summaryrefslogtreecommitdiffstats
path: root/sys/dev/sk/if_sk.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/sk/if_sk.c')
-rw-r--r--sys/dev/sk/if_sk.c2239
1 files changed, 2239 insertions, 0 deletions
diff --git a/sys/dev/sk/if_sk.c b/sys/dev/sk/if_sk.c
new file mode 100644
index 0000000..0ffbae1
--- /dev/null
+++ b/sys/dev/sk/if_sk.c
@@ -0,0 +1,2239 @@
+/*
+ * Copyright (c) 1997, 1998, 1999, 2000
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
+ * the SK-984x series adapters, both single port and dual port.
+ * References:
+ * The XaQti XMAC II datasheet,
+ * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
+ * The SysKonnect GEnesis manual, http://www.syskonnect.com
+ *
+ * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
+ * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
+ * convenience to others until Vitesse corrects this problem:
+ *
+ * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
+ *
+ * Written by Bill Paul <wpaul@ee.columbia.edu>
+ * Department of Electrical Engineering
+ * Columbia University, New York City
+ */
+
+/*
+ * The SysKonnect gigabit ethernet adapters consist of two main
+ * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
+ * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
+ * components and a PHY while the GEnesis controller provides a PCI
+ * interface with DMA support. Each card may have between 512K and
+ * 2MB of SRAM on board depending on the configuration.
+ *
+ * The SysKonnect GEnesis controller can have either one or two XMAC
+ * chips connected to it, allowing single or dual port NIC configurations.
+ * SysKonnect has the distinction of being the only vendor on the market
+ * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
+ * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
+ * XMAC registers. This driver takes advantage of these features to allow
+ * both XMACs to operate as independent interfaces.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/socket.h>
+#include <sys/queue.h>
+
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#include <net/bpf.h>
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+#include <machine/bus_pio.h>
+#include <machine/bus_memio.h>
+#include <machine/bus.h>
+#include <machine/resource.h>
+#include <sys/bus.h>
+#include <sys/rman.h>
+
+#include <dev/mii/mii.h>
+#include <dev/mii/miivar.h>
+#include <dev/mii/brgphyreg.h>
+
+#include <pci/pcireg.h>
+#include <pci/pcivar.h>
+
+#define SK_USEIOSPACE
+
+#include <pci/if_skreg.h>
+#include <pci/xmaciireg.h>
+
+MODULE_DEPEND(sk, pci, 1, 1, 1);
+MODULE_DEPEND(sk, ether, 1, 1, 1);
+MODULE_DEPEND(sk, miibus, 1, 1, 1);
+
+/* "controller miibus0" required. See GENERIC if you get errors here. */
+#include "miibus_if.h"
+
+#ifndef lint
+static const char rcsid[] =
+ "$FreeBSD$";
+#endif
+
+static struct sk_type sk_devs[] = {
+ { SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
+ { 0, 0, NULL }
+};
+
+static int sk_probe (device_t);
+static int sk_attach (device_t);
+static int sk_detach (device_t);
+static int sk_detach_xmac (device_t);
+static int sk_probe_xmac (device_t);
+static int sk_attach_xmac (device_t);
+static void sk_tick (void *);
+static void sk_intr (void *);
+static void sk_intr_xmac (struct sk_if_softc *);
+static void sk_intr_bcom (struct sk_if_softc *);
+static void sk_rxeof (struct sk_if_softc *);
+static void sk_txeof (struct sk_if_softc *);
+static int sk_encap (struct sk_if_softc *, struct mbuf *,
+ u_int32_t *);
+static void sk_start (struct ifnet *);
+static int sk_ioctl (struct ifnet *, u_long, caddr_t);
+static void sk_init (void *);
+static void sk_init_xmac (struct sk_if_softc *);
+static void sk_stop (struct sk_if_softc *);
+static void sk_watchdog (struct ifnet *);
+static void sk_shutdown (device_t);
+static int sk_ifmedia_upd (struct ifnet *);
+static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *);
+static void sk_reset (struct sk_softc *);
+static int sk_newbuf (struct sk_if_softc *,
+ struct sk_chain *, struct mbuf *);
+static int sk_alloc_jumbo_mem (struct sk_if_softc *);
+static void *sk_jalloc (struct sk_if_softc *);
+static void sk_jfree (void *, void *);
+static int sk_init_rx_ring (struct sk_if_softc *);
+static void sk_init_tx_ring (struct sk_if_softc *);
+static u_int32_t sk_win_read_4 (struct sk_softc *, int);
+static u_int16_t sk_win_read_2 (struct sk_softc *, int);
+static u_int8_t sk_win_read_1 (struct sk_softc *, int);
+static void sk_win_write_4 (struct sk_softc *, int, u_int32_t);
+static void sk_win_write_2 (struct sk_softc *, int, u_int32_t);
+static void sk_win_write_1 (struct sk_softc *, int, u_int32_t);
+static u_int8_t sk_vpd_readbyte (struct sk_softc *, int);
+static void sk_vpd_read_res (struct sk_softc *, struct vpd_res *, int);
+static void sk_vpd_read (struct sk_softc *);
+
+static int sk_miibus_readreg (device_t, int, int);
+static int sk_miibus_writereg (device_t, int, int, int);
+static void sk_miibus_statchg (device_t);
+
+static u_int32_t sk_calchash (caddr_t);
+static void sk_setfilt (struct sk_if_softc *, caddr_t, int);
+static void sk_setmulti (struct sk_if_softc *);
+
+#ifdef SK_USEIOSPACE
+#define SK_RES SYS_RES_IOPORT
+#define SK_RID SK_PCI_LOIO
+#else
+#define SK_RES SYS_RES_MEMORY
+#define SK_RID SK_PCI_LOMEM
+#endif
+
+/*
+ * Note that we have newbus methods for both the GEnesis controller
+ * itself and the XMAC(s). The XMACs are children of the GEnesis, and
+ * the miibus code is a child of the XMACs. We need to do it this way
+ * so that the miibus drivers can access the PHY registers on the
+ * right PHY. It's not quite what I had in mind, but it's the only
+ * design that achieves the desired effect.
