diff options
Diffstat (limited to 'sys/dev/sf')
-rw-r--r-- | sys/dev/sf/if_sf.c | 1538 | ||||
-rw-r--r-- | sys/dev/sf/if_sfreg.h | 1060 |
2 files changed, 2598 insertions, 0 deletions
diff --git a/sys/dev/sf/if_sf.c b/sys/dev/sf/if_sf.c new file mode 100644 index 0000000..bedf1f0 --- /dev/null +++ b/sys/dev/sf/if_sf.c @@ -0,0 +1,1538 @@ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD. + * Programming manual is available from: + * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf. + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Department of Electical Engineering + * Columbia University, New York City + */ + +/* + * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet + * controller designed with flexibility and reducing CPU load in mind. + * The Starfire offers high and low priority buffer queues, a + * producer/consumer index mechanism and several different buffer + * queue and completion queue descriptor types. Any one of a number + * of different driver designs can be used, depending on system and + * OS requirements. This driver makes use of type0 transmit frame + * descriptors (since BSD fragments packets across an mbuf chain) + * and two RX buffer queues prioritized on size (one queue for small + * frames that will fit into a single mbuf, another with full size + * mbuf clusters for everything else). The producer/consumer indexes + * and completion queues are also used. + * + * One downside to the Starfire has to do with alignment: buffer + * queues must be aligned on 256-byte boundaries, and receive buffers + * must be aligned on longword boundaries. The receive buffer alignment + * causes problems on the Alpha platform, where the packet payload + * should be longword aligned. There is no simple way around this. + * + * For receive filtering, the Starfire offers 16 perfect filter slots + * and a 512-bit hash table. + * + * The Starfire has no internal transceiver, relying instead on an + * external MII-based transceiver. Accessing registers on external + * PHYs is done through a special register map rather than with the + * usual bitbang MDIO method. + * + * Acesssing the registers on the Starfire is a little tricky. The + * Starfire has a 512K internal register space. When programmed for + * PCI memory mapped mode, the entire register space can be accessed + * directly. However in I/O space mode, only 256 bytes are directly + * mapped into PCI I/O space. The other registers can be accessed + * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA + * registers inside the 256-byte I/O window. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> + +#include <net/if.h> +#include <net/if_arp.h> +#include <net/ethernet.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#include <net/bpf.h> + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/bus_pio.h> +#include <machine/bus_memio.h> +#include <machine/bus.h> +#include <machine/resource.h> +#include <sys/bus.h> +#include <sys/rman.h> + +#include <dev/mii/mii.h> +#include <dev/mii/miivar.h> + +/* "controller miibus0" required. See GENERIC if you get errors here. */ +#include "miibus_if.h" + +#include <pci/pcireg.h> +#include <pci/pcivar.h> + +#define SF_USEIOSPACE + +#include <pci/if_sfreg.h> + +MODULE_DEPEND(sf, pci, 1, 1, 1); +MODULE_DEPEND(sf, ether, 1, 1, 1); +MODULE_DEPEND(sf, miibus, 1, 1, 1); + +static struct sf_type sf_devs[] = { + { AD_VENDORID, AD_DEVICEID_STARFIRE, + "Adaptec AIC-6915 10/100BaseTX" }, + { 0, 0, NULL } +}; + +static int sf_probe (device_t); +static int sf_attach (device_t); +static int sf_detach (device_t); +static void sf_intr (void *); +static void sf_stats_update (void *); +static void sf_rxeof (struct sf_softc *); +static void sf_txeof (struct sf_softc *); +static int sf_encap (struct sf_softc *, + struct sf_tx_bufdesc_type0 *, + struct mbuf *); +static void sf_start (struct ifnet *); +static int sf_ioctl (struct ifnet *, u_long, caddr_t); +static void sf_init (void *); +static void sf_stop (struct sf_softc *); +static void sf_watchdog (struct ifnet *); +static void sf_shutdown (device_t); +static int sf_ifmedia_upd (struct ifnet *); +static void sf_ifmedia_sts (struct ifnet *, struct ifmediareq *); +static void sf_reset (struct sf_softc *); +static int sf_init_rx_ring (struct sf_softc *); +static void sf_init_tx_ring (struct sf_softc *); +static int sf_newbuf (struct sf_softc *, + struct sf_rx_bufdesc_type0 *, + struct mbuf *); +static void sf_setmulti (struct sf_softc *); +static int sf_setperf (struct sf_softc *, int, caddr_t); +static int sf_sethash (struct sf_softc *, caddr_t, int); +#ifdef notdef +static int sf_setvlan (struct sf_softc *, int, u_int32_t); +#endif + +static u_int8_t sf_read_eeprom (struct sf_softc *, int); +static u_int32_t sf_calchash (caddr_t); + +static int sf_miibus_readreg (device_t, int, int); +static int sf_miibus_writereg (device_t, int, int, int); +static void sf_miibus_statchg (device_t); + +static u_int32_t csr_read_4 (struct sf_softc *, int); +static void csr_write_4 (struct sf_softc *, int, u_int32_t); +static void sf_txthresh_adjust (struct sf_softc *); + +#ifdef SF_USEIOSPACE +#define SF_RES SYS_RES_IOPORT +#define SF_RID SF_PCI_LOIO +#else +#define SF_RES SYS_RES_MEMORY +#define SF_RID SF_PCI_LOMEM +#endif + +static device_method_t sf_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, sf_probe), + DEVMETHOD(device_attach, sf_attach), + DEVMETHOD(device_detach, sf_detach), + DEVMETHOD(device_shutdown, sf_shutdown), + + /* bus interface */ + DEVMETHOD(bus_print_child, bus_generic_print_child), + DEVMETHOD(bus_driver_added, bus_generic_driver_added), + + /* MII interface */ + DEVMETHOD(miibus_readreg, sf_miibus_readreg), + DEVMETHOD(miibus_writereg, sf_miibus_writereg), + DEVMETHOD(miibus_statchg, sf_miibus_statchg), + + { 0, 0 } +}; + +static driver_t sf_driver = { + "sf", + sf_methods, + sizeof(struct sf_softc), +}; + +static devclass_t sf_devclass; + +DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0); +DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0); + +#define SF_SETBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) | (x)) + +#define SF_CLRBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x)) + +static u_int32_t +csr_read_4(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int32_t val; + +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + val = CSR_READ_4(sc, SF_INDIRECTIO_DATA); +#else + val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE)); +#endif + + return(val); +} + +static u_int8_t +sf_read_eeprom(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int8_t val; + + val = (csr_read_4(sc, SF_EEADDR_BASE + + (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF; + + return(val); +} + +static void +csr_write_4(sc, reg, val) + struct sf_softc *sc; + int reg; + u_int32_t val; +{ +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val); +#else + CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val); +#endif + return; +} + +static u_int32_t +sf_calchash(addr) + caddr_t addr; +{ + u_int32_t crc, carry; + int i, j; + u_int8_t c; + + /* Compute CRC for the address value. */ + crc = 0xFFFFFFFF; /* initial value */ + + for (i = 0; i < 6; i++) { + c = *(addr + i); + for (j = 0; j < 8; j++) { + carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); + crc <<= 1; + c >>= 1; + if (carry) + crc = (crc ^ 0x04c11db6) | carry; + } + } + + /* return the filter bit position */ + return(crc >> 23 & 0x1FF); +} + +/* + * Copy the address 'mac' into the perfect RX filter entry at + * offset 'idx.' The perfect filter only has 16 entries so do + * some sanity tests. + */ +static int +sf_setperf(sc, idx, mac) + struct sf_softc *sc; + int idx; + caddr_t mac; +{ + u_int16_t *p; + + if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT) + return(EINVAL); + + if (mac == NULL) + return(EINVAL); + + p = (u_int16_t *)mac; + + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0])); + + return(0); +} + +/* + * Set the bit in the 512-bit hash table that corresponds to the + * specified mac address 'mac.' If 'prio' is nonzero, update the + * priority hash table instead of the filter hash table. + */ +static int +sf_sethash(sc, mac, prio) + struct