diff options
Diffstat (limited to 'sys/dev/sk/if_sk.c')
-rw-r--r-- | sys/dev/sk/if_sk.c | 2239 |
1 files changed, 2239 insertions, 0 deletions
diff --git a/sys/dev/sk/if_sk.c b/sys/dev/sk/if_sk.c new file mode 100644 index 0000000..0ffbae1 --- /dev/null +++ b/sys/dev/sk/if_sk.c @@ -0,0 +1,2239 @@ +/* + * Copyright (c) 1997, 1998, 1999, 2000 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports + * the SK-984x series adapters, both single port and dual port. + * References: + * The XaQti XMAC II datasheet, + * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf + * The SysKonnect GEnesis manual, http://www.syskonnect.com + * + * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the + * XMAC II datasheet online. I have put my copy at people.freebsd.org as a + * convenience to others until Vitesse corrects this problem: + * + * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf + * + * Written by Bill Paul <wpaul@ee.columbia.edu> + * Department of Electrical Engineering + * Columbia University, New York City + */ + +/* + * The SysKonnect gigabit ethernet adapters consist of two main + * components: the SysKonnect GEnesis controller chip and the XaQti Corp. + * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC + * components and a PHY while the GEnesis controller provides a PCI + * interface with DMA support. Each card may have between 512K and + * 2MB of SRAM on board depending on the configuration. + * + * The SysKonnect GEnesis controller can have either one or two XMAC + * chips connected to it, allowing single or dual port NIC configurations. + * SysKonnect has the distinction of being the only vendor on the market + * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, + * dual DMA queues, packet/MAC/transmit arbiters and direct access to the + * XMAC registers. This driver takes advantage of these features to allow + * both XMACs to operate as independent interfaces. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> +#include <sys/queue.h> + +#include <net/if.h> +#include <net/if_arp.h> +#include <net/ethernet.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#include <net/bpf.h> + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/bus_pio.h> +#include <machine/bus_memio.h> +#include <machine/bus.h> +#include <machine/resource.h> +#include <sys/bus.h> +#include <sys/rman.h> + +#include <dev/mii/mii.h> +#include <dev/mii/miivar.h> +#include <dev/mii/brgphyreg.h> + +#include <pci/pcireg.h> +#include <pci/pcivar.h> + +#define SK_USEIOSPACE + +#include <pci/if_skreg.h> +#include <pci/xmaciireg.h> + +MODULE_DEPEND(sk, pci, 1, 1, 1); +MODULE_DEPEND(sk, ether, 1, 1, 1); +MODULE_DEPEND(sk, miibus, 1, 1, 1); + +/* "controller miibus0" required. See GENERIC if you get errors here. */ +#include "miibus_if.h" + +#ifndef lint +static const char rcsid[] = + "$FreeBSD$"; +#endif + +static struct sk_type sk_devs[] = { + { SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" }, + { 0, 0, NULL } +}; + +static int sk_probe (device_t); +static int sk_attach (device_t); +static int sk_detach (device_t); +static int sk_detach_xmac (device_t); +static int sk_probe_xmac (device_t); +static int sk_attach_xmac (device_t); +static void sk_tick (void *); +static void sk_intr (void *); +static void sk_intr_xmac (struct sk_if_softc *); +static void sk_intr_bcom (struct sk_if_softc *); +static void sk_rxeof (struct sk_if_softc *); +static void sk_txeof (struct sk_if_softc *); +static int sk_encap (struct sk_if_softc *, struct mbuf *, + u_int32_t *); +static void sk_start (struct ifnet *); +static int sk_ioctl (struct ifnet *, u_long, caddr_t); +static void sk_init (void *); +static void sk_init_xmac (struct sk_if_softc *); +static void sk_stop (struct sk_if_softc *); +static void sk_watchdog (struct ifnet *); +static void sk_shutdown (device_t); +static int sk_ifmedia_upd (struct ifnet *); +static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *); +static void sk_reset (struct sk_softc *); +static int sk_newbuf (struct sk_if_softc *, + struct sk_chain *, struct mbuf *); +static int sk_alloc_jumbo_mem (struct sk_if_softc *); +static void *sk_jalloc (struct sk_if_softc *); +static void sk_jfree (void *, void *); +static int sk_init_rx_ring (struct sk_if_softc *); +static void sk_init_tx_ring (struct sk_if_softc *); +static u_int32_t sk_win_read_4 (struct sk_softc *, int); +static u_int16_t sk_win_read_2 (struct sk_softc *, int); +static u_int8_t sk_win_read_1 (struct sk_softc *, int); +static void sk_win_write_4 (struct sk_softc *, int, u_int32_t); +static void sk_win_write_2 (struct sk_softc *, int, u_int32_t); +static void sk_win_write_1 (struct sk_softc *, int, u_int32_t); +static u_int8_t sk_vpd_readbyte (struct sk_softc *, int); +static void sk_vpd_read_res (struct sk_softc *, struct vpd_res *, int); +static void sk_vpd_read (struct sk_softc *); + +static int sk_miibus_readreg (device_t, int, int); +static int sk_miibus_writereg (device_t, int, int, int); +static void sk_miibus_statchg (device_t); + +static u_int32_t sk_calchash (caddr_t); +static void sk_setfilt (struct sk_if_softc *, caddr_t, int); +static void sk_setmulti (struct sk_if_softc *); + +#ifdef SK_USEIOSPACE +#define SK_RES SYS_RES_IOPORT +#define SK_RID SK_PCI_LOIO +#else +#define SK_RES SYS_RES_MEMORY +#define SK_RID SK_PCI_LOMEM +#endif + +/* + * Note that we have newbus methods for both the GEnesis controller + * itself and the XMAC(s). The XMACs are children of the GEnesis, and + * the miibus code is a child of the XMACs. We need to do it this way + * so that the miibus drivers can access the PHY registers on the + * right PHY. It's not quite what I had in mind, but it's the only + * design that achieves the desired effect. + */ +static device_method_t skc_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, sk_probe), + DEVMETHOD(device_attach, sk_attach), + DEVMETHOD(device_detach, sk_detach), + DEVMETHOD(device_shutdown, sk_shutdown), + + /* bus interface */ + DEVMETHOD(bus_print_child, bus_generic_print_child), + DEVMETHOD(bus_driver_added, bus_generic_driver_added), + + { 0, 0 } +}; + +static driver_t skc_driver = { + "skc", + skc_methods, + sizeof(struct sk_softc) +}; + +static devclass_t skc_devclass; + +static device_method_t sk_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, sk_probe_xmac), + DEVMETHOD(device_attach, sk_attach_xmac), + DEVMETHOD(device_detach, sk_detach_xmac), + DEVMETHOD(device_shutdown, bus_generic_shutdown), + + /* bus interface */ + DEVMETHOD(bus_print_child, bus_generic_print_child), + DEVMETHOD(bus_driver_added, bus_generic_driver_added), + + /* MII interface */ + DEVMETHOD(miibus_readreg, sk_miibus_readreg), + DEVMETHOD(miibus_writereg, sk_miibus_writereg), + DEVMETHOD(miibus_statchg, sk_miibus_statchg), + + { 0, 0 } +}; + +static driver_t sk_driver = { + "sk", + sk_methods, + sizeof(struct sk_if_softc) +}; + +static devclass_t sk_devclass; + +DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0); +DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); +DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); + +#define SK_SETBIT(sc, reg, x) \ + CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) + +#define SK_CLRBIT(sc, reg, x) \ + CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) + +#define SK_WIN_SETBIT_4(sc, reg, x) \ + sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) + +#define SK_WIN_CLRBIT_4(sc, reg, x) \ + sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) + +#define SK_WIN_SETBIT_2(sc, reg, x) \ + sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) + +#define SK_WIN_CLRBIT_2(sc, reg, x) \ + sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) + +static u_int32_t +sk_win_read_4(sc, reg) + struct sk_softc *sc; + int reg; +{ + CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); + return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); +} + +static u_int16_t +sk_win_read_2(sc, reg) + struct sk_softc *sc; + int reg; +{ + CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); + return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); +} + +static u_int8_t +sk_win_read_1(sc, reg) + struct sk_softc *sc; + int reg; +{ + CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); + return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); +} + +static void +sk_win_write_4(sc, reg, val) + struct sk_softc *sc; + int reg; + u_int32_t val; +{ + CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); + CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); + return; +} + +static void +sk_win_write_2(sc, reg, val) + struct sk_softc *sc; + int reg; + u_int32_t val; +{ + CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); + CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val); + return; +} + +static void +sk_win_write_1(sc, reg, val) + struct sk_softc *sc; + int reg; + u_int32_t val; +{ + CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); + CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); + return; +} + +/* + * The VPD EEPROM contains Vital Product Data, as suggested in + * the PCI 2.1 specification. The VPD data is separared into areas + * denoted by resource IDs. The SysKonnect VPD contains an ID string + * resource (the name of the adapter), a read-only area resource + * containing various key/data fields and a read/write area which + * can be used to store asset management information or log messages. + * We read the ID string and read-only into buffers attached to + * the controller softc structure for later use. At the moment, + * we only use the ID string during sk_attach(). + */ +static u_int8_t +sk_vpd_readbyte(sc, addr) + struct sk_softc *sc; + int addr; +{ + int i; + + sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); + for (i = 0; i < SK_TIMEOUT; i++) { + DELAY(1); + if (sk_win_read_2(sc, + SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) + break; + } + + if (i == SK_TIMEOUT) + return(0); + + return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); +} + +static void +sk_vpd_read_res(sc, res, addr) + struct sk_softc *sc; + struct vpd_res *res; + int addr; +{ + int i; + u_int8_t *ptr; + + ptr = (u_int8_t *)res; + for (i = 0; i < sizeof(struct vpd_res); i++) + ptr[i] = sk_vpd_readbyte(sc, i + addr); + + return; +} + +static void +sk_vpd_read(sc) + struct sk_softc *sc; +{ + int pos = 0, i; + struct vpd_res res; + + if (sc->sk_vpd_prodname != NULL) + free(sc->sk_vpd_prodname, M_DEVBUF); + if (sc->sk_vpd_readonly != NULL) + free(sc->sk_vpd_readonly, M_DEVBUF); + sc->sk_vpd_prodname = NULL; + sc->sk_vpd_readonly = NULL; + + sk_vpd_read_res(sc, &res, pos); + + if (res.vr_id != VPD_RES_ID) { + printf("skc%d: bad VPD resource id: expected %x got %x\n", + sc->sk_unit, VPD_RES_ID, res.vr_id); + return; + } + + pos += sizeof(res); + sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); + for (i = 0; i < res.vr_len; i++) + sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); + sc->sk_vpd_prodname[i] = '\0'; + pos += i; + + sk_vpd_read_res(sc, &res, pos); + + if (res.vr_id != VPD_RES_READ) { + printf("skc%d: bad VPD resource id: expected %x got %x\n", + sc->sk_unit, VPD_RES_READ, res.vr_id); + return; + } + + pos += sizeof(res); + sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); + for (i = 0; i < res.vr_len + 1; i++) + sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); + + return; +} + +static int +sk_miibus_readreg(dev, phy, reg) + device_t dev; + int phy, reg; +{ + struct sk_if_softc *sc_if; + int i; + + sc_if = device_get_softc(dev); + + if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) + return(0); + + SK_IF_LOCK(sc_if); + + SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); + SK_XM_READ_2(sc_if, XM_PHY_DATA); + if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { + for (i = 0; i < SK_TIMEOUT; i++) { + DELAY(1); + if (SK_XM_READ_2(sc_if, XM_MMUCMD) & + XM_MMUCMD_PHYDATARDY) + break; + } + + if (i == SK_TIMEOUT) { + printf("sk%d: phy failed to come ready\n", + sc_if->sk_unit); + return(0); + } + } + DELAY(1); + i = SK_XM_READ_2(sc_if, XM_PHY_DATA); + SK_IF_UNLOCK(sc_if); + return(i); +} + +static int +sk_miibus_writereg(dev, phy, reg, val) + device_t dev; + int phy, reg, val; +{ + struct sk_if_softc *sc_if; + int i; + + sc_if = device_get_softc(dev); + SK_IF_LOCK(sc_if); + + SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); + for (i = 0; i < SK_TIMEOUT; i++) { + if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) + break; + } + + if (i == SK_TIMEOUT) { + printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); + return(ETIMEDOUT); + } + + SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); + for (i = 0; i < SK_TIMEOUT; i++) { + DELAY(1); + if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) + break; + } + + SK_IF_UNLOCK(sc_if); + + if (i == SK_TIMEOUT) + printf("sk%d: phy write timed out\n", sc_if->sk_unit); + + return(0); +} + +static void +sk_miibus_statchg(dev) + device_t dev; +{ + struct sk_if_softc *sc_if; + struct mii_data *mii; + + sc_if = device_get_softc(dev); + mii = device_get_softc(sc_if->sk_miibus); + SK_IF_LOCK(sc_if); + /* + * If this is a GMII PHY, manually set the XMAC's + * duplex mode accordingly. + */ + if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { + if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { + SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); + } else { + SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); + } + } + SK_IF_UNLOCK(sc_if); + + return; +} + +#define SK_POLY 0xEDB88320 +#define SK_BITS 6 + +static u_int32_t +sk_calchash(addr) + caddr_t addr; +{ + u_int32_t idx, bit, data, crc; + + /* Compute CRC for the address value. */ + crc = 0xFFFFFFFF; /* initial value */ + + for (idx = 0; idx < 6; idx++) { + for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) + crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0); + } + + return (~crc & ((1 << SK_BITS) - 1)); +} + +static void +sk_setfilt(sc_if, addr, slot) + struct sk_if_softc *sc_if; + caddr_t addr; + int slot; +{ + int base; + + base = XM_RXFILT_ENTRY(slot); + + SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); + SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); + SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); + + return; +} + +static