+ */
+static device_method_t skc_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, sk_probe),
+ DEVMETHOD(device_attach, sk_attach),
+ DEVMETHOD(device_detach, sk_detach),
+ DEVMETHOD(device_shutdown, sk_shutdown),
+
+ /* bus interface */
+ DEVMETHOD(bus_print_child, bus_generic_print_child),
+ DEVMETHOD(bus_driver_added, bus_generic_driver_added),
+
+ { 0, 0 }
+};
+
+static driver_t skc_driver = {
+ "skc",
+ skc_methods,
+ sizeof(struct sk_softc)
+};
+
+static devclass_t skc_devclass;
+
+static device_method_t sk_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, sk_probe_xmac),
+ DEVMETHOD(device_attach, sk_attach_xmac),
+ DEVMETHOD(device_detach, sk_detach_xmac),
+ DEVMETHOD(device_shutdown, bus_generic_shutdown),
+
+ /* bus interface */
+ DEVMETHOD(bus_print_child, bus_generic_print_child),
+ DEVMETHOD(bus_driver_added, bus_generic_driver_added),
+
+ /* MII interface */
+ DEVMETHOD(miibus_readreg, sk_miibus_readreg),
+ DEVMETHOD(miibus_writereg, sk_miibus_writereg),
+ DEVMETHOD(miibus_statchg, sk_miibus_statchg),
+
+ { 0, 0 }
+};
+
+static driver_t sk_driver = {
+ "sk",
+ sk_methods,
+ sizeof(struct sk_if_softc)
+};
+
+static devclass_t sk_devclass;
+
+DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
+DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
+DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
+
+#define SK_SETBIT(sc, reg, x) \
+ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
+
+#define SK_CLRBIT(sc, reg, x) \
+ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
+
+#define SK_WIN_SETBIT_4(sc, reg, x) \
+ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
+
+#define SK_WIN_CLRBIT_4(sc, reg, x) \
+ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
+
+#define SK_WIN_SETBIT_2(sc, reg, x) \
+ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
+
+#define SK_WIN_CLRBIT_2(sc, reg, x) \
+ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
+
+static u_int32_t
+sk_win_read_4(sc, reg)
+ struct sk_softc *sc;
+ int reg;
+{
+ CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
+ return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
+}
+
+static u_int16_t
+sk_win_read_2(sc, reg)
+ struct sk_softc *sc;
+ int reg;
+{
+ CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
+ return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
+}
+
+static u_int8_t
+sk_win_read_1(sc, reg)
+ struct sk_softc *sc;
+ int reg;
+{
+ CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
+ return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
+}
+
+static void
+sk_win_write_4(sc, reg, val)
+ struct sk_softc *sc;
+ int reg;
+ u_int32_t val;
+{
+ CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
+ CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
+ return;
+}
+
+static void
+sk_win_write_2(sc, reg, val)
+ struct sk_softc *sc;
+ int reg;
+ u_int32_t val;
+{
+ CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
+ CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
+ return;
+}
+
+static void
+sk_win_write_1(sc, reg, val)
+ struct sk_softc *sc;
+ int reg;
+ u_int32_t val;
+{
+ CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
+ CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
+ return;
+}
+
+/*
+ * The VPD EEPROM contains Vital Product Data, as suggested in
+ * the PCI 2.1 specification. The VPD data is separared into areas
+ * denoted by resource IDs. The SysKonnect VPD contains an ID string
+ * resource (the name of the adapter), a read-only area resource
+ * containing various key/data fields and a read/write area which
+ * can be used to store asset management information or log messages.
+ * We read the ID string and read-only into buffers attached to
+ * the controller softc structure for later use. At the moment,
+ * we only use the ID string during sk_attach().
+ */
+static u_int8_t
+sk_vpd_readbyte(sc, addr)
+ struct sk_softc *sc;
+ int addr;
+{
+ int i;
+
+ sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
+ for (i = 0; i < SK_TIMEOUT; i++) {
+ DELAY(1);
+ if (sk_win_read_2(sc,
+ SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
+ break;
+ }
+
+ if (i == SK_TIMEOUT)
+ return(0);
+
+ return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
+}
+
+static void
+sk_vpd_read_res(sc, res, addr)
+ struct sk_softc *sc;
+ struct vpd_res *res;
+ int addr;
+{
+ int i;
+ u_int8_t *ptr;
+
+ ptr = (u_int8_t *)res;
+ for (i = 0; i < sizeof(struct vpd_res); i++)
+ ptr[i] = sk_vpd_readbyte(sc, i + addr);
+
+ return;
+}
+
+static void
+sk_vpd_read(sc)
+ struct sk_softc *sc;
+{
+ int pos = 0, i;
+ struct vpd_res res;
+
+ if (sc->sk_vpd_prodname != NULL)
+ free(sc->sk_vpd_prodname, M_DEVBUF);
+ if (sc->sk_vpd_readonly != NULL)
+ free(sc->sk_vpd_readonly, M_DEVBUF);
+ sc->sk_vpd_prodname = NULL;
+ sc->sk_vpd_readonly = NULL;
+
+ sk_vpd_read_res(sc, &res, pos);
+
+ if (res.vr_id != VPD_RES_ID) {
+ printf("skc%d: bad VPD resource id: expected %x got %x\n",
+ sc->sk_unit, VPD_RES_ID, res.vr_id);
+ return;
+ }
+
+ pos += sizeof(res);
+ sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
+ for (i = 0; i < res.vr_len; i++)
+ sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
+ sc->sk_vpd_prodname[i] = '\0';
+ pos += i;
+
+ sk_vpd_read_res(sc, &res, pos);
+
+ if (res.vr_id != VPD_RES_READ) {
+ printf("skc%d: bad VPD resource id: expected %x got %x\n",
+ sc->sk_unit, VPD_RES_READ, res.vr_id);
+ return;
+ }
+
+ pos += sizeof(res);
+ sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
+ for (i = 0; i < res.vr_len + 1; i++)
+ sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
+
+ return;
+}
+
+static int
+sk_miibus_readreg(dev, phy, reg)
+ device_t dev;
+ int phy, reg;
+{
+ struct sk_if_softc *sc_if;
+ int i;
+
+ sc_if = device_get_softc(dev);
+
+ if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
+ return(0);
+
+ SK_IF_LOCK(sc_if);
+
+ SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
+ SK_XM_READ_2(sc_if, XM_PHY_DATA);
+ if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
+ for (i = 0; i < SK_TIMEOUT; i++) {
+ DELAY(1);
+ if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
+ XM_MMUCMD_PHYDATARDY)
+ break;
+ }
+
+ if (i == SK_TIMEOUT) {
+ printf("sk%d: phy failed to come ready\n",
+ sc_if->sk_unit);
+ return(0);
+ }
+ }
+ DELAY(1);
+ i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
+ SK_IF_UNLOCK(sc_if);
+ return(i);
+}
+
+static int
+sk_miibus_writereg(dev, phy, reg, val)
+ device_t dev;
+ int phy, reg, val;
+{
+ struct sk_if_softc *sc_if;
+ int i;
+
+ sc_if = device_get_softc(dev);
+ SK_IF_LOCK(sc_if);
+
+ SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
+ for (i = 0; i < SK_TIMEOUT; i++) {
+ if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
+ break;
+ }
+
+ if (i == SK_TIMEOUT) {
+ printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
+ return(ETIMEDOUT);
+ }
+
+ SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
+ for (i = 0; i < SK_TIMEOUT; i++) {
+ DELAY(1);
+ if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
+ break;
+ }
+
+ SK_IF_UNLOCK(sc_if);
+
+ if (i == SK_TIMEOUT)
+ printf("sk%d: phy write timed out\n", sc_if->sk_unit);
+
+ return(0);
+}
+
+static void
+sk_miibus_statchg(dev)
+ device_t dev;
+{
+ struct sk_if_softc *sc_if;
+ struct mii_data *mii;
+
+ sc_if = device_get_softc(dev);
+ mii = device_get_softc(sc_if->sk_miibus);
+ SK_IF_LOCK(sc_if);
+ /*
+ * If this is a GMII PHY, manually set the XMAC's
+ * duplex mode accordingly.