sf_softc *sc; + caddr_t mac; + int prio; +{ + u_int32_t h = 0; + + if (mac == NULL) + return(EINVAL); + + h = sf_calchash(mac); + + if (prio) { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } else { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } + + return(0); +} + +#ifdef notdef +/* + * Set a VLAN tag in the receive filter. + */ +static int +sf_setvlan(sc, idx, vlan) + struct sf_softc *sc; + int idx; + u_int32_t vlan; +{ + if (idx < 0 || idx >> SF_RXFILT_HASH_CNT) + return(EINVAL); + + csr_write_4(sc, SF_RXFILT_HASH_BASE + + (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan); + + return(0); +} +#endif + +static int +sf_miibus_readreg(dev, phy, reg) + device_t dev; + int phy, reg; +{ + struct sf_softc *sc; + int i; + u_int32_t val = 0; + + sc = device_get_softc(dev); + + for (i = 0; i < SF_TIMEOUT; i++) { + val = csr_read_4(sc, SF_PHY_REG(phy, reg)); + if (val & SF_MII_DATAVALID) + break; + } + + if (i == SF_TIMEOUT) + return(0); + + if ((val & 0x0000FFFF) == 0xFFFF) + return(0); + + return(val & 0x0000FFFF); +} + +static int +sf_miibus_writereg(dev, phy, reg, val) + device_t dev; + int phy, reg, val; +{ + struct sf_softc *sc; + int i; + int busy; + + sc = device_get_softc(dev); + + csr_write_4(sc, SF_PHY_REG(phy, reg), val); + + for (i = 0; i < SF_TIMEOUT; i++) { + busy = csr_read_4(sc, SF_PHY_REG(phy, reg)); + if (!(busy & SF_MII_BUSY)) + break; + } + + return(0); +} + +static void +sf_miibus_statchg(dev) + device_t dev; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = device_get_softc(dev); + mii = device_get_softc(sc->sf_miibus); + + if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX); + } else { + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX); + } + + return; +} + +static void +sf_setmulti(sc) + struct sf_softc *sc; +{ + struct ifnet *ifp; + int i; + struct ifmultiaddr *ifma; + u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 }; + + ifp = &sc->arpcom.ac_if; + + /* First zot all the existing filters. */ + for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++) + sf_setperf(sc, i, (char *)&dummy); + for (i = SF_RXFILT_HASH_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + } else { + i = 1; + TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + /* + * Program the first 15 multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < SF_RXFILT_PERFECT_CNT) { + sf_setperf(sc, i, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); + i++; + continue; + } + + sf_sethash(sc, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0); + } + } + + return; +} + +/* + * Set media options. + */ +static int +sf_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + mii = device_get_softc(sc->sf_miibus); + sc->sf_link = 0; + if (mii->mii_instance) { + struct mii_softc *miisc; + LIST_FOREACH(miisc, &mii->mii_phys, mii_list) + mii_phy_reset(miisc); + } + mii_mediachg(mii); + + return(0); +} + +/* + * Report current media status. + */ +static void +sf_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + mii = device_get_softc(sc->sf_miibus); + + mii_pollstat(mii); + ifmr->ifm_active = mii->mii_media_active; + ifmr->ifm_status = mii->mii_media_status; + + return; +} + +static int +sf_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct sf_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + struct mii_data *mii; + int error = 0; + + SF_LOCK(sc); + + switch(command) { + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + if (ifp->if_flags & IFF_RUNNING && + ifp->if_flags & IFF_PROMISC && + !(sc->sf_if_flags & IFF_PROMISC)) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else if (ifp->if_flags & IFF_RUNNING && + !(ifp->if_flags & IFF_PROMISC) && + sc->sf_if_flags & IFF_PROMISC) { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else if (!(ifp->if_flags & IFF_RUNNING)) + sf_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) + sf_stop(sc); + } + sc->sf_if_flags = ifp->if_flags; + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + sf_setmulti(sc); + error = 0; + break; + case SIOCGIFMEDIA: + case SIOCSIFMEDIA: + mii = device_get_softc(sc->sf_miibus); + error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); + break; + default: + error = ether_ioctl(ifp, command, data); + break; + } + + SF_UNLOCK(sc); + + return(error); +} + +static void +sf_reset(sc) + struct sf_softc *sc; +{ + register int i; + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + DELAY(1000); + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET); + + for (i = 0; i < SF_TIMEOUT; i++) { + DELAY(10); + if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET)) + break; + } + + if (i == SF_TIMEOUT) + printf("sf%d: reset never completed!\n", sc->sf_unit); + + /* Wait a little while for the chip to get its brains in order. */ + DELAY(1000); + return; +} + +/* + * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device + * IDs against our list and return a device name if we find a match. + * We also check the subsystem ID so that we can identify exactly which + * NIC has been found, if possible. + */ +static int +sf_probe(dev) + device_t dev; +{ + struct sf_type *t; + + t = sf_devs; + + while(t->sf_name != NULL) { + if ((pci_get_vendor(dev) == t->sf_vid) && + (pci_get_device(dev) == t->sf_did)) { + switch((pci_read_config(dev, + SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) { + case AD_SUBSYSID_62011_REV0: + case AD_SUBSYSID_62011_REV1: + device_set_desc(dev, + "Adaptec ANA-62011 10/100BaseTX"); + return(0); + case AD_SUBSYSID_62022: + device_set_desc(dev, + "Adaptec ANA-62022 10/100BaseTX"); + return(0); + case AD_SUBSYSID_62044_REV0: + case AD_SUBSYSID_62044_REV1: + device_set_desc(dev, + "Adaptec ANA-62044 10/100BaseTX"); + return(0); + case AD_SUBSYSID_62020: + device_set_desc(dev, + "Adaptec ANA-62020 10/100BaseFX"); + return(0); + case AD_SUBSYSID_69011: + device_set_desc(dev, + "Adaptec ANA-69011 10/100BaseTX"); + return(0); + default: + device_set_desc(dev, t->sf_name); + return(0); + break; + } + } + t++; + } + + return(ENXIO); +} + +/* + * Attach the interface. Allocate softc structures, do ifmedia + * setup and ethernet/BPF attach. + */ +static int +sf_attach(dev) + device_t dev; +{ + int i; + struct sf_softc *sc; + struct ifnet *ifp; + int unit, rid, error = 0; + + sc = device_get_softc(dev); + unit = device_get_unit(dev); + + mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, + MTX_DEF | MTX_RECURSE); + + /* + * Handle power management nonsense. + */ + if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { + u_int32_t iobase, membase, irq; + + /* Save important PCI config data. */ + iobase = pci_read_config(dev, SF_PCI_LOIO, 4); + membase = pci_read_config(dev, SF_PCI_LOMEM, 4); + irq = pci_read_config(dev, SF_PCI_INTLINE, 4); + + /* Reset the power state. */ + printf("sf%d: chip is in D%d power mode " + "-- setting to D0\n", unit, + pci_get_powerstate(dev)); + pci_set_powerstate(dev, PCI_POWERSTATE_D0); + + /* Restore PCI config data. */ + pci_write_config(dev, SF_PCI_LOIO, iobase, 4); + pci_write_config(dev, SF_PCI_LOMEM, membase, 4); + pci_write_config(dev, SF_PCI_INTLINE, irq, 4); + } + + /* + * Map control/status registers. + */ + pci_enable_busmaster(dev); + + rid = SF_RID; + sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid, + 0, ~0, 1, RF_ACTIVE); + + if (sc->sf_res == NULL) { + printf ("sf%d: couldn't map ports\n", unit); + error = ENXIO; + goto fail; + } + + sc->sf_btag = rman_get_bustag(sc->sf_res); + sc->sf_bhandle = rman_get_bushandle(sc->sf_res); + + /* Allocate interrupt */ + rid = 0; + sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, + RF_SHAREABLE | RF_ACTIVE); + + if (sc->sf_irq == NULL) { + printf("sf%d: couldn't map interrupt\n", unit); + error = ENXIO; + goto fail; + } + + callout_handle_init(&sc->sf_stat_ch); + /* Reset the adapter. */ + sf_reset(sc); + + /* + * Get station address from the EEPROM. + */ + for (i = 0; i < ETHER_ADDR_LEN; i++) + sc->arpcom.ac_enaddr[i] = + sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i); + + /* + * An Adaptec chip was detected. Inform the world. + */ + printf("sf%d: Ethernet address: %6D\n", unit, + sc->arpcom.ac_enaddr, ":"); + + sc->sf_unit = unit; + + /* Allocate the descriptor queues. */ + sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF, + M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); + + if (sc->sf_ldata == NULL) { + printf("sf%d: no memory for list buffers!