+#else
+ tp->tinfo.goal.options = 0;
+ if (tp->tinfo.goal.period < np->minsync)
+ tp->tinfo.goal.period = np->minsync;
+ if (tp->tinfo.goal.offset > np->maxoffs)
+ tp->tinfo.goal.offset = np->maxoffs;
+#endif
+ break;
+ case NS_SYNC:
+ sym_setsync (np, cp, 0, 0, 0, 0);
+ break;
+ case NS_WIDE:
+ sym_setwide (np, cp, 0);
+ break;
+ };
+ np->msgin [0] = M_NOOP;
+ np->msgout[0] = M_NOOP;
+ cp->nego_status = 0;
+}
+
+/*
+ * chip handler for MESSAGE REJECT received in response to
+ * a WIDE or SYNCHRONOUS negotiation.
+ */
+static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
+{
+ sym_nego_default(np, tp, cp);
+ OUTB (HS_PRT, HS_BUSY);
+}
+
+/*
+ * chip exception handler for programmed interrupts.
+ */
+static void sym_int_sir (hcb_p np)
+{
+ u_char num = INB (nc_dsps);
+ u32 dsa = INL (nc_dsa);
+ ccb_p cp = sym_ccb_from_dsa(np, dsa);
+ u_char target = INB (nc_sdid) & 0x0f;
+ tcb_p tp = &np->target[target];
+ int tmp;
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
+
+ switch (num) {
+ /*
+ * Command has been completed with error condition
+ * or has been auto-sensed.
+ */
+ case SIR_COMPLETE_ERROR:
+ sym_complete_error(np, cp);
+ return;
+ /*
+ * The C code is currently trying to recover from something.
+ * Typically, user want to abort some command.
+ */
+ case SIR_SCRIPT_STOPPED:
+ case SIR_TARGET_SELECTED:
+ case SIR_ABORT_SENT:
+ sym_sir_task_recovery(np, num);
+ return;
+ /*
+ * The device didn't go to MSG OUT phase after having
+ * been selected with ATN. We donnot want to handle
+ * that.
+ */
+ case SIR_SEL_ATN_NO_MSG_OUT:
+ printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * The device didn't switch to MSG IN phase after
+ * having reseleted the initiator.
+ */
+ case SIR_RESEL_NO_MSG_IN:
+ printf ("%s:%d: No MSG IN phase after reselection.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * After reselection, the device sent a message that wasn't
+ * an IDENTIFY.
+ */
+ case SIR_RESEL_NO_IDENTIFY:
+ printf ("%s:%d: No IDENTIFY after reselection.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * The device reselected a LUN we donnot know about.
+ */
+ case SIR_RESEL_BAD_LUN:
+ np->msgout[0] = M_RESET;
+ goto out;
+ /*
+ * The device reselected for an untagged nexus and we
+ * haven't any.
+ */
+ case SIR_RESEL_BAD_I_T_L:
+ np->msgout[0] = M_ABORT;
+ goto out;
+ /*
+ * The device reselected for a tagged nexus that we donnot
+ * have.
+ */
+ case SIR_RESEL_BAD_I_T_L_Q:
+ np->msgout[0] = M_ABORT_TAG;
+ goto out;
+ /*
+ * The SCRIPTS let us know that the device has grabbed
+ * our message and will abort the job.
+ */
+ case SIR_RESEL_ABORTED:
+ np->lastmsg = np->msgout[0];
+ np->msgout[0] = M_NOOP;
+ printf ("%s:%d: message %x sent on bad reselection.\n",
+ sym_name (np), target, np->lastmsg);
+ goto out;
+ /*
+ * The SCRIPTS let us know that a message has been
+ * successfully sent to the device.
+ */
+ case SIR_MSG_OUT_DONE:
+ np->lastmsg = np->msgout[0];
+ np->msgout[0] = M_NOOP;
+ /* Should we really care of that */
+ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
+ if (cp) {
+ cp->xerr_status &= ~XE_PARITY_ERR;
+ if (!cp->xerr_status)
+ OUTOFFB (HF_PRT, HF_EXT_ERR);
+ }
+ }
+ goto out;
+ /*
+ * The device didn't send a GOOD SCSI status.
+ * We may have some work to do prior to allow
+ * the SCRIPTS processor to continue.
+ */
+ case SIR_BAD_SCSI_STATUS:
+ if (!cp)
+ goto out;
+ sym_sir_bad_scsi_status(np, num, cp);
+ return;
+ /*
+ * We are asked by the SCRIPTS to prepare a
+ * REJECT message.
+ */
+ case SIR_REJECT_TO_SEND:
+ sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
+ np->msgout[0] = M_REJECT;
+ goto out;
+ /*
+ * We have been ODD at the end of a DATA IN
+ * transfer and the device didn't send a
+ * IGNORE WIDE RESIDUE message.
+ * It is a data overrun condition.
+ */
+ case SIR_SWIDE_OVERRUN:
+ if (cp) {
+ OUTONB (HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_SWIDE_OVRUN;
+ }
+ goto out;
+ /*
+ * We have been ODD at the end of a DATA OUT
+ * transfer.
+ * It is a data underrun condition.
+ */
+ case SIR_SODL_UNDERRUN:
+ if (cp) {
+ OUTONB (HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_SODL_UNRUN;
+ }
+ goto out;
+ /*
+ * The device wants us to tranfer more data than
+ * expected or in the wrong direction.
+ * The number of extra bytes is in scratcha.
+ * It is a data overrun condition.
+ */
+ case SIR_DATA_OVERRUN:
+ if (cp) {
+ OUTONB (HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_EXTRA_DATA;
+ cp->extra_bytes += INL (nc_scratcha);
+ }
+ goto out;
+ /*
+ * The device switched to an illegal phase (4/5).
+ */
+ case SIR_BAD_PHASE:
+ if (cp) {
+ OUTONB (HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_BAD_PHASE;
+ }
+ goto out;
+ /*
+ * We received a message.
+ */
+ case SIR_MSG_RECEIVED:
+ if (!cp)
+ goto out_stuck;
+ switch (np->msgin [0]) {
+ /*
+ * We received an extended message.
+ * We handle MODIFY DATA POINTER, SDTR, WDTR
+ * and reject all other extended messages.
+ */
+ case M_EXTENDED:
+ switch (np->msgin [2]) {
+ case M_X_MODIFY_DP:
+ if (DEBUG_FLAGS & DEBUG_POINTER)
+ sym_print_msg(cp,"modify DP",np->msgin);
+ tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
+ (np->msgin[5]<<8) + (np->msgin[6]);
+ sym_modify_dp(np, tp, cp, tmp);
+ return;
+ case M_X_SYNC_REQ:
+ sym_sync_nego(np, tp, cp);
+ return;
+ case M_X_PPR_REQ:
+ sym_ppr_nego(np, tp, cp);
+ return;
+ case M_X_WIDE_REQ:
+ sym_wide_nego(np, tp, cp);
+ return;
+ default:
+ goto out_reject;
+ }
+ break;
+ /*
+ * We received a 1/2 byte message not handled from SCRIPTS.
+ * We are only expecting MESSAGE REJECT and IGNORE WIDE
+ * RESIDUE messages that haven't been anticipated by
+ * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
+ * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
+ */
+ case M_IGN_RESIDUE:
+ if (DEBUG_FLAGS & DEBUG_POINTER)
+ sym_print_msg(cp,"ign wide residue", np->msgin);
+ sym_modify_dp(np, tp, cp, -1);
+ return;
+ case M_REJECT:
+ if (INB (HS_PRT) == HS_NEGOTIATE)
+ sym_nego_rejected(np, tp, cp);
+ else {
+ PRINT_ADDR(cp);
+ printf ("M_REJECT received (%x:%x).\n",
+ scr_to_cpu(np->lastmsg), np->msgout[0]);
+ }
+ goto out_clrack;
+ break;
+ default:
+ goto out_reject;
+ }
+ break;
+ /*
+ * We received an unknown message.
+ * Ignore all MSG IN phases and reject it.
+ */
+ case SIR_MSG_WEIRD:
+ sym_print_msg(cp, "WEIRD message received", np->msgin);
+ OUTL_DSP (SCRIPTB_BA (np, msg_weird));
+ return;
+ /*
+ * Negotiation failed.
+ * Target does not send us the reply.
+ * Remove the HS_NEGOTIATE status.
+ */
+ case SIR_NEGO_FAILED:
+ OUTB (HS_PRT, HS_BUSY);
+ /*
+ * Negotiation failed.
+ * Target does not want answer message.
+ */
+ case SIR_NEGO_PROTO:
+ sym_nego_default(np, tp, cp);
+ goto out;
+ };
+
+out:
+ OUTONB_STD ();
+ return;
+out_reject:
+ OUTL_DSP (SCRIPTB_BA (np, msg_bad));
+ return;
+out_clrack:
+ OUTL_DSP (SCRIPTA_BA (np, clrack));
+ return;
+out_stuck:
+ return;
+}
+
+/*
+ * Acquire a control block
+ */
+static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
+{
+ tcb_p tp = &np->target[tn];
+ lcb_p lp = sym_lp(np, tp, ln);
+ u_short tag = NO_TAG;
+ SYM_QUEHEAD *qp;
+ ccb_p cp = (ccb_p) 0;
+
+ /*
+ * Look for a free CCB
+ */
+ if (sym_que_empty(&np->free_ccbq))
+ (void) sym_alloc_ccb(np);
+ qp = sym_remque_head(&np->free_ccbq);
+ if (!qp)
+ goto out;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+
+ /*
+ * If the LCB is not yet available and the LUN
+ * has been probed ok, try to allocate the LCB.
+ */
+ if (!lp && sym_is_bit(tp->lun_map, ln)) {
+ lp = sym_alloc_lcb(np, tn, ln);
+ if (!lp)
+ goto out_free;
+ }
+
+ /*
+ * If the LCB is not available here, then the
+ * logical unit is not yet discovered. For those
+ * ones only accept 1 SCSI IO per logical unit,
+ * since we cannot allow disconnections.
+ */
+ if (!lp) {
+ if (!sym_is_bit(tp->busy0_map, ln))
+ sym_set_bit(tp->busy0_map, ln);
+ else
+ goto out_free;
+ } else {
+ /*
+ * If we have been asked for a tagged command.
+ */
+ if (tag_order) {
+ /*
+ * Debugging purpose.
+ */
+ assert(lp->busy_itl == 0);
+ /*
+ * Allocate resources for tags if not yet.
+ */
+ if (!lp->cb_tags) {
+ sym_alloc_lcb_tags(np, tn, ln);
+ if (!lp->cb_tags)
+ goto out_free;
+ }
+ /*
+ * Get a tag for this SCSI IO and set up
+ * the CCB bus address for reselection,
+ * and count it for this LUN.
+ * Toggle reselect path to tagged.
+ */
+ if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
+ tag = lp->cb_tags[lp->ia_tag];
+ if (++lp->ia_tag == SYM_CONF_MAX_TASK)
+ lp->ia_tag = 0;
+ lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
+ ++lp->busy_itlq;
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA (np, resel_tag));
+ }
+ else
+ goto out_free;
+ }
+ /*
+ * This command will not be tagged.
+ * If we already have either a tagged or untagged
+ * one, refuse to overlap this untagged one.
+ */
+ else {
+ /*
+ * Debugging purpose.
+ */
+ assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
+ /*
+ * Count this nexus for this LUN.
+ * Set up the CCB bus address for reselection.
+ * Toggle reselect path to untagged.
+ */
+ if (++lp->busy_itl == 1) {
+ lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
+ }
+ else
+ goto out_free;
+ }
+ }
+ /*
+ * Put the CCB into the busy queue.
+ */
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+
+ /*
+ * Remember all informations needed to free this CCB.
+ */
+ cp->to_abort = 0;
+ cp->tag = tag;
+ cp->target = tn;
+ cp->lun = ln;
+
+ if (DEBUG_FLAGS & DEBUG_TAGS) {
+ PRINT_LUN(np, tn, ln);
+ printf ("ccb @%p using tag %d.\n", cp, tag);
+ }
+
+out:
+ return cp;
+out_free:
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+ return (ccb_p) 0;
+}
+
+/*
+ * Release one control block
+ */
+static void sym_free_ccb (hcb_p np, ccb_p cp)
+{
+ tcb_p tp = &np->target[cp->target];
+ lcb_p lp = sym_lp(np, tp, cp->lun);
+
+ if (DEBUG_FLAGS & DEBUG_TAGS) {
+ PRINT_LUN(np, cp->target, cp->lun);
+ printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
+ }
+
+ /*
+ * If LCB available,
+ */
+ if (lp) {
+ /*
+ * If tagged, release the tag, set the relect path
+ */
+ if (cp->tag != NO_TAG) {
+ /*
+ * Free the tag value.
+ */
+ lp->cb_tags[lp->if_tag] = cp->tag;
+ if (++lp->if_tag == SYM_CONF_MAX_TASK)
+ lp->if_tag = 0;
+ /*
+ * Make the reselect path invalid,
+ * and uncount this CCB.
+ */
+ lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
+ --lp->busy_itlq;
+ } else { /* Untagged */
+ /*
+ * Make the reselect path invalid,
+ * and uncount this CCB.
+ */
+ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
+ --lp->busy_itl;
+ }
+ /*
+ * If no JOB active, make the LUN reselect path invalid.
+ */
+ if (lp->busy_itlq == 0 && lp->busy_itl == 0)
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
+ }
+ /*
+ * Otherwise, we only accept 1 IO per LUN.
+ * Clear the bit that keeps track of this IO.
+ */
+ else
+ sym_clr_bit(tp->busy0_map, cp->lun);
+
+ /*
+ * We donnot queue more than 1 ccb per target
+ * with negotiation at any time. If this ccb was
+ * used for negotiation, clear this info in the tcb.
+ */
+ if (cp == tp->nego_cp)
+ tp->nego_cp = 0;
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If we just complete the last queued CCB,
+ * clear this info that is no longer relevant.
+ */
+ if (cp == np->last_cp)
+ np->last_cp = 0;
+#endif
+
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ /*
+ * Unmap user data from DMA map if needed.