+ */
+ if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
+ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
+ SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
+ } else {
+ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
+ }
+ }
+ SK_IF_UNLOCK(sc_if);
+
+ return;
+}
+
+#define SK_POLY 0xEDB88320
+#define SK_BITS 6
+
+static u_int32_t
+sk_calchash(addr)
+ caddr_t addr;
+{
+ u_int32_t idx, bit, data, crc;
+
+ /* Compute CRC for the address value. */
+ crc = 0xFFFFFFFF; /* initial value */
+
+ for (idx = 0; idx < 6; idx++) {
+ for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
+ crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
+ }
+
+ return (~crc & ((1 << SK_BITS) - 1));
+}
+
+static void
+sk_setfilt(sc_if, addr, slot)
+ struct sk_if_softc *sc_if;
+ caddr_t addr;
+ int slot;
+{
+ int base;
+
+ base = XM_RXFILT_ENTRY(slot);
+
+ SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
+ SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
+ SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
+
+ return;
+}
+
+static void
+sk_setmulti(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct ifnet *ifp;
+ u_int32_t hashes[2] = { 0, 0 };
+ int h, i;
+ struct ifmultiaddr *ifma;
+ u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
+
+ ifp = &sc_if->arpcom.ac_if;
+
+ /* First, zot all the existing filters. */
+ for (i = 1; i < XM_RXFILT_MAX; i++)
+ sk_setfilt(sc_if, (caddr_t)&dummy, i);
+ SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
+ SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
+
+ /* Now program new ones. */
+ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
+ hashes[0] = 0xFFFFFFFF;
+ hashes[1] = 0xFFFFFFFF;
+ } else {
+ i = 1;
+ TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ /*
+ * Program the first XM_RXFILT_MAX multicast groups
+ * into the perfect filter. For all others,
+ * use the hash table.
+ */
+ if (i < XM_RXFILT_MAX) {
+ sk_setfilt(sc_if,
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
+ i++;
+ continue;
+ }
+
+ h = sk_calchash(
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
+ if (h < 32)
+ hashes[0] |= (1 << h);
+ else
+ hashes[1] |= (1 << (h - 32));
+ }
+ }
+
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
+ XM_MODE_RX_USE_PERFECT);
+ SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
+ SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
+
+ return;
+}
+
+static int
+sk_init_rx_ring(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct sk_chain_data *cd;
+ struct sk_ring_data *rd;
+ int i;
+
+ cd = &sc_if->sk_cdata;
+ rd = sc_if->sk_rdata;
+
+ bzero((char *)rd->sk_rx_ring,
+ sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
+
+ for (i = 0; i < SK_RX_RING_CNT; i++) {
+ cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
+ if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
+ return(ENOBUFS);
+ if (i == (SK_RX_RING_CNT - 1)) {
+ cd->sk_rx_chain[i].sk_next =
+ &cd->sk_rx_chain[0];
+ rd->sk_rx_ring[i].sk_next =
+ vtophys(&rd->sk_rx_ring[0]);
+ } else {
+ cd->sk_rx_chain[i].sk_next =
+ &cd->sk_rx_chain[i + 1];
+ rd->sk_rx_ring[i].sk_next =
+ vtophys(&rd->sk_rx_ring[i + 1]);
+ }
+ }
+
+ sc_if->sk_cdata.sk_rx_prod = 0;
+ sc_if->sk_cdata.sk_rx_cons = 0;
+
+ return(0);
+}
+
+static void
+sk_init_tx_ring(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct sk_chain_data *cd;
+ struct sk_ring_data *rd;
+ int i;
+
+ cd = &sc_if->sk_cdata;
+ rd = sc_if->sk_rdata;
+
+ bzero((char *)sc_if->sk_rdata->sk_tx_ring,
+ sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
+
+ for (i = 0; i < SK_TX_RING_CNT; i++) {
+ cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
+ if (i == (SK_TX_RING_CNT - 1)) {
+ cd->sk_tx_chain[i].sk_next =
+ &cd->sk_tx_chain[0];
+ rd->sk_tx_ring[i].sk_next =
+ vtophys(&rd->sk_tx_ring[0]);
+ } else {
+ cd->sk_tx_chain[i].sk_next =
+ &cd->sk_tx_chain[i + 1];
+ rd->sk_tx_ring[i].sk_next =
+ vtophys(&rd->sk_tx_ring[i + 1]);
+ }
+ }
+
+ sc_if->sk_cdata.sk_tx_prod = 0;
+ sc_if->sk_cdata.sk_tx_cons = 0;
+ sc_if->sk_cdata.sk_tx_cnt = 0;
+
+ return;
+}
+
+static int
+sk_newbuf(sc_if, c, m)
+ struct sk_if_softc *sc_if;
+ struct sk_chain *c;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+ struct sk_rx_desc *r;
+
+ if (m == NULL) {
+ caddr_t *buf = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL)
+ return(ENOBUFS);
+
+ /* Allocate the jumbo buffer */
+ buf = sk_jalloc(sc_if);
+ if (buf == NULL) {
+ m_freem(m_new);
+#ifdef SK_VERBOSE
+ printf("sk%d: jumbo allocation failed "
+ "-- packet dropped!\n", sc_if->sk_unit);
+#endif
+ return(ENOBUFS);
+ }
+
+ /* Attach the buffer to the mbuf */
+ MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
+ (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
+ m_new->m_data = (void *)buf;
+ m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
+ } else {
+ /*
+ * We're re-using a previously allocated mbuf;
+ * be sure to re-init pointers and lengths to
+ * default values.
+ */
+ m_new = m;
+ m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
+ m_new->m_data = m_new->m_ext.ext_buf;
+ }
+
+ /*
+ * Adjust alignment so packet payload begins on a
+ * longword boundary. Mandatory for Alpha, useful on
+ * x86 too.
+ */
+ m_adj(m_new, ETHER_ALIGN);
+
+ r = c->sk_desc;
+ c->sk_mbuf = m_new;
+ r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
+ r->sk_ctl = m_new->m_len | SK_RXSTAT;
+
+ return(0);
+}
+
+/*
+ * Allocate jumbo buffer storage. The SysKonnect adapters support
+ * "jumbograms" (9K frames), although SysKonnect doesn't currently
+ * use them in their drivers. In order for us to use them, we need
+ * large 9K receive buffers, however standard mbuf clusters are only
+ * 2048 bytes in size. Consequently, we need to allocate and manage
+ * our own jumbo buffer pool. Fortunately, this does not require an
+ * excessive amount of additional code.
+ */
+static int
+sk_alloc_jumbo_mem(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ caddr_t ptr;
+ register int i;
+ struct sk_jpool_entry *entry;
+
+ /* Grab a big chunk o' storage. */
+ sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
+ M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
+ printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
+ return(ENOBUFS);
+ }
+
+ SLIST_INIT(&sc_if->sk_jfree_listhead);
+ SLIST_INIT(&sc_if->sk_jinuse_listhead);
+
+ /*
+ * Now divide it up into 9K pieces and save the addresses
+ * in an array.
+ */
+ ptr = sc_if->sk_cdata.sk_jumbo_buf;
+ for (i = 0; i < SK_JSLOTS; i++) {
+ sc_if->sk_cdata.sk_jslots[i] = ptr;
+ ptr += SK_JLEN;
+ entry = malloc(sizeof(struct sk_jpool_entry),
+ M_DEVBUF, M_NOWAIT);
+ if (entry == NULL) {
+ free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
+ sc_if->sk_cdata.sk_jumbo_buf = NULL;
+ printf("sk%d: no memory for jumbo "
+ "buffer queue!\n", sc_if->sk_unit);
+ return(ENOBUFS);
+ }
+ entry->slot = i;
+ SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
+ entry, jpool_entries);
+ }
+
+ return(0);
+}
+
+/*
+ * Allocate a jumbo buffer.
