summaryrefslogtreecommitdiffstats
path: root/sys/dev/sf
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/sf')
-rw-r--r--sys/dev/sf/if_sf.c1538
-rw-r--r--sys/dev/sf/if_sfreg.h1060
2 files changed, 2598 insertions, 0 deletions
diff --git a/sys/dev/sf/if_sf.c b/sys/dev/sf/if_sf.c
new file mode 100644
index 0000000..bedf1f0
--- /dev/null
+++ b/sys/dev/sf/if_sf.c
@@ -0,0 +1,1538 @@
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
+ * Programming manual is available from:
+ * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
+ *
+ * Written by Bill Paul <wpaul@ctr.columbia.edu>
+ * Department of Electical Engineering
+ * Columbia University, New York City
+ */
+
+/*
+ * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
+ * controller designed with flexibility and reducing CPU load in mind.
+ * The Starfire offers high and low priority buffer queues, a
+ * producer/consumer index mechanism and several different buffer
+ * queue and completion queue descriptor types. Any one of a number
+ * of different driver designs can be used, depending on system and
+ * OS requirements. This driver makes use of type0 transmit frame
+ * descriptors (since BSD fragments packets across an mbuf chain)
+ * and two RX buffer queues prioritized on size (one queue for small
+ * frames that will fit into a single mbuf, another with full size
+ * mbuf clusters for everything else). The producer/consumer indexes
+ * and completion queues are also used.
+ *
+ * One downside to the Starfire has to do with alignment: buffer
+ * queues must be aligned on 256-byte boundaries, and receive buffers
+ * must be aligned on longword boundaries. The receive buffer alignment
+ * causes problems on the Alpha platform, where the packet payload
+ * should be longword aligned. There is no simple way around this.
+ *
+ * For receive filtering, the Starfire offers 16 perfect filter slots
+ * and a 512-bit hash table.
+ *
+ * The Starfire has no internal transceiver, relying instead on an
+ * external MII-based transceiver. Accessing registers on external
+ * PHYs is done through a special register map rather than with the
+ * usual bitbang MDIO method.
+ *
+ * Acesssing the registers on the Starfire is a little tricky. The
+ * Starfire has a 512K internal register space. When programmed for
+ * PCI memory mapped mode, the entire register space can be accessed
+ * directly. However in I/O space mode, only 256 bytes are directly
+ * mapped into PCI I/O space. The other registers can be accessed
+ * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
+ * registers inside the 256-byte I/O window.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/socket.h>
+
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#include <net/bpf.h>
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+#include <machine/bus_pio.h>
+#include <machine/bus_memio.h>
+#include <machine/bus.h>
+#include <machine/resource.h>
+#include <sys/bus.h>
+#include <sys/rman.h>
+
+#include <dev/mii/mii.h>
+#include <dev/mii/miivar.h>
+
+/* "controller miibus0" required. See GENERIC if you get errors here. */
+#include "miibus_if.h"
+
+#include <pci/pcireg.h>
+#include <pci/pcivar.h>
+
+#define SF_USEIOSPACE
+
+#include <pci/if_sfreg.h>
+
+MODULE_DEPEND(sf, pci, 1, 1, 1);
+MODULE_DEPEND(sf, ether, 1, 1, 1);
+MODULE_DEPEND(sf, miibus, 1, 1, 1);
+
+static struct sf_type sf_devs[] = {
+ { AD_VENDORID, AD_DEVICEID_STARFIRE,
+ "Adaptec AIC-6915 10/100BaseTX" },
+ { 0, 0, NULL }
+};
+
+static int sf_probe (device_t);
+static int sf_attach (device_t);
+static int sf_detach (device_t);
+static void sf_intr (void *);
+static void sf_stats_update (void *);
+static void sf_rxeof (struct sf_softc *);
+static void sf_txeof (struct sf_softc *);
+static int sf_encap (struct sf_softc *,
+ struct sf_tx_bufdesc_type0 *,
+ struct mbuf *);
+static void sf_start (struct ifnet *);
+static int sf_ioctl (struct ifnet *, u_long, caddr_t);
+static void sf_init (void *);
+static void sf_stop (struct sf_softc *);
+static void sf_watchdog (struct ifnet *);
+static void sf_shutdown (device_t);
+static int sf_ifmedia_upd (struct ifnet *);
+static void sf_ifmedia_sts (struct ifnet *, struct ifmediareq *);
+static void sf_reset (struct sf_softc *);
+static int sf_init_rx_ring (struct sf_softc *);
+static void sf_init_tx_ring (struct sf_softc *);
+static int sf_newbuf (struct sf_softc *,
+ struct sf_rx_bufdesc_type0 *,
+ struct mbuf *);
+static void sf_setmulti (struct sf_softc *);
+static int sf_setperf (struct sf_softc *, int, caddr_t);
+static int sf_sethash (struct sf_softc *, caddr_t, int);
+#ifdef notdef
+static int sf_setvlan (struct sf_softc *, int, u_int32_t);
+#endif
+
+static u_int8_t sf_read_eeprom (struct sf_softc *, int);
+static u_int32_t sf_calchash (caddr_t);
+
+static int sf_miibus_readreg (device_t, int, int);
+static int sf_miibus_writereg (device_t, int, int, int);
+static void sf_miibus_statchg (device_t);
+
+static u_int32_t csr_read_4 (struct sf_softc *, int);
+static void csr_write_4 (struct sf_softc *, int, u_int32_t);
+static void sf_txthresh_adjust (struct sf_softc *);
+
+#ifdef SF_USEIOSPACE
+#define SF_RES SYS_RES_IOPORT
+#define SF_RID SF_PCI_LOIO
+#else
+#define SF_RES SYS_RES_MEMORY
+#define SF_RID SF_PCI_LOMEM
+#endif
+
+static device_method_t sf_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, sf_probe),
+ DEVMETHOD(device_attach, sf_attach),
+ DEVMETHOD(device_detach, sf_detach),
+ DEVMETHOD(device_shutdown, sf_shutdown),
+
+ /* bus interface */
+ DEVMETHOD(bus_print_child, bus_generic_print_child),
+ DEVMETHOD(bus_driver_added, bus_generic_driver_added),
+
+ /* MII interface */
+ DEVMETHOD(miibus_readreg, sf_miibus_readreg),
+ DEVMETHOD(miibus_writereg, sf_miibus_writereg),
+ DEVMETHOD(miibus_statchg, sf_miibus_statchg),
+
+ { 0, 0 }
+};
+
+static driver_t sf_driver = {
+ "sf",
+ sf_methods,
+ sizeof(struct sf_softc),
+};
+
+static devclass_t sf_devclass;
+
+DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
+DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
+
+#define SF_SETBIT(sc, reg, x) \
+ csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
+
+#define SF_CLRBIT(sc, reg, x) \
+ csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
+
+static u_int32_t
+csr_read_4(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ u_int32_t val;
+
+#ifdef SF_USEIOSPACE
+ CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
+ val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
+#else
+ val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
+#endif
+
+ return(val);
+}
+
+static u_int8_t
+sf_read_eeprom(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ u_int8_t val;
+
+ val = (csr_read_4(sc, SF_EEADDR_BASE +
+ (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
+
+ return(val);
+}
+
+static void
+csr_write_4(sc, reg, val)
+ struct sf_softc *sc;
+ int reg;
+ u_int32_t val;
+{
+#ifdef SF_USEIOSPACE
+ CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
+ CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
+#else
+ CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
+#endif
+ return;
+}
+
+static u_int32_t
+sf_calchash(addr)
+ caddr_t addr;
+{
+ u_int32_t crc, carry;
+ int i, j;
+ u_int8_t c;
+
+ /* Compute CRC for the address value. */
+ crc = 0xFFFFFFFF; /* initial value */
+
+ for (i = 0; i < 6; i++) {
+ c = *(addr + i);
+ for (j = 0; j < 8; j++) {
+ carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
+ crc <<= 1;
+ c >>= 1;
+ if (carry)
+ crc = (crc ^ 0x04c11db6) | carry;
+ }
+ }
+
+ /* return the filter bit position */
+ return(crc >> 23 & 0x1FF);
+}
+
+/*
+ * Copy the address 'mac' into the perfect RX filter entry at
+ * offset 'idx.' The perfect filter only has 16 entries so do
+ * some sanity tests.
+ */
+static int
+sf_setperf(sc, idx, mac)
+ struct sf_softc *sc;
+ int idx;
+ caddr_t mac;
+{
+ u_int16_t *p;
+
+ if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
+ return(EINVAL);
+
+ if (mac == NULL)
+ return(EINVAL);
+
+ p = (u_int16_t *)mac;
+
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
+
+ return(0);
+}
+
+/*
+ * Set the bit in the 512-bit hash table that corresponds to the
+ * specified mac address 'mac.' If 'prio' is nonzero, update the
+ * priority hash table instead of the filter hash table.
+ */
+static int
+sf_sethash(sc, mac, prio)
+ struct sf_softc *sc;
+ caddr_t mac;
+ int prio;
+{
+ u_int32_t h = 0;
+
+ if (mac == NULL)
+ return(EINVAL);
+
+ h = sf_calchash(mac);
+
+ if (prio) {
+ SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
+ (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
+ } else {
+ SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
+ (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
+ }
+
+ return(0);
+}
+
+#ifdef notdef
+/*
+ * Set a VLAN tag in the receive filter.
+ */
+static int
+sf_setvlan(sc, idx, vlan)
+ struct sf_softc *sc;
+ int idx;
+ u_int32_t vlan;
+{
+ if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
+ return(EINVAL);
+
+ csr_write_4(sc, SF_RXFILT_HASH_BASE +
+ (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
+
+ return(0);
+}
+#endif
+
+static int
+sf_miibus_readreg(dev, phy, reg)
+ device_t dev;
+ int phy, reg;
+{
+ struct sf_softc *sc;
+ int i;
+ u_int32_t val = 0;
+
+ sc = device_get_softc(dev);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ val = csr_read_4(sc, SF_PHY_REG(phy, reg));
+ if (val & SF_MII_DATAVALID)
+ break;
+ }
+
+ if (i == SF_TIMEOUT)
+ return(0);
+
+ if ((val & 0x0000FFFF) == 0xFFFF)
+ return(0);
+
+ return(val & 0x0000FFFF);
+}
+
+static int
+sf_miibus_writereg(dev, phy, reg, val)
+ device_t dev;
+ int phy, reg, val;
+{
+ struct sf_softc *sc;
+ int i;
+ int busy;
+
+ sc = device_get_softc(dev);
+
+ csr_write_4(sc, SF_PHY_REG(phy, reg), val);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
+ if (!(busy & SF_MII_BUSY))
+ break;
+ }
+
+ return(0);
+}
+
+static void
+sf_miibus_statchg(dev)
+ device_t dev;
+{
+ struct sf_softc *sc;
+ struct mii_data *mii;
+
+ sc = device_get_softc(dev);
+ mii = device_get_softc(sc->sf_miibus);
+
+ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
+ } else {
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
+ }
+
+ return;
+}
+
+static void
+sf_setmulti(sc)
+ struct sf_softc *sc;
+{
+ struct ifnet *ifp;
+ int i;
+ struct ifmultiaddr *ifma;
+ u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* First zot all the existing filters. */
+ for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
+ sf_setperf(sc, i, (char *)&dummy);
+ for (i = SF_RXFILT_HASH_BASE;
+ i < (SF_RXFILT_HASH_MAX + 1); i += 4)
+ csr_write_4(sc, i, 0);
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
+
+ /* Now program new ones. */
+ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
+ } else {
+ i = 1;
+ TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ /*
+ * Program the first 15 multicast groups
+ * into the perfect filter. For all others,
+ * use the hash table.