\n", unit); + error = ENXIO; + goto fail; + } + + bzero(sc->sf_ldata, sizeof(struct sf_list_data)); + + /* Do MII setup. */ + if (mii_phy_probe(dev, &sc->sf_miibus, + sf_ifmedia_upd, sf_ifmedia_sts)) { + printf("sf%d: MII without any phy!\n", sc->sf_unit); + error = ENXIO; + goto fail; + } + + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_unit = unit; + ifp->if_name = "sf"; + ifp->if_mtu = ETHERMTU; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = sf_ioctl; + ifp->if_output = ether_output; + ifp->if_start = sf_start; + ifp->if_watchdog = sf_watchdog; + ifp->if_init = sf_init; + ifp->if_baudrate = 10000000; + ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1; + + /* + * Call MI attach routine. + */ + ether_ifattach(ifp, sc->arpcom.ac_enaddr); + + /* Hook interrupt last to avoid having to lock softc */ + error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET, + sf_intr, sc, &sc->sf_intrhand); + + if (error) { + printf("sf%d: couldn't set up irq\n", unit); + ether_ifdetach(ifp); + goto fail; + } + +fail: + if (error) + sf_detach(dev); + + return(error); +} + +/* + * Shutdown hardware and free up resources. This can be called any + * time after the mutex has been initialized. It is called in both + * the error case in attach and the normal detach case so it needs + * to be careful about only freeing resources that have actually been + * allocated. + */ +static int +sf_detach(dev) + device_t dev; +{ + struct sf_softc *sc; + struct ifnet *ifp; + + sc = device_get_softc(dev); + KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized")); + SF_LOCK(sc); + ifp = &sc->arpcom.ac_if; + + /* These should only be active if attach succeeded */ + if (device_is_attached(dev)) { + sf_stop(sc); + ether_ifdetach(ifp); + } + if (sc->sf_miibus) + device_delete_child(dev, sc->sf_miibus); + bus_generic_detach(dev); + + if (sc->sf_intrhand) + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + if (sc->sf_irq) + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + if (sc->sf_res) + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + + if (sc->sf_ldata) + contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF); + + SF_UNLOCK(sc); + mtx_destroy(&sc->sf_mtx); + + return(0); +} + +static int +sf_init_rx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_rx_dlist_big, + sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT); + bzero((char *)ld->sf_rx_clist, + sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT); + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS) + return(ENOBUFS); + } + + return(0); +} + +static void +sf_init_tx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_tx_dlist, + sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT); + bzero((char *)ld->sf_tx_clist, + sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT); + + for (i = 0; i < SF_TX_DLIST_CNT; i++) + ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID; + for (i = 0; i < SF_TX_CLIST_CNT; i++) + ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX; + + ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1; + sc->sf_tx_cnt = 0; + + return; +} + +static int +sf_newbuf(sc, c, m) + struct sf_softc *sc; + struct sf_rx_bufdesc_type0 *c; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + + if (m == NULL) { + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) + return(ENOBUFS); + + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + return(ENOBUFS); + } + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + } else { + m_new = m; + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + m_new->m_data = m_new->m_ext.ext_buf; + } + + m_adj(m_new, sizeof(u_int64_t)); + + c->sf_mbuf = m_new; + c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t))); + c->sf_valid = 1; + + return(0); +} + +/* + * The starfire is programmed to use 'normal' mode for packet reception, + * which means we use the consumer/producer model for both the buffer + * descriptor queue and the completion descriptor queue. The only problem + * with this is that it involves a lot of register accesses: we have to + * read the RX completion consumer and producer indexes and the RX buffer + * producer index, plus the RX completion consumer and RX buffer producer + * indexes have to be updated. It would have been easier if Adaptec had + * put each index in a separate register, especially given that the damn + * NIC has a 512K register space. + * + * In spite of all the lovely features that Adaptec crammed into the 6915, + * it is marred by one truly stupid design flaw, which is that receive + * buffer addresses must be aligned on a longword boundary. This forces + * the packet payload to be unaligned, which is suboptimal on the x86 and + * completely unuseable on the Alpha. Our only recourse is to copy received + * packets into properly aligned buffers before handing them off. + */ + +static void +sf_rxeof(sc) + struct sf_softc *sc; +{ + struct mbuf *m; + struct ifnet *ifp; + struct sf_rx_bufdesc_type0 *desc; + struct sf_rx_cmpdesc_type3 *cur_rx; + u_int32_t rxcons, rxprod; + int cmpprodidx, cmpconsidx, bufprodidx; + + ifp = &sc->arpcom.ac_if; + + rxcons = csr_read_4(sc, SF_CQ_CONSIDX); + rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1); + cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_LO(rxcons); + bufprodidx = SF_IDX_LO(rxprod); + + while (cmpconsidx != cmpprodidx) { + struct mbuf *m0; + + cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx]; + desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx]; + m = desc->sf_mbuf; + SF_INC(cmpconsidx, SF_RX_CLIST_CNT); + SF_INC(bufprodidx, SF_RX_DLIST_CNT); + + if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) { + ifp->if_ierrors++; + sf_newbuf(sc, desc, m); + continue; + } + + m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN, + ifp, NULL); + sf_newbuf(sc, desc, m); + if (m0 == NULL) { + ifp->if_ierrors++; + continue; + } + m = m0; + + ifp->if_ipackets++; + (*ifp->if_input)(ifp, m); + } + + csr_write_4(sc, SF_CQ_CONSIDX, + (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx); + csr_write_4(sc, SF_RXDQ_PTR_Q1, + (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx); + + return; +} + +/* + * Read the transmit status from the completion queue and release + * mbufs. Note that the buffer descriptor index in the completion + * descriptor is an offset from the start of the transmit buffer + * descriptor list in bytes. This is important because the manual + * gives the impression that it should match the producer/consumer + * index, which is the offset in 8 byte blocks. + */ +static void +sf_txeof(sc) + struct sf_softc *sc; +{ + int txcons, cmpprodidx, cmpconsidx; + struct sf_tx_cmpdesc_type1 *cur_cmp; + struct sf_tx_bufdesc_type0 *cur_tx; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + txcons = csr_read_4(sc, SF_CQ_CONSIDX); + cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_HI(txcons); + + while (cmpconsidx != cmpprodidx) { + cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx]; + cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7]; + + if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK) + ifp->if_opackets++; + else { + if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN) + sf_txthresh_adjust(sc); + ifp->if_oerrors++; + } + + sc->sf_tx_cnt--; + if (cur_tx->sf_mbuf != NULL) { + m_freem(cur_tx->sf_mbuf); + cur_tx->sf_mbuf = NULL; + } else + break; + SF_INC(cmpconsidx, SF_TX_CLIST_CNT); + } + + ifp->if_timer = 0; + ifp->if_flags &= ~IFF_OACTIVE; + + csr_write_4(sc, SF_CQ_CONSIDX, + (txcons & ~SF_CQ_CONSIDX_TXQ) | + ((cmpconsidx << 16) & 0xFFFF0000)); + + return; +} + +static void +sf_txthresh_adjust(sc) + struct sf_softc *sc; +{ + u_int32_t txfctl; + u_int8_t txthresh; + + txfctl = csr_read_4(sc, SF_TX_FRAMCTL); + txthresh = txfctl & SF_TXFRMCTL_TXTHRESH; + if (txthresh < 0xFF) { + txthresh++; + txfctl &= ~SF_TXFRMCTL_TXTHRESH; + txfctl |= txthresh; +#ifdef DIAGNOSTIC + printf("sf%d: tx underrun, increasing " + "tx threshold to %d bytes\n", + sc->sf_unit, txthresh * 4); +#endif + csr_write_4(sc, SF_TX_FRAMCTL, txfctl); + } + + return; +} + +static void +sf_intr(arg) + void *arg; +{ + struct sf_softc *sc; + struct ifnet *ifp; + u_int32_t status; + + sc = arg; + SF_LOCK(sc); + + ifp = &sc->arpcom.ac_if; + + if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) { + SF_UNLOCK(sc); + return; + } + + /* Disable interrupts. */ + csr_write_4(sc, SF_IMR, 0x00000000); + + for (;;) { + status = csr_read_4(sc, SF_ISR); + if (status) + csr_write_4(sc, SF_ISR, status); + + if (!