+ */
+static void *
+sk_jalloc(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct sk_jpool_entry *entry;
+
+ entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
+
+ if (entry == NULL) {
+#ifdef SK_VERBOSE
+ printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
+#endif
+ return(NULL);
+ }
+
+ SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
+ SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
+ return(sc_if->sk_cdata.sk_jslots[entry->slot]);
+}
+
+/*
+ * Release a jumbo buffer.
+ */
+static void
+sk_jfree(buf, args)
+ void *buf;
+ void *args;
+{
+ struct sk_if_softc *sc_if;
+ int i;
+ struct sk_jpool_entry *entry;
+
+ /* Extract the softc struct pointer. */
+ sc_if = (struct sk_if_softc *)args;
+
+ if (sc_if == NULL)
+ panic("sk_jfree: didn't get softc pointer!");
+
+ /* calculate the slot this buffer belongs to */
+ i = ((vm_offset_t)buf
+ - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
+
+ if ((i < 0) || (i >= SK_JSLOTS))
+ panic("sk_jfree: asked to free buffer that we don't manage!");
+
+ entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
+ if (entry == NULL)
+ panic("sk_jfree: buffer not in use!");
+ entry->slot = i;
+ SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
+ SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+static int
+sk_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct sk_if_softc *sc_if;
+ struct mii_data *mii;
+
+ sc_if = ifp->if_softc;
+ mii = device_get_softc(sc_if->sk_miibus);
+ sk_init(sc_if);
+ mii_mediachg(mii);
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+static void
+sk_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ struct sk_if_softc *sc_if;
+ struct mii_data *mii;
+
+ sc_if = ifp->if_softc;
+ mii = device_get_softc(sc_if->sk_miibus);
+
+ mii_pollstat(mii);
+ ifmr->ifm_active = mii->mii_media_active;
+ ifmr->ifm_status = mii->mii_media_status;
+
+ return;
+}
+
+static int
+sk_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ u_long command;
+ caddr_t data;
+{
+ struct sk_if_softc *sc_if = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ int error = 0;
+ struct mii_data *mii;
+
+ SK_IF_LOCK(sc_if);
+
+ switch(command) {
+ case SIOCSIFMTU:
+ if (ifr->ifr_mtu > SK_JUMBO_MTU)
+ error = EINVAL;
+ else {
+ ifp->if_mtu = ifr->ifr_mtu;
+ sk_init(sc_if);
+ }
+ break;
+ case SIOCSIFFLAGS:
+ if (ifp->if_flags & IFF_UP) {
+ if (ifp->if_flags & IFF_RUNNING &&
+ ifp->if_flags & IFF_PROMISC &&
+ !(sc_if->sk_if_flags & IFF_PROMISC)) {
+ SK_XM_SETBIT_4(sc_if, XM_MODE,
+ XM_MODE_RX_PROMISC);
+ sk_setmulti(sc_if);
+ } else if (ifp->if_flags & IFF_RUNNING &&
+ !(ifp->if_flags & IFF_PROMISC) &&
+ sc_if->sk_if_flags & IFF_PROMISC) {
+ SK_XM_CLRBIT_4(sc_if, XM_MODE,
+ XM_MODE_RX_PROMISC);
+ sk_setmulti(sc_if);
+ } else
+ sk_init(sc_if);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING)
+ sk_stop(sc_if);
+ }
+ sc_if->sk_if_flags = ifp->if_flags;
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ sk_setmulti(sc_if);
+ error = 0;
+ break;
+ case SIOCGIFMEDIA:
+ case SIOCSIFMEDIA:
+ mii = device_get_softc(sc_if->sk_miibus);
+ error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
+ break;
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ SK_IF_UNLOCK(sc_if);
+
+ return(error);
+}
+
+/*
+ * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
+ * IDs against our list and return a device name if we find a match.
+ */
+static int
+sk_probe(dev)
+ device_t dev;
+{
+ struct sk_type *t;
+
+ t = sk_devs;
+
+ while(t->sk_name != NULL) {
+ if ((pci_get_vendor(dev) == t->sk_vid) &&
+ (pci_get_device(dev) == t->sk_did)) {
+ device_set_desc(dev, t->sk_name);
+ return(0);
+ }
+ t++;
+ }
+
+ return(ENXIO);
+}
+
+/*
+ * Force the GEnesis into reset, then bring it out of reset.
+ */
+static void
+sk_reset(sc)
+ struct sk_softc *sc;
+{
+ CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
+ CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
+ DELAY(1000);
+ CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
+ CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
+
+ /* Configure packet arbiter */
+ sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
+ sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
+ sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
+ sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
+ sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
+
+ /* Enable RAM interface */
+ sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
+
+ /*
+ * Configure interrupt moderation. The moderation timer
+ * defers interrupts specified in the interrupt moderation
+ * timer mask based on the timeout specified in the interrupt
+ * moderation timer init register. Each bit in the timer
+ * register represents 18.825ns, so to specify a timeout in
+ * microseconds, we have to multiply by 54.
+ */
+ sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
+ sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
+ SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
+ sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
+
+ return;
+}
+
+static int
+sk_probe_xmac(dev)
+ device_t dev;
+{
+ /*
+ * Not much to do here. We always know there will be
+ * at least one XMAC present, and if there are two,
+ * sk_attach() will create a second device instance
+ * for us.
+ */
+ device_set_desc(dev, "XaQti Corp. XMAC II");
+
+ return(0);
+}
+
+/*
+ * Each XMAC chip is attached as a separate logical IP interface.
+ * Single port cards will have only one logical interface of course.
+ */
+static int
+sk_attach_xmac(dev)
+ device_t dev;
+{
+ struct sk_softc *sc;
+ struct sk_if_softc *sc_if;
+ struct ifnet *ifp;
+ int i, port, error;
+
+ if (dev == NULL)
+ return(EINVAL);
+
+ error = 0;
+ sc_if = device_get_softc(dev);
+ sc = device_get_softc(device_get_parent(dev));
+ SK_LOCK(sc);
+ port = *(int *)device_get_ivars(dev);
+ free(device_get_ivars(dev), M_DEVBUF);
+ device_set_ivars(dev, NULL);
+
+ sc_if->sk_dev = dev;
+ sc_if->sk_unit = device_get_unit(dev);
+ sc_if->sk_port = port;
+ sc_if->sk_softc = sc;
+ sc->sk_if[port] = sc_if;
+ if (port == SK_PORT_A)
+ sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
+ if (port == SK_PORT_B)
+ sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
+
+ /*
+ * Get station address for this interface. Note that
+ * dual port cards actually come with three station
+ * addresses: one for each port, plus an extra. The
+ * extra one is used by the SysKonnect driver software
+ * as a 'virtual' station address for when both ports
+ * are operating in failover mode. Currently we don't
+ * use this extra address.
+ */
+ for (i = 0; i < ETHER_ADDR_LEN; i++)
+ sc_if->arpcom.ac_enaddr[i] =
+ sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
+
+ printf("sk%d: Ethernet address: %6D\n",
+ sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
+
+ /*
+ * Set up RAM buffer addresses. The NIC will have a certain
+ * amount of SRAM on it, somewhere between 512K and 2MB. We
+ * need to divide this up a) between the transmitter and
+ * receiver and b) between the two XMACs, if this is a
+ * dual port NIC. Our algotithm is to divide up the memory
+ * evenly so that everyone gets a fair share.