+ */
+ if (cp->dmamapped) {
+ bus_dmamap_unload(np->data_dmat, cp->dmamap);
+ cp->dmamapped = 0;
+ }
+#endif
+
+ /*
+ * Make this CCB available.
+ */
+ cp->cam_ccb = 0;
+ cp->host_status = HS_IDLE;
+ sym_remque(&cp->link_ccbq);
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+}
+
+/*
+ * Allocate a CCB from memory and initialize its fixed part.
+ */
+static ccb_p sym_alloc_ccb(hcb_p np)
+{
+ ccb_p cp = 0;
+ int hcode;
+
+ /*
+ * Prevent from allocating more CCBs than we can
+ * queue to the controller.
+ */
+ if (np->actccbs >= SYM_CONF_MAX_START)
+ return 0;
+
+ /*
+ * Allocate memory for this CCB.
+ */
+ cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
+ if (!cp)
+ goto out_free;
+
+ /*
+ * Allocate a bounce buffer for sense data.
+ */
+ cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
+ if (!cp->sns_bbuf)
+ goto out_free;
+
+ /*
+ * Allocate a map for the DMA of user data.
+ */
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
+ goto out_free;
+#endif
+ /*
+ * Count it.
+ */
+ np->actccbs++;
+
+ /*
+ * Compute the bus address of this ccb.
+ */
+ cp->ccb_ba = vtobus(cp);
+
+ /*
+ * Insert this ccb into the hashed list.
+ */
+ hcode = CCB_HASH_CODE(cp->ccb_ba);
+ cp->link_ccbh = np->ccbh[hcode];
+ np->ccbh[hcode] = cp;
+
+ /*
+ * Initialyze the start and restart actions.
+ */
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
+ cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
+
+ /*
+ * Initilialyze some other fields.
+ */
+ cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
+
+ /*
+ * Chain into free ccb queue.
+ */
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+
+ return cp;
+out_free:
+ if (cp) {
+ if (cp->sns_bbuf)
+ sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
+ sym_mfree_dma(cp, sizeof(*cp), "CCB");
+ }
+ return 0;
+}
+
+/*
+ * Look up a CCB from a DSA value.
+ */
+static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
+{
+ int hcode;
+ ccb_p cp;
+
+ hcode = CCB_HASH_CODE(dsa);
+ cp = np->ccbh[hcode];
+ while (cp) {
+ if (cp->ccb_ba == dsa)
+ break;
+ cp = cp->link_ccbh;
+ }
+
+ return cp;
+}
+
+/*
+ * Target control block initialisation.
+ * Nothing important to do at the moment.
+ */
+static void sym_init_tcb (hcb_p np, u_char tn)
+{
+ /*
+ * Check some alignments required by the chip.
+ */
+ assert (((offsetof(struct sym_reg, nc_sxfer) ^
+ offsetof(struct sym_tcb, head.sval)) &3) == 0);
+ assert (((offsetof(struct sym_reg, nc_scntl3) ^
+ offsetof(struct sym_tcb, head.wval)) &3) == 0);
+}
+
+/*
+ * Lun control block allocation and initialization.
+ */
+static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
+{
+ tcb_p tp = &np->target[tn];
+ lcb_p lp = sym_lp(np, tp, ln);
+
+ /*
+ * Already done, just return.
+ */
+ if (lp)
+ return lp;
+ /*
+ * Check against some race.
+ */
+ assert(!sym_is_bit(tp->busy0_map, ln));
+
+ /*
+ * Initialize the target control block if not yet.
+ */
+ sym_init_tcb (np, tn);
+
+ /*
+ * Allocate the LCB bus address array.
+ * Compute the bus address of this table.
+ */
+ if (ln && !tp->luntbl) {
+ int i;
+
+ tp->luntbl = sym_calloc_dma(256, "LUNTBL");
+ if (!tp->luntbl)
+ goto fail;
+ for (i = 0 ; i < 64 ; i++)
+ tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
+ tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
+ }
+
+ /*
+ * Allocate the table of pointers for LUN(s) > 0, if needed.
+ */
+ if (ln && !tp->lunmp) {
+ tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
+ "LUNMP");
+ if (!tp->lunmp)
+ goto fail;
+ }
+
+ /*
+ * Allocate the lcb.
+ * Make it available to the chip.
+ */
+ lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
+ if (!lp)
+ goto fail;
+ if (ln) {
+ tp->lunmp[ln] = lp;
+ tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
+ }
+ else {
+ tp->lun0p = lp;
+ tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
+ }
+
+ /*
+ * Let the itl task point to error handling.
+ */
+ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
+
+ /*
+ * Set the reselect pattern to our default. :)
+ */
+ lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
+
+ /*
+ * Set user capabilities.
+ */
+ lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
+
+fail:
+ return lp;
+}
+
+/*
+ * Allocate LCB resources for tagged command queuing.
+ */
+static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
+{
+ tcb_p tp = &np->target[tn];
+ lcb_p lp = sym_lp(np, tp, ln);
+ int i;
+
+ /*
+ * If LCB not available, try to allocate it.
+ */
+ if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
+ goto fail;
+
+ /*
+ * Allocate the task table and and the tag allocation
+ * circular buffer. We want both or none.
+ */
+ lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
+ if (!lp->itlq_tbl)
+ goto fail;
+ lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
+ if (!lp->cb_tags) {
+ sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
+ lp->itlq_tbl = 0;
+ goto fail;
+ }
+
+ /*
+ * Initialize the task table with invalid entries.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
+ lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
+
+ /*
+ * Fill up the tag buffer with tag numbers.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
+ lp->cb_tags[i] = i;
+
+ /*
+ * Make the task table available to SCRIPTS,
+ * And accept tagged commands now.
+ */
+ lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
+
+ return;
+fail:
+ return;
+}
+
+/*
+ * Test the pci bus snoop logic :-(
+ *
+ * Has to be called with interrupts disabled.
+ */
+#ifndef SYM_CONF_IOMAPPED
+static int sym_regtest (hcb_p np)
+{
+ register volatile u32 data;
+ /*
+ * chip registers may NOT be cached.
+ * write 0xffffffff to a read only register area,
+ * and try to read it back.
+ */
+ data = 0xffffffff;
+ OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
+ data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
+#if 1
+ if (data == 0xffffffff) {
+#else
+ if ((data & 0xe2f0fffd) != 0x02000080) {
+#endif
+ printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
+ (unsigned) data);
+ return (0x10);
+ };
+ return (0);
+}
+#endif
+
+static int sym_snooptest (hcb_p np)
+{
+ u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
+ int i, err=0;
+#ifndef SYM_CONF_IOMAPPED
+ err |= sym_regtest (np);
+ if (err) return (err);
+#endif
+restart_test:
+ /*
+ * Enable Master Parity Checking as we intend
+ * to enable it for normal operations.
+ */
+ OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
+ /*
+ * init
+ */
+ pc = SCRIPTB0_BA (np, snooptest);
+ host_wr = 1;
+ sym_wr = 2;
+ /*
+ * Set memory and register.
+ */
+ np->cache = cpu_to_scr(host_wr);
+ OUTL (nc_temp, sym_wr);
+ /*
+ * Start script (exchange values)
+ */
+ OUTL (nc_dsa, np->hcb_ba);
+ OUTL_DSP (pc);
+ /*
+ * Wait 'til done (with timeout)
+ */
+ for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
+ if (INB(nc_istat) & (INTF|SIP|DIP))
+ break;
+ if (i>=SYM_SNOOP_TIMEOUT) {
+ printf ("CACHE TEST FAILED: timeout.\n");
+ return (0x20);
+ };
+ /*
+ * Check for fatal DMA errors.
+ */
+ dstat = INB (nc_dstat);
+#if 1 /* Band aiding for broken hardwares that fail PCI parity */
+ if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
+ printf ("%s: PCI DATA PARITY ERROR DETECTED - "
+ "DISABLING MASTER DATA PARITY CHECKING.\n",
+ sym_name(np));
+ np->rv_ctest4 &= ~MPEE;
+ goto restart_test;
+ }
+#endif
+ if (dstat & (MDPE|BF|IID)) {
+ printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
+ return (0x80);
+ }
+ /*
+ * Save termination position.
+ */
+ pc = INL (nc_dsp);
+ /*
+ * Read memory and register.
+ */
+ host_rd = scr_to_cpu(np->cache);
+ sym_rd = INL (nc_scratcha);
+ sym_bk = INL (nc_temp);
+
+ /*
+ * Check termination position.
+ */
+ if (pc != SCRIPTB0_BA (np, snoopend)+8) {
+ printf ("CACHE TEST FAILED: script execution failed.\n");
+ printf ("start=%08lx, pc=%08lx, end=%08lx\n",
+ (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
+ (u_long) SCRIPTB0_BA (np, snoopend) +8);
+ return (0x40);
+ };
+ /*
+ * Show results.
+ */
+ if (host_wr != sym_rd) {
+ printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
+ (int) host_wr, (int) sym_rd);
+ err |= 1;
+ };
+ if (host_rd != sym_wr) {
+ printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
+ (int) sym_wr, (int) host_rd);
+ err |= 2;
+ };
+ if (sym_bk != sym_wr) {
+ printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
+ (int) sym_wr, (int) sym_bk);
+ err |= 4;
+ };
+
+ return (err);
+}
+
+/*
+ * Determine the chip's clock frequency.
+ *
+ * This is essential for the negotiation of the synchronous
+ * transfer rate.
+ *
+ * Note: we have to return the correct value.
+ * THERE IS NO SAFE DEFAULT VALUE.
+ *
+ * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
+ * 53C860 and 53C875 rev. 1 support fast20 transfers but
+ * do not have a clock doubler and so are provided with a
+ * 80 MHz clock. All other fast20 boards incorporate a doubler
+ * and so should be delivered with a 40 MHz clock.
+ * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
+ * clock and provide a clock quadrupler (160 Mhz).
+ */
+
+/*
+ * Select SCSI clock frequency
+ */
+static void sym_selectclock(hcb_p np, u_char scntl3)
+{
+ /*
+ * If multiplier not present or not selected, leave here.
+ */
+ if (np->multiplier <= 1) {
+ OUTB(nc_scntl3, scntl3);
+ return;
+ }
+
+ if (sym_verbose >= 2)
+ printf ("%s: enabling clock multiplier\n", sym_name(np));
+
+ OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
+ /*
+ * Wait for the LCKFRQ bit to be set if supported by the chip.
+ * Otherwise wait 20 micro-seconds.
+ */
+ if (np->features & FE_LCKFRQ) {
+ int i = 20;
+ while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
+ UDELAY (20);
+ if (!i)
+ printf("%s: the chip cannot lock the frequency\n",
+ sym_name(np));
+ } else
+ UDELAY (20);
+ OUTB(nc_stest3, HSC); /* Halt the scsi clock */
+ OUTB(nc_scntl3, scntl3);
+ OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
+ OUTB(nc_stest3, 0x00); /* Restart scsi clock */
+}
+
+/*
+ * calculate SCSI clock frequency (in KHz)
+ */
+static unsigned getfreq (hcb_p np, int gen)
+{
+ unsigned int ms = 0;
+ unsigned int f;
+
+ /*
+ * Measure GEN timer delay in order
+ * to calculate SCSI clock frequency
+ *
+ * This code will never execute too
+ * many loop iterations (if DELAY is
+ * reasonably correct). It could get
+ * too low a delay (too high a freq.)
+ * if the CPU is slow executing the
+ * loop for some reason (an NMI, for
+ * example). For this reason we will
+ * if multiple measurements are to be
+ * performed trust the higher delay
+ * (lower frequency returned).
+ */
+ OUTW (nc_sien , 0); /* mask all scsi interrupts */
+ (void) INW (nc_sist); /* clear pending scsi interrupt */
+ OUTB (nc_dien , 0); /* mask all dma interrupts */
+ (void) INW (nc_sist); /* another one, just to be sure :) */
+ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
+ OUTB (nc_stime1, 0); /* disable general purpose timer */
+ OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
+ while (!(INW(nc_sist) & GEN) && ms++ < 100000)
+ UDELAY (1000); /* count ms */
+ OUTB (nc_stime1, 0); /* disable general purpose timer */
+ /*
+ * set prescaler to divide by whatever 0 means
+ * 0 ought to choose divide by 2, but appears
+ * to set divide by 3.5 mode in my 53c810 ...
+ */
+ OUTB (nc_scntl3, 0);
+
+ /*
+ * adjust for prescaler, and convert into KHz
+ */
+ f = ms ? ((1 << gen) * 4340) / ms : 0;
+
+ if (sym_verbose >= 2)
+ printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
+ sym_name(np), gen, ms, f);
+
+ return f;
+}
+
+static unsigned sym_getfreq (hcb_p np)
+{
+ u_int f1, f2;
+ int gen = 11;
+
+ (void) getfreq (np, gen); /* throw away first result */
+ f1 = getfreq (np, gen);
+ f2 = getfreq (np, gen);
+ if (f1 > f2) f1 = f2; /* trust lower result */
+ return f1;
+}
+
+/*
+ * Get/probe chip SCSI clock frequency
+ */
+static void sym_getclock (hcb_p np, int mult)
+{
+ unsigned char scntl3 = np->sv_scntl3;
+ unsigned char stest1 = np->sv_stest1;
+ unsigned f1;
+
+ /*
+ * For the C10 core, assume 40 MHz.
+ */
+ if (np->features & FE_C10) {
+ np->multiplier = mult;
+ np->clock_khz = 40000 * mult;
+ return;
+ }
+
+ np->multiplier = 1;
+ f1 = 40000;
+ /*
+ * True with 875/895/896/895A with clock multiplier selected
+ */
+ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
+ if (sym_verbose >= 2)
+ printf ("%s: clock multiplier found\n", sym_name(np));
+ np->multiplier = mult;
+ }
+
+ /*
+ * If multiplier not found or scntl3 not 7,5,3,
+ * reset chip and get frequency from general purpose timer.
+ * Otherwise trust scntl3 BIOS setting.