void +sk_setmulti(sc_if) + struct sk_if_softc *sc_if; +{ + struct ifnet *ifp; + u_int32_t hashes[2] = { 0, 0 }; + int h, i; + struct ifmultiaddr *ifma; + u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; + + ifp = &sc_if->arpcom.ac_if; + + /* First, zot all the existing filters. */ + for (i = 1; i < XM_RXFILT_MAX; i++) + sk_setfilt(sc_if, (caddr_t)&dummy, i); + SK_XM_WRITE_4(sc_if, XM_MAR0, 0); + SK_XM_WRITE_4(sc_if, XM_MAR2, 0); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { + hashes[0] = 0xFFFFFFFF; + hashes[1] = 0xFFFFFFFF; + } else { + i = 1; + TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + /* + * Program the first XM_RXFILT_MAX multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < XM_RXFILT_MAX) { + sk_setfilt(sc_if, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); + i++; + continue; + } + + h = sk_calchash( + LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); + if (h < 32) + hashes[0] |= (1 << h); + else + hashes[1] |= (1 << (h - 32)); + } + } + + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| + XM_MODE_RX_USE_PERFECT); + SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); + SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); + + return; +} + +static int +sk_init_rx_ring(sc_if) + struct sk_if_softc *sc_if; +{ + struct sk_chain_data *cd; + struct sk_ring_data *rd; + int i; + + cd = &sc_if->sk_cdata; + rd = sc_if->sk_rdata; + + bzero((char *)rd->sk_rx_ring, + sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); + + for (i = 0; i < SK_RX_RING_CNT; i++) { + cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; + if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) + return(ENOBUFS); + if (i == (SK_RX_RING_CNT - 1)) { + cd->sk_rx_chain[i].sk_next = + &cd->sk_rx_chain[0]; + rd->sk_rx_ring[i].sk_next = + vtophys(&rd->sk_rx_ring[0]); + } else { + cd->sk_rx_chain[i].sk_next = + &cd->sk_rx_chain[i + 1]; + rd->sk_rx_ring[i].sk_next = + vtophys(&rd->sk_rx_ring[i + 1]); + } + } + + sc_if->sk_cdata.sk_rx_prod = 0; + sc_if->sk_cdata.sk_rx_cons = 0; + + return(0); +} + +static void +sk_init_tx_ring(sc_if) + struct sk_if_softc *sc_if; +{ + struct sk_chain_data *cd; + struct sk_ring_data *rd; + int i; + + cd = &sc_if->sk_cdata; + rd = sc_if->sk_rdata; + + bzero((char *)sc_if->sk_rdata->sk_tx_ring, + sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); + + for (i = 0; i < SK_TX_RING_CNT; i++) { + cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; + if (i == (SK_TX_RING_CNT - 1)) { + cd->sk_tx_chain[i].sk_next = + &cd->sk_tx_chain[0]; + rd->sk_tx_ring[i].sk_next = + vtophys(&rd->sk_tx_ring[0]); + } else { + cd->sk_tx_chain[i].sk_next = + &cd->sk_tx_chain[i + 1]; + rd->sk_tx_ring[i].sk_next = + vtophys(&rd->sk_tx_ring[i + 1]); + } + } + + sc_if->sk_cdata.sk_tx_prod = 0; + sc_if->sk_cdata.sk_tx_cons = 0; + sc_if->sk_cdata.sk_tx_cnt = 0; + + return; +} + +static int +sk_newbuf(sc_if, c, m) + struct sk_if_softc *sc_if; + struct sk_chain *c; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + struct sk_rx_desc *r; + + if (m == NULL) { + caddr_t *buf = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) + return(ENOBUFS); + + /* Allocate the jumbo buffer */ + buf = sk_jalloc(sc_if); + if (buf == NULL) { + m_freem(m_new); +#ifdef SK_VERBOSE + printf("sk%d: jumbo allocation failed " + "-- packet dropped!\n", sc_if->sk_unit); +#endif + return(ENOBUFS); + } + + /* Attach the buffer to the mbuf */ + MEXTADD(m_new, buf, SK_JLEN, sk_jfree, + (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV); + m_new->m_data = (void *)buf; + m_new->m_pkthdr.len = m_new->m_len = SK_JLEN; + } else { + /* + * We're re-using a previously allocated mbuf; + * be sure to re-init pointers and lengths to + * default values. + */ + m_new = m; + m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; + m_new->m_data = m_new->m_ext.ext_buf; + } + + /* + * Adjust alignment so packet payload begins on a + * longword boundary. Mandatory for Alpha, useful on + * x86 too. + */ + m_adj(m_new, ETHER_ALIGN); + + r = c->sk_desc; + c->sk_mbuf = m_new; + r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); + r->sk_ctl = m_new->m_len | SK_RXSTAT; + + return(0); +} + +/* + * Allocate jumbo buffer storage. The SysKonnect adapters support + * "jumbograms" (9K frames), although SysKonnect doesn't currently + * use them in their drivers. In order for us to use them, we need + * large 9K receive buffers, however standard mbuf clusters are only + * 2048 bytes in size. Consequently, we need to allocate and manage + * our own jumbo buffer pool. Fortunately, this does not require an + * excessive amount of additional code. + */ +static int +sk_alloc_jumbo_mem(sc_if) + struct sk_if_softc *sc_if; +{ + caddr_t ptr; + register int i; + struct sk_jpool_entry *entry; + + /* Grab a big chunk o' storage. */ + sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, + M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); + + if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { + printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); + return(ENOBUFS); + } + + SLIST_INIT(&sc_if->sk_jfree_listhead); + SLIST_INIT(&sc_if->sk_jinuse_listhead); + + /* + * Now divide it up into 9K pieces and save the addresses + * in an array. + */ + ptr = sc_if->sk_cdata.sk_jumbo_buf; + for (i = 0; i < SK_JSLOTS; i++) { + sc_if->sk_cdata.sk_jslots[i] = ptr; + ptr += SK_JLEN; + entry = malloc(sizeof(struct sk_jpool_entry), + M_DEVBUF, M_NOWAIT); + if (entry == NULL) { + free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF); + sc_if->sk_cdata.sk_jumbo_buf = NULL; + printf("sk%d: no memory for jumbo " + "buffer queue!\n", sc_if->sk_unit); + return(ENOBUFS); + } + entry->slot = i; + SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, + entry, jpool_entries); + } + + return(0); +} + +/* + * Allocate a jumbo buffer. + */ +static void * +sk_jalloc(sc_if) + struct sk_if_softc *sc_if; +{ + struct sk_jpool_entry *entry; + + entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); + + if (entry == NULL) { +#ifdef SK_VERBOSE + printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); +#endif + return(NULL); + } + + SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); + SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); + return(sc_if->sk_cdata.sk_jslots[entry->slot]); +} + +/* + * Release a jumbo buffer. + */ +static void +sk_jfree(buf, args) + void *buf; + void *args; +{ + struct sk_if_softc *sc_if; + int i; + struct sk_jpool_entry *entry; + + /* Extract the softc struct pointer. */ + sc_if = (struct sk_if_softc *)args; + + if (sc_if == NULL) + panic("sk_jfree: didn't get softc pointer!"); + + /* calculate the slot this buffer belongs to */ + i = ((vm_offset_t)buf + - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; + + if ((i < 0) || (i >= SK_JSLOTS)) + panic("sk_jfree: asked to free buffer that we don't manage!"); + + entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); + if (entry == NULL) + panic("sk_jfree: buffer not in use!"); + entry->slot = i; + SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries); + SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); + + return; +} + +/* + * Set media options. + */ +static int +sk_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct sk_if_softc *sc_if; + struct mii_data *mii; + + sc_if = ifp->if_softc; + mii = device_get_softc(sc_if->sk_miibus); + sk_init(sc_if); + mii_mediachg(mii); + + return(0); +} + +/* + * Report current media status. + */ +static void +sk_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct sk_if_softc *sc_if; + struct mii_data *mii; + + sc_if = ifp->if_softc; + mii = device_get_softc(sc_if->sk_miibus); + + mii_pollstat(mii); + ifmr->ifm_active = mii->mii_media_active; + ifmr->ifm_status = mii->mii_media_status; + + return; +} + +static int +sk_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct sk_if_softc *sc_if = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + int error = 0; + struct mii_data *mii; + + SK_IF_LOCK(sc_if); + + switch(command) { + case SIOCSIFMTU: + if (ifr->ifr_mtu > SK_JUMBO_MTU) + error = EINVAL; + else { + ifp->if_mtu = ifr->ifr_mtu; + sk_init(sc_if); + } + break; + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + if (ifp->if_flags & IFF_RUNNING && + ifp->if_flags & IFF_PROMISC && + !(sc_if->sk_if_flags & IFF_PROMISC)) { + SK_XM_SETBIT_4(sc_if, XM_MODE, + XM_MODE_RX_PROMISC); + sk_setmulti(sc_if); + } else if (ifp->if_flags & IFF_RUNNING && + !(ifp->if_flags & IFF_PROMISC) && + sc_if->sk_if_flags & IFF_PROMISC) { + SK_XM_CLRBIT_4(sc_if, XM_MODE, + XM_MODE_RX_PROMISC); + sk_setmulti(sc_if); + } else + sk_init(sc_if); + } else { + if (ifp->if_flags & IFF_RUNNING) + sk_stop(sc_if); + } + sc_if->sk_if_flags = ifp->if_flags; + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + sk_setmulti(sc_if); + error = 0; + break; + case SIOCGIFMEDIA: + case SIOCSIFMEDIA: + mii = device_get_softc(sc_if->sk_miibus); + error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); + break; + default: + error = ether_ioctl(ifp, command, data); + break; + } + + SK_IF_UNLOCK(sc_if); + + return(error); +} + +/* + * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device + * IDs against our list and return a device name if we find a match. + */ +static int +sk_probe(dev) + device_t dev; +{ + struct sk_type *t; + + t = sk_devs; + + while(t->sk_name != NULL) { + if ((pci_get_vendor(dev) == t->sk_vid) && + (pci_get_device(dev) == t->sk_did)) { + device_set_desc(dev, t->sk_name); + return(0); + } + t++; + } + + return(ENXIO); +} + +/* + * Force the GEnesis into reset, then bring it out of reset. + */ +static void +sk_reset(sc) + struct sk_softc *sc; +{ + CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET); + CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET); + DELAY(1000); + CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET); + CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET); + + /* Configure packet arbiter */ + sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); + sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); + sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); + sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); + sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); + + /* Enable RAM interface */ + sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); + + /* + * Configure interrupt moderation. The moderation timer + * defers interrupts specified in the interrupt moderation + * timer mask based on the timeout specified in the interrupt + * moderation timer init register. Each bit in the timer + * register represents 18.825ns, so to specify a timeout in + * microseconds, we have to multiply by 54. + */ + sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); + sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| + SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); + sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); + + return; +} + +static int +sk_probe_xmac(dev) + device_t dev; +{ + /* + * Not much to do here. We always know there will be + * at least one XMAC present, and if there are two, + * sk_attach() will create a second device instance + * for us. + */ + device_set_desc(dev, "XaQti Corp. XMAC II"); + + return(0); +} + +/* + * Each XMAC chip is attached as a separate logical IP interface. + * Single port cards will have only one logical interface of course. + */ +static int +sk_attach_xmac(dev) + device_t dev; +{ + struct sk_softc *sc; + struct sk_if_softc *sc_if; + struct ifnet *ifp; + int i, port, error; + + if (dev == NULL) + return(EINVAL); + + error = 0; + sc_if = device_get_softc(dev); + sc = device_get_softc(device_get_parent(dev)); + SK_LOCK(sc); + port = *(int *)device_get_ivars(dev); + free(device_get_ivars(dev), M_DEVBUF); + device_set_ivars(dev, NULL); + + sc_if->sk_dev = dev; + sc_if->sk_unit = device_get_unit(dev); + sc_if->sk_port = port; + sc_if->sk_softc = sc; + sc->sk_if[port] = sc_if; + if (port == SK_PORT_A) + sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; + if (port == SK_PORT_B) + sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; + + /* + * Get station address for this interface. Note that + * dual port cards actually come with three station + * addresses: one for each port, plus an extra. The + * extra one is used by the SysKonnect driver software + * as a 'virtual' station address for when both ports + * are operating in failover mode. Currently we don't + * use this extra address. + */ + for (i = 0; i < ETHER_ADDR_LEN; i++) + sc_if->arpcom.ac_enaddr[i] = + sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); + + printf("sk%d: Ethernet address: %6D\n", + sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":"); + + /* + * Set up RAM buffer addresses. The NIC will have a certain + * amount of SRAM on it, somewhere between 512K and 2MB. We + * need to divide this up a) between the transmitter and + * receiver and b) between the two XMACs, if this is a + * dual port NIC. Our algotithm is to divide up the memory + * evenly so that everyone gets a fair share. + */ + if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { + u_int32_t chunk, val; + + chunk = sc->sk_ramsize / 2; + val = sc->sk_rboff / sizeof(u_int64_t); + sc_if->sk_rx_ramstart = val; + val += (chunk / sizeof(u_int64_t)); + sc_if->sk_rx_ramend = val - 1; + sc_if->sk_tx_ramstart = val; + val += (chunk / sizeof(u_int64_t)); + sc_if->sk_tx_ramend = val - 1; + } else { + u_int32_t chunk, val; + + chunk = sc->sk_ramsize / 4; + val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / + sizeof(u_int64_t); + sc_if->sk_rx_ramstart = val; + val += (chunk / sizeof(u_int64_t)); + sc_if->sk_rx_ramend = val - 1; + sc_if->sk_tx_ramstart = val; + val += (chunk / sizeof(u_int64_t)); + sc_if->sk_tx_ramend = val - 1; + } + + /* Read and save PHY type and set PHY address */ + sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; + switch(sc_if->sk_phytype) { + case SK_PHYTYPE_XMAC: + sc_if->sk_phyaddr = SK_PHYADDR_XMAC; + break; + case SK_PHYTYPE_BCOM: + sc_if->sk_phyaddr = SK_PHYADDR_BCOM; + break; + default: + printf("skc%d: unsupported PHY type: %d\n", + sc->sk_unit, sc_if->sk_phytype); + error = ENODEV; + goto