+ */
+ if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
+ u_int32_t chunk, val;
+
+ chunk = sc->sk_ramsize / 2;
+ val = sc->sk_rboff / sizeof(u_int64_t);
+ sc_if->sk_rx_ramstart = val;
+ val += (chunk / sizeof(u_int64_t));
+ sc_if->sk_rx_ramend = val - 1;
+ sc_if->sk_tx_ramstart = val;
+ val += (chunk / sizeof(u_int64_t));
+ sc_if->sk_tx_ramend = val - 1;
+ } else {
+ u_int32_t chunk, val;
+
+ chunk = sc->sk_ramsize / 4;
+ val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
+ sizeof(u_int64_t);
+ sc_if->sk_rx_ramstart = val;
+ val += (chunk / sizeof(u_int64_t));
+ sc_if->sk_rx_ramend = val - 1;
+ sc_if->sk_tx_ramstart = val;
+ val += (chunk / sizeof(u_int64_t));
+ sc_if->sk_tx_ramend = val - 1;
+ }
+
+ /* Read and save PHY type and set PHY address */
+ sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
+ switch(sc_if->sk_phytype) {
+ case SK_PHYTYPE_XMAC:
+ sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
+ break;
+ case SK_PHYTYPE_BCOM:
+ sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
+ break;
+ default:
+ printf("skc%d: unsupported PHY type: %d\n",
+ sc->sk_unit, sc_if->sk_phytype);
+ error = ENODEV;
+ goto fail_xmac;
+ }
+
+ /* Allocate the descriptor queues. */
+ sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
+ M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc_if->sk_rdata == NULL) {
+ printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
+ error = ENOMEM;
+ goto fail_xmac;
+ }
+
+ bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
+
+ /* Try to allocate memory for jumbo buffers. */
+ if (sk_alloc_jumbo_mem(sc_if)) {
+ printf("sk%d: jumbo buffer allocation failed\n",
+ sc_if->sk_unit);
+ error = ENOMEM;
+ goto fail_xmac;
+ }
+
+ ifp = &sc_if->arpcom.ac_if;
+ ifp->if_softc = sc_if;
+ ifp->if_unit = sc_if->sk_unit;
+ ifp->if_name = "sk";
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = sk_ioctl;
+ ifp->if_output = ether_output;
+ ifp->if_start = sk_start;
+ ifp->if_watchdog = sk_watchdog;
+ ifp->if_init = sk_init;
+ ifp->if_baudrate = 1000000000;
+ ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
+
+ callout_handle_init(&sc_if->sk_tick_ch);
+
+ /*
+ * Call MI attach routine.
+ */
+ ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
+
+ /*
+ * Do miibus setup.
+ */
+ sk_init_xmac(sc_if);
+ if (mii_phy_probe(dev, &sc_if->sk_miibus,
+ sk_ifmedia_upd, sk_ifmedia_sts)) {
+ printf("skc%d: no PHY found!\n", sc_if->sk_unit);
+ ether_ifdetach(ifp);
+ error = ENXIO;
+ goto fail_xmac;
+ }
+
+fail_xmac:
+ SK_UNLOCK(sc);
+ if (error) {
+ /* Access should be ok even though lock has been dropped */
+ sc->sk_if[port] = NULL;
+ sk_detach_xmac(dev);
+ }
+
+ return(error);
+}
+
+/*
+ * Attach the interface. Allocate softc structures, do ifmedia
+ * setup and ethernet/BPF attach.
+ */
+static int
+sk_attach(dev)
+ device_t dev;
+{
+ struct sk_softc *sc;
+ int unit, error = 0, rid, *port;
+
+ sc = device_get_softc(dev);
+ unit = device_get_unit(dev);
+
+ mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
+ MTX_DEF | MTX_RECURSE);
+
+ /*
+ * Handle power management nonsense.
+ */
+ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
+ u_int32_t iobase, membase, irq;
+
+ /* Save important PCI config data. */
+ iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
+ membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
+ irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
+
+ /* Reset the power state. */
+ printf("skc%d: chip is in D%d power mode "
+ "-- setting to D0\n", unit,
+ pci_get_powerstate(dev));
+ pci_set_powerstate(dev, PCI_POWERSTATE_D0);
+
+ /* Restore PCI config data. */
+ pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
+ pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
+ pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
+ }
+
+ /*
+ * Map control/status registers.
+ */
+ pci_enable_busmaster(dev);
+
+ rid = SK_RID;
+ sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
+ 0, ~0, 1, RF_ACTIVE);
+
+ if (sc->sk_res == NULL) {
+ printf("sk%d: couldn't map ports/memory\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ sc->sk_btag = rman_get_bustag(sc->sk_res);
+ sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
+
+ /* Allocate interrupt */
+ rid = 0;
+ sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
+ RF_SHAREABLE | RF_ACTIVE);
+
+ if (sc->sk_irq == NULL) {
+ printf("skc%d: couldn't map interrupt\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ /* Reset the adapter. */
+ sk_reset(sc);
+
+ sc->sk_unit = unit;
+
+ /* Read and save vital product data from EEPROM. */
+ sk_vpd_read(sc);
+
+ /* Read and save RAM size and RAMbuffer offset */
+ switch(sk_win_read_1(sc, SK_EPROM0)) {
+ case SK_RAMSIZE_512K_64:
+ sc->sk_ramsize = 0x80000;
+ sc->sk_rboff = SK_RBOFF_0;
+ break;
+ case SK_RAMSIZE_1024K_64:
+ sc->sk_ramsize = 0x100000;
+ sc->sk_rboff = SK_RBOFF_80000;
+ break;
+ case SK_RAMSIZE_1024K_128:
+ sc->sk_ramsize = 0x100000;
+ sc->sk_rboff = SK_RBOFF_0;
+ break;
+ case SK_RAMSIZE_2048K_128:
+ sc->sk_ramsize = 0x200000;
+ sc->sk_rboff = SK_RBOFF_0;
+ break;
+ default:
+ printf("skc%d: unknown ram size: %d\n",
+ sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
+ error = ENXIO;
+ goto fail;
+ }
+
+ /* Read and save physical media type */
+ switch(sk_win_read_1(sc, SK_PMDTYPE)) {
+ case SK_PMD_1000BASESX:
+ sc->sk_pmd = IFM_1000_SX;
+ break;
+ case SK_PMD_1000BASELX:
+ sc->sk_pmd = IFM_1000_LX;
+ break;
+ case SK_PMD_1000BASECX:
+ sc->sk_pmd = IFM_1000_CX;
+ break;
+ case SK_PMD_1000BASETX:
+ sc->sk_pmd = IFM_1000_T;
+ break;
+ default:
+ printf("skc%d: unknown media type: 0x%x\n",
+ sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
+ error = ENXIO;
+ goto fail;
+ }
+
+ /* Announce the product name. */
+ printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
+ sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
+ port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
+ *port = SK_PORT_A;
+ device_set_ivars(sc->sk_devs[SK_PORT_A], port);
+
+ if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
+ sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
+ port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
+ *port = SK_PORT_B;
+ device_set_ivars(sc->sk_devs[SK_PORT_B], port);
+ }
+
+ /* Turn on the 'driver is loaded' LED. */
+ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
+
+ bus_generic_attach(dev);
+
+ /* Hook interrupt last to avoid having to lock softc */
+ error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
+ sk_intr, sc, &sc->sk_intrhand);
+
+ if (error) {
+ printf("skc%d: couldn't set up irq\n", unit);
+ goto fail;
+ }
+
+fail:
+ if (error)
+ sk_detach(dev);
+
+ return(error);
+}
+
+/*
+ * Shutdown hardware and free up resources. This can be called any
+ * time after the mutex has been initialized. It is called in both
+ * the error case in attach and the normal detach case so it needs
+ * to be careful about only freeing resources that have actually been
+ * allocated.