+ */
+ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
+ OUTB (nc_stest1, 0); /* make sure doubler is OFF */
+ f1 = sym_getfreq (np);
+
+ if (sym_verbose)
+ printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
+
+ if (f1 < 45000) f1 = 40000;
+ else if (f1 < 55000) f1 = 50000;
+ else f1 = 80000;
+
+ if (f1 < 80000 && mult > 1) {
+ if (sym_verbose >= 2)
+ printf ("%s: clock multiplier assumed\n",
+ sym_name(np));
+ np->multiplier = mult;
+ }
+ } else {
+ if ((scntl3 & 7) == 3) f1 = 40000;
+ else if ((scntl3 & 7) == 5) f1 = 80000;
+ else f1 = 160000;
+
+ f1 /= np->multiplier;
+ }
+
+ /*
+ * Compute controller synchronous parameters.
+ */
+ f1 *= np->multiplier;
+ np->clock_khz = f1;
+}
+
+/*
+ * Get/probe PCI clock frequency
+ */
+static int sym_getpciclock (hcb_p np)
+{
+ int f = 0;
+
+ /*
+ * For the C1010-33, this doesn't work.
+ * For the C1010-66, this will be tested when I'll have
+ * such a beast to play with.
+ */
+ if (!(np->features & FE_C10)) {
+ OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
+ f = (int) sym_getfreq (np);
+ OUTB (nc_stest1, 0);
+ }
+ np->pciclk_khz = f;
+
+ return f;
+}
+
+/*============= DRIVER ACTION/COMPLETION ====================*/
+
+/*
+ * Print something that tells about extended errors.
+ */
+static void sym_print_xerr(ccb_p cp, int x_status)
+{
+ if (x_status & XE_PARITY_ERR) {
+ PRINT_ADDR(cp);
+ printf ("unrecovered SCSI parity error.\n");
+ }
+ if (x_status & XE_EXTRA_DATA) {
+ PRINT_ADDR(cp);
+ printf ("extraneous data discarded.\n");
+ }
+ if (x_status & XE_BAD_PHASE) {
+ PRINT_ADDR(cp);
+ printf ("illegal scsi phase (4/5).\n");
+ }
+ if (x_status & XE_SODL_UNRUN) {
+ PRINT_ADDR(cp);
+ printf ("ODD transfer in DATA OUT phase.\n");
+ }
+ if (x_status & XE_SWIDE_OVRUN) {
+ PRINT_ADDR(cp);
+ printf ("ODD transfer in DATA IN phase.\n");
+ }
+}
+
+/*
+ * Choose the more appropriate CAM status if
+ * the IO encountered an extended error.
+ */
+static int sym_xerr_cam_status(int cam_status, int x_status)
+{
+ if (x_status) {
+ if (x_status & XE_PARITY_ERR)
+ cam_status = CAM_UNCOR_PARITY;
+ else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
+ cam_status = CAM_DATA_RUN_ERR;
+ else if (x_status & XE_BAD_PHASE)
+ cam_status = CAM_REQ_CMP_ERR;
+ else
+ cam_status = CAM_REQ_CMP_ERR;
+ }
+ return cam_status;
+}
+
+/*
+ * Complete execution of a SCSI command with extented
+ * error, SCSI status error, or having been auto-sensed.
+ *
+ * The SCRIPTS processor is not running there, so we
+ * can safely access IO registers and remove JOBs from
+ * the START queue.
+ * SCRATCHA is assumed to have been loaded with STARTPOS
+ * before the SCRIPTS called the C code.
+ */
+static void sym_complete_error (hcb_p np, ccb_p cp)
+{
+ struct ccb_scsiio *csio;
+ u_int cam_status;
+ int i;
+
+ /*
+ * Paranoid check. :)
+ */
+ if (!cp || !cp->cam_ccb)
+ return;
+
+ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
+ printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
+ cp->host_status, cp->ssss_status, cp->host_flags,
+ cp->target, cp->lun);
+ MDELAY(100);
+ }
+
+ /*
+ * Get CAM command pointer.
+ */
+ csio = &cp->cam_ccb->csio;
+
+ /*
+ * Check for extended errors.
+ */
+ if (cp->xerr_status) {
+ if (sym_verbose)
+ sym_print_xerr(cp, cp->xerr_status);
+ if (cp->host_status == HS_COMPLETE)
+ cp->host_status = HS_COMP_ERR;
+ }
+
+ /*
+ * Calculate the residual.
+ */
+ csio->sense_resid = 0;
+ csio->resid = sym_compute_residual(np, cp);
+
+ if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
+ csio->resid = 0; /* throw them away. :) */
+ cp->sv_resid = 0;
+ }
+
+ if (cp->host_flags & HF_SENSE) { /* Auto sense */
+ csio->scsi_status = cp->sv_scsi_status; /* Restore status */
+ csio->sense_resid = csio->resid; /* Swap residuals */
+ csio->resid = cp->sv_resid;
+ cp->sv_resid = 0;
+ if (sym_verbose && cp->sv_xerr_status)
+ sym_print_xerr(cp, cp->sv_xerr_status);
+ if (cp->host_status == HS_COMPLETE &&
+ cp->ssss_status == S_GOOD &&
+ cp->xerr_status == 0) {
+ cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
+ cp->sv_xerr_status);
+ cam_status |= CAM_AUTOSNS_VALID;
+ /*
+ * Bounce back the sense data to user and
+ * fix the residual.
+ */
+ bzero(&csio->sense_data, csio->sense_len);
+ bcopy(cp->sns_bbuf, &csio->sense_data,
+ MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
+ csio->sense_resid += csio->sense_len;
+ csio->sense_resid -= SYM_SNS_BBUF_LEN;
+#if 0
+ /*
+ * If the device reports a UNIT ATTENTION condition
+ * due to a RESET condition, we should consider all
+ * disconnect CCBs for this unit as aborted.
+ */
+ if (1) {
+ u_char *p;
+ p = (u_char *) csio->sense_data;
+ if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
+ sym_clear_tasks(np, CAM_REQ_ABORTED,
+ cp->target,cp->lun, -1);
+ }
+#endif
+ }
+ else
+ cam_status = CAM_AUTOSENSE_FAIL;
+ }
+ else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */
+ csio->scsi_status = cp->ssss_status;
+ cam_status = CAM_SCSI_STATUS_ERROR;
+ }
+ else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
+ cam_status = CAM_SEL_TIMEOUT;
+ else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
+ cam_status = CAM_UNEXP_BUSFREE;
+ else { /* Extended error */
+ if (sym_verbose) {
+ PRINT_ADDR(cp);
+ printf ("COMMAND FAILED (%x %x %x).\n",
+ cp->host_status, cp->ssss_status,
+ cp->xerr_status);
+ }
+ csio->scsi_status = cp->ssss_status;
+ /*
+ * Set the most appropriate value for CAM status.
+ */
+ cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
+ cp->xerr_status);
+ }
+
+ /*
+ * Dequeue all queued CCBs for that device
+ * not yet started by SCRIPTS.
+ */
+ i = (INL (nc_scratcha) - np->squeue_ba) / 4;
+ (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+
+ /*
+ * Restart the SCRIPTS processor.
+ */
+ OUTL_DSP (SCRIPTA_BA (np, start));
+
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ /*
+ * Synchronize DMA map if needed.
+ */
+ if (cp->dmamapped) {
+ bus_dmamap_sync(np->data_dmat, cp->dmamap,
+ (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
+ BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
+ }
+#endif
+ /*
+ * Add this one to the COMP queue.
+ * Complete all those commands with either error
+ * or requeue condition.
+ */
+ sym_set_cam_status((union ccb *) csio, cam_status);
+ sym_remque(&cp->link_ccbq);
+ sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
+ sym_flush_comp_queue(np, 0);
+}
+
+/*
+ * Complete execution of a successful SCSI command.
+ *
+ * Only successful commands go to the DONE queue,
+ * since we need to have the SCRIPTS processor
+ * stopped on any error condition.
+ * The SCRIPTS processor is running while we are
+ * completing successful commands.
+ */
+static void sym_complete_ok (hcb_p np, ccb_p cp)
+{
+ struct ccb_scsiio *csio;
+ tcb_p tp;
+ lcb_p lp;
+
+ /*
+ * Paranoid check. :)
+ */
+ if (!cp || !cp->cam_ccb)
+ return;
+ assert (cp->host_status == HS_COMPLETE);
+
+ /*
+ * Get command, target and lun pointers.
+ */
+ csio = &cp->cam_ccb->csio;
+ tp = &np->target[cp->target];
+ lp = sym_lp(np, tp, cp->lun);
+
+ /*
+ * Assume device discovered on first success.
+ */
+ if (!lp)
+ sym_set_bit(tp->lun_map, cp->lun);
+
+ /*
+ * If all data have been transferred, given than no
+ * extended error did occur, there is no residual.
+ */
+ csio->resid = 0;
+ if (cp->phys.head.lastp != cp->phys.head.goalp)
+ csio->resid = sym_compute_residual(np, cp);
+
+ /*
+ * Wrong transfer residuals may be worse than just always
+ * returning zero. User can disable this feature from
+ * sym_conf.h. Residual support is enabled by default.
+ */
+ if (!SYM_CONF_RESIDUAL_SUPPORT)
+ csio->resid = 0;
+
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ /*
+ * Synchronize DMA map if needed.
+ */
+ if (cp->dmamapped) {
+ bus_dmamap_sync(np->data_dmat, cp->dmamap,
+ (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
+ BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
+ }
+#endif
+ /*
+ * Set status and complete the command.
+ */
+ csio->scsi_status = cp->ssss_status;
+ sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
+ sym_free_ccb (np, cp);
+ sym_xpt_done(np, (union ccb *) csio);
+}
+
+/*
+ * Our timeout handler.
+ */
+static void sym_timeout1(void *arg)
+{
+ union ccb *ccb = (union ccb *) arg;
+ hcb_p np = ccb->ccb_h.sym_hcb_ptr;
+
+ /*
+ * Check that the CAM CCB is still queued.
+ */
+ if (!np)
+ return;
+
+ switch(ccb->ccb_h.func_code) {
+ case XPT_SCSI_IO:
+ (void) sym_abort_scsiio(np, ccb, 1);
+ break;
+ default:
+ break;
+ }
+}
+
+static void sym_timeout(void *arg)
+{
+ int s = splcam();
+ sym_timeout1(arg);
+ splx(s);
+}
+
+/*
+ * Abort an SCSI IO.
+ */
+static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
+{
+ ccb_p cp;
+ SYM_QUEHEAD *qp;
+
+ /*
+ * Look up our CCB control block.
+ */
+ cp = 0;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp2->cam_ccb == ccb) {
+ cp = cp2;
+ break;
+ }
+ }
+ if (!cp || cp->host_status == HS_WAIT)
+ return -1;
+
+ /*
+ * If a previous abort didn't succeed in time,
+ * perform a BUS reset.
+ */
+ if (cp->to_abort) {
+ sym_reset_scsi_bus(np, 1);
+ return 0;
+ }
+
+ /*
+ * Mark the CCB for abort and allow time for.
+ */
+ cp->to_abort = timed_out ? 2 : 1;
+ ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
+
+ /*
+ * Tell the SCRIPTS processor to stop and synchronize with us.
+ */
+ np->istat_sem = SEM;
+ OUTB (nc_istat, SIGP|SEM);
+ return 0;
+}
+
+/*
+ * Reset a SCSI device (all LUNs of a target).
+ */
+static void sym_reset_dev(hcb_p np, union ccb *ccb)
+{
+ tcb_p tp;
+ struct ccb_hdr *ccb_h = &ccb->ccb_h;
+
+ if (ccb_h->target_id == np->myaddr ||
+ ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
+ ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
+ sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
+ return;
+ }
+
+ tp = &np->target[ccb_h->target_id];
+
+ tp->to_reset = 1;
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+
+ np->istat_sem = SEM;
+ OUTB (nc_istat, SIGP|SEM);
+ return;
+}
+
+/*
+ * SIM action entry point.
+ */
+static void sym_action(struct cam_sim *sim, union ccb *ccb)
+{
+ int s = splcam();
+ sym_action1(sim, ccb);
+ splx(s);
+}
+
+static void sym_action1(struct cam_sim *sim, union ccb *ccb)
+{
+ hcb_p np;
+ tcb_p tp;
+ lcb_p lp;
+ ccb_p cp;
+ int tmp;
+ u_char idmsg, *msgptr;
+ u_int msglen;
+ struct ccb_scsiio *csio;
+ struct ccb_hdr *ccb_h;
+
+ CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
+
+ /*
+ * Retrieve our controller data structure.
+ */
+ np = (hcb_p) cam_sim_softc(sim);
+
+ /*
+ * The common case is SCSI IO.
+ * We deal with other ones elsewhere.
+ */
+ if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
+ sym_action2(sim, ccb);
+ return;
+ }
+ csio = &ccb->csio;
+ ccb_h = &csio->ccb_h;
+
+ /*
+ * Work around races.
+ */
+ if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
+ xpt_done(ccb);
+ return;
+ }
+
+ /*
+ * Minimal checkings, so that we will not
+ * go outside our tables.
+ */
+ if (ccb_h->target_id == np->myaddr ||
+ ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
+ ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
+ sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
+ return;
+ }
+
+ /*
+ * Retreive the target and lun descriptors.
+ */
+ tp = &np->target[ccb_h->target_id];
+ lp = sym_lp(np, tp, ccb_h->target_lun);
+
+ /*
+ * Complete the 1st INQUIRY command with error
+ * condition if the device is flagged NOSCAN
+ * at BOOT in the NVRAM. This may speed up
+ * the boot and maintain coherency with BIOS
+ * device numbering. Clearing the flag allows
+ * user to rescan skipped devices later.
+ * We also return error for devices not flagged
+ * for SCAN LUNS in the NVRAM since some mono-lun
+ * devices behave badly when asked for some non
+ * zero LUN. Btw, this is an absolute hack.:-)
+ */
+ if (!(ccb_h->flags & CAM_CDB_PHYS) &&
+ (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
+ csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
+ if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
+ ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
+ ccb_h->target_lun != 0)) {
+ tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
+ sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
+ return;
+ }
+ }
+
+ /*
+ * Get a control block for this IO.