+ */
+ if (i < SF_RXFILT_PERFECT_CNT) {
+ sf_setperf(sc, i,
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
+ i++;
+ continue;
+ }
+
+ sf_sethash(sc,
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
+ }
+ }
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+static int
+sf_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+ struct mii_data *mii;
+
+ sc = ifp->if_softc;
+ mii = device_get_softc(sc->sf_miibus);
+ sc->sf_link = 0;
+ if (mii->mii_instance) {
+ struct mii_softc *miisc;
+ LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
+ mii_phy_reset(miisc);
+ }
+ mii_mediachg(mii);
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+static void
+sf_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ struct sf_softc *sc;
+ struct mii_data *mii;
+
+ sc = ifp->if_softc;
+ mii = device_get_softc(sc->sf_miibus);
+
+ mii_pollstat(mii);
+ ifmr->ifm_active = mii->mii_media_active;
+ ifmr->ifm_status = mii->mii_media_status;
+
+ return;
+}
+
+static int
+sf_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ u_long command;
+ caddr_t data;
+{
+ struct sf_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ struct mii_data *mii;
+ int error = 0;
+
+ SF_LOCK(sc);
+
+ switch(command) {
+ case SIOCSIFFLAGS:
+ if (ifp->if_flags & IFF_UP) {
+ if (ifp->if_flags & IFF_RUNNING &&
+ ifp->if_flags & IFF_PROMISC &&
+ !(sc->sf_if_flags & IFF_PROMISC)) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ } else if (ifp->if_flags & IFF_RUNNING &&
+ !(ifp->if_flags & IFF_PROMISC) &&
+ sc->sf_if_flags & IFF_PROMISC) {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ } else if (!(ifp->if_flags & IFF_RUNNING))
+ sf_init(sc);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING)
+ sf_stop(sc);
+ }
+ sc->sf_if_flags = ifp->if_flags;
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ sf_setmulti(sc);
+ error = 0;
+ break;
+ case SIOCGIFMEDIA:
+ case SIOCSIFMEDIA:
+ mii = device_get_softc(sc->sf_miibus);
+ error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
+ break;
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ SF_UNLOCK(sc);
+
+ return(error);
+}
+
+static void
+sf_reset(sc)
+ struct sf_softc *sc;
+{
+ register int i;
+
+ csr_write_4(sc, SF_GEN_ETH_CTL, 0);
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
+ DELAY(1000);
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
+
+ SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ DELAY(10);
+ if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
+ break;
+ }
+
+ if (i == SF_TIMEOUT)
+ printf("sf%d: reset never completed!\n", sc->sf_unit);
+
+ /* Wait a little while for the chip to get its brains in order. */
+ DELAY(1000);
+ return;
+}
+
+/*
+ * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
+ * IDs against our list and return a device name if we find a match.
+ * We also check the subsystem ID so that we can identify exactly which
+ * NIC has been found, if possible.
+ */
+static int
+sf_probe(dev)
+ device_t dev;
+{
+ struct sf_type *t;
+
+ t = sf_devs;
+
+ while(t->sf_name != NULL) {
+ if ((pci_get_vendor(dev) == t->sf_vid) &&
+ (pci_get_device(dev) == t->sf_did)) {
+ switch((pci_read_config(dev,
+ SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
+ case AD_SUBSYSID_62011_REV0:
+ case AD_SUBSYSID_62011_REV1:
+ device_set_desc(dev,
+ "Adaptec ANA-62011 10/100BaseTX");
+ return(0);
+ case AD_SUBSYSID_62022:
+ device_set_desc(dev,
+ "Adaptec ANA-62022 10/100BaseTX");
+ return(0);
+ case AD_SUBSYSID_62044_REV0:
+ case AD_SUBSYSID_62044_REV1:
+ device_set_desc(dev,
+ "Adaptec ANA-62044 10/100BaseTX");
+ return(0);
+ case AD_SUBSYSID_62020:
+ device_set_desc(dev,
+ "Adaptec ANA-62020 10/100BaseFX");
+ return(0);
+ case AD_SUBSYSID_69011:
+ device_set_desc(dev,
+ "Adaptec ANA-69011 10/100BaseTX");
+ return(0);
+ default:
+ device_set_desc(dev, t->sf_name);
+ return(0);
+ break;
+ }
+ }
+ t++;
+ }
+
+ return(ENXIO);
+}
+
+/*
+ * Attach the interface. Allocate softc structures, do ifmedia
+ * setup and ethernet/BPF attach.
+ */
+static int
+sf_attach(dev)
+ device_t dev;
+{
+ int i;
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ int unit, rid, error = 0;
+
+ sc = device_get_softc(dev);
+ unit = device_get_unit(dev);
+
+ mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
+ MTX_DEF | MTX_RECURSE);
+
+ /*
+ * Handle power management nonsense.
+ */
+ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
+ u_int32_t iobase, membase, irq;
+
+ /* Save important PCI config data. */
+ iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
+ membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
+ irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
+
+ /* Reset the power state. */
+ printf("sf%d: chip is in D%d power mode "
+ "-- setting to D0\n", unit,
+ pci_get_powerstate(dev));
+ pci_set_powerstate(dev, PCI_POWERSTATE_D0);
+
+ /* Restore PCI config data. */
+ pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
+ pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
+ pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
+ }
+
+ /*
+ * Map control/status registers.
+ */
+ pci_enable_busmaster(dev);
+
+ rid = SF_RID;
+ sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
+ 0, ~0, 1, RF_ACTIVE);
+
+ if (sc->sf_res == NULL) {
+ printf ("sf%d: couldn't map ports\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ sc->sf_btag = rman_get_bustag(sc->sf_res);
+ sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
+
+ /* Allocate interrupt */
+ rid = 0;
+ sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
+ RF_SHAREABLE | RF_ACTIVE);
+
+ if (sc->sf_irq == NULL) {
+ printf("sf%d: couldn't map interrupt\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ callout_handle_init(&sc->sf_stat_ch);
+ /* Reset the adapter. */
+ sf_reset(sc);
+
+ /*
+ * Get station address from the EEPROM.
+ */
+ for (i = 0; i < ETHER_ADDR_LEN; i++)
+ sc->arpcom.ac_enaddr[i] =
+ sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
+
+ /*
+ * An Adaptec chip was detected. Inform the world.
+ */
+ printf("sf%d: Ethernet address: %6D\n", unit,
+ sc->arpcom.ac_enaddr, ":");
+
+ sc->sf_unit = unit;
+
+ /* Allocate the descriptor queues. */
+ sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
+ M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc->sf_ldata == NULL) {
+ printf("sf%d: no memory for list buffers!\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ bzero(sc->sf_ldata, sizeof(struct sf_list_data));
+
+ /* Do MII setup. */
+ if (mii_phy_probe(dev, &sc->sf_miibus,
+ sf_ifmedia_upd, sf_ifmedia_sts)) {
+ printf("sf%d: MII without any phy!\n", sc->sf_unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_softc = sc;
+ ifp->if_unit = unit;
+ ifp->if_name = "sf";
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = sf_ioctl;
+ ifp->if_output = ether_output;
+ ifp->if_start = sf_start;
+ ifp->if_watchdog = sf_watchdog;
+ ifp->if_init = sf_init;
+ ifp->if_baudrate = 10000000;
+ ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
+
+ /*
+ * Call MI attach routine.
+ */
+ ether_ifattach(ifp, sc->arpcom.ac_enaddr);
+
+ /* Hook interrupt last to avoid having to lock softc */
+ error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
+ sf_intr, sc, &sc->sf_intrhand);
+
+ if (error) {
+ printf("sf%d: couldn't set up irq\n", unit);
+ ether_ifdetach(ifp);
+ goto fail;
+ }
+
+fail:
+ if (error)
+ sf_detach(dev);
+
+ return(error);
+}
+
+/*
+ * Shutdown hardware and free up resources. This can be called any
+ * time after the mutex has been initialized. It is called in both
+ * the error case in attach and the normal detach case so it needs
+ * to be careful about only freeing resources that have actually been
+ * allocated.