+ */
+static int
+sk_detach_xmac(dev)
+ device_t dev;
+{
+ struct sk_if_softc *sc_if;
+ struct ifnet *ifp;
+
+ sc_if = device_get_softc(dev);
+ KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
+ ("sk mutex not initialized in sk_detach_xmac"));
+ SK_IF_LOCK(sc_if);
+
+ ifp = &sc_if->arpcom.ac_if;
+ /* These should only be active if attach_xmac succeeded */
+ if (device_is_attached(dev)) {
+ sk_stop(sc_if);
+ ether_ifdetach(ifp);
+ }
+ if (sc_if->sk_miibus)
+ device_delete_child(dev, sc_if->sk_miibus);
+ bus_generic_detach(dev);
+ if (sc_if->sk_cdata.sk_jumbo_buf)
+ contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
+ if (sc_if->sk_rdata) {
+ contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
+ M_DEVBUF);
+ }
+ SK_IF_UNLOCK(sc_if);
+
+ return(0);
+}
+
+static int
+sk_detach(dev)
+ device_t dev;
+{
+ struct sk_softc *sc;
+
+ sc = device_get_softc(dev);
+ KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
+ SK_LOCK(sc);
+
+ if (device_is_alive(dev)) {
+ if (sc->sk_devs[SK_PORT_A] != NULL)
+ device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
+ if (sc->sk_devs[SK_PORT_B] != NULL)
+ device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
+ bus_generic_detach(dev);
+ }
+
+ if (sc->sk_intrhand)
+ bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
+ if (sc->sk_irq)
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
+ if (sc->sk_res)
+ bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
+
+ SK_UNLOCK(sc);
+ mtx_destroy(&sc->sk_mtx);
+
+ return(0);
+}
+
+static int
+sk_encap(sc_if, m_head, txidx)
+ struct sk_if_softc *sc_if;
+ struct mbuf *m_head;
+ u_int32_t *txidx;
+{
+ struct sk_tx_desc *f = NULL;
+ struct mbuf *m;
+ u_int32_t frag, cur, cnt = 0;
+
+ m = m_head;
+ cur = frag = *txidx;
+
+ /*
+ * Start packing the mbufs in this chain into
+ * the fragment pointers. Stop when we run out
+ * of fragments or hit the end of the mbuf chain.
+ */
+ for (m = m_head; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if ((SK_TX_RING_CNT -
+ (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
+ return(ENOBUFS);
+ f = &sc_if->sk_rdata->sk_tx_ring[frag];
+ f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
+ f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
+ if (cnt == 0)
+ f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
+ else
+ f->sk_ctl |= SK_TXCTL_OWN;
+ cur = frag;
+ SK_INC(frag, SK_TX_RING_CNT);
+ cnt++;
+ }
+ }
+
+ if (m != NULL)
+ return(ENOBUFS);
+
+ sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
+ SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
+ sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
+ sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
+ sc_if->sk_cdata.sk_tx_cnt += cnt;
+
+ *txidx = frag;
+
+ return(0);
+}
+
+static void
+sk_start(ifp)
+ struct ifnet *ifp;
+{
+ struct sk_softc *sc;
+ struct sk_if_softc *sc_if;
+ struct mbuf *m_head = NULL;
+ u_int32_t idx;
+
+ sc_if = ifp->if_softc;
+ sc = sc_if->sk_softc;
+
+ SK_IF_LOCK(sc_if);
+
+ idx = sc_if->sk_cdata.sk_tx_prod;
+
+ while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ /*
+ * Pack the data into the transmit ring. If we
+ * don't have room, set the OACTIVE flag and wait
+ * for the NIC to drain the ring.
+ */
+ if (sk_encap(sc_if, m_head, &idx)) {
+ IF_PREPEND(&ifp->if_snd, m_head);
+ ifp->if_flags |= IFF_OACTIVE;
+ break;
+ }
+
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+ BPF_MTAP(ifp, m_head);
+ }
+
+ /* Transmit */
+ sc_if->sk_cdata.sk_tx_prod = idx;
+ CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
+
+ /* Set a timeout in case the chip goes out to lunch. */
+ ifp->if_timer = 5;
+ SK_IF_UNLOCK(sc_if);
+
+ return;
+}
+
+
+static void
+sk_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct sk_if_softc *sc_if;
+
+ sc_if = ifp->if_softc;
+
+ printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
+ sk_init(sc_if);
+
+ return;
+}
+
+static void
+sk_shutdown(dev)
+ device_t dev;
+{
+ struct sk_softc *sc;
+
+ sc = device_get_softc(dev);
+ SK_LOCK(sc);
+
+ /* Turn off the 'driver is loaded' LED. */
+ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
+
+ /*
+ * Reset the GEnesis controller. Doing this should also
+ * assert the resets on the attached XMAC(s).
+ */
+ sk_reset(sc);
+ SK_UNLOCK(sc);
+
+ return;
+}
+
+static void
+sk_rxeof(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct mbuf *m;
+ struct ifnet *ifp;
+ struct sk_chain *cur_rx;
+ int total_len = 0;
+ int i;
+ u_int32_t rxstat;
+
+ ifp = &sc_if->arpcom.ac_if;
+ i = sc_if->sk_cdata.sk_rx_prod;
+ cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
+
+ while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
+
+ cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
+ rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
+ m = cur_rx->sk_mbuf;
+ cur_rx->sk_mbuf = NULL;
+ total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
+ SK_INC(i, SK_RX_RING_CNT);
+
+ if (rxstat & XM_RXSTAT_ERRFRAME) {
+ ifp->if_ierrors++;
+ sk_newbuf(sc_if, cur_rx, m);
+ continue;
+ }
+
+ /*
+ * Try to allocate a new jumbo buffer. If that
+ * fails, copy the packet to mbufs and put the
+ * jumbo buffer back in the ring so it can be
+ * re-used. If allocating mbufs fails, then we
+ * have to drop the packet.
+ */
+ if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
+ struct mbuf *m0;
+ m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
+ ifp, NULL);
+ sk_newbuf(sc_if, cur_rx, m);
+ if (m0 == NULL) {
+ printf("sk%d: no receive buffers "
+ "available -- packet dropped!\n",
+ sc_if->sk_unit);
+ ifp->if_ierrors++;
+ continue;
+ }
+ m = m0;
+ } else {
+ m->m_pkthdr.rcvif = ifp;
+ m->m_pkthdr.len = m->m_len = total_len;
+ }
+
+ ifp->if_ipackets++;
+ (*ifp->if_input)(ifp, m);
+ }
+
+ sc_if->sk_cdata.sk_rx_prod = i;
+
+ return;
+}
+
+static void
+sk_txeof(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct sk_tx_desc *cur_tx = NULL;
+ struct ifnet *ifp;
+ u_int32_t idx;
+
+ ifp = &sc_if->arpcom.ac_if;
+
+ /*
+ * Go through our tx ring and free mbufs for those
+ * frames that have been sent.