+ */
+ tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
+ cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
+ if (!cp) {
+ sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
+ return;
+ }
+
+ /*
+ * Keep track of the IO in our CCB.
+ */
+ cp->cam_ccb = ccb;
+
+ /*
+ * Build the IDENTIFY message.
+ */
+ idmsg = M_IDENTIFY | cp->lun;
+ if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
+ idmsg |= 0x40;
+
+ msgptr = cp->scsi_smsg;
+ msglen = 0;
+ msgptr[msglen++] = idmsg;
+
+ /*
+ * Build the tag message if present.
+ */
+ if (cp->tag != NO_TAG) {
+ u_char order = csio->tag_action;
+
+ switch(order) {
+ case M_ORDERED_TAG:
+ break;
+ case M_HEAD_TAG:
+ break;
+ default:
+ order = M_SIMPLE_TAG;
+ }
+ msgptr[msglen++] = order;
+
+ /*
+ * For less than 128 tags, actual tags are numbered
+ * 1,3,5,..2*MAXTAGS+1,since we may have to deal
+ * with devices that have problems with #TAG 0 or too
+ * great #TAG numbers. For more tags (up to 256),
+ * we use directly our tag number.
+ */
+#if SYM_CONF_MAX_TASK > (512/4)
+ msgptr[msglen++] = cp->tag;
+#else
+ msgptr[msglen++] = (cp->tag << 1) + 1;
+#endif
+ }
+
+ /*
+ * Build a negotiation message if needed.
+ * (nego_status is filled by sym_prepare_nego())
+ */
+ cp->nego_status = 0;
+ if (tp->tinfo.current.width != tp->tinfo.goal.width ||
+ tp->tinfo.current.period != tp->tinfo.goal.period ||
+ tp->tinfo.current.offset != tp->tinfo.goal.offset ||
+ tp->tinfo.current.options != tp->tinfo.goal.options) {
+ if (!tp->nego_cp && lp)
+ msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
+ }
+
+ /*
+ * Fill in our ccb
+ */
+
+ /*
+ * Startqueue
+ */
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
+ cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
+
+ /*
+ * select
+ */
+ cp->phys.select.sel_id = cp->target;
+ cp->phys.select.sel_scntl3 = tp->head.wval;
+ cp->phys.select.sel_sxfer = tp->head.sval;
+ cp->phys.select.sel_scntl4 = tp->head.uval;
+
+ /*
+ * message
+ */
+ cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
+ cp->phys.smsg.size = cpu_to_scr(msglen);
+
+ /*
+ * command
+ */
+ if (sym_setup_cdb(np, csio, cp) < 0) {
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, ccb);
+ return;
+ }
+
+ /*
+ * status
+ */
+#if 0 /* Provision */
+ cp->actualquirks = tp->quirks;
+#endif
+ cp->actualquirks = SYM_QUIRK_AUTOSAVE;
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+ cp->xerr_status = 0;
+ cp->host_flags = 0;
+ cp->extra_bytes = 0;
+
+ /*
+ * extreme data pointer.
+ * shall be positive, so -1 is lower than lowest.:)
+ */
+ cp->ext_sg = -1;
+ cp->ext_ofs = 0;
+
+ /*
+ * Build the data descriptor block
+ * and start the IO.
+ */
+ sym_setup_data_and_start(np, csio, cp);
+}
+
+/*
+ * Setup buffers and pointers that address the CDB.
+ * I bet, physical CDBs will never be used on the planet,
+ * since they can be bounced without significant overhead.
+ */
+static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
+{
+ struct ccb_hdr *ccb_h;
+ u32 cmd_ba;
+ int cmd_len;
+
+ ccb_h = &csio->ccb_h;
+
+ /*
+ * CDB is 16 bytes max.
+ */
+ if (csio->cdb_len > sizeof(cp->cdb_buf)) {
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
+ return -1;
+ }
+ cmd_len = csio->cdb_len;
+
+ if (ccb_h->flags & CAM_CDB_POINTER) {
+ /* CDB is a pointer */
+ if (!(ccb_h->flags & CAM_CDB_PHYS)) {
+ /* CDB pointer is virtual */
+ bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
+ cmd_ba = CCB_BA (cp, cdb_buf[0]);
+ } else {
+ /* CDB pointer is physical */
+#if 0
+ cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
+#else
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
+ return -1;
+#endif
+ }
+ } else {
+ /* CDB is in the CAM ccb (buffer) */
+ bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
+ cmd_ba = CCB_BA (cp, cdb_buf[0]);
+ }
+
+ cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
+ cp->phys.cmd.size = cpu_to_scr(cmd_len);
+
+ return 0;
+}
+
+/*
+ * Set up data pointers used by SCRIPTS.
+ */
+static void __inline
+sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
+{
+ u32 lastp, goalp;
+
+ /*
+ * No segments means no data.
+ */
+ if (!cp->segments)
+ dir = CAM_DIR_NONE;
+
+ /*
+ * Set the data pointer.
+ */
+ switch(dir) {
+ case CAM_DIR_OUT:
+ goalp = SCRIPTA_BA (np, data_out2) + 8;
+ lastp = goalp - 8 - (cp->segments * (2*4));
+ break;
+ case CAM_DIR_IN:
+ cp->host_flags |= HF_DATA_IN;
+ goalp = SCRIPTA_BA (np, data_in2) + 8;
+ lastp = goalp - 8 - (cp->segments * (2*4));
+ break;
+ case CAM_DIR_NONE:
+ default:
+ lastp = goalp = SCRIPTB_BA (np, no_data);
+ break;
+ }
+
+ cp->phys.head.lastp = cpu_to_scr(lastp);
+ cp->phys.head.goalp = cpu_to_scr(goalp);
+ cp->phys.head.savep = cpu_to_scr(lastp);
+ cp->startp = cp->phys.head.savep;
+}
+
+
+#ifdef FreeBSD_Bus_Dma_Abstraction
+/*
+ * Call back routine for the DMA map service.
+ * If bounce buffers are used (why ?), we may sleep and then
+ * be called there in another context.
+ */
+static void
+sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
+{
+ ccb_p cp;
+ hcb_p np;
+ union ccb *ccb;
+ int s;
+
+ s = splcam();
+
+ cp = (ccb_p) arg;
+ ccb = cp->cam_ccb;
+ np = (hcb_p) cp->arg;
+
+ /*
+ * Deal with weird races.
+ */
+ if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
+ goto out_abort;
+
+ /*
+ * Deal with weird errors.
+ */
+ if (error) {
+ cp->dmamapped = 0;
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
+ goto out_abort;
+ }
+
+ /*
+ * Build the data descriptor for the chip.
+ */
+ if (nsegs) {
+ int retv;
+ /* 896 rev 1 requires to be careful about boundaries */
+ if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
+ retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
+ else
+ retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
+ if (retv < 0) {
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
+ goto out_abort;
+ }
+ }
+
+ /*
+ * Synchronize the DMA map only if we have
+ * actually mapped the data.
+ */
+ if (cp->dmamapped) {
+ bus_dmamap_sync(np->data_dmat, cp->dmamap,
+ (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
+ BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
+ }
+
+ /*
+ * Set host status to busy state.
+ * May have been set back to HS_WAIT to avoid a race.
+ */
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+
+ /*
+ * Set data pointers.
+ */
+ sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK));
+
+ /*
+ * Enqueue this IO in our pending queue.
+ */
+ sym_enqueue_cam_ccb(np, ccb);
+
+ /*
+ * When `#ifed 1', the code below makes the driver
+ * panic on the first attempt to write to a SCSI device.
+ * It is the first test we want to do after a driver
+ * change that does not seem obviously safe. :)
+ */
+#if 0
+ switch (cp->cdb_buf[0]) {
+ case 0x0A: case 0x2A: case 0xAA:
+ panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
+ MDELAY(10000);
+ break;
+ default:
+ break;
+ }
+#endif
+ /*
+ * Activate this job.
+ */
+ sym_put_start_queue(np, cp);
+out:
+ splx(s);
+ return;
+out_abort:
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, ccb);
+ goto out;
+}
+
+/*
+ * How complex it gets to deal with the data in CAM.
+ * The Bus Dma stuff makes things still more complex.
+ */
+static void
+sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
+{
+ struct ccb_hdr *ccb_h;
+ int dir, retv;
+
+ ccb_h = &csio->ccb_h;
+
+ /*
+ * Now deal with the data.
+ */
+ cp->data_len = csio->dxfer_len;
+ cp->arg = np;
+
+ /*
+ * No direction means no data.
+ */
+ dir = (ccb_h->flags & CAM_DIR_MASK);
+ if (dir == CAM_DIR_NONE) {
+ sym_execute_ccb(cp, NULL, 0, 0);
+ return;
+ }
+
+ if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
+ /* Single buffer */
+ if (!(ccb_h->flags & CAM_DATA_PHYS)) {
+ /* Buffer is virtual */
+ int s;
+
+ cp->dmamapped = (dir == CAM_DIR_IN) ?
+ SYM_DMA_READ : SYM_DMA_WRITE;
+ s = splsoftvm();
+ retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
+ csio->data_ptr, csio->dxfer_len,
+ sym_execute_ccb, cp, 0);
+ if (retv == EINPROGRESS) {
+ cp->host_status = HS_WAIT;
+ xpt_freeze_simq(np->sim, 1);
+ csio->ccb_h.status |= CAM_RELEASE_SIMQ;
+ }
+ splx(s);
+ } else {
+ /* Buffer is physical */
+ struct bus_dma_segment seg;
+
+ seg.ds_addr = (bus_addr_t) csio->data_ptr;
+ sym_execute_ccb(cp, &seg, 1, 0);
+ }
+ } else {
+ /* Scatter/gather list */
+ struct bus_dma_segment *segs;
+
+ if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
+ /* The SG list pointer is physical */
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
+ goto out_abort;
+ }
+
+ if (!(ccb_h->flags & CAM_DATA_PHYS)) {
+ /* SG buffer pointers are virtual */
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
+ goto out_abort;
+ }
+
+ /* SG buffer pointers are physical */
+ segs = (struct bus_dma_segment *)csio->data_ptr;
+ sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
+ }
+ return;
+out_abort:
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, (union ccb *) csio);
+}
+
+/*
+ * Move the scatter list to our data block.
+ */
+static int
+sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
+ bus_dma_segment_t *psegs, int nsegs)
+{
+ struct sym_tblmove *data;
+ bus_dma_segment_t *psegs2;
+
+ if (nsegs > SYM_CONF_MAX_SG)
+ return -1;
+
+ data = &cp->phys.data[SYM_CONF_MAX_SG-1];
+ psegs2 = &psegs[nsegs-1];
+ cp->segments = nsegs;
+
+ while (1) {
+ data->addr = cpu_to_scr(psegs2->ds_addr);
+ data->size = cpu_to_scr(psegs2->ds_len);
+ if (DEBUG_FLAGS & DEBUG_SCATTER) {
+ printf ("%s scatter: paddr=%lx len=%ld\n",
+ sym_name(np), (long) psegs2->ds_addr,
+ (long) psegs2->ds_len);
+ }
+ if (psegs2 != psegs) {
+ --data;
+ --psegs2;
+ continue;
+ }
+ break;
+ }
+ return 0;
+}
+
+#else /* FreeBSD_Bus_Dma_Abstraction */
+
+/*
+ * How complex it gets to deal with the data in CAM.
+ * Variant without the Bus Dma Abstraction option.
+ */
+static void
+sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
+{
+ struct ccb_hdr *ccb_h;
+ int dir, retv;
+
+ ccb_h = &csio->ccb_h;
+
+ /*
+ * Now deal with the data.
+ */
+ cp->data_len = 0;
+ cp->segments = 0;
+
+ /*
+ * No direction means no data.
+ */
+ dir = (ccb_h->flags & CAM_DIR_MASK);
+ if (dir == CAM_DIR_NONE)
+ goto end_scatter;
+
+ if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
+ /* Single buffer */
+ if (!(ccb_h->flags & CAM_DATA_PHYS)) {
+ /* Buffer is virtual */
+ retv = sym_scatter_virtual(np, cp,
+ (vm_offset_t) csio->data_ptr,
+ (vm_size_t) csio->dxfer_len);
+ } else {
+ /* Buffer is physical */
+ retv = sym_scatter_physical(np, cp,
+ (vm_offset_t) csio->data_ptr,
+ (vm_size_t) csio->dxfer_len);
+ }
+ } else {
+ /* Scatter/gather list */
+ int nsegs;
+ struct bus_dma_segment *segs;
+ segs = (struct bus_dma_segment *)csio->data_ptr;
+ nsegs = csio->sglist_cnt;
+
+ if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
+ /* The SG list pointer is physical */
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
+ goto out_abort;
+ }
+ if (!(ccb_h->flags & CAM_DATA_PHYS)) {
+ /* SG buffer pointers are virtual */
+ retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
+ } else {
+ /* SG buffer pointers are physical */
+ retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
+ }
+ }
+ if (retv < 0) {
+ sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
+ goto out_abort;
+ }
+
+end_scatter:
+ /*
+ * Set data pointers.
+ */
+ sym_setup_data_pointers(np, cp, dir);
+
+ /*
+ * Enqueue this IO in our pending queue.
+ */
+ sym_enqueue_cam_ccb(np, (union ccb *) csio);
+
+ /*
+ * Activate this job.
+ */
+ sym_put_start_queue(np, cp);
+
+ /*
+ * Command is successfully queued.
+ */
+ return;
+out_abort:
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, (union ccb *) csio);
+}
+
+/*
+ * Scatter a virtual buffer into bus addressable chunks.
+ */
+static int
+sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
+{
+ u_long pe, pn;
+ u_long n, k;
+ int s;
+
+ cp->data_len += len;
+
+ pe = vaddr + len;
+ n = len;
+ s = SYM_CONF_MAX_SG - 1 - cp->segments;
+
+ while (n && s >= 0) {
+ pn = (pe - 1) & ~PAGE_MASK;
+ k = pe - pn;
+ if (k > n) {
+ k = n;
+ pn = pe - n;
+ }
+ if (DEBUG_FLAGS & DEBUG_SCATTER) {
+ printf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
+ sym_name(np), pn, (u_long) vtobus(pn), k);
+ }
+ cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
+ cp->phys.data[s].size = cpu_to_scr(k);
+ pe = pn;
+ n -= k;
+ --s;
+ }
+ cp->segments = SYM_CONF_MAX_SG - 1 - s;
+
+ return n ? -1 : 0;
+}
+
+/*
+ * Scatter a SG list with virtual addresses into bus addressable chunks.