fail_xmac; + } + + /* Allocate the descriptor queues. */ + sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, + M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); + + if (sc_if->sk_rdata == NULL) { + printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); + error = ENOMEM; + goto fail_xmac; + } + + bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); + + /* Try to allocate memory for jumbo buffers. */ + if (sk_alloc_jumbo_mem(sc_if)) { + printf("sk%d: jumbo buffer allocation failed\n", + sc_if->sk_unit); + error = ENOMEM; + goto fail_xmac; + } + + ifp = &sc_if->arpcom.ac_if; + ifp->if_softc = sc_if; + ifp->if_unit = sc_if->sk_unit; + ifp->if_name = "sk"; + ifp->if_mtu = ETHERMTU; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = sk_ioctl; + ifp->if_output = ether_output; + ifp->if_start = sk_start; + ifp->if_watchdog = sk_watchdog; + ifp->if_init = sk_init; + ifp->if_baudrate = 1000000000; + ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; + + callout_handle_init(&sc_if->sk_tick_ch); + + /* + * Call MI attach routine. + */ + ether_ifattach(ifp, sc_if->arpcom.ac_enaddr); + + /* + * Do miibus setup. + */ + sk_init_xmac(sc_if); + if (mii_phy_probe(dev, &sc_if->sk_miibus, + sk_ifmedia_upd, sk_ifmedia_sts)) { + printf("skc%d: no PHY found!\n", sc_if->sk_unit); + ether_ifdetach(ifp); + error = ENXIO; + goto fail_xmac; + } + +fail_xmac: + SK_UNLOCK(sc); + if (error) { + /* Access should be ok even though lock has been dropped */ + sc->sk_if[port] = NULL; + sk_detach_xmac(dev); + } + + return(error); +} + +/* + * Attach the interface. Allocate softc structures, do ifmedia + * setup and ethernet/BPF attach. + */ +static int +sk_attach(dev) + device_t dev; +{ + struct sk_softc *sc; + int unit, error = 0, rid, *port; + + sc = device_get_softc(dev); + unit = device_get_unit(dev); + + mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, + MTX_DEF | MTX_RECURSE); + + /* + * Handle power management nonsense. + */ + if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { + u_int32_t iobase, membase, irq; + + /* Save important PCI config data. */ + iobase = pci_read_config(dev, SK_PCI_LOIO, 4); + membase = pci_read_config(dev, SK_PCI_LOMEM, 4); + irq = pci_read_config(dev, SK_PCI_INTLINE, 4); + + /* Reset the power state. */ + printf("skc%d: chip is in D%d power mode " + "-- setting to D0\n", unit, + pci_get_powerstate(dev)); + pci_set_powerstate(dev, PCI_POWERSTATE_D0); + + /* Restore PCI config data. */ + pci_write_config(dev, SK_PCI_LOIO, iobase, 4); + pci_write_config(dev, SK_PCI_LOMEM, membase, 4); + pci_write_config(dev, SK_PCI_INTLINE, irq, 4); + } + + /* + * Map control/status registers. + */ + pci_enable_busmaster(dev); + + rid = SK_RID; + sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid, + 0, ~0, 1, RF_ACTIVE); + + if (sc->sk_res == NULL) { + printf("sk%d: couldn't map ports/memory\n", unit); + error = ENXIO; + goto fail; + } + + sc->sk_btag = rman_get_bustag(sc->sk_res); + sc->sk_bhandle = rman_get_bushandle(sc->sk_res); + + /* Allocate interrupt */ + rid = 0; + sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, + RF_SHAREABLE | RF_ACTIVE); + + if (sc->sk_irq == NULL) { + printf("skc%d: couldn't map interrupt\n", unit); + error = ENXIO; + goto fail; + } + + /* Reset the adapter. */ + sk_reset(sc); + + sc->sk_unit = unit; + + /* Read and save vital product data from EEPROM. */ + sk_vpd_read(sc); + + /* Read and save RAM size and RAMbuffer offset */ + switch(sk_win_read_1(sc, SK_EPROM0)) { + case SK_RAMSIZE_512K_64: + sc->sk_ramsize = 0x80000; + sc->sk_rboff = SK_RBOFF_0; + break; + case SK_RAMSIZE_1024K_64: + sc->sk_ramsize = 0x100000; + sc->sk_rboff = SK_RBOFF_80000; + break; + case SK_RAMSIZE_1024K_128: + sc->sk_ramsize = 0x100000; + sc->sk_rboff = SK_RBOFF_0; + break; + case SK_RAMSIZE_2048K_128: + sc->sk_ramsize = 0x200000; + sc->sk_rboff = SK_RBOFF_0; + break; + default: + printf("skc%d: unknown ram size: %d\n", + sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); + error = ENXIO; + goto fail; + } + + /* Read and save physical media type */ + switch(sk_win_read_1(sc, SK_PMDTYPE)) { + case SK_PMD_1000BASESX: + sc->sk_pmd = IFM_1000_SX; + break; + case SK_PMD_1000BASELX: + sc->sk_pmd = IFM_1000_LX; + break; + case SK_PMD_1000BASECX: + sc->sk_pmd = IFM_1000_CX; + break; + case SK_PMD_1000BASETX: + sc->sk_pmd = IFM_1000_T; + break; + default: + printf("skc%d: unknown media type: 0x%x\n", + sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); + error = ENXIO; + goto fail; + } + + /* Announce the product name. */ + printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname); + sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); + port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); + *port = SK_PORT_A; + device_set_ivars(sc->sk_devs[SK_PORT_A], port); + + if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { + sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); + port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); + *port = SK_PORT_B; + device_set_ivars(sc->sk_devs[SK_PORT_B], port); + } + + /* Turn on the 'driver is loaded' LED. */ + CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); + + bus_generic_attach(dev); + + /* Hook interrupt last to avoid having to lock softc */ + error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET, + sk_intr, sc, &sc->sk_intrhand); + + if (error) { + printf("skc%d: couldn't set up irq\n", unit); + goto fail; + } + +fail: + if (error) + sk_detach(dev); + + return(error); +} + +/* + * Shutdown hardware and free up resources. This can be called any + * time after the mutex has been initialized. It is called in both + * the error case in attach and the normal detach case so it needs + * to be careful about only freeing resources that have actually been + * allocated. + */ +static int +sk_detach_xmac(dev) + device_t dev; +{ + struct sk_if_softc *sc_if; + struct ifnet *ifp; + + sc_if = device_get_softc(dev); + KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), + ("sk mutex not initialized in sk_detach_xmac")); + SK_IF_LOCK(sc_if); + + ifp = &sc_if->arpcom.ac_if; + /* These should only be active if attach_xmac succeeded */ + if (device_is_attached(dev)) { + sk_stop(sc_if); + ether_ifdetach(ifp); + } + if (sc_if->sk_miibus) + device_delete_child(dev, sc_if->sk_miibus); + bus_generic_detach(dev); + if (sc_if->sk_cdata.sk_jumbo_buf) + contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF); + if (sc_if->sk_rdata) { + contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), + M_DEVBUF); + } + SK_IF_UNLOCK(sc_if); + + return(0); +} + +static int +sk_detach(dev) + device_t dev; +{ + struct sk_softc *sc; + + sc = device_get_softc(dev); + KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); + SK_LOCK(sc); + + if (device_is_alive(dev)) { + if (sc->sk_devs[SK_PORT_A] != NULL) + device_delete_child(dev, sc->sk_devs[SK_PORT_A]); + if (sc->sk_devs[SK_PORT_B] != NULL) + device_delete_child(dev, sc->sk_devs[SK_PORT_B]); + bus_generic_detach(dev); + } + + if (sc->sk_intrhand) + bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); + if (sc->sk_irq) + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); + if (sc->sk_res) + bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); + + SK_UNLOCK(sc); + mtx_destroy(&sc->sk_mtx); + + return(0); +} + +static int +sk_encap(sc_if, m_head, txidx) + struct sk_if_softc *sc_if; + struct mbuf *m_head; + u_int32_t *txidx; +{ + struct sk_tx_desc *f = NULL; + struct mbuf *m; + u_int32_t frag, cur, cnt = 0; + + m = m_head; + cur = frag = *txidx; + + /* + * Start packing the mbufs in this chain into + * the fragment pointers. Stop when we run out + * of fragments or hit the end of the mbuf chain. + */ + for (m = m_head; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if ((SK_TX_RING_CNT - + (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) + return(ENOBUFS); + f = &sc_if->sk_rdata->sk_tx_ring[frag]; + f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); + f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; + if (cnt == 0) + f->sk_ctl |= SK_TXCTL_FIRSTFRAG; + else + f->sk_ctl |= SK_TXCTL_OWN; + cur = frag; + SK_INC(frag, SK_TX_RING_CNT); + cnt++; + } + } + + if (m != NULL) + return(ENOBUFS); + + sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= + SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; + sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; + sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; + sc_if->sk_cdata.sk_tx_cnt += cnt; + + *txidx = frag; + + return(0); +} + +static void +sk_start(ifp) + struct ifnet *ifp; +{ + struct sk_softc *sc; + struct sk_if_softc *sc_if; + struct mbuf *m_head = NULL; + u_int32_t idx; + + sc_if = ifp->if_softc; + sc = sc_if->sk_softc; + + SK_IF_LOCK(sc_if); + + idx = sc_if->sk_cdata.sk_tx_prod; + + while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + /* + * Pack the data into the transmit ring. If we + * don't have room, set the OACTIVE flag and wait + * for the NIC to drain the ring. + */ + if (sk_encap(sc_if, m_head, &idx)) { + IF_PREPEND(&ifp->if_snd, m_head); + ifp->if_flags |= IFF_OACTIVE; + break; + } + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ + BPF_MTAP(ifp, m_head); + } + + /* Transmit */ + sc_if->sk_cdata.sk_tx_prod = idx; + CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); + + /* Set a timeout in case the chip goes out to lunch. */ + ifp->if_timer = 5; + SK_IF_UNLOCK(sc_if); + + return; +} + + +static void +sk_watchdog(ifp) + struct ifnet *ifp; +{ + struct sk_if_softc *sc_if; + + sc_if = ifp->if_softc; + + printf("sk%d: watchdog timeout\n", sc_if->sk_unit); + sk_init(sc_if); + + return; +} + +static void +sk_shutdown(dev) + device_t dev; +{ + struct sk_softc *sc; + + sc = device_get_softc(dev); + SK_LOCK(sc); + + /* Turn off the 'driver is loaded' LED. */ + CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); + + /* + * Reset the GEnesis controller. Doing this should also + * assert the resets on the attached XMAC(s). + */ + sk_reset(sc); + SK_UNLOCK(sc); + + return; +} + +static void +sk_rxeof(sc_if) + struct sk_if_softc *sc_if; +{ + struct mbuf *m; + struct ifnet *ifp; + struct sk_chain *cur_rx; + int total_len = 0; + int i; + u_int32_t rxstat; + + ifp = &sc_if->arpcom.ac_if; + i = sc_if->sk_cdata.sk_rx_prod; + cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; + + while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { + + cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; + rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; + m = cur_rx->sk_mbuf; + cur_rx->sk_mbuf = NULL; + total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); + SK_INC(i, SK_RX_RING_CNT); + + if (rxstat & XM_RXSTAT_ERRFRAME) { + ifp->if_ierrors++; + sk_newbuf(sc_if, cur_rx, m); + continue; + } + + /* + * Try to allocate a new jumbo buffer. If that + * fails, copy the packet to mbufs and put the + * jumbo buffer back in the ring so it can be + * re-used. If allocating mbufs fails, then we + * have to drop the packet. + */ + if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { + struct mbuf *m0; + m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, + ifp, NULL); + sk_newbuf(sc_if, cur_rx, m); + if (m0 == NULL) { + printf("sk%d: no receive buffers " + "available -- packet dropped!\n", + sc_if->sk_unit); + ifp->if_ierrors++; + continue; + } + m = m0; + } else { + m->m_pkthdr.rcvif = ifp; + m->m_pkthdr.len = m->m_len = total_len; + } + + ifp->if_ipackets++; + (*ifp->if_input)(ifp, m); + } + + sc_if->sk_cdata.sk_rx_prod = i; + + return; +} + +static void +sk_txeof(sc_if) + struct sk_if_softc *sc_if; +{ + struct sk_tx_desc *cur_tx = NULL; + struct ifnet *ifp; + u_int32_t idx; + + ifp = &sc_if->arpcom.ac_if; + + /* + * Go through our tx ring and free mbufs for those + * frames that have been sent. + */ + idx = sc_if->sk_cdata.sk_tx_cons; + while(idx != sc_if->sk_cdata.sk_tx_prod) { + cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; + if (cur_tx->sk_ctl & SK_TXCTL_OWN) + break; + if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) + ifp->if_opackets++; + if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { + m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); + sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; + } + sc_if->sk_cdata.sk_tx_cnt--; + SK_INC(idx, SK_TX_RING_CNT); + ifp->if_timer = 0; + } + + sc_if->sk_cdata.sk_tx_cons = idx; + + if (cur_tx != NULL) + ifp->if_flags &= ~IFF_OACTIVE; + + return; +} + +static void +sk_tick(xsc_if) + void *xsc_if; +{ + struct sk_if_softc *sc_if; + struct mii_data *mii; + struct ifnet *ifp; + int i; + + sc_if = xsc_if; + SK_IF_LOCK(sc_if); + ifp = &sc_if->arpcom.ac_if; + mii = device_get_softc(sc_if->sk_miibus); + + if (!(ifp->if_flags & IFF_UP)) { + SK_IF_UNLOCK(sc_if); + return; + } + + if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { + sk_intr_bcom(sc_if); + SK_IF_UNLOCK(sc_if); + return; + } + + /* + * According to SysKonnect, the correct way to verify that + * the link has come back up is to poll bit 0 of the GPIO + * register three times. This pin has the signal from the + * link_sync pin connected to it; if we read the same link + * state 3 times in a row, we know the link is up. + */ + for (i = 0; i < 3; i++) { + if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) + break; + } + + if (i != 3) { + sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); + SK_IF_UNLOCK(sc_if); + return; + } + + /* Turn the GP0 interrupt back on. */ + SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); + SK_XM_READ_2(sc_if, XM_ISR); + mii_tick(mii); + untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); + + SK_IF_UNLOCK(sc_if); + return; +} + +static void +sk_intr_bcom(sc_if) + struct sk_if_softc *sc_if; +{ + struct mii_data *mii; + struct ifnet *ifp; + int status; + mii = device_get_softc(sc_if->sk_miibus); + ifp = &sc_if->arpcom.ac_if; + + SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); + + /* + * Read the PHY interrupt register to make sure + * we clear any pending interrupts. + */ + status = sk_miibus_readreg(sc_if->sk_dev, + SK_PHYADDR_BCOM, BRGPHY_MII_ISR); + + if (!