+ */
+static int
+sf_detach(dev)
+ device_t dev;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+
+ sc = device_get_softc(dev);
+ KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
+ SF_LOCK(sc);
+ ifp = &sc->arpcom.ac_if;
+
+ /* These should only be active if attach succeeded */
+ if (device_is_attached(dev)) {
+ sf_stop(sc);
+ ether_ifdetach(ifp);
+ }
+ if (sc->sf_miibus)
+ device_delete_child(dev, sc->sf_miibus);
+ bus_generic_detach(dev);
+
+ if (sc->sf_intrhand)
+ bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
+ if (sc->sf_irq)
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
+ if (sc->sf_res)
+ bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
+
+ if (sc->sf_ldata)
+ contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
+
+ SF_UNLOCK(sc);
+ mtx_destroy(&sc->sf_mtx);
+
+ return(0);
+}
+
+static int
+sf_init_rx_ring(sc)
+ struct sf_softc *sc;
+{
+ struct sf_list_data *ld;
+ int i;
+
+ ld = sc->sf_ldata;
+
+ bzero((char *)ld->sf_rx_dlist_big,
+ sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
+ bzero((char *)ld->sf_rx_clist,
+ sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
+
+ for (i = 0; i < SF_RX_DLIST_CNT; i++) {
+ if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
+ return(ENOBUFS);
+ }
+
+ return(0);
+}
+
+static void
+sf_init_tx_ring(sc)
+ struct sf_softc *sc;
+{
+ struct sf_list_data *ld;
+ int i;
+
+ ld = sc->sf_ldata;
+
+ bzero((char *)ld->sf_tx_dlist,
+ sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
+ bzero((char *)ld->sf_tx_clist,
+ sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
+
+ for (i = 0; i < SF_TX_DLIST_CNT; i++)
+ ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
+ for (i = 0; i < SF_TX_CLIST_CNT; i++)
+ ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
+
+ ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
+ sc->sf_tx_cnt = 0;
+
+ return;
+}
+
+static int
+sf_newbuf(sc, c, m)
+ struct sf_softc *sc;
+ struct sf_rx_bufdesc_type0 *c;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+
+ if (m == NULL) {
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL)
+ return(ENOBUFS);
+
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ m_freem(m_new);
+ return(ENOBUFS);
+ }
+ m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
+ } else {
+ m_new = m;
+ m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
+ m_new->m_data = m_new->m_ext.ext_buf;
+ }
+
+ m_adj(m_new, sizeof(u_int64_t));
+
+ c->sf_mbuf = m_new;
+ c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
+ c->sf_valid = 1;
+
+ return(0);
+}
+
+/*
+ * The starfire is programmed to use 'normal' mode for packet reception,
+ * which means we use the consumer/producer model for both the buffer
+ * descriptor queue and the completion descriptor queue. The only problem
+ * with this is that it involves a lot of register accesses: we have to
+ * read the RX completion consumer and producer indexes and the RX buffer
+ * producer index, plus the RX completion consumer and RX buffer producer
+ * indexes have to be updated. It would have been easier if Adaptec had
+ * put each index in a separate register, especially given that the damn
+ * NIC has a 512K register space.
+ *
+ * In spite of all the lovely features that Adaptec crammed into the 6915,
+ * it is marred by one truly stupid design flaw, which is that receive
+ * buffer addresses must be aligned on a longword boundary. This forces
+ * the packet payload to be unaligned, which is suboptimal on the x86 and
+ * completely unuseable on the Alpha. Our only recourse is to copy received
+ * packets into properly aligned buffers before handing them off.
+ */
+
+static void
+sf_rxeof(sc)
+ struct sf_softc *sc;
+{
+ struct mbuf *m;
+ struct ifnet *ifp;
+ struct sf_rx_bufdesc_type0 *desc;
+ struct sf_rx_cmpdesc_type3 *cur_rx;
+ u_int32_t rxcons, rxprod;
+ int cmpprodidx, cmpconsidx, bufprodidx;
+
+ ifp = &sc->arpcom.ac_if;
+
+ rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
+ rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
+ cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
+ cmpconsidx = SF_IDX_LO(rxcons);
+ bufprodidx = SF_IDX_LO(rxprod);
+
+ while (cmpconsidx != cmpprodidx) {
+ struct mbuf *m0;
+
+ cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
+ desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
+ m = desc->sf_mbuf;
+ SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
+ SF_INC(bufprodidx, SF_RX_DLIST_CNT);
+
+ if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
+ ifp->if_ierrors++;
+ sf_newbuf(sc, desc, m);
+ continue;
+ }
+
+ m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
+ ifp, NULL);
+ sf_newbuf(sc, desc, m);
+ if (m0 == NULL) {
+ ifp->if_ierrors++;
+ continue;
+ }
+ m = m0;
+
+ ifp->if_ipackets++;
+ (*ifp->if_input)(ifp, m);
+ }
+
+ csr_write_4(sc, SF_CQ_CONSIDX,
+ (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1,
+ (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
+
+ return;
+}
+
+/*
+ * Read the transmit status from the completion queue and release
+ * mbufs. Note that the buffer descriptor index in the completion
+ * descriptor is an offset from the start of the transmit buffer
+ * descriptor list in bytes. This is important because the manual
+ * gives the impression that it should match the producer/consumer
+ * index, which is the offset in 8 byte blocks.
+ */
+static void
+sf_txeof(sc)
+ struct sf_softc *sc;
+{
+ int txcons, cmpprodidx, cmpconsidx;
+ struct sf_tx_cmpdesc_type1 *cur_cmp;
+ struct sf_tx_bufdesc_type0 *cur_tx;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ txcons = csr_read_4(sc, SF_CQ_CONSIDX);
+ cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
+ cmpconsidx = SF_IDX_HI(txcons);
+
+ while (cmpconsidx != cmpprodidx) {
+ cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
+ cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
+
+ if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
+ ifp->if_opackets++;
+ else {
+ if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
+ sf_txthresh_adjust(sc);
+ ifp->if_oerrors++;
+ }
+
+ sc->sf_tx_cnt--;
+ if (cur_tx->sf_mbuf != NULL) {
+ m_freem(cur_tx->sf_mbuf);
+ cur_tx->sf_mbuf = NULL;
+ } else
+ break;
+ SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
+ }
+
+ ifp->if_timer = 0;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ csr_write_4(sc, SF_CQ_CONSIDX,
+ (txcons & ~SF_CQ_CONSIDX_TXQ) |
+ ((cmpconsidx << 16) & 0xFFFF0000));
+
+ return;
+}
+
+static void
+sf_txthresh_adjust(sc)
+ struct sf_softc *sc;
+{
+ u_int32_t txfctl;
+ u_int8_t txthresh;
+
+ txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
+ txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
+ if (txthresh < 0xFF) {
+ txthresh++;
+ txfctl &= ~SF_TXFRMCTL_TXTHRESH;
+ txfctl |= txthresh;
+#ifdef DIAGNOSTIC
+ printf("sf%d: tx underrun, increasing "
+ "tx threshold to %d bytes\n",
+ sc->sf_unit, txthresh * 4);
+#endif
+ csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
+ }
+
+ return;
+}
+
+static void
+sf_intr(arg)
+ void *arg;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ u_int32_t status;
+
+ sc = arg;
+ SF_LOCK(sc);
+
+ ifp = &sc->arpcom.ac_if;
+
+ if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
+ SF_UNLOCK(sc);
+ return;
+ }
+
+ /* Disable interrupts. */
+ csr_write_4(sc, SF_IMR, 0x00000000);
+
+ for (;;) {
+ status = csr_read_4(sc, SF_ISR);
+ if (status)
+ csr_write_4(sc, SF_ISR, status);
+
+ if (!(status & SF_INTRS))
+ break;
+
+ if (status & SF_ISR_RXDQ1_DMADONE)
+ sf_rxeof(sc);
+
+ if (status & SF_ISR_TX_TXDONE ||
+ status & SF_ISR_TX_DMADONE ||
+ status & SF_ISR_TX_QUEUEDONE)
+ sf_txeof(sc);
+
+ if (status & SF_ISR_TX_LOFIFO)
+ sf_txthresh_adjust(sc);
+
+ if (status & SF_ISR_ABNORMALINTR) {
+ if (status & SF_ISR_STATSOFLOW) {
+ untimeout(sf_stats_update, sc,
+ sc->sf_stat_ch);
+ sf_stats_update(sc);
+ } else
+ sf_init(sc);
+ }
+ }
+
+ /* Re-enable interrupts. */
+ csr_write_4(sc, SF_IMR, SF_INTRS);
+
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+
+ SF_UNLOCK(sc);
+ return;
+}
+
+static void
+sf_init(xsc)
+ void *xsc;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ struct mii_data *mii;
+ int i;
+
+ sc = xsc;
+ SF_LOCK(sc);
+ ifp = &sc->arpcom.ac_if;
+ mii = device_get_softc(sc->sf_miibus);
+
+ sf_stop(sc);
+ sf_reset(sc);
+
+ /* Init all the receive filter registers */
+ for (i = SF_RXFILT_PERFECT_BASE;
+ i < (SF_RXFILT_HASH_MAX + 1); i += 4)
+ csr_write_4(sc, i, 0);
+
+ /* Empty stats counter registers. */
+ for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
+ csr_write_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)), 0);
+
+ /* Init our MAC address */
+ csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
+ csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
+ sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
+
+ if (sf_init_rx_ring(sc) == ENOBUFS) {
+ printf("sf%d: initialization failed: no "
+ "memory for rx buffers\n", sc->sf_unit);
+ SF_UNLOCK(sc);
+ return;
+ }
+
+ sf_init_tx_ring(sc);
+
+ csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
+
+ /* If we want promiscuous mode, set the allframes bit. */
+ if (ifp->if_flags & IFF_PROMISC) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ } else {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ }
+
+ if (ifp->if_flags & IFF_BROADCAST) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
+ } else {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
+ }
+
+ /*
+ * Load the multicast filter.