+ */
+static int
+sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
+{
+ int i, retv = 0;
+
+ for (i = nsegs - 1 ; i >= 0 ; --i) {
+ retv = sym_scatter_virtual(np, cp,
+ psegs[i].ds_addr, psegs[i].ds_len);
+ if (retv < 0)
+ break;
+ }
+ return retv;
+}
+
+/*
+ * Scatter a physical buffer into bus addressable chunks.
+ */
+static int
+sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
+{
+ struct bus_dma_segment seg;
+
+ seg.ds_addr = paddr;
+ seg.ds_len = len;
+ return sym_scatter_sg_physical(np, cp, &seg, 1);
+}
+
+#endif /* FreeBSD_Bus_Dma_Abstraction */
+
+/*
+ * Scatter a SG list with physical addresses into bus addressable chunks.
+ * We need to ensure 16MB boundaries not to be crossed during DMA of
+ * each segment, due to some chips being flawed.
+ */
+#define BOUND_MASK ((1UL<<24)-1)
+static int
+sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
+{
+ u_long ps, pe, pn;
+ u_long k;
+ int s, t;
+
+#ifndef FreeBSD_Bus_Dma_Abstraction
+ s = SYM_CONF_MAX_SG - 1 - cp->segments;
+#else
+ s = SYM_CONF_MAX_SG - 1;
+#endif
+ t = nsegs - 1;
+ ps = psegs[t].ds_addr;
+ pe = ps + psegs[t].ds_len;
+
+ while (s >= 0) {
+ pn = (pe - 1) & ~BOUND_MASK;
+ if (pn <= ps)
+ pn = ps;
+ k = pe - pn;
+ if (DEBUG_FLAGS & DEBUG_SCATTER) {
+ printf ("%s scatter: paddr=%lx len=%ld\n",
+ sym_name(np), pn, k);
+ }
+ cp->phys.data[s].addr = cpu_to_scr(pn);
+ cp->phys.data[s].size = cpu_to_scr(k);
+#ifndef FreeBSD_Bus_Dma_Abstraction
+ cp->data_len += k;
+#endif
+ --s;
+ if (pn == ps) {
+ if (--t < 0)
+ break;
+ ps = psegs[t].ds_addr;
+ pe = ps + psegs[t].ds_len;
+ }
+ else
+ pe = pn;
+ }
+
+ cp->segments = SYM_CONF_MAX_SG - 1 - s;
+
+ return t >= 0 ? -1 : 0;
+}
+#undef BOUND_MASK
+
+/*
+ * SIM action for non performance critical stuff.
+ */
+static void sym_action2(struct cam_sim *sim, union ccb *ccb)
+{
+ hcb_p np;
+ tcb_p tp;
+ lcb_p lp;
+ struct ccb_hdr *ccb_h;
+
+ /*
+ * Retrieve our controller data structure.
+ */
+ np = (hcb_p) cam_sim_softc(sim);
+
+ ccb_h = &ccb->ccb_h;
+
+ switch (ccb_h->func_code) {
+ case XPT_SET_TRAN_SETTINGS:
+ {
+ struct ccb_trans_settings *cts;
+
+ cts = &ccb->cts;
+ tp = &np->target[ccb_h->target_id];
+
+ /*
+ * Update SPI transport settings in TARGET control block.
+ * Update SCSI device settings in LUN control block.
+ */
+ lp = sym_lp(np, tp, ccb_h->target_lun);
+#ifdef FreeBSD_New_Tran_Settings
+ if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
+#else
+ if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
+#endif
+ sym_update_trans(np, tp, &tp->tinfo.goal, cts);
+ if (lp)
+ sym_update_dflags(np, &lp->current_flags, cts);
+ }
+#ifdef FreeBSD_New_Tran_Settings
+ if (cts->type == CTS_TYPE_USER_SETTINGS) {
+#else
+ if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
+#endif
+ sym_update_trans(np, tp, &tp->tinfo.user, cts);
+ if (lp)
+ sym_update_dflags(np, &lp->user_flags, cts);
+ }
+
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+ break;
+ }
+ case XPT_GET_TRAN_SETTINGS:
+ {
+ struct ccb_trans_settings *cts;
+ struct sym_trans *tip;
+ u_char dflags;
+
+ cts = &ccb->cts;
+ tp = &np->target[ccb_h->target_id];
+ lp = sym_lp(np, tp, ccb_h->target_lun);
+
+#ifdef FreeBSD_New_Tran_Settings
+#define cts__scsi (&cts->proto_specific.scsi)
+#define cts__spi (&cts->xport_specific.spi)
+ if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
+ tip = &tp->tinfo.current;
+ dflags = lp ? lp->current_flags : 0;
+ }
+ else {
+ tip = &tp->tinfo.user;
+ dflags = lp ? lp->user_flags : tp->usrflags;
+ }
+
+ cts->protocol = PROTO_SCSI;
+ cts->transport = XPORT_SPI;
+ cts->protocol_version = tip->scsi_version;
+ cts->transport_version = tip->spi_version;
+
+ cts__spi->sync_period = tip->period;
+ cts__spi->sync_offset = tip->offset;
+ cts__spi->bus_width = tip->width;
+ cts__spi->ppr_options = tip->options;
+
+ cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
+ | CTS_SPI_VALID_SYNC_OFFSET
+ | CTS_SPI_VALID_BUS_WIDTH
+ | CTS_SPI_VALID_PPR_OPTIONS;
+
+ cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
+ if (dflags & SYM_DISC_ENABLED)
+ cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
+ cts__spi->valid |= CTS_SPI_VALID_DISC;
+
+ cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
+ if (dflags & SYM_TAGS_ENABLED)
+ cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
+ cts__scsi->valid |= CTS_SCSI_VALID_TQ;
+#undef cts__spi
+#undef cts__scsi
+#else
+ if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
+ tip = &tp->tinfo.current;
+ dflags = lp ? lp->current_flags : 0;
+ }
+ else {
+ tip = &tp->tinfo.user;
+ dflags = lp ? lp->user_flags : tp->usrflags;
+ }
+
+ cts->sync_period = tip->period;
+ cts->sync_offset = tip->offset;
+ cts->bus_width = tip->width;
+
+ cts->valid = CCB_TRANS_SYNC_RATE_VALID
+ | CCB_TRANS_SYNC_OFFSET_VALID
+ | CCB_TRANS_BUS_WIDTH_VALID;
+
+ cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
+
+ if (dflags & SYM_DISC_ENABLED)
+ cts->flags |= CCB_TRANS_DISC_ENB;
+
+ if (dflags & SYM_TAGS_ENABLED)
+ cts->flags |= CCB_TRANS_TAG_ENB;
+
+ cts->valid |= CCB_TRANS_DISC_VALID;
+ cts->valid |= CCB_TRANS_TQ_VALID;
+#endif
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+ break;
+ }
+ case XPT_CALC_GEOMETRY:
+ {
+ struct ccb_calc_geometry *ccg;
+ u32 size_mb;
+ u32 secs_per_cylinder;
+ int extended;
+
+ /*
+ * Silly DOS geometry.
+ */
+ ccg = &ccb->ccg;
+ size_mb = ccg->volume_size
+ / ((1024L * 1024L) / ccg->block_size);
+ extended = 1;
+
+ if (size_mb > 1024 && extended) {
+ ccg->heads = 255;
+ ccg->secs_per_track = 63;
+ } else {
+ ccg->heads = 64;
+ ccg->secs_per_track = 32;
+ }
+ secs_per_cylinder = ccg->heads * ccg->secs_per_track;
+ ccg->cylinders = ccg->volume_size / secs_per_cylinder;
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+ break;
+ }
+ case XPT_PATH_INQ:
+ {
+ struct ccb_pathinq *cpi = &ccb->cpi;
+ cpi->version_num = 1;
+ cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
+ if ((np->features & FE_WIDE) != 0)
+ cpi->hba_inquiry |= PI_WIDE_16;
+ cpi->target_sprt = 0;
+ cpi->hba_misc = 0;
+ if (np->usrflags & SYM_SCAN_TARGETS_HILO)
+ cpi->hba_misc |= PIM_SCANHILO;
+ if (np->usrflags & SYM_AVOID_BUS_RESET)
+ cpi->hba_misc |= PIM_NOBUSRESET;
+ cpi->hba_eng_cnt = 0;
+ cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
+ /* Semantic problem:)LUN number max = max number of LUNs - 1 */
+ cpi->max_lun = SYM_CONF_MAX_LUN-1;
+ if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
+ cpi->max_lun = SYM_SETUP_MAX_LUN-1;
+ cpi->bus_id = cam_sim_bus(sim);
+ cpi->initiator_id = np->myaddr;
+ cpi->base_transfer_speed = 3300;
+ strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
+ strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
+ strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
+ cpi->unit_number = cam_sim_unit(sim);
+
+#ifdef FreeBSD_New_Tran_Settings
+ cpi->protocol = PROTO_SCSI;
+ cpi->protocol_version = SCSI_REV_2;
+ cpi->transport = XPORT_SPI;
+ cpi->transport_version = 2;
+ cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
+ if (np->features & FE_ULTRA3) {
+ cpi->transport_version = 3;
+ cpi->xport_specific.spi.ppr_options =
+ SID_SPI_CLOCK_DT_ST;
+ }
+#endif
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+ break;
+ }
+ case XPT_ABORT:
+ {
+ union ccb *abort_ccb = ccb->cab.abort_ccb;
+ switch(abort_ccb->ccb_h.func_code) {
+ case XPT_SCSI_IO:
+ if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+ break;
+ }
+ default:
+ sym_xpt_done2(np, ccb, CAM_UA_ABORT);
+ break;
+ }
+ break;
+ }
+ case XPT_RESET_DEV:
+ {
+ sym_reset_dev(np, ccb);
+ break;
+ }
+ case XPT_RESET_BUS:
+ {
+ sym_reset_scsi_bus(np, 0);
+ if (sym_verbose) {
+ xpt_print_path(np->path);
+ printf("SCSI BUS reset delivered.\n");
+ }
+ sym_init (np, 1);
+ sym_xpt_done2(np, ccb, CAM_REQ_CMP);
+ break;
+ }
+ case XPT_ACCEPT_TARGET_IO:
+ case XPT_CONT_TARGET_IO:
+ case XPT_EN_LUN:
+ case XPT_NOTIFY_ACK:
+ case XPT_IMMED_NOTIFY:
+ case XPT_TERM_IO:
+ default:
+ sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
+ break;
+ }
+}
+
+/*
+ * Asynchronous notification handler.
+ */
+static void
+sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
+{
+ hcb_p np;
+ struct cam_sim *sim;
+ u_int tn;
+ tcb_p tp;
+ int s;
+
+ s = splcam();
+
+ sim = (struct cam_sim *) cb_arg;
+ np = (hcb_p) cam_sim_softc(sim);
+
+ switch (code) {
+ case AC_LOST_DEVICE:
+ tn = xpt_path_target_id(path);
+ if (tn >= SYM_CONF_MAX_TARGET)
+ break;
+
+ tp = &np->target[tn];
+
+ tp->to_reset = 0;
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+
+ tp->tinfo.current.period = tp->tinfo.goal.period = 0;
+ tp->tinfo.current.offset = tp->tinfo.goal.offset = 0;
+ tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT;
+ tp->tinfo.current.options = tp->tinfo.goal.options = 0;
+
+ break;
+ default:
+ break;
+ }
+
+ splx(s);
+}
+
+/*
+ * Update transfer settings of a target.
+ */
+static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
+ struct ccb_trans_settings *cts)
+{
+ /*
+ * Update the infos.
+ */
+#ifdef FreeBSD_New_Tran_Settings
+#define cts__spi (&cts->xport_specific.spi)
+ if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
+ tip->width = cts__spi->bus_width;
+ if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
+ tip->offset = cts__spi->sync_offset;
+ if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
+ tip->period = cts__spi->sync_period;
+ if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
+ tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
+ if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
+ cts->protocol_version != PROTO_VERSION_UNKNOWN)
+ tip->scsi_version = cts->protocol_version;
+ if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
+ cts->transport_version != XPORT_VERSION_UNKNOWN)
+ tip->spi_version = cts->transport_version;
+#undef cts__spi
+#else
+ if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
+ tip->width = cts->bus_width;
+ if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
+ tip->offset = cts->sync_offset;
+ if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
+ tip->period = cts->sync_period;
+#endif
+ /*
+ * Scale against driver configuration limits.
+ */
+ if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE;
+ if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
+ if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
+
+ /*
+ * Scale against actual controller BUS width.
+ */
+ if (tip->width > np->maxwide)
+ tip->width = np->maxwide;
+
+#ifdef FreeBSD_New_Tran_Settings
+ /*
+ * Only accept DT if controller supports and SYNC/WIDE asked.
+ */
+ if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
+ !(tip->width == BUS_16_BIT && tip->offset)) {
+ tip->options &= ~PPR_OPT_DT;
+ }
+#else
+ /*
+ * For now, only assume DT if period <= 9, BUS 16 and offset != 0.
+ */
+ tip->options = 0;
+ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) &&
+ tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) {
+ tip->options |= PPR_OPT_DT;
+ }
+#endif
+
+ /*
+ * Scale period factor and offset against controller limits.
+ */
+ if (tip->options & PPR_OPT_DT) {
+ if (tip->period < np->minsync_dt)
+ tip->period = np->minsync_dt;
+ if (tip->period > np->maxsync_dt)
+ tip->period = np->maxsync_dt;
+ if (tip->offset > np->maxoffs_dt)
+ tip->offset = np->maxoffs_dt;
+ }
+ else {
+ if (tip->period < np->minsync)
+ tip->period = np->minsync;
+ if (tip->period > np->maxsync)
+ tip->period = np->maxsync;
+ if (tip->offset > np->maxoffs)
+ tip->offset = np->maxoffs;
+ }
+}
+
+/*
+ * Update flags for a device (logical unit).