+ */
+ idx = sc_if->sk_cdata.sk_tx_cons;
+ while(idx != sc_if->sk_cdata.sk_tx_prod) {
+ cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
+ if (cur_tx->sk_ctl & SK_TXCTL_OWN)
+ break;
+ if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
+ ifp->if_opackets++;
+ if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
+ m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
+ sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
+ }
+ sc_if->sk_cdata.sk_tx_cnt--;
+ SK_INC(idx, SK_TX_RING_CNT);
+ ifp->if_timer = 0;
+ }
+
+ sc_if->sk_cdata.sk_tx_cons = idx;
+
+ if (cur_tx != NULL)
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ return;
+}
+
+static void
+sk_tick(xsc_if)
+ void *xsc_if;
+{
+ struct sk_if_softc *sc_if;
+ struct mii_data *mii;
+ struct ifnet *ifp;
+ int i;
+
+ sc_if = xsc_if;
+ SK_IF_LOCK(sc_if);
+ ifp = &sc_if->arpcom.ac_if;
+ mii = device_get_softc(sc_if->sk_miibus);
+
+ if (!(ifp->if_flags & IFF_UP)) {
+ SK_IF_UNLOCK(sc_if);
+ return;
+ }
+
+ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
+ sk_intr_bcom(sc_if);
+ SK_IF_UNLOCK(sc_if);
+ return;
+ }
+
+ /*
+ * According to SysKonnect, the correct way to verify that
+ * the link has come back up is to poll bit 0 of the GPIO
+ * register three times. This pin has the signal from the
+ * link_sync pin connected to it; if we read the same link
+ * state 3 times in a row, we know the link is up.
+ */
+ for (i = 0; i < 3; i++) {
+ if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
+ break;
+ }
+
+ if (i != 3) {
+ sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
+ SK_IF_UNLOCK(sc_if);
+ return;
+ }
+
+ /* Turn the GP0 interrupt back on. */
+ SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
+ SK_XM_READ_2(sc_if, XM_ISR);
+ mii_tick(mii);
+ untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
+
+ SK_IF_UNLOCK(sc_if);
+ return;
+}
+
+static void
+sk_intr_bcom(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct mii_data *mii;
+ struct ifnet *ifp;
+ int status;
+ mii = device_get_softc(sc_if->sk_miibus);
+ ifp = &sc_if->arpcom.ac_if;
+
+ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
+
+ /*
+ * Read the PHY interrupt register to make sure
+ * we clear any pending interrupts.
+ */
+ status = sk_miibus_readreg(sc_if->sk_dev,
+ SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
+
+ if (!(ifp->if_flags & IFF_RUNNING)) {
+ sk_init_xmac(sc_if);
+ return;
+ }
+
+ if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
+ int lstat;
+ lstat = sk_miibus_readreg(sc_if->sk_dev,
+ SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
+
+ if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
+ mii_mediachg(mii);
+ /* Turn off the link LED. */
+ SK_IF_WRITE_1(sc_if, 0,
+ SK_LINKLED1_CTL, SK_LINKLED_OFF);
+ sc_if->sk_link = 0;
+ } else if (status & BRGPHY_ISR_LNK_CHG) {
+ sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
+ BRGPHY_MII_IMR, 0xFF00);
+ mii_tick(mii);
+ sc_if->sk_link = 1;
+ /* Turn on the link LED. */
+ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
+ SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
+ SK_LINKLED_BLINK_OFF);
+ } else {
+ mii_tick(mii);
+ sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
+ }
+ }
+
+ SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
+
+ return;
+}
+
+static void
+sk_intr_xmac(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct sk_softc *sc;
+ u_int16_t status;
+
+ sc = sc_if->sk_softc;
+ status = SK_XM_READ_2(sc_if, XM_ISR);
+
+ /*
+ * Link has gone down. Start MII tick timeout to
+ * watch for link resync.
+ */
+ if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
+ if (status & XM_ISR_GP0_SET) {
+ SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
+ sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
+ }
+
+ if (status & XM_ISR_AUTONEG_DONE) {
+ sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
+ }
+ }
+
+ if (status & XM_IMR_TX_UNDERRUN)
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
+
+ if (status & XM_IMR_RX_OVERRUN)
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
+
+ status = SK_XM_READ_2(sc_if, XM_ISR);
+
+ return;
+}
+
+static void
+sk_intr(xsc)
+ void *xsc;
+{
+ struct sk_softc *sc = xsc;
+ struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL;
+ struct ifnet *ifp0 = NULL, *ifp1 = NULL;
+ u_int32_t status;
+
+ SK_LOCK(sc);
+
+ sc_if0 = sc->sk_if[SK_PORT_A];
+ sc_if1 = sc->sk_if[SK_PORT_B];
+
+ if (sc_if0 != NULL)
+ ifp0 = &sc_if0->arpcom.ac_if;
+ if (sc_if1 != NULL)
+ ifp1 = &sc_if1->arpcom.ac_if;
+
+ for (;;) {
+ status = CSR_READ_4(sc, SK_ISSR);
+ if (!(status & sc->sk_intrmask))
+ break;
+
+ /* Handle receive interrupts first. */
+ if (status & SK_ISR_RX1_EOF) {
+ sk_rxeof(sc_if0);
+ CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
+ SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
+ }
+ if (status & SK_ISR_RX2_EOF) {
+ sk_rxeof(sc_if1);
+ CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
+ SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
+ }
+
+ /* Then transmit interrupts. */
+ if (status & SK_ISR_TX1_S_EOF) {
+ sk_txeof(sc_if0);
+ CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
+ SK_TXBMU_CLR_IRQ_EOF);
+ }
+ if (status & SK_ISR_TX2_S_EOF) {
+ sk_txeof(sc_if1);
+ CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
+ SK_TXBMU_CLR_IRQ_EOF);
+ }
+
+ /* Then MAC interrupts. */
+ if (status & SK_ISR_MAC1 &&
+ ifp0->if_flags & IFF_RUNNING)
+ sk_intr_xmac(sc_if0);
+
+ if (status & SK_ISR_MAC2 &&
+ ifp1->if_flags & IFF_RUNNING)
+ sk_intr_xmac(sc_if1);
+
+ if (status & SK_ISR_EXTERNAL_REG) {
+ if (ifp0 != NULL)
+ sk_intr_bcom(sc_if0);
+ if (ifp1 != NULL)
+ sk_intr_bcom(sc_if1);
+ }
+ }
+
+ CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
+
+ if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
+ sk_start(ifp0);
+ if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
+ sk_start(ifp1);
+
+ SK_UNLOCK(sc);
+
+ return;
+}
+
+static void
+sk_init_xmac(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ struct sk_softc *sc;
+ struct ifnet *ifp;
+ struct sk_bcom_hack bhack[] = {
+ { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
+ { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
+ { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
+ { 0, 0 } };
+
+ sc = sc_if->sk_softc;
+ ifp = &sc_if->arpcom.ac_if;
+
+ /* Unreset the XMAC. */
+ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
+ DELAY(1000);
+
+ /* Reset the XMAC's internal state. */
+ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
+
+ /* Save the XMAC II revision */
+ sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
+
+ /*
+ * Perform additional initialization for external PHYs,
+ * namely for the 1000baseTX cards that use the XMAC's
+ * GMII mode.