+ */
+ sf_setmulti(sc);
+
+ /* Init the completion queue indexes */
+ csr_write_4(sc, SF_CQ_CONSIDX, 0);
+ csr_write_4(sc, SF_CQ_PRODIDX, 0);
+
+ /* Init the RX completion queue */
+ csr_write_4(sc, SF_RXCQ_CTL_1,
+ vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
+ SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
+
+ /* Init RX DMA control. */
+ SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
+
+ /* Init the RX buffer descriptor queue. */
+ csr_write_4(sc, SF_RXDQ_ADDR_Q1,
+ vtophys(sc->sf_ldata->sf_rx_dlist_big));
+ csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
+
+ /* Init the TX completion queue */
+ csr_write_4(sc, SF_TXCQ_CTL,
+ vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
+
+ /* Init the TX buffer descriptor queue. */
+ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
+ vtophys(sc->sf_ldata->sf_tx_dlist));
+ SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
+ csr_write_4(sc, SF_TXDQ_CTL,
+ SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
+ SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
+
+ /* Enable autopadding of short TX frames. */
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
+
+ /* Enable interrupts. */
+ csr_write_4(sc, SF_IMR, SF_INTRS);
+ SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
+
+ /* Enable the RX and TX engines. */
+ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
+ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
+
+ /*mii_mediachg(mii);*/
+ sf_ifmedia_upd(ifp);
+
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
+
+ SF_UNLOCK(sc);
+
+ return;
+}
+
+static int
+sf_encap(sc, c, m_head)
+ struct sf_softc *sc;
+ struct sf_tx_bufdesc_type0 *c;
+ struct mbuf *m_head;
+{
+ int frag = 0;
+ struct sf_frag *f = NULL;
+ struct mbuf *m;
+
+ m = m_head;
+
+ for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if (frag == SF_MAXFRAGS)
+ break;
+ f = &c->sf_frags[frag];
+ if (frag == 0)
+ f->sf_pktlen = m_head->m_pkthdr.len;
+ f->sf_fraglen = m->m_len;
+ f->sf_addr = vtophys(mtod(m, vm_offset_t));
+ frag++;
+ }
+ }
+
+ if (m != NULL) {
+ struct mbuf *m_new = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("sf%d: no memory for tx list\n", sc->sf_unit);
+ return(1);
+ }
+
+ if (m_head->m_pkthdr.len > MHLEN) {
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ m_freem(m_new);
+ printf("sf%d: no memory for tx list\n",
+ sc->sf_unit);
+ return(1);
+ }
+ }
+ m_copydata(m_head, 0, m_head->m_pkthdr.len,
+ mtod(m_new, caddr_t));
+ m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
+ m_freem(m_head);
+ m_head = m_new;
+ f = &c->sf_frags[0];
+ f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
+ f->sf_addr = vtophys(mtod(m_head, caddr_t));
+ frag = 1;
+ }
+
+ c->sf_mbuf = m_head;
+ c->sf_id = SF_TX_BUFDESC_ID;
+ c->sf_fragcnt = frag;
+ c->sf_intr = 1;
+ c->sf_caltcp = 0;
+ c->sf_crcen = 1;
+
+ return(0);
+}
+
+static void
+sf_start(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+ struct sf_tx_bufdesc_type0 *cur_tx = NULL;
+ struct mbuf *m_head = NULL;
+ int i, txprod;
+
+ sc = ifp->if_softc;
+ SF_LOCK(sc);
+
+ if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
+ SF_UNLOCK(sc);
+ return;
+ }
+
+ if (ifp->if_flags & IFF_OACTIVE) {
+ SF_UNLOCK(sc);
+ return;
+ }
+
+ txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
+ i = SF_IDX_HI(txprod) >> 4;
+
+ if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
+ printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
+ sf_init(sc);
+ txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
+ i = SF_IDX_HI(txprod) >> 4;
+ }
+
+ while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
+ if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
+ ifp->if_flags |= IFF_OACTIVE;
+ cur_tx = NULL;
+ break;
+ }
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
+ if (sf_encap(sc, cur_tx, m_head)) {
+ IF_PREPEND(&ifp->if_snd, m_head);
+ ifp->if_flags |= IFF_OACTIVE;
+ cur_tx = NULL;
+ break;
+ }
+
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+ BPF_MTAP(ifp, m_head);
+
+ SF_INC(i, SF_TX_DLIST_CNT);
+ sc->sf_tx_cnt++;
+ /*
+ * Don't get the TX DMA queue get too full.
+ */
+ if (sc->sf_tx_cnt > 64)
+ break;
+ }
+
+ if (cur_tx == NULL) {
+ SF_UNLOCK(sc);
+ return;
+ }
+
+ /* Transmit */
+ csr_write_4(sc, SF_TXDQ_PRODIDX,
+ (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
+ ((i << 20) & 0xFFFF0000));
+
+ ifp->if_timer = 5;
+
+ SF_UNLOCK(sc);
+
+ return;
+}
+
+static void
+sf_stop(sc)
+ struct sf_softc *sc;
+{
+ int i;
+ struct ifnet *ifp;
+
+ SF_LOCK(sc);
+
+ ifp = &sc->arpcom.ac_if;
+
+ untimeout(sf_stats_update, sc, sc->sf_stat_ch);
+
+ csr_write_4(sc, SF_GEN_ETH_CTL, 0);
+ csr_write_4(sc, SF_CQ_CONSIDX, 0);
+ csr_write_4(sc, SF_CQ_PRODIDX, 0);
+ csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
+ csr_write_4(sc, SF_RXDQ_CTL_1, 0);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
+ csr_write_4(sc, SF_TXCQ_CTL, 0);
+ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
+ csr_write_4(sc, SF_TXDQ_CTL, 0);
+ sf_reset(sc);
+
+ sc->sf_link = 0;
+
+ for (i = 0; i < SF_RX_DLIST_CNT; i++) {
+ if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
+ m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
+ sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
+ }
+ }
+
+ for (i = 0; i < SF_TX_DLIST_CNT; i++) {
+ if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
+ m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
+ sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
+ }
+ }
+
+ ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
+ SF_UNLOCK(sc);
+
+ return;
+}
+
+/*
+ * Note: it is important that this function not be interrupted. We
+ * use a two-stage register access scheme: if we are interrupted in
+ * between setting the indirect address register and reading from the
+ * indirect data register, the contents of the address register could
+ * be changed out from under us.
+ */
+static void
+sf_stats_update(xsc)
+ void *xsc;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ struct mii_data *mii;
+ struct sf_stats stats;
+ u_int32_t *ptr;
+ int i;
+
+ sc = xsc;
+ SF_LOCK(sc);
+ ifp = &sc->arpcom.ac_if;
+ mii = device_get_softc(sc->sf_miibus);
+
+ ptr = (u_int32_t *)&stats;
+ for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
+ ptr[i] = csr_read_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)));
+
+ for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
+ csr_write_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)), 0);
+
+ ifp->if_collisions += stats.sf_tx_single_colls +
+ stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
+
+ mii_tick(mii);
+
+ if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
+ IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
+ sc->sf_link++;
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+ }
+
+ sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
+
+ SF_UNLOCK(sc);
+
+ return;
+}
+
+static void
+sf_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+
+ sc = ifp->if_softc;
+
+ SF_LOCK(sc);
+
+ ifp->if_oerrors++;
+ printf("sf%d: watchdog timeout\n", sc->sf_unit);
+
+ sf_stop(sc);
+ sf_reset(sc);
+ sf_init(sc);
+
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+
+ SF_UNLOCK(sc);
+
+ return;
+}
+
+static void
+sf_shutdown(dev)
+ device_t dev;
+{
+ struct sf_softc *sc;
+
+ sc = device_get_softc(dev);
+
+ sf_stop(sc);
+
+ return;
+}
diff --git a/sys/dev/sf/if_sfreg.h b/sys/dev/sf/if_sfreg.h
new file mode 100644
index 0000000..1975cfc
--- /dev/null
+++ b/sys/dev/sf/if_sfreg.h
@@ -0,0 +1,1060 @@
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+/*
+ * Registers for the Adaptec AIC-6915 Starfire. The Starfire has a 512K
+ * register space. These registers can be accessed in the following way:
+ * - PCI config registers are always accessible through PCI config space
+ * - Full 512K space mapped into memory using PCI memory mapped access
+ * - 256-byte I/O space mapped through PCI I/O access
+ * - Full 512K space mapped through indirect I/O using PCI I/O access
+ * It's possible to use either memory mapped mode or I/O mode to access
+ * the registers, but memory mapped is usually the easiest. All registers
+ * are 32 bits wide and must be accessed using 32-bit operations.
+ */
+
+/*
+ * Adaptec PCI vendor ID.
+ */
+#define AD_VENDORID 0x9004
+
+/*
+ * AIC-6915 PCI device ID.
+ */
+#define AD_DEVICEID_STARFIRE 0x6915
+
+/*
+ * AIC-6915 subsystem IDs. Adaptec uses the subsystem ID to identify
+ * the exact kind of NIC on which the ASIC is mounted. Currently there
+ * are six different variations. Note: the Adaptec manual lists code 0x28
+ * for two different NICs: the 62044 and the 69011/TX. This is a typo:
+ * the code for the 62044 is really 0x18.
+ *
+ * Note that there also appears to be an 0x19 code for a newer rev
+ * 62044 card.
+ */
+#define AD_SUBSYSID_62011_REV0 0x0008 /* single port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62011_REV1 0x0009 /* single port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62022 0x0010 /* dual port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62044_REV0 0x0018 /* quad port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62044_REV1 0x0019 /* quad port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62020 0x0020 /* single port 10/100baseFX 64-bit */
+#define AD_SUBSYSID_69011 0x0028 /* single port 10/100baseTX 32-bit */
+
+/*
+ * Starfire internal register space map. The entire register space
+ * is available using PCI memory mapped mode. The SF_RMAP_INTREG
+ * space is available using PCI I/O mode. The entire space can be
+ * accessed using indirect I/O using the indirect I/O addr and
+ * indirect I/O data registers located within the SF_RMAP_INTREG space.