(status & SF_INTRS)) + break; + + if (status & SF_ISR_RXDQ1_DMADONE) + sf_rxeof(sc); + + if (status & SF_ISR_TX_TXDONE || + status & SF_ISR_TX_DMADONE || + status & SF_ISR_TX_QUEUEDONE) + sf_txeof(sc); + + if (status & SF_ISR_TX_LOFIFO) + sf_txthresh_adjust(sc); + + if (status & SF_ISR_ABNORMALINTR) { + if (status & SF_ISR_STATSOFLOW) { + untimeout(sf_stats_update, sc, + sc->sf_stat_ch); + sf_stats_update(sc); + } else + sf_init(sc); + } + } + + /* Re-enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + SF_UNLOCK(sc); + return; +} + +static void +sf_init(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + struct mii_data *mii; + int i; + + sc = xsc; + SF_LOCK(sc); + ifp = &sc->arpcom.ac_if; + mii = device_get_softc(sc->sf_miibus); + + sf_stop(sc); + sf_reset(sc); + + /* Init all the receive filter registers */ + for (i = SF_RXFILT_PERFECT_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + + /* Empty stats counter registers. */ + for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + /* Init our MAC address */ + csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); + csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); + sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr); + + if (sf_init_rx_ring(sc) == ENOBUFS) { + printf("sf%d: initialization failed: no " + "memory for rx buffers\n", sc->sf_unit); + SF_UNLOCK(sc); + return; + } + + sf_init_tx_ring(sc); + + csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN); + + /* If we want promiscuous mode, set the allframes bit. */ + if (ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } + + if (ifp->if_flags & IFF_BROADCAST) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } + + /* + * Load the multicast filter. + */ + sf_setmulti(sc); + + /* Init the completion queue indexes */ + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + + /* Init the RX completion queue */ + csr_write_4(sc, SF_RXCQ_CTL_1, + vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR); + SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3); + + /* Init RX DMA control. */ + SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS); + + /* Init the RX buffer descriptor queue. */ + csr_write_4(sc, SF_RXDQ_ADDR_Q1, + vtophys(sc->sf_ldata->sf_rx_dlist_big)); + csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES); + csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1); + + /* Init the TX completion queue */ + csr_write_4(sc, SF_TXCQ_CTL, + vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR); + + /* Init the TX buffer descriptor queue. */ + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, + vtophys(sc->sf_ldata->sf_tx_dlist)); + SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX); + csr_write_4(sc, SF_TXDQ_CTL, + SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES); + SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP); + + /* Enable autopadding of short TX frames. */ + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD); + + /* Enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB); + + /* Enable the RX and TX engines. */ + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB); + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB); + + /*mii_mediachg(mii);*/ + sf_ifmedia_upd(ifp); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + sc->sf_stat_ch = timeout(sf_stats_update, sc, hz); + + SF_UNLOCK(sc); + + return; +} + +static int +sf_encap(sc, c, m_head) + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *c; + struct mbuf *m_head; +{ + int frag = 0; + struct sf_frag *f = NULL; + struct mbuf *m; + + m = m_head; + + for (m = m_head, frag = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (frag == SF_MAXFRAGS) + break; + f = &c->sf_frags[frag]; + if (frag == 0) + f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_fraglen = m->m_len; + f->sf_addr = vtophys(mtod(m, vm_offset_t)); + frag++; + } + } + + if (m != NULL) { + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("sf%d: no memory for tx list\n", sc->sf_unit); + return(1); + } + + if (m_head->m_pkthdr.len > MHLEN) { + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + printf("sf%d: no memory for tx list\n", + sc->sf_unit); + return(1); + } + } + m_copydata(m_head, 0, m_head->m_pkthdr.len, + mtod(m_new, caddr_t)); + m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; + m_freem(m_head); + m_head = m_new; + f = &c->sf_frags[0]; + f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_addr = vtophys(mtod(m_head, caddr_t)); + frag = 1; + } + + c->sf_mbuf = m_head; + c->sf_id = SF_TX_BUFDESC_ID; + c->sf_fragcnt = frag; + c->sf_intr = 1; + c->sf_caltcp = 0; + c->sf_crcen = 1; + + return(0); +} + +static void +sf_start(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *cur_tx = NULL; + struct mbuf *m_head = NULL; + int i, txprod; + + sc = ifp->if_softc; + SF_LOCK(sc); + + if (!sc->sf_link && ifp->if_snd.ifq_len < 10) { + SF_UNLOCK(sc); + return; + } + + if (ifp->if_flags & IFF_OACTIVE) { + SF_UNLOCK(sc); + return; + } + + txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); + i = SF_IDX_HI(txprod) >> 4; + + if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { + printf("sf%d: TX ring full, resetting\n", sc->sf_unit); + sf_init(sc); + txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); + i = SF_IDX_HI(txprod) >> 4; + } + + while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) { + if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) { + ifp->if_flags |= IFF_OACTIVE; + cur_tx = NULL; + break; + } + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + cur_tx = &sc->sf_ldata->sf_tx_dlist[i]; + if (sf_encap(sc, cur_tx, m_head)) { + IF_PREPEND(&ifp->if_snd, m_head); + ifp->if_flags |= IFF_OACTIVE; + cur_tx = NULL; + break; + } + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ + BPF_MTAP(ifp, m_head); + + SF_INC(i, SF_TX_DLIST_CNT); + sc->sf_tx_cnt++; + /* + * Don't get the TX DMA queue get too full. + */ + if (sc->sf_tx_cnt > 64) + break; + } + + if (cur_tx == NULL) { + SF_UNLOCK(sc); + return; + } + + /* Transmit */ + csr_write_4(sc, SF_TXDQ_PRODIDX, + (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) | + ((i << 20) & 0xFFFF0000)); + + ifp->if_timer = 5; + + SF_UNLOCK(sc); + + return; +} + +static void +sf_stop(sc) + struct sf_softc *sc; +{ + int i; + struct ifnet *ifp; + + SF_LOCK(sc); + + ifp = &sc->arpcom.ac_if; + + untimeout(sf_stats_update, sc, sc->sf_stat_ch); + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0); + csr_write_4(sc, SF_RXDQ_CTL_1, 0); + csr_write_4(sc, SF_RXDQ_PTR_Q1, 0); + csr_write_4(sc, SF_TXCQ_CTL, 0); + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0); + csr_write_4(sc, SF_TXDQ_CTL, 0); + sf_reset(sc); + + sc->sf_link = 0; + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf); + sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL; + } + } + + for (i = 0; i < SF_TX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf); + sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL; + } + } + + ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); + SF_UNLOCK(sc); + + return; +} + +/* + * Note: it is important that this function not be interrupted. We + * use a two-stage register access scheme: if we are interrupted in + * between setting the indirect address register and reading from the + * indirect data register, the contents of the address register could + * be changed out from under us. + */ +static void +sf_stats_update(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + struct mii_data *mii; + struct sf_stats stats; + u_int32_t *ptr; + int i; + + sc = xsc; + SF_LOCK(sc); + ifp = &sc->arpcom.ac_if; + mii = device_get_softc(sc->sf_miibus); + + ptr = (u_int32_t *)&stats; + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + ptr[i] = csr_read_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t))); + + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + ifp->if_collisions += stats.sf_tx_single_colls + + stats.sf_tx_multi_colls + stats.sf_tx_excess_colls; + + mii_tick(mii); + + if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE && + IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { + sc->sf_link++; + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + } + + sc->sf_stat_ch = timeout(sf_stats_update, sc, hz); + + SF_UNLOCK(sc); + + return; +} + +static void +sf_watchdog(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + + sc = ifp->if_softc; + + SF_LOCK(sc); + + ifp->if_oerrors++; + printf("sf%d: watchdog timeout\n", sc->sf_unit); + + sf_stop(sc); + sf_reset(sc); + sf_init(sc); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + SF_UNLOCK(sc); + + return; +} + +static void +sf_shutdown(dev) + device_t dev; +{ + struct sf_softc *sc; + + sc = device_get_softc(dev); + + sf_stop(sc); + + return; +} diff --git a/sys/dev/sf/if_sfreg.h b/sys/dev/sf/if_sfreg.h new file mode 100644 index 0000000..1975cfc --- /dev/null +++ b/sys/dev/sf/if_sfreg.h @@ -0,0 +1,1060 @@ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $FreeBSD$ + */ + +/* + * Registers for the Adaptec AIC-6915 Starfire. The Starfire has a 512K + * register space. These registers can be accessed in the following way: + * - PCI config registers are always accessible through PCI config space + * - Full 512K space mapped into memory using PCI memory mapped access + * - 256-byte I/O space mapped through PCI I/O access + * - Full 512K space mapped through indirect I/O using PCI I/O access + * It's possible to use either memory mapped mode or I/O mode to access + * the registers, but memory mapped is usually the easiest. All registers + * are 32 bits wide and must be accessed using 32-bit operations. + */ + +/* + * Adaptec PCI vendor ID. + */ +#define AD_VENDORID 0x9004 + +/* + * AIC-6915 PCI device ID. + */ +#define AD_DEVICEID_STARFIRE 0x6915 + +/* + * AIC-6915 subsystem IDs. Adaptec uses the subsystem ID to identify + * the exact kind of NIC on which the ASIC is mounted. Currently there + * are six different variations. Note: the Adaptec manual lists code 0x28 + * for two different NICs: the 62044 and the 69011/TX. This is a typo: + * the code for the 62044 is really 0x18. + * + * Note that there also appears to be an 0x19 code for a newer rev + * 62044 card. + */ +#define AD_SUBSYSID_62011_REV0 0x0008 /* single port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62011_REV1 0x0009 /* single port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62022 0x0010 /* dual port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62044_REV0 0x0018 /* quad port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62044_REV1 0x0019 /* quad port 10/100baseTX 64-bit */ +#define AD_SUBSYSID_62020 0x0020 /* single port 10/100baseFX 64-bit */ +#define AD_SUBSYSID_69011 0x0028 /* single port 10/100baseTX 32-bit */ + +/* + * Starfire internal register space map. The entire register space + * is available using PCI memory mapped mode. The SF_RMAP_INTREG + * space is available using PCI I/O mode. The entire space can be + * accessed using indirect I/O using the indirect I/O addr and + * indirect I/O data registers located within the SF_RMAP_INTREG space. + */ +#define SF_RMAP_ROMADDR_BASE 0x00000 /* Expansion ROM space */ +#define SF_RMAP_ROMADDR_MAX 0x3FFFF + +#define SF_RMAP_EXGPIO_BASE 0x40000 /* External general purpose regs */ +#define SF_RMAP_EXGPIO_MAX 0x3FFFF + +#define SF_RMAP_INTREG_BASE 0x50000 /* Internal functional registers */ +#define SF_RMAP_INTREG_MAX 0x500FF +#define SF_RMAP_GENREG_BASE 0x50100 /* General purpose registers */ +#define SF_RMAP_GENREG_MAX 0x5FFFF + +#define SF_RMAP_FIFO_BASE 0x60000 +#define SF_RMAP_FIFO_MAX 0x6FFFF + +#define SF_RMAP_STS_BASE 0x70000 +#define SF_RMAP_STS_MAX 0x70083 + +#define SF_RMAP_RSVD_BASE 0x70084 +#define SF_RMAP_RSVD_MAX 0x7FFFF + +/* + * PCI config header registers, 0x0000 to 0x003F + */ +#define SF_PCI_VENDOR_ID 0x0000 +#define SF_PCI_DEVICE_ID 0x0002 +#define SF_PCI_COMMAND 0x0004 +#define SF_PCI_STATUS 0x0006 +#define SF_PCI_REVID 0x0008 +#define SF_PCI_CLASSCODE 0x0009 +#define SF_PCI_CACHELEN 0x000C +#define SF_PCI_LATENCY_TIMER 0x000D +#define SF_PCI_HEADER_TYPE 0x000E +#define SF_PCI_LOMEM 0x0010 +#define SF_PCI_LOIO 0x0014 +#define SF_PCI_SUBVEN_ID 0x002C +#define SF_PCI_SYBSYS_ID 0x002E +#define SF_PCI_BIOSROM 0x0030 +#define SF_PCI_INTLINE 0x003C +#define SF_PCI_INTPIN 0x003D +#define SF_PCI_MINGNT 0x003E +#define SF_PCI_MINLAT 0x003F + +/* + * PCI registers, 0x0040 to 0x006F + */ +#define SF_PCI_DEVCFG 0x0040 +#define SF_BACCTL 0x0044 +#define SF_PCI_MON1 0x0048 +#define SF_PCI_MON2 0x004C +#define SF_PCI_CAPID 0x0050 /* 8 bits */ +#define SF_PCI_NEXTPTR 0x0051 /* 8 bits */ +#define SF_PCI_PWRMGMTCAP 0x0052 /* 16 bits */ +#define SF_PCI_PWRMGMTCTRL 0x0054 /* 16 bits */ +#define SF_PCI_PME_EVENT 0x0058 +#define SF_PCI_EECTL 0x0060 +#define SF_PCI_COMPLIANCE 0x0064 +#define SF_INDIRECTIO_ADDR 0x0068 +#define SF_INDIRECTIO_DATA 0x006C + +#define SF_PCIDEVCFG_RESET 0x00000001 +#define SF_PCIDEVCFG_FORCE64 0x00000002 +#define SF_PCIDEVCFG_SYSTEM64 0x00000004 +#define SF_PCIDEVCFG_RSVD0 0x00000008 +#define SF_PCIDEVCFG_INCR_INB 0x00000010 +#define SF_PCIDEVCFG_ABTONPERR 0x00000020 +#define SF_PCIDEVCFG_STPONPERR 0x00000040 +#define SF_PCIDEVCFG_MR_ENB 0x00000080 +#define SF_PCIDEVCFG_FIFOTHR 0x00000F00 +#define SF_PCIDEVCFG_STPONCA 0x00001000 +#define SF_PCIDEVCFG_PCIMEN 0x00002000 /* enable PCI bus master */ +#define SF_PCIDEVCFG_LATSTP 0x00004000 +#define SF_PCIDEVCFG_BYTE_ENB 0x00008000 +#define SF_PCIDEVCFG_EECSWIDTH 0x00070000 +#define SF_PCIDEVCFG_STPMWCA 0x00080000 +#define SF_PCIDEVCFG_REGCSWIDTH 0x00700000 +#define SF_PCIDEVCFG_INTR_ENB 0x00800000 +#define SF_PCIDEVCFG_DPR_ENB 0x01000000 +#define SF_PCIDEVCFG_RSVD1 0x02000000 +#define SF_PCIDEVCFG_RSVD2 0x04000000 +#define SF_PCIDEVCFG_STA_ENB 0x08000000 +#define SF_PCIDEVCFG_RTA_ENB 0x10000000 +#define SF_PCIDEVCFG_RMA_ENB 0x20000000 +#define SF_PCIDEVCFG_SSE_ENB 0x40000000 +#define SF_PCIDEVCFG_DPE_ENB 0x80000000 + +#define SF_BACCTL_BACDMA_ENB 0x00000001 +#define SF_BACCTL_PREFER_RXDMA 0x00000002 +#define SF_BACCTL_PREFER_TXDMA 0x00000004 +#define SF_BACCTL_SINGLE_DMA 0x00000008 +#define SF_BACCTL_SWAPMODE_DATA 0x00000030 +#define SF_BACCTL_SWAPMODE_DESC 0x000000C0 + +#define SF_SWAPMODE_LE 0x00000000 +#define SF_SWAPMODE_BE 0x00000010 + +#define SF_PSTATE_MASK 0x0003 +#define SF_PSTATE_D0 0x0000 +#define SF_PSTATE_D1 0x0001 +#define SF_PSTATE_D2 0x0002 +#define SF_PSTATE_D3 0x0003 +#define SF_PME_EN 0x0010 +#define SF_PME_STATUS 0x8000 + + +/* + * Ethernet registers 0x0070 to 0x00FF + */ +#define SF_GEN_ETH_CTL 0x0070 +#define SF_TIMER_CTL 0x0074 +#define SF_CURTIME 0x0078 +#define SF_ISR 0x0080 +#define SF_ISR_SHADOW 0x0084 +#define SF_IMR 0x0088 +#define SF_GPIO 0x008C +#define SF_TXDQ_CTL 0x0090 +#define SF_TXDQ_ADDR_HIPRIO 0x0094 +#define SF_TXDQ_ADDR_LOPRIO 0x0098 +#define SF_TXDQ_ADDR_HIADDR 0x009C +#define SF_TXDQ_PRODIDX 0x00A0 +#define SF_TXDQ_CONSIDX 0x00A4 +#define SF_TXDMA_STS1 0x00A8 +#define SF_TXDMA_STS2 0x00AC +#define SF_TX_FRAMCTL 0x00B0 +#define SF_TXCQ_ADDR_HI 0x00B4 +#define SF_TXCQ_CTL 0x00B8 +#define SF_RXCQ_CTL_1 0x00BC +#define SF_RXCQ_CTL_2 0x00C0 +#define SF_CQ_CONSIDX 0x00C4 +#define SF_CQ_PRODIDX 0x00C8 +#define SF_CQ_RXQ2 0x00CC +#define SF_RXDMA_CTL 0x00D0 +#define SF_RXDQ_CTL_1 0x00D4 +#define SF_RXDQ_CTL_2 0x00D8 +#define SF_RXDQ_ADDR_HIADDR 0x00DC +#define SF_RXDQ_ADDR_Q1 0x00E0 +#define SF_RXDQ_ADDR_Q2 0x00E4 +#define SF_RXDQ_PTR_Q1 0x00E8 +#define SF_RXDQ_PTR_Q2 0x00EC +#define SF_RXDMA_STS 0x00F0 +#define SF_RXFILT 0x00F4 +#define SF_RX_FRAMETEST_OUT 0x00F8 + +/* Ethernet control register */ +#define SF_ETHCTL_RX_ENB 0x00000001 +#define SF_ETHCTL_TX_ENB 0x00000002 +#define SF_ETHCTL_RXDMA_ENB 0x00000004 +#define SF_ETHCTL_TXDMA_ENB 0x00000008 +#define SF_ETHCTL_RXGFP_ENB 0x00000010 +#define SF_ETHCTL_TXGFP_ENB 0x00000020 +#define SF_ETHCTL_SOFTINTR 0x00000800 + +/* Timer control register */ +#define SF_TIMER_IMASK_INTERVAL 0x0000001F +#define SF_TIMER_IMASK_MODE 0x00000060 +#define SF_TIMER_SMALLFRAME_BYP 0x00000100 +#define SF_TIMER_SMALLRX_FRAME 0x00000600 +#define SF_TIMER_TIMES_TEN 0x00000800 +#define SF_TIMER_RXHIPRIO_BYP 0x00001000 +#define SF_TIMER_TX_DMADONE_DLY 0x00002000 +#define SF_TIMER_TX_QDONE_DLY 0x00004000 +#define SF_TIMER_TX_FRDONE_DLY 0x00008000 +#define SF_TIMER_GENTIMER 0x00FF0000 +#define SF_TIMER_ONESHOT 0x01000000 +#define SF_TIMER_GENTIMER_RES 0x02000000 +#define SF_TIMER_TIMEST_RES 0x04000000 +#define SF_TIMER_RXQ2DONE_DLY 0x10000000 +#define SF_TIMER_EARLYRX2_DLY 0x20000000 +#define SF_TIMER_RXQ1DONE_DLY 0x40000000 +#define SF_TIMER_EARLYRX1_DLY 0x80000000 + +/* Interrupt status register */ +#define SF_ISR_PCIINT_ASSERTED 0x00000001 +#define SF_ISR_GFP_TX 0x00000002 +#define SF_ISR_GFP_RX 0x00000004 +#define SF_ISR_TX_BADID_HIPRIO 0x00000008 +#define SF_ISR_TX_BADID_LOPRIO 0x00000010 +#define SF_ISR_NO_TX_CSUM 0x00000020 +#define SF_ISR_RXDQ2_NOBUFS 0x00000040 +#define SF_ISR_RXGFP_NORESP 0x00000080 +#define SF_ISR_RXDQ1_DMADONE 0x00000100 +#define SF_ISR_RXDQ2_DMADONE 0x00000200 +#define SF_ISR_RXDQ1_EARLY 0x00000400 +#define SF_ISR_RXDQ2_EARLY 0x00000800 +#define SF_ISR_TX_QUEUEDONE 0x00001000 +#define SF_ISR_TX_DMADONE 0x00002000 +#define SF_ISR_TX_TXDONE 0x00004000 +#define SF_ISR_NORMALINTR 0x00008000 +#define SF_ISR_RXDQ1_NOBUFS 0x00010000 +#define SF_ISR_RXCQ2_NOBUFS 0x00020000 +#define SF_ISR_TX_LOFIFO 0x00040000 +#define SF_ISR_DMAERR 0x00080000 +#define SF_ISR_PCIINT 0x00100000 +#define SF_ISR_TXCQ_NOBUFS 0x00200000 +#define SF_ISR_RXCQ1_NOBUFS 0x00400000 +#define SF_ISR_SOFTINTR 0x00800000 +#define SF_ISR_GENTIMER 0x01000000 +#define SF_ISR_ABNORMALINTR 0x02000000 +#define SF_ISR_RSVD0 0x04000000 +#define SF_ISR_STATSOFLOW 0x08000000 +#define SF_ISR_GPIO 0xF0000000 + +/* + * Shadow interrupt status register. Unlike the normal IRQ register, + * reading bits here does not automatically cause them to reset. + */ +#define SF_SISR_PCIINT_ASSERTED 0x00000001 +#define SF_SISR_GFP_TX 0x00000002 +#define SF_SISR_GFP_RX 0x00000004 +#define SF_SISR_TX_BADID_HIPRIO 0x00000008 +#define SF_SISR_TX_BADID_LOPRIO 0x00000010 +#define SF_SISR_NO_TX_CSUM 0x00000020 +#define SF_SISR_RXDQ2_NOBUFS 0x00000040 +#define SF_SISR_RXGFP_NORESP 0x00000080 +#define SF_SISR_RXDQ1_DMADONE 0x00000100 +#define SF_SISR_RXDQ2_DMADONE 0x00000200 +#define SF_SISR_RXDQ1_EARLY 0x00000400 +#define SF_SISR_RXDQ2_EARLY 0x00000800 +#define SF_SISR_TX_QUEUEDONE 0x00001000 +#define SF_SISR_TX_DMADONE 0x00002000 +#define SF_SISR_TX_TXDONE 0x00004000 +#define SF_SISR_NORMALINTR 0x00008000 +#define SF_SISR_RXDQ1_NOBUFS 0x00010000 +#define SF_SISR_RXCQ2_NOBUFS 0x00020000 +#define SF_SISR_TX_LOFIFO 0x00040000 +#define SF_SISR_DMAERR 0x00080000 +#define SF_SISR_PCIINT 0x00100000 +#define SF_SISR_TXCQ_NOBUFS 0x00200000 +#define SF_SISR_RXCQ1_NOBUFS 0x00400000 +#define SF_SISR_SOFTINTR 0x00800000 +#define SF_SISR_GENTIMER 0x01000000 +#define SF_SISR_ABNORMALINTR 0x02000000 +#define SF_SISR_RSVD0 0x04000000 +#define SF_SISR_STATSOFLOW 0x08000000 +#define SF_SISR_GPIO 0xF0000000 + +/* Interrupt mask register */ +#define SF_IMR_PCIINT_ASSERTED 0x00000001 +#define SF_IMR_GFP_TX 0x00000002 +#define SF_IMR_GFP_RX 0x00000004 +#define SF_IMR_TX_BADID_HIPRIO 0x00000008 +#define SF_IMR_TX_BADID_LOPRIO 0x00000010 +#define SF_IMR_NO_TX_CSUM 0x00000020 +#define SF_IMR_RXDQ2_NOBUFS 0x00000040 +#define SF_IMR_RXGFP_NORESP 0x00000080 +#define SF_IMR_RXDQ1_DMADONE 0x00000100 +#define SF_IMR_RXDQ2_DMADONE 0x00000200 +#define SF_IMR_RXDQ1_EARLY 0x00000400 +#define SF_IMR_RXDQ2_EARLY 0x00000800 +#define SF_IMR_TX_QUEUEDONE 0x00001000 +#define SF_IMR_TX_DMADONE 0x00002000 +#define SF_IMR_TX_TXDONE 0x00004000 +#define SF_IMR_NORMALINTR 0x00008000 +#define SF_IMR_RXDQ1_NOBUFS 0x00010000 +#define SF_IMR_RXCQ2_NOBUFS 0x00020000 +#define SF_IMR_TX_LOFIFO 0x00040000 +#define SF_IMR_DMAERR 0x00080000 +#define SF_IMR_PCIINT 0x00100000 +#define SF_IMR_TXCQ_NOBUFS 0x00200000 +#define SF_IMR_RXCQ1_NOBUFS 0x00400000 +#define SF_IMR_SOFTINTR 0x00800000 +#define SF_IMR_GENTIMER 0x01000000 +#define SF_IMR_ABNORMALINTR 0x02000000 +#define SF_IMR_RSVD0 0x04000000 +#define SF_IMR_STATSOFLOW 0x08000000 +#define SF_IMR_GPIO 0xF0000000 + +#define SF_INTRS \ + (SF_IMR_RXDQ2_NOBUFS|SF_IMR_RXDQ1_DMADONE|SF_IMR_RXDQ2_DMADONE| \ + SF_IMR_TX_TXDONE|SF_IMR_RXDQ1_NOBUFS|SF_IMR_RXDQ2_DMADONE| \ + SF_IMR_NORMALINTR|SF_IMR_ABNORMALINTR|SF_IMR_TXCQ_NOBUFS| \ + SF_IMR_RXCQ1_NOBUFS|SF_IMR_RXCQ2_NOBUFS|SF_IMR_STATSOFLOW| \ + SF_IMR_TX_LOFIFO) + +/* TX descriptor queue control registers */ +#define SF_TXDQCTL_DESCTYPE 0x00000007 +#define SF_TXDQCTL_NODMACMP 0x00000008 +#define SF_TXDQCTL_MINSPACE 0x00000070 +#define SF_TXDQCTL_64BITADDR 0x00000080 +#define SF_TXDQCTL_BURSTLEN 0x00003F00 +#define SF_TXDQCTL_SKIPLEN 0x001F0000 +#define SF_TXDQCTL_HIPRIOTHRESH 0xFF000000 + +#define SF_TXBUFDESC_TYPE0 0x00000000 +#define SF_TXBUFDESC_TYPE1 0x00000001 +#define SF_TXBUFDESC_TYPE2 0x00000002 +#define SF_TXBUFDESC_TYPE3 0x00000003 +#define SF_TXBUFDESC_TYPE4 0x00000004 + +#define SF_TXMINSPACE_UNLIMIT 0x00000000 +#define SF_TXMINSPACE_32BYTES 0x00000010 +#define SF_TXMINSPACE_64BYTES 0x00000020 +#define SF_TXMINSPACE_128BYTES 0x00000030 +#define SF_TXMINSPACE_256BYTES 0x00000040 + +#define SF_TXSKIPLEN_0BYTES 0x00000000 +#define SF_TXSKIPLEN_8BYTES 0x00010000 +#define SF_TXSKIPLEN_16BYTES 0x00020000 +#define SF_TXSKIPLEN_24BYTES 0x00030000 +#define SF_TXSKIPLEN_32BYTES 0x00040000 + +/* TX frame control register */ +#define SF_TXFRMCTL_TXTHRESH 0x000000FF +#define SF_TXFRMCTL_CPLAFTERTX 0x00000100 +#define SF_TXFRMCRL_DEBUG 0x0000FE00 +#define SF_TXFRMCTL_STATUS 0x01FF0000 +#define SF_TXFRMCTL_MAC_TXIF 0xFE000000 + +/* TX completion queue control register */ +#define SF_TXCQ_THRESH 0x0000000F +#define SF_TXCQ_COMMON 0x00000010 +#define SF_TXCQ_SIZE 0x00000020 +#define SF_TXCQ_WRITEENB 0x00000040 +#define SF_TXCQ_USE_64BIT 0x00000080 +#define SF_TXCQ_ADDR 0xFFFFFF00 + +/* RX completion queue control register */ +#define SF_RXCQ_THRESH 0x0000000F +#define SF_RXCQ_TYPE 0x00000030 +#define SF_RXCQ_WRITEENB 0x00000040 +#define SF_RXCQ_USE_64BIT 0x00000080 +#define SF_RXCQ_ADDR 0xFFFFFF00 + +#define SF_RXCQTYPE_0 0x00000000 +#define SF_RXCQTYPE_1 0x00000010 +#define SF_RXCQTYPE_2 0x00000020 +#define SF_RXCQTYPE_3 0x00000030 + +/* TX descriptor queue producer index register */ +#define SF_TXDQ_PRODIDX_LOPRIO 0x000007FF +#define SF_TXDQ_PRODIDX_HIPRIO 0x07FF0000 + +/* TX descriptor queue consumer index register */ +#define SF_TXDQ_CONSIDX_LOPRIO 0x000007FF +#define SF_TXDQ_CONSIDX_HIPRIO 0x07FF0000 + +/* Completion queue consumer index register */ +#define SF_CQ_CONSIDX_RXQ1 0x000003FF +#define SF_CQ_CONSIDX_RXTHRMODE 0x00008000 +#define SF_CQ_CONSIDX_TXQ 0x03FF0000 +#define SF_CQ_CONSIDX_TXTHRMODE 0x80000000 + +/* Completion queue producer index register */ +#define SF_CQ_PRODIDX_RXQ1 0x000003FF +#define SF_CQ_PRODIDX_TXQ 0x03FF0000 + +/* RX completion queue 2 consumer/producer index register */ +#define SF_CQ_RXQ2_CONSIDX 0x000003FF +#define SF_CQ_RXQ2_RXTHRMODE 0x00008000 +#define SF_CQ_RXQ2_PRODIDX 0x03FF0000 + +#define SF_CQ_RXTHRMODE_INT_ON 0x00008000 +#define SF_CQ_RXTHRMODE_INT_OFF 0x00000000 +#define SF_CQ_TXTHRMODE_INT_ON 0x80000000 +#define SF_CQ_TXTHRMODE_INT_OFF 0x00000000 + +#define SF_IDX_LO(x) ((x) & 0x000007FF) +#define SF_IDX_HI(x) (((x) >> 16) & 0x000007FF) + +/* RX DMA control register */ +#define SF_RXDMA_BURSTSIZE 0x0000007F +#define SF_RXDMA_FPTESTMODE 0x00000080 +#define SF_RXDMA_HIPRIOTHRESH 0x00000F00 +#define SF_RXDMA_RXEARLYTHRESH 0x0001F000 +#define SF_RXDMA_DMACRC 0x00040000 +#define SF_RXDMA_USEBKUPQUEUE 0x00080000 +#define SF_RXDMA_QUEUEMODE 0x00700000 +#define SF_RXDMA_RXCQ2_ON 0x00800000 +#define SF_RXDMA_CSUMMODE 0x03000000 +#define SF_RXDMA_DMAPAUSEPKTS 0x04000000 +#define SF_RXDMA_DMACTLPKTS 0x08000000 +#define SF_RXDMA_DMACRXERRPKTS 0x10000000 +#define SF_RXDMA_DMABADPKTS 0x20000000 +#define SF_RXDMA_DMARUNTS 0x40000000 +#define SF_RXDMA_REPORTBADPKTS 0x80000000 + +#define