+ */
+ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
+ int i = 0;
+ u_int32_t val;
+
+ /* Take PHY out of reset. */
+ val = sk_win_read_4(sc, SK_GPIO);
+ if (sc_if->sk_port == SK_PORT_A)
+ val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
+ else
+ val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
+ sk_win_write_4(sc, SK_GPIO, val);
+
+ /* Enable GMII mode on the XMAC. */
+ SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
+
+ sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
+ BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
+ DELAY(10000);
+ sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
+ BRGPHY_MII_IMR, 0xFFF0);
+
+ /*
+ * Early versions of the BCM5400 apparently have
+ * a bug that requires them to have their reserved
+ * registers initialized to some magic values. I don't
+ * know what the numbers do, I'm just the messenger.
+ */
+ if (sk_miibus_readreg(sc_if->sk_dev,
+ SK_PHYADDR_BCOM, 0x03) == 0x6041) {
+ while(bhack[i].reg) {
+ sk_miibus_writereg(sc_if->sk_dev,
+ SK_PHYADDR_BCOM, bhack[i].reg,
+ bhack[i].val);
+ i++;
+ }
+ }
+ }
+
+ /* Set station address */
+ SK_XM_WRITE_2(sc_if, XM_PAR0,
+ *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
+ SK_XM_WRITE_2(sc_if, XM_PAR1,
+ *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
+ SK_XM_WRITE_2(sc_if, XM_PAR2,
+ *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
+
+ if (ifp->if_flags & IFF_PROMISC) {
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
+ } else {
+ SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
+ }
+
+ if (ifp->if_flags & IFF_BROADCAST) {
+ SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
+ } else {
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
+ }
+
+ /* We don't need the FCS appended to the packet. */
+ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
+
+ /* We want short frames padded to 60 bytes. */
+ SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
+
+ /*
+ * Enable the reception of all error frames. This is is
+ * a necessary evil due to the design of the XMAC. The
+ * XMAC's receive FIFO is only 8K in size, however jumbo
+ * frames can be up to 9000 bytes in length. When bad
+ * frame filtering is enabled, the XMAC's RX FIFO operates
+ * in 'store and forward' mode. For this to work, the
+ * entire frame has to fit into the FIFO, but that means
+ * that jumbo frames larger than 8192 bytes will be
+ * truncated. Disabling all bad frame filtering causes
+ * the RX FIFO to operate in streaming mode, in which
+ * case the XMAC will start transfering frames out of the
+ * RX FIFO as soon as the FIFO threshold is reached.
+ */
+ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
+ XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
+ XM_MODE_RX_INRANGELEN);
+
+ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
+ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
+ else
+ SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
+
+ /*
+ * Bump up the transmit threshold. This helps hold off transmit
+ * underruns when we're blasting traffic from both ports at once.
+ */
+ SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
+
+ /* Set multicast filter */
+ sk_setmulti(sc_if);
+
+ /* Clear and enable interrupts */
+ SK_XM_READ_2(sc_if, XM_ISR);
+ if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
+ SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
+ else
+ SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
+
+ /* Configure MAC arbiter */
+ switch(sc_if->sk_xmac_rev) {
+ case XM_XMAC_REV_B2:
+ sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
+ sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
+ break;
+ case XM_XMAC_REV_C1:
+ sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
+ sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
+ break;
+ default:
+ break;
+ }
+ sk_win_write_2(sc, SK_MACARB_CTL,
+ SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
+
+ sc_if->sk_link = 1;
+
+ return;
+}
+
+/*
+ * Note that to properly initialize any part of the GEnesis chip,
+ * you first have to take it out of reset mode.
+ */
+static void
+sk_init(xsc)
+ void *xsc;
+{
+ struct sk_if_softc *sc_if = xsc;
+ struct sk_softc *sc;
+ struct ifnet *ifp;
+ struct mii_data *mii;
+
+ SK_IF_LOCK(sc_if);
+
+ ifp = &sc_if->arpcom.ac_if;
+ sc = sc_if->sk_softc;
+ mii = device_get_softc(sc_if->sk_miibus);
+
+ /* Cancel pending I/O and free all RX/TX buffers. */
+ sk_stop(sc_if);
+
+ /* Configure LINK_SYNC LED */
+ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
+ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
+
+ /* Configure RX LED */
+ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
+
+ /* Configure TX LED */
+ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
+
+ /* Configure I2C registers */
+
+ /* Configure XMAC(s) */
+ sk_init_xmac(sc_if);
+ mii_mediachg(mii);
+
+ /* Configure MAC FIFOs */
+ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
+
+ SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
+ SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
+ SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
+
+ /* Configure transmit arbiter(s) */
+ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
+ SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
+
+ /* Configure RAMbuffers */
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
+
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
+
+ /* Configure BMUs */
+ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
+ vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
+ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
+
+ SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
+ vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
+ SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
+
+ /* Init descriptors */
+ if (sk_init_rx_ring(sc_if) == ENOBUFS) {
+ printf("sk%d: initialization failed: no "
+ "memory for rx buffers\n", sc_if->sk_unit);
+ sk_stop(sc_if);
+ SK_IF_UNLOCK(sc_if);
+ return;
+ }
+ sk_init_tx_ring(sc_if);
+
+ /* Configure interrupt handling */
+ CSR_READ_4(sc, SK_ISSR);
+ if (sc_if->sk_port == SK_PORT_A)
+ sc->sk_intrmask |= SK_INTRS1;
+ else
+ sc->sk_intrmask |= SK_INTRS2;
+
+ sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
+
+ CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
+
+ /* Start BMUs. */
+ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
+
+ /* Enable XMACs TX and RX state machines */
+ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
+ SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
+
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ SK_IF_UNLOCK(sc_if);
+
+ return;
+}
+
+static void
+sk_stop(sc_if)
+ struct sk_if_softc *sc_if;
+{
+ int i;
+ struct sk_softc *sc;
+ struct ifnet *ifp;
+
+ SK_IF_LOCK(sc_if);
+ sc = sc_if->sk_softc;
+ ifp = &sc_if->arpcom.ac_if;
+
+ untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
+
+ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
+ u_int32_t val;
+
+ /* Put PHY back into reset. */
+ val = sk_win_read_4(sc, SK_GPIO);
+ if (sc_if->sk_port == SK_PORT_A) {
+ val |= SK_GPIO_DIR0;
+ val &= ~SK_GPIO_DAT0;
+ } else {
+ val |= SK_GPIO_DIR2;
+ val &= ~SK_GPIO_DAT2;
+ }
+ sk_win_write_4(sc, SK_GPIO, val);
+ }
+
+ /* Turn off various components of this interface. */
+ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
+ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
+ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
+ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
+ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
+ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
+ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
+ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
+ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
+
+ /* Disable interrupts */
+ if (sc_if->sk_port == SK_PORT_A)
+ sc->sk_intrmask &= ~SK_INTRS1;
+ else
+ sc->sk_intrmask &= ~SK_INTRS2;
+ CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
+
+ SK_XM_READ_2(sc_if, XM_ISR);
+ SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
+
+ /* Free RX and TX mbufs still in the queues. */
+ for (i = 0; i < SK_RX_RING_CNT; i++) {
+ if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
+ m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
+ sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
+ }
+ }
+
+ for (i = 0; i < SK_TX_RING_CNT; i++) {
+ if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
+ m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
+ sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
+ }
+ }
+
+ ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
+ SK_IF_UNLOCK(sc_if);
+ return;
+}
OpenPOWER on IntegriCloud