+ */
+#define SF_RMAP_ROMADDR_BASE 0x00000 /* Expansion ROM space */
+#define SF_RMAP_ROMADDR_MAX 0x3FFFF
+
+#define SF_RMAP_EXGPIO_BASE 0x40000 /* External general purpose regs */
+#define SF_RMAP_EXGPIO_MAX 0x3FFFF
+
+#define SF_RMAP_INTREG_BASE 0x50000 /* Internal functional registers */
+#define SF_RMAP_INTREG_MAX 0x500FF
+#define SF_RMAP_GENREG_BASE 0x50100 /* General purpose registers */
+#define SF_RMAP_GENREG_MAX 0x5FFFF
+
+#define SF_RMAP_FIFO_BASE 0x60000
+#define SF_RMAP_FIFO_MAX 0x6FFFF
+
+#define SF_RMAP_STS_BASE 0x70000
+#define SF_RMAP_STS_MAX 0x70083
+
+#define SF_RMAP_RSVD_BASE 0x70084
+#define SF_RMAP_RSVD_MAX 0x7FFFF
+
+/*
+ * PCI config header registers, 0x0000 to 0x003F
+ */
+#define SF_PCI_VENDOR_ID 0x0000
+#define SF_PCI_DEVICE_ID 0x0002
+#define SF_PCI_COMMAND 0x0004
+#define SF_PCI_STATUS 0x0006
+#define SF_PCI_REVID 0x0008
+#define SF_PCI_CLASSCODE 0x0009
+#define SF_PCI_CACHELEN 0x000C
+#define SF_PCI_LATENCY_TIMER 0x000D
+#define SF_PCI_HEADER_TYPE 0x000E
+#define SF_PCI_LOMEM 0x0010
+#define SF_PCI_LOIO 0x0014
+#define SF_PCI_SUBVEN_ID 0x002C
+#define SF_PCI_SYBSYS_ID 0x002E
+#define SF_PCI_BIOSROM 0x0030
+#define SF_PCI_INTLINE 0x003C
+#define SF_PCI_INTPIN 0x003D
+#define SF_PCI_MINGNT 0x003E
+#define SF_PCI_MINLAT 0x003F
+
+/*
+ * PCI registers, 0x0040 to 0x006F
+ */
+#define SF_PCI_DEVCFG 0x0040
+#define SF_BACCTL 0x0044
+#define SF_PCI_MON1 0x0048
+#define SF_PCI_MON2 0x004C
+#define SF_PCI_CAPID 0x0050 /* 8 bits */
+#define SF_PCI_NEXTPTR 0x0051 /* 8 bits */
+#define SF_PCI_PWRMGMTCAP 0x0052 /* 16 bits */
+#define SF_PCI_PWRMGMTCTRL 0x0054 /* 16 bits */
+#define SF_PCI_PME_EVENT 0x0058
+#define SF_PCI_EECTL 0x0060
+#define SF_PCI_COMPLIANCE 0x0064
+#define SF_INDIRECTIO_ADDR 0x0068
+#define SF_INDIRECTIO_DATA 0x006C
+
+#define SF_PCIDEVCFG_RESET 0x00000001
+#define SF_PCIDEVCFG_FORCE64 0x00000002
+#define SF_PCIDEVCFG_SYSTEM64 0x00000004
+#define SF_PCIDEVCFG_RSVD0 0x00000008
+#define SF_PCIDEVCFG_INCR_INB 0x00000010
+#define SF_PCIDEVCFG_ABTONPERR 0x00000020
+#define SF_PCIDEVCFG_STPONPERR 0x00000040
+#define SF_PCIDEVCFG_MR_ENB 0x00000080
+#define SF_PCIDEVCFG_FIFOTHR 0x00000F00
+#define SF_PCIDEVCFG_STPONCA 0x00001000
+#define SF_PCIDEVCFG_PCIMEN 0x00002000 /* enable PCI bus master */
+#define SF_PCIDEVCFG_LATSTP 0x00004000
+#define SF_PCIDEVCFG_BYTE_ENB 0x00008000
+#define SF_PCIDEVCFG_EECSWIDTH 0x00070000
+#define SF_PCIDEVCFG_STPMWCA 0x00080000
+#define SF_PCIDEVCFG_REGCSWIDTH 0x00700000
+#define SF_PCIDEVCFG_INTR_ENB 0x00800000
+#define SF_PCIDEVCFG_DPR_ENB 0x01000000
+#define SF_PCIDEVCFG_RSVD1 0x02000000
+#define SF_PCIDEVCFG_RSVD2 0x04000000
+#define SF_PCIDEVCFG_STA_ENB 0x08000000
+#define SF_PCIDEVCFG_RTA_ENB 0x10000000
+#define SF_PCIDEVCFG_RMA_ENB 0x20000000
+#define SF_PCIDEVCFG_SSE_ENB 0x40000000
+#define SF_PCIDEVCFG_DPE_ENB 0x80000000
+
+#define SF_BACCTL_BACDMA_ENB 0x00000001
+#define SF_BACCTL_PREFER_RXDMA 0x00000002
+#define SF_BACCTL_PREFER_TXDMA 0x00000004
+#define SF_BACCTL_SINGLE_DMA 0x00000008
+#define SF_BACCTL_SWAPMODE_DATA 0x00000030
+#define SF_BACCTL_SWAPMODE_DESC 0x000000C0
+
+#define SF_SWAPMODE_LE 0x00000000
+#define SF_SWAPMODE_BE 0x00000010
+
+#define SF_PSTATE_MASK 0x0003
+#define SF_PSTATE_D0 0x0000
+#define SF_PSTATE_D1 0x0001
+#define SF_PSTATE_D2 0x0002
+#define SF_PSTATE_D3 0x0003
+#define SF_PME_EN 0x0010
+#define SF_PME_STATUS 0x8000
+
+
+/*
+ * Ethernet registers 0x0070 to 0x00FF
+ */
+#define SF_GEN_ETH_CTL 0x0070
+#define SF_TIMER_CTL 0x0074
+#define SF_CURTIME 0x0078
+#define SF_ISR 0x0080
+#define SF_ISR_SHADOW 0x0084
+#define SF_IMR 0x0088
+#define SF_GPIO 0x008C
+#define SF_TXDQ_CTL 0x0090
+#define SF_TXDQ_ADDR_HIPRIO 0x0094
+#define SF_TXDQ_ADDR_LOPRIO 0x0098
+#define SF_TXDQ_ADDR_HIADDR 0x009C
+#define SF_TXDQ_PRODIDX 0x00A0
+#define SF_TXDQ_CONSIDX 0x00A4
+#define SF_TXDMA_STS1 0x00A8
+#define SF_TXDMA_STS2 0x00AC
+#define SF_TX_FRAMCTL 0x00B0
+#define SF_TXCQ_ADDR_HI 0x00B4
+#define SF_TXCQ_CTL 0x00B8
+#define SF_RXCQ_CTL_1 0x00BC
+#define SF_RXCQ_CTL_2 0x00C0
+#define SF_CQ_CONSIDX 0x00C4
+#define SF_CQ_PRODIDX 0x00C8
+#define SF_CQ_RXQ2 0x00CC
+#define SF_RXDMA_CTL 0x00D0
+#define SF_RXDQ_CTL_1 0x00D4
+#define SF_RXDQ_CTL_2 0x00D8
+#define SF_RXDQ_ADDR_HIADDR 0x00DC
+#define SF_RXDQ_ADDR_Q1 0x00E0
+#define SF_RXDQ_ADDR_Q2 0x00E4
+#define SF_RXDQ_PTR_Q1 0x00E8
+#define SF_RXDQ_PTR_Q2 0x00EC
+#define SF_RXDMA_STS 0x00F0
+#define SF_RXFILT 0x00F4
+#define SF_RX_FRAMETEST_OUT 0x00F8
+
+/* Ethernet control register */
+#define SF_ETHCTL_RX_ENB 0x00000001
+#define SF_ETHCTL_TX_ENB 0x00000002
+#define SF_ETHCTL_RXDMA_ENB 0x00000004
+#define SF_ETHCTL_TXDMA_ENB 0x00000008
+#define SF_ETHCTL_RXGFP_ENB 0x00000010
+#define SF_ETHCTL_TXGFP_ENB 0x00000020
+#define SF_ETHCTL_SOFTINTR 0x00000800
+
+/* Timer control register */
+#define SF_TIMER_IMASK_INTERVAL 0x0000001F
+#define SF_TIMER_IMASK_MODE 0x00000060
+#define SF_TIMER_SMALLFRAME_BYP 0x00000100
+#define SF_TIMER_SMALLRX_FRAME 0x00000600
+#define SF_TIMER_TIMES_TEN 0x00000800
+#define SF_TIMER_RXHIPRIO_BYP 0x00001000
+#define SF_TIMER_TX_DMADONE_DLY 0x00002000
+#define SF_TIMER_TX_QDONE_DLY 0x00004000
+#define SF_TIMER_TX_FRDONE_DLY 0x00008000
+#define SF_TIMER_GENTIMER 0x00FF0000
+#define SF_TIMER_ONESHOT 0x01000000
+#define SF_TIMER_GENTIMER_RES 0x02000000
+#define SF_TIMER_TIMEST_RES 0x04000000
+#define SF_TIMER_RXQ2DONE_DLY 0x10000000
+#define SF_TIMER_EARLYRX2_DLY 0x20000000
+#define SF_TIMER_RXQ1DONE_DLY 0x40000000
+#define SF_TIMER_EARLYRX1_DLY 0x80000000
+
+/* Interrupt status register */
+#define SF_ISR_PCIINT_ASSERTED 0x00000001
+#define SF_ISR_GFP_TX 0x00000002
+#define SF_ISR_GFP_RX 0x00000004
+#define SF_ISR_TX_BADID_HIPRIO 0x00000008
+#define SF_ISR_TX_BADID_LOPRIO 0x00000010
+#define SF_ISR_NO_TX_CSUM 0x00000020
+#define SF_ISR_RXDQ2_NOBUFS 0x00000040
+#define SF_ISR_RXGFP_NORESP 0x00000080
+#define SF_ISR_RXDQ1_DMADONE 0x00000100
+#define SF_ISR_RXDQ2_DMADONE 0x00000200
+#define SF_ISR_RXDQ1_EARLY 0x00000400
+#define SF_ISR_RXDQ2_EARLY 0x00000800
+#define SF_ISR_TX_QUEUEDONE 0x00001000
+#define SF_ISR_TX_DMADONE 0x00002000
+#define SF_ISR_TX_TXDONE 0x00004000
+#define SF_ISR_NORMALINTR 0x00008000
+#define SF_ISR_RXDQ1_NOBUFS 0x00010000
+#define SF_ISR_RXCQ2_NOBUFS 0x00020000
+#define SF_ISR_TX_LOFIFO 0x00040000
+#define SF_ISR_DMAERR 0x00080000
+#define SF_ISR_PCIINT 0x00100000
+#define SF_ISR_TXCQ_NOBUFS 0x00200000
+#define SF_ISR_RXCQ1_NOBUFS 0x00400000
+#define SF_ISR_SOFTINTR 0x00800000
+#define SF_ISR_GENTIMER 0x01000000
+#define SF_ISR_ABNORMALINTR 0x02000000
+#define SF_ISR_RSVD0 0x04000000
+#define SF_ISR_STATSOFLOW 0x08000000
+#define SF_ISR_GPIO 0xF0000000
+
+/*
+ * Shadow interrupt status register. Unlike the normal IRQ register,
+ * reading bits here does not automatically cause them to reset.