SF_RXDQMODE_Q1ONLY 0x00100000 +#define SF_RXDQMODE_Q2_ON_FP 0x00200000 +#define SF_RXDQMODE_Q2_ON_SHORT 0x00300000 +#define SF_RXDQMODE_Q2_ON_PRIO 0x00400000 +#define SF_RXDQMODE_SPLITHDR 0x00500000 + +#define SF_RXCSUMMODE_IGNORE 0x00000000 +#define SF_RXCSUMMODE_REJECT_BAD_TCP 0x01000000 +#define SF_RXCSUMMODE_REJECT_BAD_TCPUDP 0x02000000 +#define SF_RXCSUMMODE_RSVD 0x03000000 + +/* RX descriptor queue control registers */ +#define SF_RXDQCTL_MINDESCTHR 0x0000007F +#define SF_RXDQCTL_Q1_WE 0x00000080 +#define SF_RXDQCTL_DESCSPACE 0x00000700 +#define SF_RXDQCTL_64BITDADDR 0x00000800 +#define SF_RXDQCTL_64BITBADDR 0x00001000 +#define SF_RXDQCTL_VARIABLE 0x00002000 +#define SF_RXDQCTL_ENTRIES 0x00004000 +#define SF_RXDQCTL_PREFETCH 0x00008000 +#define SF_RXDQCTL_BUFLEN 0xFFFF0000 + +#define SF_DESCSPACE_4BYTES 0x00000000 +#define SF_DESCSPACE_8BYTES 0x00000100 +#define SF_DESCSPACE_16BYTES 0x00000200 +#define SF_DESCSPACE_32BYTES 0x00000300 +#define SF_DESCSPACE_64BYTES 0x00000400 +#define SF_DESCSPACE_128_BYTES 0x00000500 + +/* RX buffer consumer/producer index registers */ +#define SF_RXDQ_PRODIDX 0x000007FF +#define SF_RXDQ_CONSIDX 0x07FF0000 + +/* RX filter control register */ +#define SF_RXFILT_PROMISC 0x00000001 +#define SF_RXFILT_ALLMULTI 0x00000002 +#define SF_RXFILT_BROAD 0x00000004 +#define SF_RXFILT_HASHPRIO 0x00000008 +#define SF_RXFILT_HASHMODE 0x00000030 +#define SF_RXFILT_PERFMODE 0x000000C0 +#define SF_RXFILT_VLANMODE 0x00000300 +#define SF_RXFILT_WAKEMODE 0x00000C00 +#define SF_RXFILT_MULTI_NOBROAD 0x00001000 +#define SF_RXFILT_MIN_VLANPRIO 0x0000E000 +#define SF_RXFILT_PEFECTPRIO 0xFFFF0000 + +/* Hash filtering mode */ +#define SF_HASHMODE_OFF 0x00000000 +#define SF_HASHMODE_WITHVLAN 0x00000010 +#define SF_HASHMODE_ANYVLAN 0x00000020 +#define SF_HASHMODE_ANY 0x00000030 + +/* Perfect filtering mode */ +#define SF_PERFMODE_OFF 0x00000000 +#define SF_PERFMODE_NORMAL 0x00000040 +#define SF_PERFMODE_INVERSE 0x00000080 +#define SF_PERFMODE_VLAN 0x000000C0 + +/* VLAN mode */ +#define SF_VLANMODE_OFF 0x00000000 +#define SF_VLANMODE_NOSTRIP 0x00000100 +#define SF_VLANMODE_STRIP 0x00000200 +#define SF_VLANMODE_RSVD 0x00000300 + +/* Wakeup mode */ +#define SF_WAKEMODE_OFF 0x00000000 +#define SF_WAKEMODE_FILTER 0x00000400 +#define SF_WAKEMODE_FP 0x00000800 +#define SF_WAKEMODE_HIPRIO 0x00000C00 + +/* + * Extra PCI registers 0x0100 to 0x0FFF + */ +#define SF_PCI_TARGSTAT 0x0100 +#define SF_PCI_MASTSTAT1 0x0104 +#define SF_PCI_MASTSTAT2 0x0108 +#define SF_PCI_DMAHOSTADDR_LO 0x010C +#define SF_BAC_DMADIAG0 0x0110 +#define SF_BAC_DMADIAG1 0x0114 +#define SF_BAC_DMADIAG2 0x0118 +#define SF_BAC_DMADIAG3 0x011C +#define SF_PAR0 0x0120 +#define SF_PAR1 0x0124 +#define SF_PCICB_FUNCEVENT 0x0130 +#define SF_PCICB_FUNCEVENT_MASK 0x0134 +#define SF_PCICB_FUNCSTATE 0x0138 +#define SF_PCICB_FUNCFORCE 0x013C + +/* + * Serial EEPROM registers 0x1000 to 0x1FFF + * Presumeably the EEPROM is mapped into this 8K window. + */ +#define SF_EEADDR_BASE 0x1000 +#define SF_EEADDR_MAX 0x1FFF + +#define SF_EE_NODEADDR 14 + +/* + * MII registers registers 0x2000 to 0x3FFF + * There are 32 sets of 32 registers, one set for each possible + * PHY address. Each 32 bit register is split into a 16-bit data + * port and a couple of status bits. + */ + +#define SF_MIIADDR_BASE 0x2000 +#define SF_MIIADDR_MAX 0x3FFF +#define SF_MII_BLOCKS 32 + +#define SF_MII_DATAVALID 0x80000000 +#define SF_MII_BUSY 0x40000000 +#define SF_MII_DATAPORT 0x0000FFFF + +#define SF_PHY_REG(phy, reg) \ + (SF_MIIADDR_BASE + (phy * SF_MII_BLOCKS * sizeof(u_int32_t)) + \ + (reg * sizeof(u_int32_t))) + +/* + * Ethernet extra registers 0x4000 to 0x4FFF + */ +#define SF_TESTMODE 0x4000 +#define SF_RX_FRAMEPROC_CTL 0x4004 +#define SF_TX_FRAMEPROC_CTL 0x4008 + +/* + * MAC registers 0x5000 to 0x5FFF + */ +#define SF_MACCFG_1 0x5000 +#define SF_MACCFG_2 0x5004 +#define SF_BKTOBKIPG 0x5008 +#define SF_NONBKTOBKIPG 0x500C +#define SF_COLRETRY 0x5010 +#define SF_MAXLEN 0x5014 +#define SF_TXNIBBLECNT 0x5018 +#define SF_TXBYTECNT 0x501C +#define SF_RETXCNT 0x5020 +#define SF_RANDNUM 0x5024 +#define SF_RANDNUM_MASK 0x5028 +#define SF_TOTALTXCNT 0x5034 +#define SF_RXBYTECNT 0x5040 +#define SF_TXPAUSETIMER 0x5060 +#define SF_VLANTYPE 0x5064 +#define SF_MIISTATUS 0x5070 + +#define SF_MACCFG1_HUGEFRAMES 0x00000001 +#define SF_MACCFG1_FULLDUPLEX 0x00000002 +#define SF_MACCFG1_AUTOPAD 0x00000004 +#define SF_MACCFG1_HDJAM 0x00000008 +#define SF_MACCFG1_DELAYCRC 0x00000010 +#define SF_MACCFG1_NOBACKOFF 0x00000020 +#define SF_MACCFG1_LENGTHCHECK 0x00000040 +#define SF_MACCFG1_PUREPREAMBLE 0x00000080 +#define SF_MACCFG1_PASSALLRX 0x00000100 +#define SF_MACCFG1_PREAM_DETCNT 0x00000200 +#define SF_MACCFG1_RX_FLOWENB 0x00000400 +#define SF_MACCFG1_TX_FLOWENB 0x00000800 +#define SF_MACCFG1_TESTMODE 0x00003000 +#define SF_MACCFG1_MIILOOPBK 0x00004000 +#define SF_MACCFG1_SOFTRESET 0x00008000 + +/* + * There are the recommended IPG nibble counter settings + * specified in the Adaptec manual for full duplex and + * half duplex operation. + */ +#define SF_IPGT_FDX 0x15 +#define SF_IPGT_HDX 0x11 + +/* + * RX filter registers 0x6000 to 0x6FFF + */ +#define SF_RXFILT_PERFECT_BASE 0x6000 +#define SF_RXFILT_PERFECT_MAX 0x60FF +#define SF_RXFILT_PERFECT_SKIP 0x0010 +#define SF_RXFILT_PERFECT_CNT 0x0010 + +#define SF_RXFILT_HASH_BASE 0x6100 +#define SF_RXFILT_HASH_MAX 0x62FF +#define SF_RXFILT_HASH_SKIP 0x0010 +#define SF_RXFILT_HASH_CNT 0x001F +#define SF_RXFILT_HASH_ADDROFF 0x0000 +#define SF_RXFILT_HASH_PRIOOFF 0x0004 +#define SF_RXFILT_HASH_VLANOFF 0x0008 + +/* + * Statistics registers 0x7000 to 0x7FFF + */ +#define SF_STATS_BASE 0x7000 +#define SF_STATS_END 0x7FFF + +/* + * TX frame processor instruction space 0x8000 to 0x9FFF + */ + +/* + * RX frame processor instruction space 0xA000 to 0xBFFF + */ + +/* + * Ethernet FIFO access space 0xC000 to 0xDFFF + */ + +/* + * Reserved 0xE000 to 0xFFFF + */ + +/* + * Descriptor data structures. + */ + + +/* Receive descriptor formats. */ +#define SF_RX_MINSPACING 8 +#define SF_RX_DLIST_CNT 256 +#define SF_RX_CLIST_CNT 1024 +#define SF_RX_HOSTADDR(x) (((x) >> 2) & 0x3FFFFFFF) + +/* + * RX buffer descriptor type 0, 32-bit addressing. Note that we + * program the RX buffer queue control register(s) to allow a + * descriptor spacing of 16 bytes, which leaves room after each + * descriptor to store a pointer to the mbuf for each buffer. + */ +struct sf_rx_bufdesc_type0 { + u_int32_t sf_valid:1, + sf_end:1, + sf_addrlo:30; + u_int32_t sf_pad0; +#ifdef __i386__ + u_int32_t sf_pad1; +#endif + struct mbuf *sf_mbuf; +}; + +/* + * RX buffer descriptor type 0, 64-bit addressing. + */ +struct sf_rx_bufdesc_type1 { + u_int32_t sf_valid:1, + sf_end:1, + sf_addrlo:30; + u_int32_t sf_addrhi; +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; +}; + +/* + * RX completion descriptor, type 0 (short). + */ +struct sf_rx_cmpdesc_type0 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; +}; + +/* + * RX completion descriptor, type 1 (basic). Includes vlan ID + * if this is a vlan-addressed packet, plus extended status. + */ +struct sf_rx_cmpdesc_type1 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; + u_int16_t sf_status2; + u_int16_t sf_vlanid; +}; + +/* + * RX completion descriptor, type 2 (checksum). Includes partial TCP/IP + * checksum instead of vlan tag, plus extended status. + */ +struct sf_rx_cmpdesc_type2 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; + u_int16_t sf_status2; + u_int16_t sf_cksum; +}; + +/* + * RX completion descriptor type 3 (full). Includes timestamp, partial + * TCP/IP checksum, vlan tag plus priority, two extended status fields. + */ +struct sf_rx_cmpdesc_type3 { + u_int32_t sf_len:16, + sf_endidx:11, + sf_status1:3, + sf_id:2; + u_int32_t sf_startidx:10, + sf_status3:6, + sf_status2:16; + u_int16_t sf_cksum; + u_int16_t sf_vlanid_prio; + u_int32_t sf_timestamp; +}; + +#define SF_RXSTAT1_QUEUE 0x1 +#define SF_RXSTAT1_FIFOFULL 0x2 +#define SF_RXSTAT1_OK 0x4 + + /* 0=unknown,5=unsupported */ +#define SF_RXSTAT2_FRAMETYPE 0x0007 /* 1=IPv4,2=IPv2,3=IPX,4=ICMP */ +#define SF_RXSTAT2_UDP 0x0008 +#define SF_RXSTAT2_TCP 0x0010 +#define SF_RXSTAT2_FRAG 