+ */
+static void
+sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
+{
+#ifdef FreeBSD_New_Tran_Settings
+#define cts__scsi (&cts->proto_specific.scsi)
+#define cts__spi (&cts->xport_specific.spi)
+ if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
+ if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
+ *flags |= SYM_DISC_ENABLED;
+ else
+ *flags &= ~SYM_DISC_ENABLED;
+ }
+
+ if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
+ if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
+ *flags |= SYM_TAGS_ENABLED;
+ else
+ *flags &= ~SYM_TAGS_ENABLED;
+ }
+#undef cts__spi
+#undef cts__scsi
+#else
+ if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
+ if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
+ *flags |= SYM_DISC_ENABLED;
+ else
+ *flags &= ~SYM_DISC_ENABLED;
+ }
+
+ if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
+ if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
+ *flags |= SYM_TAGS_ENABLED;
+ else
+ *flags &= ~SYM_TAGS_ENABLED;
+ }
+#endif
+}
+
+
+/*============= DRIVER INITIALISATION ==================*/
+
+#ifdef FreeBSD_Bus_Io_Abstraction
+
+static device_method_t sym_pci_methods[] = {
+ DEVMETHOD(device_probe, sym_pci_probe),
+ DEVMETHOD(device_attach, sym_pci_attach),
+ { 0, 0 }
+};
+
+static driver_t sym_pci_driver = {
+ "sym",
+ sym_pci_methods,
+ sizeof(struct sym_hcb)
+};
+
+static devclass_t sym_devclass;
+
+DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
+
+#else /* Pre-FreeBSD_Bus_Io_Abstraction */
+
+static u_long sym_unit;
+
+static struct pci_device sym_pci_driver = {
+ "sym",
+ sym_pci_probe,
+ sym_pci_attach,
+ &sym_unit,
+ NULL
+};
+
+#if __FreeBSD_version >= 400000
+COMPAT_PCI_DRIVER (sym, sym_pci_driver);
+#else
+DATA_SET (pcidevice_set, sym_pci_driver);
+#endif
+
+#endif /* FreeBSD_Bus_Io_Abstraction */
+
+static struct sym_pci_chip sym_pci_dev_table[] = {
+ {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
+ FE_ERL}
+ ,
+#ifdef SYM_DEBUG_GENERIC_SUPPORT
+ {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
+ FE_BOF}
+ ,
+#else
+ {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
+ FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
+ ,
+#endif
+ {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64,
+ FE_BOF|FE_ERL}
+ ,
+ {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64,
+ FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
+ ,
+ {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
+ FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
+ ,
+ {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
+ FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
+ ,
+ {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF}
+ ,
+ {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF}
+ ,
+ {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF}
+ ,
+ {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF}
+ ,
+#ifdef SYM_DEBUG_GENERIC_SUPPORT
+ {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
+ FE_RAM|FE_LCKFRQ}
+ ,
+#else
+ {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_LCKFRQ}
+ ,
+#endif
+ {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
+ FE_C10}
+ ,
+ {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
+ FE_C10|FE_U3EN}
+ ,
+ {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
+ FE_C10|FE_U3EN}
+ ,
+ {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_IO256|FE_LEDC}
+};
+
+#define sym_pci_num_devs \
+ (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
+
+/*
+ * Look up the chip table.
+ *
+ * Return a pointer to the chip entry if found,
+ * zero otherwise.
+ */
+static struct sym_pci_chip *
+#ifdef FreeBSD_Bus_Io_Abstraction
+sym_find_pci_chip(device_t dev)
+#else
+sym_find_pci_chip(pcici_t pci_tag)
+#endif
+{
+ struct sym_pci_chip *chip;
+ int i;
+ u_short device_id;
+ u_char revision;
+
+#ifdef FreeBSD_Bus_Io_Abstraction
+ if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
+ return 0;
+
+ device_id = pci_get_device(dev);
+ revision = pci_get_revid(dev);
+#else
+ if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
+ return 0;
+
+ device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
+ revision = pci_cfgread(pci_tag, PCIR_REVID, 1);
+#endif
+
+ for (i = 0; i < sym_pci_num_devs; i++) {
+ chip = &sym_pci_dev_table[i];
+ if (device_id != chip->device_id)
+ continue;
+ if (revision > chip->revision_id)
+ continue;
+ return chip;
+ }
+
+ return 0;
+}
+
+/*
+ * Tell upper layer if the chip is supported.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+static int
+sym_pci_probe(device_t dev)
+{
+ struct sym_pci_chip *chip;
+
+ chip = sym_find_pci_chip(dev);
+ if (chip && sym_find_firmware(chip)) {
+ device_set_desc(dev, chip->name);
+ return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
+ }
+ return ENXIO;
+}
+#else /* Pre-FreeBSD_Bus_Io_Abstraction */
+static const char *
+sym_pci_probe(pcici_t pci_tag, pcidi_t type)
+{
+ struct sym_pci_chip *chip;
+
+ chip = sym_find_pci_chip(pci_tag);
+ if (chip && sym_find_firmware(chip)) {
+#if NNCR > 0
+ /* Only claim chips we are allowed to take precedence over the ncr */
+ if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
+#else
+ if (1)
+#endif
+ return chip->name;
+ }
+ return 0;
+}
+#endif
+
+/*
+ * Attach a sym53c8xx device.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+static int
+sym_pci_attach(device_t dev)
+#else
+static void
+sym_pci_attach(pcici_t pci_tag, int unit)
+{
+ int err = sym_pci_attach2(pci_tag, unit);
+ if (err)
+ printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
+}
+static int
+sym_pci_attach2(pcici_t pci_tag, int unit)
+#endif
+{
+ struct sym_pci_chip *chip;
+ u_short command;
+ u_char cachelnsz;
+ struct sym_hcb *np = 0;
+ struct sym_nvram nvram;
+ struct sym_fw *fw = 0;
+ int i;
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ bus_dma_tag_t bus_dmat;
+
+ /*
+ * I expected to be told about a parent
+ * DMA tag, but didn't find any.
+ */
+ bus_dmat = NULL;
+#endif
+
+ /*
+ * Only probed devices should be attached.
+ * We just enjoy being paranoid. :)
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ chip = sym_find_pci_chip(dev);
+#else
+ chip = sym_find_pci_chip(pci_tag);
+#endif
+ if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
+ return (ENXIO);
+
+ /*
+ * Allocate immediately the host control block,
+ * since we are only expecting to succeed. :)
+ * We keep track in the HCB of all the resources that
+ * are to be released on error.
+ */
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
+ if (np)
+ np->bus_dmat = bus_dmat;
+ else
+ goto attach_failed;
+#else
+ np = sym_calloc_dma(sizeof(*np), "HCB");
+ if (!np)
+ goto attach_failed;
+#endif
+
+ /*
+ * Copy some useful infos to the HCB.
+ */
+ np->hcb_ba = vtobus(np);
+ np->verbose = bootverbose;
+#ifdef FreeBSD_Bus_Io_Abstraction
+ np->device = dev;
+ np->unit = device_get_unit(dev);
+ np->device_id = pci_get_device(dev);
+ np->revision_id = pci_get_revid(dev);
+#else
+ np->pci_tag = pci_tag;
+ np->unit = unit;
+ np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
+ np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1);
+#endif
+ np->features = chip->features;
+ np->clock_divn = chip->nr_divisor;
+ np->maxoffs = chip->offset_max;
+ np->maxburst = chip->burst_max;
+ np->scripta_sz = fw->a_size;
+ np->scriptb_sz = fw->b_size;
+ np->fw_setup = fw->setup;
+ np->fw_patch = fw->patch;
+ np->fw_name = fw->name;
+
+ /*
+ * Edit its name.
+ */
+ snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
+
+ /*
+ * Initialyze the CCB free and busy queues.
+ */
+ sym_que_init(&np->free_ccbq);
+ sym_que_init(&np->busy_ccbq);
+ sym_que_init(&np->comp_ccbq);
+ sym_que_init(&np->cam_ccbq);
+
+ /*
+ * Allocate a tag for the DMA of user data.
+ */
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
+ BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
+ NULL, NULL,
+ BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
+ (1<<24), 0, &np->data_dmat)) {
+ device_printf(dev, "failed to create DMA tag.\n");
+ goto attach_failed;
+ }
+#endif
+ /*
+ * Read and apply some fix-ups to the PCI COMMAND
+ * register. We want the chip to be enabled for:
+ * - BUS mastering
+ * - PCI parity checking (reporting would also be fine)
+ * - Write And Invalidate.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ command = pci_read_config(dev, PCIR_COMMAND, 2);
+#else
+ command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
+#endif
+ command |= PCIM_CMD_BUSMASTEREN;
+ command |= PCIM_CMD_PERRESPEN;
+ command |= /* PCIM_CMD_MWIEN */ 0x0010;
+#ifdef FreeBSD_Bus_Io_Abstraction
+ pci_write_config(dev, PCIR_COMMAND, command, 2);
+#else
+ pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
+#endif
+
+ /*
+ * Let the device know about the cache line size,
+ * if it doesn't yet.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
+#else
+ cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
+#endif
+ if (!cachelnsz) {
+ cachelnsz = 8;
+#ifdef FreeBSD_Bus_Io_Abstraction
+ pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
+#else
+ pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
+#endif
+ }
+
+ /*
+ * Alloc/get/map/retrieve everything that deals with MMIO.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ if ((command & PCIM_CMD_MEMEN) != 0) {
+ int regs_id = SYM_PCI_MMIO;
+ np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
+ 0, ~0, 1, RF_ACTIVE);
+ }
+ if (!np->mmio_res) {
+ device_printf(dev, "failed to allocate MMIO resources\n");
+ goto attach_failed;
+ }
+ np->mmio_bsh = rman_get_bushandle(np->mmio_res);
+ np->mmio_tag = rman_get_bustag(np->mmio_res);
+ np->mmio_pa = rman_get_start(np->mmio_res);
+ np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res);
+ np->mmio_ba = np->mmio_pa;
+#else
+ if ((command & PCIM_CMD_MEMEN) != 0) {
+ vm_offset_t vaddr, paddr;
+ if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
+ printf("%s: failed to map MMIO window\n", sym_name(np));
+ goto attach_failed;
+ }
+ np->mmio_va = vaddr;
+ np->mmio_pa = paddr;
+ np->mmio_ba = paddr;
+ }
+#endif
+
+ /*
+ * Allocate the IRQ.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ i = 0;
+ np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
+ 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
+ if (!np->irq_res) {
+ device_printf(dev, "failed to allocate IRQ resource\n");
+ goto attach_failed;
+ }
+#endif
+
+#ifdef SYM_CONF_IOMAPPED
+ /*
+ * User want us to use normal IO with PCI.
+ * Alloc/get/map/retrieve everything that deals with IO.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
+ int regs_id = SYM_PCI_IO;
+ np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
+ 0, ~0, 1, RF_ACTIVE);
+ }
+ if (!np->io_res) {
+ device_printf(dev, "failed to allocate IO resources\n");
+ goto attach_failed;
+ }
+ np->io_bsh = rman_get_bushandle(np->io_res);
+ np->io_tag = rman_get_bustag(np->io_res);
+ np->io_port = rman_get_start(np->io_res);
+#else
+ if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
+ pci_port_t io_port;
+ if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
+ printf("%s: failed to map IO window\n", sym_name(np));
+ goto attach_failed;
+ }
+ np->io_port = io_port;
+ }
+#endif
+
+#endif /* SYM_CONF_IOMAPPED */
+
+ /*
+ * If the chip has RAM.
+ * Alloc/get/map/retrieve the corresponding resources.
+ */
+ if ((np->features & (FE_RAM|FE_RAM8K)) &&
+ (command & PCIM_CMD_MEMEN) != 0) {
+#ifdef FreeBSD_Bus_Io_Abstraction
+ int regs_id = SYM_PCI_RAM;
+ if (np->features & FE_64BIT)
+ regs_id = SYM_PCI_RAM64;
+ np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
+ 0, ~0, 1, RF_ACTIVE);
+ if (!np->ram_res) {
+ device_printf(dev,"failed to allocate RAM resources\n");
+ goto attach_failed;
+ }
+ np->ram_id = regs_id;
+ np->ram_bsh = rman_get_bushandle(np->ram_res);
+ np->ram_tag = rman_get_bustag(np->ram_res);
+ np->ram_pa = rman_get_start(np->ram_res);
+ np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res);
+ np->ram_ba = np->ram_pa;
+#else
+ vm_offset_t vaddr, paddr;
+ int regs_id = SYM_PCI_RAM;
+ if (np->features & FE_64BIT)
+ regs_id = SYM_PCI_RAM64;
+ if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
+ printf("%s: failed to map RAM window\n", sym_name(np));
+ goto attach_failed;
+ }
+ np->ram_va = vaddr;
+ np->ram_pa = paddr;
+ np->ram_ba = paddr;
+#endif
+ }
+
+ /*
+ * Save setting of some IO registers, so we will
+ * be able to probe specific implementations.
+ */
+ sym_save_initial_setting (np);
+
+ /*
+ * Reset the chip now, since it has been reported
+ * that SCSI clock calibration may not work properly
+ * if the chip is currently active.
+ */
+ sym_chip_reset (np);
+
+ /*
+ * Try to read the user set-up.
+ */
+ (void) sym_read_nvram(np, &nvram);
+
+ /*
+ * Prepare controller and devices settings, according
+ * to chip features, user set-up and driver set-up.
+ */
+ (void) sym_prepare_setting(np, &nvram);
+
+ /*
+ * Check the PCI clock frequency.
+ * Must be performed after prepare_setting since it destroys
+ * STEST1 that is used to probe for the clock doubler.
+ */
+ i = sym_getpciclock(np);
+ if (i > 37000)
+#ifdef FreeBSD_Bus_Io_Abstraction
+ device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
+#else
+ printf("%s: PCI BUS clock seems too high: %u KHz.\n",
+ sym_name(np), i);
+#endif
+
+ /*
+ * Allocate the start queue.