+ */
+#define SF_SISR_PCIINT_ASSERTED 0x00000001
+#define SF_SISR_GFP_TX 0x00000002
+#define SF_SISR_GFP_RX 0x00000004
+#define SF_SISR_TX_BADID_HIPRIO 0x00000008
+#define SF_SISR_TX_BADID_LOPRIO 0x00000010
+#define SF_SISR_NO_TX_CSUM 0x00000020
+#define SF_SISR_RXDQ2_NOBUFS 0x00000040
+#define SF_SISR_RXGFP_NORESP 0x00000080
+#define SF_SISR_RXDQ1_DMADONE 0x00000100
+#define SF_SISR_RXDQ2_DMADONE 0x00000200
+#define SF_SISR_RXDQ1_EARLY 0x00000400
+#define SF_SISR_RXDQ2_EARLY 0x00000800
+#define SF_SISR_TX_QUEUEDONE 0x00001000
+#define SF_SISR_TX_DMADONE 0x00002000
+#define SF_SISR_TX_TXDONE 0x00004000
+#define SF_SISR_NORMALINTR 0x00008000
+#define SF_SISR_RXDQ1_NOBUFS 0x00010000
+#define SF_SISR_RXCQ2_NOBUFS 0x00020000
+#define SF_SISR_TX_LOFIFO 0x00040000
+#define SF_SISR_DMAERR 0x00080000
+#define SF_SISR_PCIINT 0x00100000
+#define SF_SISR_TXCQ_NOBUFS 0x00200000
+#define SF_SISR_RXCQ1_NOBUFS 0x00400000
+#define SF_SISR_SOFTINTR 0x00800000
+#define SF_SISR_GENTIMER 0x01000000
+#define SF_SISR_ABNORMALINTR 0x02000000
+#define SF_SISR_RSVD0 0x04000000
+#define SF_SISR_STATSOFLOW 0x08000000
+#define SF_SISR_GPIO 0xF0000000
+
+/* Interrupt mask register */
+#define SF_IMR_PCIINT_ASSERTED 0x00000001
+#define SF_IMR_GFP_TX 0x00000002
+#define SF_IMR_GFP_RX 0x00000004
+#define SF_IMR_TX_BADID_HIPRIO 0x00000008
+#define SF_IMR_TX_BADID_LOPRIO 0x00000010
+#define SF_IMR_NO_TX_CSUM 0x00000020
+#define SF_IMR_RXDQ2_NOBUFS 0x00000040
+#define SF_IMR_RXGFP_NORESP 0x00000080
+#define SF_IMR_RXDQ1_DMADONE 0x00000100
+#define SF_IMR_RXDQ2_DMADONE 0x00000200
+#define SF_IMR_RXDQ1_EARLY 0x00000400
+#define SF_IMR_RXDQ2_EARLY 0x00000800
+#define SF_IMR_TX_QUEUEDONE 0x00001000
+#define SF_IMR_TX_DMADONE 0x00002000
+#define SF_IMR_TX_TXDONE 0x00004000
+#define SF_IMR_NORMALINTR 0x00008000
+#define SF_IMR_RXDQ1_NOBUFS 0x00010000
+#define SF_IMR_RXCQ2_NOBUFS 0x00020000
+#define SF_IMR_TX_LOFIFO 0x00040000
+#define SF_IMR_DMAERR 0x00080000
+#define SF_IMR_PCIINT 0x00100000
+#define SF_IMR_TXCQ_NOBUFS 0x00200000
+#define SF_IMR_RXCQ1_NOBUFS 0x00400000
+#define SF_IMR_SOFTINTR 0x00800000
+#define SF_IMR_GENTIMER 0x01000000
+#define SF_IMR_ABNORMALINTR 0x02000000
+#define SF_IMR_RSVD0 0x04000000
+#define SF_IMR_STATSOFLOW 0x08000000
+#define SF_IMR_GPIO 0xF0000000
+
+#define SF_INTRS \
+ (SF_IMR_RXDQ2_NOBUFS|SF_IMR_RXDQ1_DMADONE|SF_IMR_RXDQ2_DMADONE| \
+ SF_IMR_TX_TXDONE|SF_IMR_RXDQ1_NOBUFS|SF_IMR_RXDQ2_DMADONE| \
+ SF_IMR_NORMALINTR|SF_IMR_ABNORMALINTR|SF_IMR_TXCQ_NOBUFS| \
+ SF_IMR_RXCQ1_NOBUFS|SF_IMR_RXCQ2_NOBUFS|SF_IMR_STATSOFLOW| \
+ SF_IMR_TX_LOFIFO)
+
+/* TX descriptor queue control registers */
+#define SF_TXDQCTL_DESCTYPE 0x00000007
+#define SF_TXDQCTL_NODMACMP 0x00000008
+#define SF_TXDQCTL_MINSPACE 0x00000070
+#define SF_TXDQCTL_64BITADDR 0x00000080
+#define SF_TXDQCTL_BURSTLEN 0x00003F00
+#define SF_TXDQCTL_SKIPLEN 0x001F0000
+#define SF_TXDQCTL_HIPRIOTHRESH 0xFF000000
+
+#define SF_TXBUFDESC_TYPE0 0x00000000
+#define SF_TXBUFDESC_TYPE1 0x00000001
+#define SF_TXBUFDESC_TYPE2 0x00000002
+#define SF_TXBUFDESC_TYPE3 0x00000003
+#define SF_TXBUFDESC_TYPE4 0x00000004
+
+#define SF_TXMINSPACE_UNLIMIT 0x00000000
+#define SF_TXMINSPACE_32BYTES 0x00000010
+#define SF_TXMINSPACE_64BYTES 0x00000020
+#define SF_TXMINSPACE_128BYTES 0x00000030
+#define SF_TXMINSPACE_256BYTES 0x00000040
+
+#define SF_TXSKIPLEN_0BYTES 0x00000000
+#define SF_TXSKIPLEN_8BYTES 0x00010000
+#define SF_TXSKIPLEN_16BYTES 0x00020000
+#define SF_TXSKIPLEN_24BYTES 0x00030000
+#define SF_TXSKIPLEN_32BYTES 0x00040000
+
+/* TX frame control register */
+#define SF_TXFRMCTL_TXTHRESH 0x000000FF
+#define SF_TXFRMCTL_CPLAFTERTX 0x00000100
+#define SF_TXFRMCRL_DEBUG 0x0000FE00
+#define SF_TXFRMCTL_STATUS 0x01FF0000
+#define SF_TXFRMCTL_MAC_TXIF 0xFE000000
+
+/* TX completion queue control register */
+#define SF_TXCQ_THRESH 0x0000000F
+#define SF_TXCQ_COMMON 0x00000010
+#define SF_TXCQ_SIZE 0x00000020
+#define SF_TXCQ_WRITEENB 0x00000040
+#define SF_TXCQ_USE_64BIT 0x00000080
+#define SF_TXCQ_ADDR 0xFFFFFF00
+
+/* RX completion queue control register */
+#define SF_RXCQ_THRESH 0x0000000F
+#define SF_RXCQ_TYPE 0x00000030
+#define SF_RXCQ_WRITEENB 0x00000040
+#define SF_RXCQ_USE_64BIT 0x00000080
+#define SF_RXCQ_ADDR 0xFFFFFF00
+
+#define SF_RXCQTYPE_0 0x00000000
+#define SF_RXCQTYPE_1 0x00000010
+#define SF_RXCQTYPE_2 0x00000020
+#define SF_RXCQTYPE_3 0x00000030
+
+/* TX descriptor queue producer index register */
+#define SF_TXDQ_PRODIDX_LOPRIO 0x000007FF
+#define SF_TXDQ_PRODIDX_HIPRIO 0x07FF0000
+
+/* TX descriptor queue consumer index register */
+#define SF_TXDQ_CONSIDX_LOPRIO 0x000007FF
+#define SF_TXDQ_CONSIDX_HIPRIO 0x07FF0000
+
+/* Completion queue consumer index register */
+#define SF_CQ_CONSIDX_RXQ1 0x000003FF
+#define SF_CQ_CONSIDX_RXTHRMODE 0x00008000
+#define SF_CQ_CONSIDX_TXQ 0x03FF0000
+#define SF_CQ_CONSIDX_TXTHRMODE 0x80000000
+
+/* Completion queue producer index register */
+#define SF_CQ_PRODIDX_RXQ1 0x000003FF
+#define SF_CQ_PRODIDX_TXQ 0x03FF0000
+
+/* RX completion queue 2 consumer/producer index register */
+#define SF_CQ_RXQ2_CONSIDX 0x000003FF
+#define SF_CQ_RXQ2_RXTHRMODE 0x00008000
+#define SF_CQ_RXQ2_PRODIDX 0x03FF0000
+
+#define SF_CQ_RXTHRMODE_INT_ON 0x00008000
+#define SF_CQ_RXTHRMODE_INT_OFF 0x00000000
+#define SF_CQ_TXTHRMODE_INT_ON 0x80000000
+#define SF_CQ_TXTHRMODE_INT_OFF 0x00000000
+
+#define SF_IDX_LO(x) ((x) & 0x000007FF)
+#define SF_IDX_HI(x) (((x) >> 16) & 0x000007FF)
+
+/* RX DMA control register */
+#define SF_RXDMA_BURSTSIZE 0x0000007F
+#define SF_RXDMA_FPTESTMODE 0x00000080
+#define SF_RXDMA_HIPRIOTHRESH 0x00000F00
+#define SF_RXDMA_RXEARLYTHRESH 0x0001F000
+#define SF_RXDMA_DMACRC 0x00040000
+#define SF_RXDMA_USEBKUPQUEUE 0x00080000
+#define SF_RXDMA_QUEUEMODE 0x00700000
+#define SF_RXDMA_RXCQ2_ON 0x00800000
+#define SF_RXDMA_CSUMMODE 0x03000000
+#define SF_RXDMA_DMAPAUSEPKTS 0x04000000
+#define SF_RXDMA_DMACTLPKTS 0x08000000
+#define SF_RXDMA_DMACRXERRPKTS 0x10000000
+#define SF_RXDMA_DMABADPKTS 0x20000000
+#define SF_RXDMA_DMARUNTS 0x40000000
+#define SF_RXDMA_REPORTBADPKTS 0x80000000
+
+#define SF_RXDQMODE_Q1ONLY 0x00100000
+#define SF_RXDQMODE_Q2_ON_FP 0x00200000
+#define SF_RXDQMODE_Q2_ON_SHORT 0x00300000
+#define SF_RXDQMODE_Q2_ON_PRIO 0x00400000
+#define SF_RXDQMODE_SPLITHDR 0x00500000
+
+#define SF_RXCSUMMODE_IGNORE 0x00000000
+#define SF_RXCSUMMODE_REJECT_BAD_TCP 0x01000000
+#define SF_RXCSUMMODE_REJECT_BAD_TCPUDP 0x02000000
+#define SF_RXCSUMMODE_RSVD 0x03000000
+
+/* RX descriptor queue control registers */
+#define SF_RXDQCTL_MINDESCTHR 0x0000007F
+#define SF_RXDQCTL_Q1_WE 0x00000080
+#define SF_RXDQCTL_DESCSPACE 0x00000700
+#define SF_RXDQCTL_64BITDADDR 0x00000800
+#define SF_RXDQCTL_64BITBADDR 0x00001000
+#define SF_RXDQCTL_VARIABLE 0x00002000
+#define SF_RXDQCTL_ENTRIES 0x00004000
+#define SF_RXDQCTL_PREFETCH 0x00008000
+#define SF_RXDQCTL_BUFLEN 0xFFFF0000
+
+#define SF_DESCSPACE_4BYTES 0x00000000
+#define SF_DESCSPACE_8BYTES 0x00000100
+#define SF_DESCSPACE_16BYTES 0x00000200
+#define SF_DESCSPACE_32BYTES 0x00000300
+#define SF_DESCSPACE_64BYTES 0x00000400
+#define SF_DESCSPACE_128_BYTES 0x00000500
+
+/* RX buffer consumer/producer index registers */
+#define SF_RXDQ_PRODIDX 0x000007FF
+#define SF_RXDQ_CONSIDX 0x07FF0000
+
+/* RX filter control register */
+#define SF_RXFILT_PROMISC 0x00000001
+#define SF_RXFILT_ALLMULTI 0x00000002
+#define SF_RXFILT_BROAD 0x00000004
+#define SF_RXFILT_HASHPRIO 0x00000008
+#define SF_RXFILT_HASHMODE 0x00000030
+#define SF_RXFILT_PERFMODE 0x000000C0
+#define SF_RXFILT_VLANMODE 0x00000300
+#define SF_RXFILT_WAKEMODE 0x00000C00
+#define SF_RXFILT_MULTI_NOBROAD 0x00001000
+#define SF_RXFILT_MIN_VLANPRIO 0x0000E000
+#define SF_RXFILT_PEFECTPRIO 0xFFFF0000
+
+/* Hash filtering mode */
+#define SF_HASHMODE_OFF 0x00000000
+#define SF_HASHMODE_WITHVLAN 0x00000010
+#define SF_HASHMODE_ANYVLAN 0x00000020
+#define SF_HASHMODE_ANY 0x00000030
+
+/* Perfect filtering mode */
+#define SF_PERFMODE_OFF 0x00000000
+#define SF_PERFMODE_NORMAL 0x00000040
+#define SF_PERFMODE_INVERSE 0x00000080
+#define SF_PERFMODE_VLAN 0x000000C0
+
+/* VLAN mode */
+#define SF_VLANMODE_OFF 0x00000000
+#define SF_VLANMODE_NOSTRIP 0x00000100
+#define SF_VLANMODE_STRIP 0x00000200
+#define SF_VLANMODE_RSVD 0x00000300
+
+/* Wakeup mode */
+#define SF_WAKEMODE_OFF 0x00000000
+#define SF_WAKEMODE_FILTER 0x00000400
+#define SF_WAKEMODE_FP 0x00000800
+#define SF_WAKEMODE_HIPRIO 0x00000C00
+
+/*
+ * Extra PCI registers 0x0100 to 0x0FFF
+ */
+#define SF_PCI_TARGSTAT 0x0100
+#define SF_PCI_MASTSTAT1 0x0104
+#define SF_PCI_MASTSTAT2 0x0108
+#define SF_PCI_DMAHOSTADDR_LO 0x010C
+#define SF_BAC_DMADIAG0 0x0110
+#define SF_BAC_DMADIAG1 0x0114
+#define SF_BAC_DMADIAG2 0x0118
+#define SF_BAC_DMADIAG3 0x011C
+#define SF_PAR0 0x0120
+#define SF_PAR1 0x0124
+#define SF_PCICB_FUNCEVENT 0x0130
+#define SF_PCICB_FUNCEVENT_MASK 0x0134
+#define SF_PCICB_FUNCSTATE 0x0138
+#define SF_PCICB_FUNCFORCE 0x013C
+
+/*
+ * Serial EEPROM registers 0x1000 to 0x1FFF
+ * Presumeably the EEPROM is mapped into this 8K window.