(ifp->if_flags & IFF_RUNNING)) { + sk_init_xmac(sc_if); + return; + } + + if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { + int lstat; + lstat = sk_miibus_readreg(sc_if->sk_dev, + SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); + + if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { + mii_mediachg(mii); + /* Turn off the link LED. */ + SK_IF_WRITE_1(sc_if, 0, + SK_LINKLED1_CTL, SK_LINKLED_OFF); + sc_if->sk_link = 0; + } else if (status & BRGPHY_ISR_LNK_CHG) { + sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, + BRGPHY_MII_IMR, 0xFF00); + mii_tick(mii); + sc_if->sk_link = 1; + /* Turn on the link LED. */ + SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, + SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| + SK_LINKLED_BLINK_OFF); + } else { + mii_tick(mii); + sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); + } + } + + SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); + + return; +} + +static void +sk_intr_xmac(sc_if) + struct sk_if_softc *sc_if; +{ + struct sk_softc *sc; + u_int16_t status; + + sc = sc_if->sk_softc; + status = SK_XM_READ_2(sc_if, XM_ISR); + + /* + * Link has gone down. Start MII tick timeout to + * watch for link resync. + */ + if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { + if (status & XM_ISR_GP0_SET) { + SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); + sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); + } + + if (status & XM_ISR_AUTONEG_DONE) { + sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); + } + } + + if (status & XM_IMR_TX_UNDERRUN) + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); + + if (status & XM_IMR_RX_OVERRUN) + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); + + status = SK_XM_READ_2(sc_if, XM_ISR); + + return; +} + +static void +sk_intr(xsc) + void *xsc; +{ + struct sk_softc *sc = xsc; + struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; + struct ifnet *ifp0 = NULL, *ifp1 = NULL; + u_int32_t status; + + SK_LOCK(sc); + + sc_if0 = sc->sk_if[SK_PORT_A]; + sc_if1 = sc->sk_if[SK_PORT_B]; + + if (sc_if0 != NULL) + ifp0 = &sc_if0->arpcom.ac_if; + if (sc_if1 != NULL) + ifp1 = &sc_if1->arpcom.ac_if; + + for (;;) { + status = CSR_READ_4(sc, SK_ISSR); + if (!(status & sc->sk_intrmask)) + break; + + /* Handle receive interrupts first. */ + if (status & SK_ISR_RX1_EOF) { + sk_rxeof(sc_if0); + CSR_WRITE_4(sc, SK_BMU_RX_CSR0, + SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); + } + if (status & SK_ISR_RX2_EOF) { + sk_rxeof(sc_if1); + CSR_WRITE_4(sc, SK_BMU_RX_CSR1, + SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); + } + + /* Then transmit interrupts. */ + if (status & SK_ISR_TX1_S_EOF) { + sk_txeof(sc_if0); + CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, + SK_TXBMU_CLR_IRQ_EOF); + } + if (status & SK_ISR_TX2_S_EOF) { + sk_txeof(sc_if1); + CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, + SK_TXBMU_CLR_IRQ_EOF); + } + + /* Then MAC interrupts. */ + if (status & SK_ISR_MAC1 && + ifp0->if_flags & IFF_RUNNING) + sk_intr_xmac(sc_if0); + + if (status & SK_ISR_MAC2 && + ifp1->if_flags & IFF_RUNNING) + sk_intr_xmac(sc_if1); + + if (status & SK_ISR_EXTERNAL_REG) { + if (ifp0 != NULL) + sk_intr_bcom(sc_if0); + if (ifp1 != NULL) + sk_intr_bcom(sc_if1); + } + } + + CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); + + if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL) + sk_start(ifp0); + if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL) + sk_start(ifp1); + + SK_UNLOCK(sc); + + return; +} + +static void +sk_init_xmac(sc_if) + struct sk_if_softc *sc_if; +{ + struct sk_softc *sc; + struct ifnet *ifp; + struct sk_bcom_hack bhack[] = { + { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, + { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, + { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, + { 0, 0 } }; + + sc = sc_if->sk_softc; + ifp = &sc_if->arpcom.ac_if; + + /* Unreset the XMAC. */ + SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); + DELAY(1000); + + /* Reset the XMAC's internal state. */ + SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); + + /* Save the XMAC II revision */ + sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); + + /* + * Perform additional initialization for external PHYs, + * namely for the 1000baseTX cards that use the XMAC's + * GMII mode. + */ + if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { + int i = 0; + u_int32_t val; + + /* Take PHY out of reset. */ + val = sk_win_read_4(sc, SK_GPIO); + if (sc_if->sk_port == SK_PORT_A) + val |= SK_GPIO_DIR0|SK_GPIO_DAT0; + else + val |= SK_GPIO_DIR2|SK_GPIO_DAT2; + sk_win_write_4(sc, SK_GPIO, val); + + /* Enable GMII mode on the XMAC. */ + SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); + + sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, + BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); + DELAY(10000); + sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, + BRGPHY_MII_IMR, 0xFFF0); + + /* + * Early versions of the BCM5400 apparently have + * a bug that requires them to have their reserved + * registers initialized to some magic values. I don't + * know what the numbers do, I'm just the messenger. + */ + if (sk_miibus_readreg(sc_if->sk_dev, + SK_PHYADDR_BCOM, 0x03) == 0x6041) { + while(bhack[i].reg) { + sk_miibus_writereg(sc_if->sk_dev, + SK_PHYADDR_BCOM, bhack[i].reg, + bhack[i].val); + i++; + } + } + } + + /* Set station address */ + SK_XM_WRITE_2(sc_if, XM_PAR0, + *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); + SK_XM_WRITE_2(sc_if, XM_PAR1, + *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); + SK_XM_WRITE_2(sc_if, XM_PAR2, + *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); + + if (ifp->if_flags & IFF_PROMISC) { + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); + } else { + SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); + } + + if (ifp->if_flags & IFF_BROADCAST) { + SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); + } else { + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); + } + + /* We don't need the FCS appended to the packet. */ + SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); + + /* We want short frames padded to 60 bytes. */ + SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); + + /* + * Enable the reception of all error frames. This is is + * a necessary evil due to the design of the XMAC. The + * XMAC's receive FIFO is only 8K in size, however jumbo + * frames can be up to 9000 bytes in length. When bad + * frame filtering is enabled, the XMAC's RX FIFO operates + * in 'store and forward' mode. For this to work, the + * entire frame has to fit into the FIFO, but that means + * that jumbo frames larger than 8192 bytes will be + * truncated. Disabling all bad frame filtering causes + * the RX FIFO to operate in streaming mode, in which + * case the XMAC will start transfering frames out of the + * RX FIFO as soon as the FIFO threshold is reached. + */ + SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| + XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| + XM_MODE_RX_INRANGELEN); + + if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) + SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); + else + SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); + + /* + * Bump up the transmit threshold. This helps hold off transmit + * underruns when we're blasting traffic from both ports at once. + */ + SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); + + /* Set multicast filter */ + sk_setmulti(sc_if); + + /* Clear and enable interrupts */ + SK_XM_READ_2(sc_if, XM_ISR); + if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) + SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); + else + SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); + + /* Configure MAC arbiter */ + switch(sc_if->sk_xmac_rev) { + case XM_XMAC_REV_B2: + sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); + sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); + sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); + sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); + sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); + sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); + sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); + sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); + sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); + break; + case XM_XMAC_REV_C1: + sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); + sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); + sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); + sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); + sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); + sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); + sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); + sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); + sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); + break; + default: + break; + } + sk_win_write_2(sc, SK_MACARB_CTL, + SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); + + sc_if->sk_link = 1; + + return; +} + +/* + * Note that to properly initialize any part of the GEnesis chip, + * you first have to take it out of reset mode. + */ +static void +sk_init(xsc) + void *xsc; +{ + struct sk_if_softc *sc_if = xsc; + struct sk_softc *sc; + struct ifnet *ifp; + struct mii_data *mii; + + SK_IF_LOCK(sc_if); + + ifp = &sc_if->arpcom.ac_if; + sc = sc_if->sk_softc; + mii = device_get_softc(sc_if->sk_miibus); + + /* Cancel pending I/O and free all RX/TX buffers. */ + sk_stop(sc_if); + + /* Configure LINK_SYNC LED */ + SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); + SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); + + /* Configure RX LED */ + SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); + + /* Configure TX LED */ + SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); + + /* Configure I2C registers */ + + /* Configure XMAC(s) */ + sk_init_xmac(sc_if); + mii_mediachg(mii); + + /* Configure MAC FIFOs */ + SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); + SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); + SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); + + SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); + SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); + SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); + + /* Configure transmit arbiter(s) */ + SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, + SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); + + /* Configure RAMbuffers */ + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); + + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); + + /* Configure BMUs */ + SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); + SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, + vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); + SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); + + SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); + SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, + vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); + SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); + + /* Init descriptors */ + if (sk_init_rx_ring(sc_if) == ENOBUFS) { + printf("sk%d: initialization failed: no " + "memory for rx buffers\n", sc_if->sk_unit); + sk_stop(sc_if); + SK_IF_UNLOCK(sc_if); + return; + } + sk_init_tx_ring(sc_if); + + /* Configure interrupt handling */ + CSR_READ_4(sc, SK_ISSR); + if (sc_if->sk_port == SK_PORT_A) + sc->sk_intrmask |= SK_INTRS1; + else + sc->sk_intrmask |= SK_INTRS2; + + sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; + + CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); + + /* Start BMUs. */ + SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); + + /* Enable XMACs TX and RX state machines */ + SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); + SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + SK_IF_UNLOCK(sc_if); + + return; +} + +static void +sk_stop(sc_if) + struct sk_if_softc *sc_if; +{ + int i; + struct sk_softc *sc; + struct ifnet *ifp; + + SK_IF_LOCK(sc_if); + sc = sc_if->sk_softc; + ifp = &sc_if->arpcom.ac_if; + + untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); + + if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { + u_int32_t val; + + /* Put PHY back into reset. */ + val = sk_win_read_4(sc, SK_GPIO); + if (sc_if->sk_port == SK_PORT_A) { + val |= SK_GPIO_DIR0; + val &= ~SK_GPIO_DAT0; + } else { + val |= SK_GPIO_DIR2; + val &= ~SK_GPIO_DAT2; + } + sk_win_write_4(sc, SK_GPIO, val); + } + + /* Turn off various components of this interface. */ + SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); + SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); + SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); + SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); + SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); + SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); + SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); + SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); + SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); + SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); + SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); + SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); + + /* Disable interrupts */ + if (sc_if->sk_port == SK_PORT_A) + sc->sk_intrmask &= ~SK_INTRS1; + else + sc->sk_intrmask &= ~SK_INTRS2; + CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); + + SK_XM_READ_2(sc_if, XM_ISR); + SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); + + /* Free RX and TX mbufs still in the queues. */ + for (i = 0; i < SK_RX_RING_CNT; i++) { + if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { + m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); + sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; + } + } + + for (i = 0; i < SK_TX_RING_CNT; i++) { + if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { + m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); + sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; + } + } + + ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); + SK_IF_UNLOCK(sc_if); + return; +} |