+ */
+ np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
+ if (!np->squeue)
+ goto attach_failed;
+ np->squeue_ba = vtobus(np->squeue);
+
+ /*
+ * Allocate the done queue.
+ */
+ np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
+ if (!np->dqueue)
+ goto attach_failed;
+ np->dqueue_ba = vtobus(np->dqueue);
+
+ /*
+ * Allocate the target bus address array.
+ */
+ np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
+ if (!np->targtbl)
+ goto attach_failed;
+ np->targtbl_ba = vtobus(np->targtbl);
+
+ /*
+ * Allocate SCRIPTS areas.
+ */
+ np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
+ np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
+ if (!np->scripta0 || !np->scriptb0)
+ goto attach_failed;
+
+ /*
+ * Allocate some CCB. We need at least ONE.
+ */
+ if (!sym_alloc_ccb(np))
+ goto attach_failed;
+
+ /*
+ * Calculate BUS addresses where we are going
+ * to load the SCRIPTS.
+ */
+ np->scripta_ba = vtobus(np->scripta0);
+ np->scriptb_ba = vtobus(np->scriptb0);
+ np->scriptb0_ba = np->scriptb_ba;
+
+ if (np->ram_ba) {
+ np->scripta_ba = np->ram_ba;
+ if (np->features & FE_RAM8K) {
+ np->ram_ws = 8192;
+ np->scriptb_ba = np->scripta_ba + 4096;
+#if BITS_PER_LONG > 32
+ np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
+#endif
+ }
+ else
+ np->ram_ws = 4096;
+ }
+
+ /*
+ * Copy scripts to controller instance.
+ */
+ bcopy(fw->a_base, np->scripta0, np->scripta_sz);
+ bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
+
+ /*
+ * Setup variable parts in scripts and compute
+ * scripts bus addresses used from the C code.
+ */
+ np->fw_setup(np, fw);
+
+ /*
+ * Bind SCRIPTS with physical addresses usable by the
+ * SCRIPTS processor (as seen from the BUS = BUS addresses).
+ */
+ sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
+ sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user wants IARB to be set when we win arbitration
+ * and have other jobs, compute the max number of consecutive
+ * settings of IARB hints before we leave devices a chance to
+ * arbitrate for reselection.
+ */
+#ifdef SYM_SETUP_IARB_MAX
+ np->iarb_max = SYM_SETUP_IARB_MAX;
+#else
+ np->iarb_max = 4;
+#endif
+#endif
+
+ /*
+ * Prepare the idle and invalid task actions.
+ */
+ np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
+ np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
+ np->idletask_ba = vtobus(&np->idletask);
+
+ np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
+ np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
+ np->notask_ba = vtobus(&np->notask);
+
+ np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
+ np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
+ np->bad_itl_ba = vtobus(&np->bad_itl);
+
+ np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
+ np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
+ np->bad_itlq_ba = vtobus(&np->bad_itlq);
+
+ /*
+ * Allocate and prepare the lun JUMP table that is used
+ * for a target prior the probing of devices (bad lun table).
+ * A private table will be allocated for the target on the
+ * first INQUIRY response received.
+ */
+ np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
+ if (!np->badluntbl)
+ goto attach_failed;
+
+ np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
+ for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
+ np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
+
+ /*
+ * Prepare the bus address array that contains the bus
+ * address of each target control block.
+ * For now, assume all logical units are wrong. :)
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
+ np->target[i].head.luntbl_sa =
+ cpu_to_scr(vtobus(np->badluntbl));
+ np->target[i].head.lun0_sa =
+ cpu_to_scr(vtobus(&np->badlun_sa));
+ }
+
+ /*
+ * Now check the cache handling of the pci chipset.
+ */
+ if (sym_snooptest (np)) {
+#ifdef FreeBSD_Bus_Io_Abstraction
+ device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
+#else
+ printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
+#endif
+ goto attach_failed;
+ };
+
+ /*
+ * Now deal with CAM.
+ * Hopefully, we will succeed with that one.:)
+ */
+ if (!sym_cam_attach(np))
+ goto attach_failed;
+
+ /*
+ * Sigh! we are done.
+ */
+ return 0;
+
+ /*
+ * We have failed.
+ * We will try to free all the resources we have
+ * allocated, but if we are a boot device, this
+ * will not help that much.;)
+ */
+attach_failed:
+ if (np)
+ sym_pci_free(np);
+ return ENXIO;
+}
+
+/*
+ * Free everything that have been allocated for this device.
+ */
+static void sym_pci_free(hcb_p np)
+{
+ SYM_QUEHEAD *qp;
+ ccb_p cp;
+ tcb_p tp;
+ lcb_p lp;
+ int target, lun;
+ int s;
+
+ /*
+ * First free CAM resources.
+ */
+ s = splcam();
+ sym_cam_free(np);
+ splx(s);
+
+ /*
+ * Now every should be quiet for us to
+ * free other resources.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ if (np->ram_res)
+ bus_release_resource(np->device, SYS_RES_MEMORY,
+ np->ram_id, np->ram_res);
+ if (np->mmio_res)
+ bus_release_resource(np->device, SYS_RES_MEMORY,
+ SYM_PCI_MMIO, np->mmio_res);
+ if (np->io_res)
+ bus_release_resource(np->device, SYS_RES_IOPORT,
+ SYM_PCI_IO, np->io_res);
+ if (np->irq_res)
+ bus_release_resource(np->device, SYS_RES_IRQ,
+ 0, np->irq_res);
+#else
+ /*
+ * YEAH!!!
+ * It seems there is no means to free MMIO resources.
+ */
+#endif
+
+ if (np->scriptb0)
+ sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
+ if (np->scripta0)
+ sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
+ if (np->squeue)
+ sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
+ if (np->dqueue)
+ sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
+
+ while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ bus_dmamap_destroy(np->data_dmat, cp->dmamap);
+#endif
+ sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
+ sym_mfree_dma(cp, sizeof(*cp), "CCB");
+ }
+
+ if (np->badluntbl)
+ sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
+
+ for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
+ tp = &np->target[target];
+ for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
+ lp = sym_lp(np, tp, lun);
+ if (!lp)
+ continue;
+ if (lp->itlq_tbl)
+ sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
+ "ITLQ_TBL");
+ if (lp->cb_tags)
+ sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
+ "CB_TAGS");
+ sym_mfree_dma(lp, sizeof(*lp), "LCB");
+ }
+#if SYM_CONF_MAX_LUN > 1
+ if (tp->lunmp)
+ sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
+ "LUNMP");
+#endif
+ }
+ if (np->targtbl)
+ sym_mfree_dma(np->targtbl, 256, "TARGTBL");
+#ifdef FreeBSD_Bus_Dma_Abstraction
+ if (np->data_dmat)
+ bus_dma_tag_destroy(np->data_dmat);
+#endif
+ sym_mfree_dma(np, sizeof(*np), "HCB");
+}
+
+/*
+ * Allocate CAM resources and register a bus to CAM.
+ */
+static int sym_cam_attach(hcb_p np)
+{
+ struct cam_devq *devq = 0;
+ struct cam_sim *sim = 0;
+ struct cam_path *path = 0;
+ struct ccb_setasync csa;
+ int err, s;
+
+ s = splcam();
+
+ /*
+ * Establish our interrupt handler.
+ */
+#ifdef FreeBSD_Bus_Io_Abstraction
+ err = bus_setup_intr(np->device, np->irq_res,
+ INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np,
+ &np->intr);
+ if (err) {
+ device_printf(np->device, "bus_setup_intr() failed: %d\n",
+ err);
+ goto fail;
+ }
+#else
+ err = 0;
+ if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) {
+ printf("%s: failed to map interrupt\n", sym_name(np));
+ goto fail;
+ }
+#endif
+
+ /*
+ * Create the device queue for our sym SIM.
+ */
+ devq = cam_simq_alloc(SYM_CONF_MAX_START);
+ if (!devq)
+ goto fail;
+
+ /*
+ * Construct our SIM entry.
+ */
+ sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
+ 1, SYM_SETUP_MAX_TAG, devq);
+ if (!sim)
+ goto fail;
+ devq = 0;
+
+ if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
+ goto fail;
+ np->sim = sim;
+ sim = 0;
+
+ if (xpt_create_path(&path, 0,
+ cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
+ CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
+ goto fail;
+ }
+ np->path = path;
+
+ /*
+ * Hmmm... This should be useful, but I donnot want to
+ * know about.
+ */
+#if __FreeBSD_version < 400000
+#ifdef __alpha__
+#ifdef FreeBSD_Bus_Io_Abstraction
+ alpha_register_pci_scsi(pci_get_bus(np->device),
+ pci_get_slot(np->device), np->sim);
+#else
+ alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim);
+#endif
+#endif
+#endif
+
+ /*
+ * Establish our async notification handler.
+ */
+ xpt_setup_ccb(&csa.ccb_h, np->path, 5);
+ csa.ccb_h.func_code = XPT_SASYNC_CB;
+ csa.event_enable = AC_LOST_DEVICE;
+ csa.callback = sym_async;
+ csa.callback_arg = np->sim;
+ xpt_action((union ccb *)&csa);
+
+ /*
+ * Start the chip now, without resetting the BUS, since
+ * it seems that this must stay under control of CAM.
+ * With LVD/SE capable chips and BUS in SE mode, we may
+ * get a spurious SMBC interrupt.
+ */
+ sym_init (np, 0);
+
+ splx(s);
+ return 1;
+fail:
+ if (sim)
+ cam_sim_free(sim, FALSE);
+ if (devq)
+ cam_simq_free(devq);
+
+ sym_cam_free(np);
+
+ splx(s);
+ return 0;
+}
+
+/*
+ * Free everything that deals with CAM.
+ */
+static void sym_cam_free(hcb_p np)
+{
+#ifdef FreeBSD_Bus_Io_Abstraction
+ if (np->intr)
+ bus_teardown_intr(np->device, np->irq_res, np->intr);
+#else
+ /* pci_unmap_int(np->pci_tag); */ /* Does nothing */
+#endif
+
+ if (np->sim) {
+ xpt_bus_deregister(cam_sim_path(np->sim));
+ cam_sim_free(np->sim, /*free_devq*/ TRUE);
+ }
+ if (np->path)
+ xpt_free_path(np->path);
+}
+
+/*============ OPTIONNAL NVRAM SUPPORT =================*/
+
+/*
+ * Get host setup from NVRAM.
+ */
+static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
+{
+#ifdef SYM_CONF_NVRAM_SUPPORT
+ /*
+ * Get parity checking, host ID, verbose mode
+ * and miscellaneous host flags from NVRAM.
+ */
+ switch(nvram->type) {
+ case SYM_SYMBIOS_NVRAM:
+ if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
+ np->rv_scntl0 &= ~0x0a;
+ np->myaddr = nvram->data.Symbios.host_id & 0x0f;
+ if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
+ np->verbose += 1;
+ if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
+ np->usrflags |= SYM_SCAN_TARGETS_HILO;
+ if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
+ np->usrflags |= SYM_AVOID_BUS_RESET;
+ break;
+ case SYM_TEKRAM_NVRAM:
+ np->myaddr = nvram->data.Tekram.host_id & 0x0f;
+ break;
+ default:
+ break;
+ }
+#endif
+}
+
+/*
+ * Get target setup from NVRAM.
+ */
+#ifdef SYM_CONF_NVRAM_SUPPORT
+static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
+static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
+#endif
+
+static void
+sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
+{
+#ifdef SYM_CONF_NVRAM_SUPPORT
+ switch(nvp->type) {
+ case SYM_SYMBIOS_NVRAM:
+ sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
+ break;
+ case SYM_TEKRAM_NVRAM:
+ sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
+ break;
+ default:
+ break;
+ }
+#endif
+}
+
+#ifdef SYM_CONF_NVRAM_SUPPORT
+/*
+ * Get target set-up from Symbios format NVRAM.
+ */
+static void
+sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
+{
+ tcb_p tp = &np->target[target];
+ Symbios_target *tn = &nvram->target[target];
+
+ tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
+ tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
+ tp->usrtags =
+ (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
+
+ if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
+ tp->usrflags &= ~SYM_DISC_ENABLED;
+ if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
+ tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
+ if (!(tn->flags & SYMBIOS_SCAN_LUNS))
+ tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
+}
+
+/*
+ * Get target set-up from Tekram format NVRAM.
+ */
+static void
+sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
+{
+ tcb_p tp = &np->target[target];
+ struct Tekram_target *tn = &nvram->target[target];
+ int i;
+
+ if (tn->flags & TEKRAM_SYNC_NEGO) {
+ i = tn->sync_index & 0xf;
+ tp->tinfo.user.period = Tekram_sync[i];
+ }
+
+ tp->tinfo.user.width =
+ (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
+
+ if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
+ tp->usrtags = 2 << nvram->max_tags_index;
+ }
+
+ if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
+ tp->usrflags |= SYM_DISC_ENABLED;
+
+ /* If any device does not support parity, we will not use this option */
+ if (!(tn->flags & TEKRAM_PARITY_CHECK))
+ np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
+}
+
+#ifdef SYM_CONF_DEBUG_NVRAM
+/*
+ * Dump Symbios format NVRAM for debugging purpose.
+ */
+static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
+{
+ int i;
+
+ /* display Symbios nvram host data */
+ printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
+ sym_name(np), nvram->host_id & 0x0f,
+ (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
+ (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
+ (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
+ (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
+ (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"",
+ (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
+
+ /* display Symbios nvram drive data */
+ for (i = 0 ; i < 15 ; i++) {
+ struct Symbios_target *tn = &nvram->target[i];
+ printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
+ sym_name(np), i,
+ (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
+ (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
+ (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
+ (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
+ tn->bus_width,
+ tn->sync_period / 4,
+ tn->timeout);
+ }
+}
+
+/*
+ * Dump TEKRAM format NVRAM for debugging purpose.