+ */
+#define SF_EEADDR_BASE 0x1000
+#define SF_EEADDR_MAX 0x1FFF
+
+#define SF_EE_NODEADDR 14
+
+/*
+ * MII registers registers 0x2000 to 0x3FFF
+ * There are 32 sets of 32 registers, one set for each possible
+ * PHY address. Each 32 bit register is split into a 16-bit data
+ * port and a couple of status bits.
+ */
+
+#define SF_MIIADDR_BASE 0x2000
+#define SF_MIIADDR_MAX 0x3FFF
+#define SF_MII_BLOCKS 32
+
+#define SF_MII_DATAVALID 0x80000000
+#define SF_MII_BUSY 0x40000000
+#define SF_MII_DATAPORT 0x0000FFFF
+
+#define SF_PHY_REG(phy, reg) \
+ (SF_MIIADDR_BASE + (phy * SF_MII_BLOCKS * sizeof(u_int32_t)) + \
+ (reg * sizeof(u_int32_t)))
+
+/*
+ * Ethernet extra registers 0x4000 to 0x4FFF
+ */
+#define SF_TESTMODE 0x4000
+#define SF_RX_FRAMEPROC_CTL 0x4004
+#define SF_TX_FRAMEPROC_CTL 0x4008
+
+/*
+ * MAC registers 0x5000 to 0x5FFF
+ */
+#define SF_MACCFG_1 0x5000
+#define SF_MACCFG_2 0x5004
+#define SF_BKTOBKIPG 0x5008
+#define SF_NONBKTOBKIPG 0x500C
+#define SF_COLRETRY 0x5010
+#define SF_MAXLEN 0x5014
+#define SF_TXNIBBLECNT 0x5018
+#define SF_TXBYTECNT 0x501C
+#define SF_RETXCNT 0x5020
+#define SF_RANDNUM 0x5024
+#define SF_RANDNUM_MASK 0x5028
+#define SF_TOTALTXCNT 0x5034
+#define SF_RXBYTECNT 0x5040
+#define SF_TXPAUSETIMER 0x5060
+#define SF_VLANTYPE 0x5064
+#define SF_MIISTATUS 0x5070
+
+#define SF_MACCFG1_HUGEFRAMES 0x00000001
+#define SF_MACCFG1_FULLDUPLEX 0x00000002
+#define SF_MACCFG1_AUTOPAD 0x00000004
+#define SF_MACCFG1_HDJAM 0x00000008
+#define SF_MACCFG1_DELAYCRC 0x00000010
+#define SF_MACCFG1_NOBACKOFF 0x00000020
+#define SF_MACCFG1_LENGTHCHECK 0x00000040
+#define SF_MACCFG1_PUREPREAMBLE 0x00000080
+#define SF_MACCFG1_PASSALLRX 0x00000100
+#define SF_MACCFG1_PREAM_DETCNT 0x00000200
+#define SF_MACCFG1_RX_FLOWENB 0x00000400
+#define SF_MACCFG1_TX_FLOWENB 0x00000800
+#define SF_MACCFG1_TESTMODE 0x00003000
+#define SF_MACCFG1_MIILOOPBK 0x00004000
+#define SF_MACCFG1_SOFTRESET 0x00008000
+
+/*
+ * There are the recommended IPG nibble counter settings
+ * specified in the Adaptec manual for full duplex and
+ * half duplex operation.
+ */
+#define SF_IPGT_FDX 0x15
+#define SF_IPGT_HDX 0x11
+
+/*
+ * RX filter registers 0x6000 to 0x6FFF
+ */
+#define SF_RXFILT_PERFECT_BASE 0x6000
+#define SF_RXFILT_PERFECT_MAX 0x60FF
+#define SF_RXFILT_PERFECT_SKIP 0x0010
+#define SF_RXFILT_PERFECT_CNT 0x0010
+
+#define SF_RXFILT_HASH_BASE 0x6100
+#define SF_RXFILT_HASH_MAX 0x62FF
+#define SF_RXFILT_HASH_SKIP 0x0010
+#define SF_RXFILT_HASH_CNT 0x001F
+#define SF_RXFILT_HASH_ADDROFF 0x0000
+#define SF_RXFILT_HASH_PRIOOFF 0x0004
+#define SF_RXFILT_HASH_VLANOFF 0x0008
+
+/*
+ * Statistics registers 0x7000 to 0x7FFF
+ */
+#define SF_STATS_BASE 0x7000
+#define SF_STATS_END 0x7FFF
+
+/*
+ * TX frame processor instruction space 0x8000 to 0x9FFF
+ */
+
+/*
+ * RX frame processor instruction space 0xA000 to 0xBFFF
+ */
+
+/*
+ * Ethernet FIFO access space 0xC000 to 0xDFFF
+ */
+
+/*
+ * Reserved 0xE000 to 0xFFFF
+ */
+
+/*
+ * Descriptor data structures.
+ */
+
+
+/* Receive descriptor formats. */
+#define SF_RX_MINSPACING 8
+#define SF_RX_DLIST_CNT 256
+#define SF_RX_CLIST_CNT 1024
+#define SF_RX_HOSTADDR(x) (((x) >> 2) & 0x3FFFFFFF)
+
+/*
+ * RX buffer descriptor type 0, 32-bit addressing. Note that we
+ * program the RX buffer queue control register(s) to allow a
+ * descriptor spacing of 16 bytes, which leaves room after each
+ * descriptor to store a pointer to the mbuf for each buffer.
+ */
+struct sf_rx_bufdesc_type0 {
+ u_int32_t sf_valid:1,
+ sf_end:1,
+ sf_addrlo:30;
+ u_int32_t sf_pad0;
+#ifdef __i386__
+ u_int32_t sf_pad1;
+#endif
+ struct mbuf *sf_mbuf;
+};
+
+/*
+ * RX buffer descriptor type 0, 64-bit addressing.
+ */
+struct sf_rx_bufdesc_type1 {
+ u_int32_t sf_valid:1,
+ sf_end:1,
+ sf_addrlo:30;
+ u_int32_t sf_addrhi;
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+};
+
+/*
+ * RX completion descriptor, type 0 (short).
+ */
+struct sf_rx_cmpdesc_type0 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+};
+
+/*
+ * RX completion descriptor, type 1 (basic). Includes vlan ID
+ * if this is a vlan-addressed packet, plus extended status.
+ */
+struct sf_rx_cmpdesc_type1 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int16_t sf_status2;
+ u_int16_t sf_vlanid;
+};
+
+/*
+ * RX completion descriptor, type 2 (checksum). Includes partial TCP/IP
+ * checksum instead of vlan tag, plus extended status.
+ */
+struct sf_rx_cmpdesc_type2 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int16_t sf_status2;
+ u_int16_t sf_cksum;
+};
+
+/*
+ * RX completion descriptor type 3 (full). Includes timestamp, partial
+ * TCP/IP checksum, vlan tag plus priority, two extended status fields.
+ */
+struct sf_rx_cmpdesc_type3 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int32_t sf_startidx:10,
+ sf_status3:6,
+ sf_status2:16;
+ u_int16_t sf_cksum;
+ u_int16_t sf_vlanid_prio;
+ u_int32_t sf_timestamp;
+};
+
+#define SF_RXSTAT1_QUEUE 0x1
+#define SF_RXSTAT1_FIFOFULL 0x2
+#define SF_RXSTAT1_OK 0x4
+
+ /* 0=unknown,5=unsupported */
+#define SF_RXSTAT2_FRAMETYPE 0x0007 /* 1=IPv4,2=IPv2,3=IPX,4=ICMP */
+#define SF_RXSTAT2_UDP 0x0008
+#define SF_RXSTAT2_TCP 0x0010
+#define SF_RXSTAT2_FRAG 0x0020
+#define SF_RXSTAT2_PCSUM_OK 0x0040 /* partial checksum ok */
+#define SF_RXSTAT2_CSUM_BAD 0x0080 /* TCP/IP checksum bad */
+#define SF_RXSTAT2_CSUM_OK 0x0100 /* TCP/IP checksum ok */
+#define SF_RXSTAT2_VLAN 0x0200
+#define SF_RXSTAT2_BADRXCODE 0x0400
+#define SF_RXSTAT2_DRIBBLE 0x0800
+#define SF_RXSTAT2_ISL_CRCERR 0x1000
+#define SF_RXSTAT2_CRCERR 0x2000
+#define SF_RXSTAT2_HASH 0x4000
+#define SF_RXSTAT2_PERFECT 0x8000
+
+#define SF_RXSTAT3_TRAILER 0x01
+#define SF_RXSTAT3_HEADER 0x02
+#define SF_RXSTAT3_CONTROL 0x04
+#define SF_RXSTAT3_PAUSE 0x08
+#define SF_RXSTAT3_ISL 0x10
+
+/*
+ * Transmit descriptor formats.