0x0020 +#define SF_RXSTAT2_PCSUM_OK 0x0040 /* partial checksum ok */ +#define SF_RXSTAT2_CSUM_BAD 0x0080 /* TCP/IP checksum bad */ +#define SF_RXSTAT2_CSUM_OK 0x0100 /* TCP/IP checksum ok */ +#define SF_RXSTAT2_VLAN 0x0200 +#define SF_RXSTAT2_BADRXCODE 0x0400 +#define SF_RXSTAT2_DRIBBLE 0x0800 +#define SF_RXSTAT2_ISL_CRCERR 0x1000 +#define SF_RXSTAT2_CRCERR 0x2000 +#define SF_RXSTAT2_HASH 0x4000 +#define SF_RXSTAT2_PERFECT 0x8000 + +#define SF_RXSTAT3_TRAILER 0x01 +#define SF_RXSTAT3_HEADER 0x02 +#define SF_RXSTAT3_CONTROL 0x04 +#define SF_RXSTAT3_PAUSE 0x08 +#define SF_RXSTAT3_ISL 0x10 + +/* + * Transmit descriptor formats. + * Each transmit descriptor type allows for a skip field at the + * start of each structure. The size of the skip field can vary, + * however we always set it for 8 bytes, which is enough to hold + * a pointer (32 bits on x86, 64-bits on alpha) that we can use + * to hold the address of the head of the mbuf chain for the + * frame or fragment associated with the descriptor. This saves + * us from having to create a separate pointer array to hold + * the mbuf addresses. + */ +#define SF_TX_BUFDESC_ID 0xB +#define SF_MAXFRAGS 14 +#define SF_TX_MINSPACING 128 +#define SF_TX_DLIST_CNT 128 +#define SF_TX_DLIST_SIZE 16384 +#define SF_TX_SKIPLEN 1 +#define SF_TX_CLIST_CNT 1024 + +struct sf_frag { + u_int32_t sf_addr; + u_int16_t sf_fraglen; + u_int16_t sf_pktlen; +}; + +struct sf_frag_msdos { + u_int16_t sf_pktlen; + u_int16_t sf_fraglen; + u_int32_t sf_addr; +}; + +/* + * TX frame descriptor type 0, 32-bit addressing. One descriptor can + * be used to map multiple packet fragments. We use this format since + * BSD networking fragments packet data across mbuf chains. Note that + * the number of fragments can be variable depending on how the descriptor + * spacing is specified in the TX descriptor queue control register. + * We always use a spacing of 128 bytes, and a skipfield length of 8 + * bytes: this means 16 bytes for the descriptor, including the skipfield, + * with 121 bytes left for fragment maps. Each fragment requires 8 bytes, + * which allows for 14 fragments per descriptor. The total size of the + * transmit buffer queue is limited to 16384 bytes, so with a spacing of + * 128 bytes per descriptor, we have room for 128 descriptors in the queue. + */ +struct sf_tx_bufdesc_type0 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_rsvd0:24, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int8_t sf_fragcnt; + u_int8_t sf_rsvd2; + u_int16_t sf_rsvd1; + struct sf_frag sf_frags[14]; +}; + +/* + * TX buffer descriptor type 1, 32-bit addressing. Each descriptor + * maps a single fragment. + */ +struct sf_tx_bufdesc_type1 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_fraglen:16, + sf_fragcnt:8, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int32_t sf_addr; +}; + +/* + * TX buffer descriptor type 2, 64-bit addressing. Each descriptor + * maps a single fragment. + */ +struct sf_tx_bufdesc_type2 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_fraglen:16, + sf_fragcnt:8, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int32_t sf_addrlo; + u_int32_t sf_addrhi; +}; + +/* TX buffer descriptor type 3 is not defined. */ + +/* + * TX frame descriptor type 4, 32-bit addressing. This is a special + * case of the type 0 descriptor, identical except that the fragment + * address and length fields are ordered differently. This is done + * to optimize copies in MS-DOS and OS/2 drivers. + */ +struct sf_tx_bufdesc_type4 { +#ifdef __i386__ + u_int32_t sf_pad; +#endif + struct mbuf *sf_mbuf; + u_int32_t sf_rsvd0:24, + sf_crcen:1, + sf_caltcp:1, + sf_end:1, + sf_intr:1, + sf_id:4; + u_int8_t sf_fragcnt; + u_int8_t sf_rsvd2; + u_int16_t sf_rsvd1; + struct sf_frag_msdos sf_frags[14]; +}; + +/* + * Transmit completion queue descriptor formats. + */ + +/* + * Transmit DMA completion descriptor, type 0. + */ +#define SF_TXCMPTYPE_DMA 0x4 +struct sf_tx_cmpdesc_type0 { + u_int32_t sf_index:15, + sf_priority:1, + sf_timestamp:13, + sf_type:3; +}; + +/* + * Transmit completion descriptor, type 1. + */ +#define SF_TXCMPTYPE_TX 0x5 +struct sf_tx_cmpdesc_type1 { + u_int32_t sf_index:15, + sf_priority:1, + sf_txstat:13, + sf_type:3; +}; + +#define SF_TXSTAT_CRCERR 0x0001 +#define SF_TXSTAT_LENCHECKERR 0x0002 +#define SF_TXSTAT_LENRANGEERR 0x0004 +#define SF_TXSTAT_TX_OK 0x0008 +#define SF_TXSTAT_TX_DEFERED 0x0010 +#define SF_TXSTAT_EXCESS_DEFER 0x0020 +#define SF_TXSTAT_EXCESS_COLL 0x0040 +#define SF_TXSTAT_LATE_COLL 0x0080 +#define SF_TXSTAT_TOOBIG 0x0100 +#define SF_TXSTAT_TX_UNDERRUN 0x0200 +#define SF_TXSTAT_CTLFRAME_OK 0x0400 +#define SF_TXSTAT_PAUSEFRAME_OK 0x0800 +#define SF_TXSTAT_PAUSED 0x1000 + +/* Statistics counters. */ +struct sf_stats { + u_int32_t sf_tx_frames; + u_int32_t sf_tx_single_colls; + u_int32_t sf_tx_multi_colls; + u_int32_t sf_tx_crcerrs; + u_int32_t sf_tx_bytes; + u_int32_t sf_tx_defered; + u_int32_t sf_tx_late_colls; + u_int32_t sf_tx_pause_frames; + u_int32_t sf_tx_control_frames; + u_int32_t sf_tx_excess_colls; + u_int32_t sf_tx_excess_defer; + u_int32_t sf_tx_mcast_frames; + u_int32_t sf_tx_bcast_frames; + u_int32_t sf_tx_frames_lost; + u_int32_t sf_rx_rx_frames; + u_int32_t sf_rx_crcerrs; + u_int32_t sf_rx_alignerrs; + u_int32_t sf_rx_bytes; + u_int32_t sf_rx_control_frames; + u_int32_t sf_rx_unsup_control_frames; + u_int32_t sf_rx_giants; + u_int32_t sf_rx_runts; + u_int32_t sf_rx_jabbererrs; + u_int32_t sf_rx_pkts_64; + u_int32_t sf_rx_pkts_65_127; + u_int32_t sf_rx_pkts_128_255; + u_int32_t sf_rx_pkts_256_511; + u_int32_t sf_rx_pkts_512_1023; + u_int32_t sf_rx_pkts_1024_1518; + u_int32_t sf_rx_frames_lost; + u_int16_t sf_tx_underruns; + u_int16_t sf_pad; +}; + +/* + * register space access macros + */ +#define CSR_WRITE_4(sc, reg, val) \ + bus_space_write_4(sc->sf_btag, sc->sf_bhandle, reg, val) + +#define CSR_READ_4(sc, reg) \ + bus_space_read_4(sc->sf_btag, sc->sf_bhandle, reg) + +#define CSR_READ_1(sc, reg) \ + bus_space_read_1(sc->sf_btag, sc->sf_bhandle, reg) + + +struct sf_type { + u_int16_t sf_vid; + u_int16_t sf_did; + char *sf_name; +}; + +#define SF_INC(x, y) (x) = (x + 1) % y + +#define ETHER_ALIGN 2 + +/* + * Note: alignment is important here: each list must be aligned to + * a 256-byte boundary. It turns out that each ring is some multiple + * of 4K in length, so we can stack them all on top of each other + * and just worry about aligning the whole mess. There's one transmit + * buffer ring and two receive buffer rings: one RX ring is for small + * packets and the other is for large packets. Each buffer ring also + * has a companion completion queue. + */ +struct sf_list_data { + struct sf_tx_bufdesc_type0 sf_tx_dlist[SF_TX_DLIST_CNT]; + struct sf_tx_cmpdesc_type1 sf_tx_clist[SF_TX_CLIST_CNT]; + struct sf_rx_bufdesc_type0 sf_rx_dlist_big[SF_RX_DLIST_CNT]; +#ifdef notdef + /* + * Unfortunately, because the Starfire doesn't allow arbitrary + * byte alignment, we have to copy packets in the RX handler in + * order to align the payload correctly. This means that we + * don't gain anything by having separate large and small descriptor + * lists, so for now we don't bother with the small one. + */ + struct sf_rx_bufdesc_type0 sf_rx_dlist_small[SF_RX_DLIST_CNT]; +#endif + struct sf_rx_cmpdesc_type3 sf_rx_clist[SF_RX_CLIST_CNT]; +}; + +struct sf_softc { + struct arpcom arpcom; /* interface info */ + bus_space_handle_t sf_bhandle; /* bus space handle */ + bus_space_tag_t sf_btag; /* bus space tag */ + void *sf_intrhand; /* interrupt handler cookie */ + struct resource *sf_irq; /* irq resource descriptor */ + struct resource *sf_res; /* mem/ioport resource */ + struct sf_type *sf_info; /* Starfire adapter info */ + device_t sf_miibus; + u_int8_t sf_unit; /* interface number */ + struct sf_list_data *sf_ldata; + int sf_tx_cnt; + u_int8_t sf_link; + int sf_if_flags; + struct callout_handle sf_stat_ch; + struct mtx sf_mtx; +}; + + +#define SF_LOCK(_sc) mtx_lock(&(_sc)->sf_mtx) +#define SF_UNLOCK(_sc) mtx_unlock(&(_sc)->sf_mtx) + +#define SF_TIMEOUT 1000 + +#ifdef __alpha__ +#undef vtophys +#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)va) +#endif |