+ */
+static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
+static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
+{
+ int i, tags, boot_delay;
+ char *rem;
+
+ /* display Tekram nvram host data */
+ tags = 2 << nvram->max_tags_index;
+ boot_delay = 0;
+ if (nvram->boot_delay_index < 6)
+ boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
+ switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
+ default:
+ case 0: rem = ""; break;
+ case 1: rem = " REMOVABLE=boot device"; break;
+ case 2: rem = " REMOVABLE=all"; break;
+ }
+
+ printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
+ sym_name(np), nvram->host_id & 0x0f,
+ (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
+ (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"",
+ (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
+ (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
+ (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
+ (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
+ (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
+ (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
+ rem, boot_delay, tags);
+
+ /* display Tekram nvram drive data */
+ for (i = 0; i <= 15; i++) {
+ int sync, j;
+ struct Tekram_target *tn = &nvram->target[i];
+ j = tn->sync_index & 0xf;
+ sync = Tekram_sync[j];
+ printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
+ sym_name(np), i,
+ (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
+ (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
+ (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
+ (tn->flags & TEKRAM_START_CMD) ? " START" : "",
+ (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
+ (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
+ sync);
+ }
+}
+#endif /* SYM_CONF_DEBUG_NVRAM */
+#endif /* SYM_CONF_NVRAM_SUPPORT */
+
+
+/*
+ * Try reading Symbios or Tekram NVRAM
+ */
+#ifdef SYM_CONF_NVRAM_SUPPORT
+static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
+static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram);
+#endif
+
+static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
+{
+#ifdef SYM_CONF_NVRAM_SUPPORT
+ /*
+ * Try to read SYMBIOS nvram.
+ * Try to read TEKRAM nvram if Symbios nvram not found.
+ */
+ if (SYM_SETUP_SYMBIOS_NVRAM &&
+ !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
+ nvp->type = SYM_SYMBIOS_NVRAM;
+#ifdef SYM_CONF_DEBUG_NVRAM
+ sym_display_Symbios_nvram(np, &nvp->data.Symbios);
+#endif
+ }
+ else if (SYM_SETUP_TEKRAM_NVRAM &&
+ !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
+ nvp->type = SYM_TEKRAM_NVRAM;
+#ifdef SYM_CONF_DEBUG_NVRAM
+ sym_display_Tekram_nvram(np, &nvp->data.Tekram);
+#endif
+ }
+ else
+ nvp->type = 0;
+#else
+ nvp->type = 0;
+#endif
+ return nvp->type;
+}
+
+
+#ifdef SYM_CONF_NVRAM_SUPPORT
+/*
+ * 24C16 EEPROM reading.
+ *
+ * GPOI0 - data in/data out
+ * GPIO1 - clock
+ * Symbios NVRAM wiring now also used by Tekram.
+ */
+
+#define SET_BIT 0
+#define CLR_BIT 1
+#define SET_CLK 2
+#define CLR_CLK 3
+
+/*
+ * Set/clear data/clock bit in GPIO0
+ */
+static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
+ int bit_mode)
+{
+ UDELAY (5);
+ switch (bit_mode){
+ case SET_BIT:
+ *gpreg |= write_bit;
+ break;
+ case CLR_BIT:
+ *gpreg &= 0xfe;
+ break;
+ case SET_CLK:
+ *gpreg |= 0x02;
+ break;
+ case CLR_CLK:
+ *gpreg &= 0xfd;
+ break;
+
+ }
+ OUTB (nc_gpreg, *gpreg);
+ UDELAY (5);
+}
+
+/*
+ * Send START condition to NVRAM to wake it up.
+ */
+static void S24C16_start(hcb_p np, u_char *gpreg)
+{
+ S24C16_set_bit(np, 1, gpreg, SET_BIT);
+ S24C16_set_bit(np, 0, gpreg, SET_CLK);
+ S24C16_set_bit(np, 0, gpreg, CLR_BIT);
+ S24C16_set_bit(np, 0, gpreg, CLR_CLK);
+}
+
+/*
+ * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
+ */
+static void S24C16_stop(hcb_p np, u_char *gpreg)
+{
+ S24C16_set_bit(np, 0, gpreg, SET_CLK);
+ S24C16_set_bit(np, 1, gpreg, SET_BIT);
+}
+
+/*
+ * Read or write a bit to the NVRAM,
+ * read if GPIO0 input else write if GPIO0 output
+ */
+static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
+ u_char *gpreg)
+{
+ S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
+ S24C16_set_bit(np, 0, gpreg, SET_CLK);
+ if (read_bit)
+ *read_bit = INB (nc_gpreg);
+ S24C16_set_bit(np, 0, gpreg, CLR_CLK);
+ S24C16_set_bit(np, 0, gpreg, CLR_BIT);
+}
+
+/*
+ * Output an ACK to the NVRAM after reading,
+ * change GPIO0 to output and when done back to an input
+ */
+static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
+ u_char *gpcntl)
+{
+ OUTB (nc_gpcntl, *gpcntl & 0xfe);
+ S24C16_do_bit(np, 0, write_bit, gpreg);
+ OUTB (nc_gpcntl, *gpcntl);
+}
+
+/*
+ * Input an ACK from NVRAM after writing,
+ * change GPIO0 to input and when done back to an output
+ */
+static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
+ u_char *gpcntl)
+{
+ OUTB (nc_gpcntl, *gpcntl | 0x01);
+ S24C16_do_bit(np, read_bit, 1, gpreg);
+ OUTB (nc_gpcntl, *gpcntl);
+}
+
+/*
+ * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
+ * GPIO0 must already be set as an output
+ */
+static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
+ u_char *gpreg, u_char *gpcntl)
+{
+ int x;
+
+ for (x = 0; x < 8; x++)
+ S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
+
+ S24C16_read_ack(np, ack_data, gpreg, gpcntl);
+}
+
+/*
+ * READ a byte from the NVRAM and then send an ACK to say we have got it,
+ * GPIO0 must already be set as an input
+ */
+static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
+ u_char *gpreg, u_char *gpcntl)
+{
+ int x;
+ u_char read_bit;
+
+ *read_data = 0;
+ for (x = 0; x < 8; x++) {
+ S24C16_do_bit(np, &read_bit, 1, gpreg);
+ *read_data |= ((read_bit & 0x01) << (7 - x));
+ }
+
+ S24C16_write_ack(np, ack_data, gpreg, gpcntl);
+}
+
+/*
+ * Read 'len' bytes starting at 'offset'.
+ */
+static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
+{
+ u_char gpcntl, gpreg;
+ u_char old_gpcntl, old_gpreg;
+ u_char ack_data;
+ int retv = 1;
+ int x;
+
+ /* save current state of GPCNTL and GPREG */
+ old_gpreg = INB (nc_gpreg);
+ old_gpcntl = INB (nc_gpcntl);
+ gpcntl = old_gpcntl & 0x1c;
+
+ /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
+ OUTB (nc_gpreg, old_gpreg);
+ OUTB (nc_gpcntl, gpcntl);
+
+ /* this is to set NVRAM into a known state with GPIO0/1 both low */
+ gpreg = old_gpreg;
+ S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
+ S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
+
+ /* now set NVRAM inactive with GPIO0/1 both high */
+ S24C16_stop(np, &gpreg);
+
+ /* activate NVRAM */
+ S24C16_start(np, &gpreg);
+
+ /* write device code and random address MSB */
+ S24C16_write_byte(np, &ack_data,
+ 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
+ if (ack_data & 0x01)
+ goto out;
+
+ /* write random address LSB */
+ S24C16_write_byte(np, &ack_data,
+ offset & 0xff, &gpreg, &gpcntl);
+ if (ack_data & 0x01)
+ goto out;
+
+ /* regenerate START state to set up for reading */
+ S24C16_start(np, &gpreg);
+
+ /* rewrite device code and address MSB with read bit set (lsb = 0x01) */
+ S24C16_write_byte(np, &ack_data,
+ 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
+ if (ack_data & 0x01)
+ goto out;
+
+ /* now set up GPIO0 for inputting data */
+ gpcntl |= 0x01;
+ OUTB (nc_gpcntl, gpcntl);
+
+ /* input all requested data - only part of total NVRAM */
+ for (x = 0; x < len; x++)
+ S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
+
+ /* finally put NVRAM back in inactive mode */
+ gpcntl &= 0xfe;
+ OUTB (nc_gpcntl, gpcntl);
+ S24C16_stop(np, &gpreg);
+ retv = 0;
+out:
+ /* return GPIO0/1 to original states after having accessed NVRAM */
+ OUTB (nc_gpcntl, old_gpcntl);
+ OUTB (nc_gpreg, old_gpreg);
+
+ return retv;
+}
+
+#undef SET_BIT /* 0 */
+#undef CLR_BIT /* 1 */
+#undef SET_CLK /* 2 */
+#undef CLR_CLK /* 3 */
+
+/*
+ * Try reading Symbios NVRAM.
+ * Return 0 if OK.
+ */
+static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
+{
+ static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
+ u_char *data = (u_char *) nvram;
+ int len = sizeof(*nvram);
+ u_short csum;
+ int x;
+
+ /* probe the 24c16 and read the SYMBIOS 24c16 area */
+ if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
+ return 1;
+
+ /* check valid NVRAM signature, verify byte count and checksum */
+ if (nvram->type != 0 ||
+ bcmp(nvram->trailer, Symbios_trailer, 6) ||
+ nvram->byte_count != len - 12)
+ return 1;
+
+ /* verify checksum */
+ for (x = 6, csum = 0; x < len - 6; x++)
+ csum += data[x];
+ if (csum != nvram->checksum)
+ return 1;
+
+ return 0;
+}
+
+/*
+ * 93C46 EEPROM reading.
+ *
+ * GPOI0 - data in
+ * GPIO1 - data out
+ * GPIO2 - clock
+ * GPIO4 - chip select
+ *
+ * Used by Tekram.
+ */
+
+/*
+ * Pulse clock bit in GPIO0
+ */
+static void T93C46_Clk(hcb_p np, u_char *gpreg)
+{
+ OUTB (nc_gpreg, *gpreg | 0x04);
+ UDELAY (2);
+ OUTB (nc_gpreg, *gpreg);
+}
+
+/*
+ * Read bit from NVRAM
+ */
+static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
+{
+ UDELAY (2);
+ T93C46_Clk(np, gpreg);
+ *read_bit = INB (nc_gpreg);
+}
+
+/*
+ * Write bit to GPIO0
+ */
+static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
+{
+ if (write_bit & 0x01)
+ *gpreg |= 0x02;
+ else
+ *gpreg &= 0xfd;
+
+ *gpreg |= 0x10;
+
+ OUTB (nc_gpreg, *gpreg);
+ UDELAY (2);
+
+ T93C46_Clk(np, gpreg);
+}
+
+/*
+ * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
+ */
+static void T93C46_Stop(hcb_p np, u_char *gpreg)
+{
+ *gpreg &= 0xef;
+ OUTB (nc_gpreg, *gpreg);
+ UDELAY (2);
+
+ T93C46_Clk(np, gpreg);
+}
+
+/*
+ * Send read command and address to NVRAM
+ */
+static void T93C46_Send_Command(hcb_p np, u_short write_data,
+ u_char *read_bit, u_char *gpreg)
+{
+ int x;
+
+ /* send 9 bits, start bit (1), command (2), address (6) */
+ for (x = 0; x < 9; x++)
+ T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
+
+ *read_bit = INB (nc_gpreg);
+}
+
+/*
+ * READ 2 bytes from the NVRAM
+ */
+static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
+{
+ int x;
+ u_char read_bit;
+
+ *nvram_data = 0;
+ for (x = 0; x < 16; x++) {
+ T93C46_Read_Bit(np, &read_bit, gpreg);
+
+ if (read_bit & 0x01)
+ *nvram_data |= (0x01 << (15 - x));
+ else
+ *nvram_data &= ~(0x01 << (15 - x));
+ }
+}
+
+/*
+ * Read Tekram NvRAM data.
+ */
+static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
+{
+ u_char read_bit;
+ int x;
+
+ for (x = 0; x < len; x++) {
+
+ /* output read command and address */
+ T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
+ if (read_bit & 0x01)
+ return 1; /* Bad */
+ T93C46_Read_Word(np, &data[x], gpreg);
+ T93C46_Stop(np, gpreg);
+ }
+
+ return 0;
+}
+
+/*
+ * Try reading 93C46 Tekram NVRAM.
+ */
+static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
+{
+ u_char gpcntl, gpreg;
+ u_char old_gpcntl, old_gpreg;
+ int retv = 1;
+
+ /* save current state of GPCNTL and GPREG */
+ old_gpreg = INB (nc_gpreg);
+ old_gpcntl = INB (nc_gpcntl);
+
+ /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
+ 1/2/4 out */
+ gpreg = old_gpreg & 0xe9;
+ OUTB (nc_gpreg, gpreg);
+ gpcntl = (old_gpcntl & 0xe9) | 0x09;
+ OUTB (nc_gpcntl, gpcntl);
+
+ /* input all of NVRAM, 64 words */
+ retv = T93C46_Read_Data(np, (u_short *) nvram,
+ sizeof(*nvram) / sizeof(short), &gpreg);
+
+ /* return GPIO0/1/2/4 to original states after having accessed NVRAM */
+ OUTB (nc_gpcntl, old_gpcntl);
+ OUTB (nc_gpreg, old_gpreg);
+
+ return retv;
+}
+
+/*
+ * Try reading Tekram NVRAM.
+ * Return 0 if OK.
+ */
+static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
+{
+ u_char *data = (u_char *) nvram;
+ int len = sizeof(*nvram);
+ u_short csum;
+ int x;
+
+ switch (np->device_id) {
+ case PCI_ID_SYM53C885:
+ case PCI_ID_SYM53C895:
+ case PCI_ID_SYM53C896:
+ x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
+ data, len);
+ break;
+ case PCI_ID_SYM53C875:
+ x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
+ data, len);
+ if (!x)
+ break;
+ default:
+ x = sym_read_T93C46_nvram(np, nvram);
+ break;
+ }
+ if (x)
+ return 1;
+
+ /* verify checksum */
+ for (x = 0, csum = 0; x < len - 1; x += 2)
+ csum += data[x] + (data[x+1] << 8);
+ if (csum != 0x1234)
+ return 1;
+
+ return 0;
+}
+
+#endif /* SYM_CONF_NVRAM_SUPPORT */
OpenPOWER on IntegriCloud