+ * Each transmit descriptor type allows for a skip field at the
+ * start of each structure. The size of the skip field can vary,
+ * however we always set it for 8 bytes, which is enough to hold
+ * a pointer (32 bits on x86, 64-bits on alpha) that we can use
+ * to hold the address of the head of the mbuf chain for the
+ * frame or fragment associated with the descriptor. This saves
+ * us from having to create a separate pointer array to hold
+ * the mbuf addresses.
+ */
+#define SF_TX_BUFDESC_ID 0xB
+#define SF_MAXFRAGS 14
+#define SF_TX_MINSPACING 128
+#define SF_TX_DLIST_CNT 128
+#define SF_TX_DLIST_SIZE 16384
+#define SF_TX_SKIPLEN 1
+#define SF_TX_CLIST_CNT 1024
+
+struct sf_frag {
+ u_int32_t sf_addr;
+ u_int16_t sf_fraglen;
+ u_int16_t sf_pktlen;
+};
+
+struct sf_frag_msdos {
+ u_int16_t sf_pktlen;
+ u_int16_t sf_fraglen;
+ u_int32_t sf_addr;
+};
+
+/*
+ * TX frame descriptor type 0, 32-bit addressing. One descriptor can
+ * be used to map multiple packet fragments. We use this format since
+ * BSD networking fragments packet data across mbuf chains. Note that
+ * the number of fragments can be variable depending on how the descriptor
+ * spacing is specified in the TX descriptor queue control register.
+ * We always use a spacing of 128 bytes, and a skipfield length of 8
+ * bytes: this means 16 bytes for the descriptor, including the skipfield,
+ * with 121 bytes left for fragment maps. Each fragment requires 8 bytes,
+ * which allows for 14 fragments per descriptor. The total size of the
+ * transmit buffer queue is limited to 16384 bytes, so with a spacing of
+ * 128 bytes per descriptor, we have room for 128 descriptors in the queue.
+ */
+struct sf_tx_bufdesc_type0 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_rsvd0:24,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int8_t sf_fragcnt;
+ u_int8_t sf_rsvd2;
+ u_int16_t sf_rsvd1;
+ struct sf_frag sf_frags[14];
+};
+
+/*
+ * TX buffer descriptor type 1, 32-bit addressing. Each descriptor
+ * maps a single fragment.
+ */
+struct sf_tx_bufdesc_type1 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_fraglen:16,
+ sf_fragcnt:8,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int32_t sf_addr;
+};
+
+/*
+ * TX buffer descriptor type 2, 64-bit addressing. Each descriptor
+ * maps a single fragment.
+ */
+struct sf_tx_bufdesc_type2 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_fraglen:16,
+ sf_fragcnt:8,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int32_t sf_addrlo;
+ u_int32_t sf_addrhi;
+};
+
+/* TX buffer descriptor type 3 is not defined. */
+
+/*
+ * TX frame descriptor type 4, 32-bit addressing. This is a special
+ * case of the type 0 descriptor, identical except that the fragment
+ * address and length fields are ordered differently. This is done
+ * to optimize copies in MS-DOS and OS/2 drivers.
+ */
+struct sf_tx_bufdesc_type4 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_rsvd0:24,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int8_t sf_fragcnt;
+ u_int8_t sf_rsvd2;
+ u_int16_t sf_rsvd1;
+ struct sf_frag_msdos sf_frags[14];
+};
+
+/*
+ * Transmit completion queue descriptor formats.
+ */
+
+/*
+ * Transmit DMA completion descriptor, type 0.
+ */
+#define SF_TXCMPTYPE_DMA 0x4
+struct sf_tx_cmpdesc_type0 {
+ u_int32_t sf_index:15,
+ sf_priority:1,
+ sf_timestamp:13,
+ sf_type:3;
+};
+
+/*
+ * Transmit completion descriptor, type 1.
+ */
+#define SF_TXCMPTYPE_TX 0x5
+struct sf_tx_cmpdesc_type1 {
+ u_int32_t sf_index:15,
+ sf_priority:1,
+ sf_txstat:13,
+ sf_type:3;
+};
+
+#define SF_TXSTAT_CRCERR 0x0001
+#define SF_TXSTAT_LENCHECKERR 0x0002
+#define SF_TXSTAT_LENRANGEERR 0x0004
+#define SF_TXSTAT_TX_OK 0x0008
+#define SF_TXSTAT_TX_DEFERED 0x0010
+#define SF_TXSTAT_EXCESS_DEFER 0x0020
+#define SF_TXSTAT_EXCESS_COLL 0x0040
+#define SF_TXSTAT_LATE_COLL 0x0080
+#define SF_TXSTAT_TOOBIG 0x0100
+#define SF_TXSTAT_TX_UNDERRUN 0x0200
+#define SF_TXSTAT_CTLFRAME_OK 0x0400
+#define SF_TXSTAT_PAUSEFRAME_OK 0x0800
+#define SF_TXSTAT_PAUSED 0x1000
+
+/* Statistics counters. */
+struct sf_stats {
+ u_int32_t sf_tx_frames;
+ u_int32_t sf_tx_single_colls;
+ u_int32_t sf_tx_multi_colls;
+ u_int32_t sf_tx_crcerrs;
+ u_int32_t sf_tx_bytes;
+ u_int32_t sf_tx_defered;
+ u_int32_t sf_tx_late_colls;
+ u_int32_t sf_tx_pause_frames;
+ u_int32_t sf_tx_control_frames;
+ u_int32_t sf_tx_excess_colls;
+ u_int32_t sf_tx_excess_defer;
+ u_int32_t sf_tx_mcast_frames;
+ u_int32_t sf_tx_bcast_frames;
+ u_int32_t sf_tx_frames_lost;
+ u_int32_t sf_rx_rx_frames;
+ u_int32_t sf_rx_crcerrs;
+ u_int32_t sf_rx_alignerrs;
+ u_int32_t sf_rx_bytes;
+ u_int32_t sf_rx_control_frames;
+ u_int32_t sf_rx_unsup_control_frames;
+ u_int32_t sf_rx_giants;
+ u_int32_t sf_rx_runts;
+ u_int32_t sf_rx_jabbererrs;
+ u_int32_t sf_rx_pkts_64;
+ u_int32_t sf_rx_pkts_65_127;
+ u_int32_t sf_rx_pkts_128_255;
+ u_int32_t sf_rx_pkts_256_511;
+ u_int32_t sf_rx_pkts_512_1023;
+ u_int32_t sf_rx_pkts_1024_1518;
+ u_int32_t sf_rx_frames_lost;
+ u_int16_t sf_tx_underruns;
+ u_int16_t sf_pad;
+};
+
+/*
+ * register space access macros
+ */
+#define CSR_WRITE_4(sc, reg, val) \
+ bus_space_write_4(sc->sf_btag, sc->sf_bhandle, reg, val)
+
+#define CSR_READ_4(sc, reg) \
+ bus_space_read_4(sc->sf_btag, sc->sf_bhandle, reg)
+
+#define CSR_READ_1(sc, reg) \
+ bus_space_read_1(sc->sf_btag, sc->sf_bhandle, reg)
+
+
+struct sf_type {
+ u_int16_t sf_vid;
+ u_int16_t sf_did;
+ char *sf_name;
+};
+
+#define SF_INC(x, y) (x) = (x + 1) % y
+
+#define ETHER_ALIGN 2
+
+/*
+ * Note: alignment is important here: each list must be aligned to
+ * a 256-byte boundary. It turns out that each ring is some multiple
+ * of 4K in length, so we can stack them all on top of each other
+ * and just worry about aligning the whole mess. There's one transmit
+ * buffer ring and two receive buffer rings: one RX ring is for small
+ * packets and the other is for large packets. Each buffer ring also
+ * has a companion completion queue.
+ */
+struct sf_list_data {
+ struct sf_tx_bufdesc_type0 sf_tx_dlist[SF_TX_DLIST_CNT];
+ struct sf_tx_cmpdesc_type1 sf_tx_clist[SF_TX_CLIST_CNT];
+ struct sf_rx_bufdesc_type0 sf_rx_dlist_big[SF_RX_DLIST_CNT];
+#ifdef notdef
+ /*
+ * Unfortunately, because the Starfire doesn't allow arbitrary
+ * byte alignment, we have to copy packets in the RX handler in
+ * order to align the payload correctly. This means that we
+ * don't gain anything by having separate large and small descriptor
+ * lists, so for now we don't bother with the small one.
+ */
+ struct sf_rx_bufdesc_type0 sf_rx_dlist_small[SF_RX_DLIST_CNT];
+#endif
+ struct sf_rx_cmpdesc_type3 sf_rx_clist[SF_RX_CLIST_CNT];
+};
+
+struct sf_softc {
+ struct arpcom arpcom; /* interface info */
+ bus_space_handle_t sf_bhandle; /* bus space handle */
+ bus_space_tag_t sf_btag; /* bus space tag */
+ void *sf_intrhand; /* interrupt handler cookie */
+ struct resource *sf_irq; /* irq resource descriptor */
+ struct resource *sf_res; /* mem/ioport resource */
+ struct sf_type *sf_info; /* Starfire adapter info */
+ device_t sf_miibus;
+ u_int8_t sf_unit; /* interface number */
+ struct sf_list_data *sf_ldata;
+ int sf_tx_cnt;
+ u_int8_t sf_link;
+ int sf_if_flags;
+ struct callout_handle sf_stat_ch;
+ struct mtx sf_mtx;
+};
+
+
+#define SF_LOCK(_sc) mtx_lock(&(_sc)->sf_mtx)
+#define SF_UNLOCK(_sc) mtx_unlock(&(_sc)->sf_mtx)
+
+#define SF_TIMEOUT 1000
+
+#ifdef __alpha__
+#undef vtophys
+#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)va)
+#endif
OpenPOWER on IntegriCloud