diff options
Diffstat (limited to 'sys/dev/sf/if_sf.c')
-rw-r--r-- | sys/dev/sf/if_sf.c | 1837 |
1 files changed, 1837 insertions, 0 deletions
diff --git a/sys/dev/sf/if_sf.c b/sys/dev/sf/if_sf.c new file mode 100644 index 0000000..685d0f9 --- /dev/null +++ b/sys/dev/sf/if_sf.c @@ -0,0 +1,1837 @@ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $Id: if_sf.c,v 1.11 1999/07/24 21:13:38 wpaul Exp $ + */ + +/* + * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD. + * Programming manual is available from www.adaptec.com. + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Department of Electical Engineering + * Columbia University, New York City + */ + +/* + * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet + * controller designed with flexibility and reducing CPU load in mind. + * The Starfire offers high and low priority buffer queues, a + * producer/consumer index mechanism and several different buffer + * queue and completion queue descriptor types. Any one of a number + * of different driver designs can be used, depending on system and + * OS requirements. This driver makes use of type0 transmit frame + * descriptors (since BSD fragments packets across an mbuf chain) + * and two RX buffer queues prioritized on size (one queue for small + * frames that will fit into a single mbuf, another with full size + * mbuf clusters for everything else). The producer/consumer indexes + * and completion queues are also used. + * + * One downside to the Starfire has to do with alignment: buffer + * queues must be aligned on 256-byte boundaries, and receive buffers + * must be aligned on longword boundaries. The receive buffer alignment + * causes problems on the Alpha platform, where the packet payload + * should be longword aligned. There is no simple way around this. + * + * For receive filtering, the Starfire offers 16 perfect filter slots + * and a 512-bit hash table. + * + * The Starfire has no internal transceiver, relying instead on an + * external MII-based transceiver. Accessing registers on external + * PHYs is done through a special register map rather than with the + * usual bitbang MDIO method. + * + * Acesssing the registers on the Starfire is a little tricky. The + * Starfire has a 512K internal register space. When programmed for + * PCI memory mapped mode, the entire register space can be accessed + * directly. However in I/O space mode, only 256 bytes are directly + * mapped into PCI I/O space. The other registers can be accessed + * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA + * registers inside the 256-byte I/O window. + */ + +#include "bpf.h" + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> + +#include <net/if.h> +#include <net/if_arp.h> +#include <net/ethernet.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#if NBPF > 0 +#include <net/bpf.h> +#endif + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/clock.h> /* for DELAY */ +#include <machine/bus_pio.h> +#include <machine/bus_memio.h> +#include <machine/bus.h> +#include <machine/resource.h> +#include <sys/bus.h> +#include <sys/rman.h> + +#include <pci/pcireg.h> +#include <pci/pcivar.h> + +#define SF_USEIOSPACE + +/* #define SF_BACKGROUND_AUTONEG */ + +#include <pci/if_sfreg.h> + +#ifndef lint +static const char rcsid[] = + "$Id: if_sf.c,v 1.11 1999/07/24 21:13:38 wpaul Exp $"; +#endif + +static struct sf_type sf_devs[] = { + { AD_VENDORID, AD_DEVICEID_STARFIRE, + "Adaptec AIC-6915 10/100BaseTX" }, + { 0, 0, NULL } +}; + +static struct sf_type sf_phys[] = { + { 0, 0, "<MII-compliant physical interface>" } +}; + +static int sf_probe __P((device_t)); +static int sf_attach __P((device_t)); +static int sf_detach __P((device_t)); +static void sf_intr __P((void *)); +static void sf_stats_update __P((void *)); +static void sf_rxeof __P((struct sf_softc *)); +static void sf_txeof __P((struct sf_softc *)); +static int sf_encap __P((struct sf_softc *, + struct sf_tx_bufdesc_type0 *, + struct mbuf *)); +static void sf_start __P((struct ifnet *)); +static int sf_ioctl __P((struct ifnet *, u_long, caddr_t)); +static void sf_init __P((void *)); +static void sf_stop __P((struct sf_softc *)); +static void sf_watchdog __P((struct ifnet *)); +static void sf_shutdown __P((device_t)); +static int sf_ifmedia_upd __P((struct ifnet *)); +static void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); +static void sf_reset __P((struct sf_softc *)); +static int sf_init_rx_ring __P((struct sf_softc *)); +static void sf_init_tx_ring __P((struct sf_softc *)); +static int sf_newbuf __P((struct sf_softc *, + struct sf_rx_bufdesc_type0 *, + struct mbuf *)); +static void sf_setmulti __P((struct sf_softc *)); +static int sf_setperf __P((struct sf_softc *, int, caddr_t)); +static int sf_sethash __P((struct sf_softc *, caddr_t, int)); +#ifdef notdef +static int sf_setvlan __P((struct sf_softc *, int, u_int32_t)); +#endif + +static u_int8_t sf_read_eeprom __P((struct sf_softc *, int)); +static u_int32_t sf_calchash __P((caddr_t)); + +static int sf_phy_readreg __P((struct sf_softc *, int)); +static void sf_phy_writereg __P((struct sf_softc *, int, int)); +static void sf_autoneg_xmit __P((struct sf_softc *)); +static void sf_autoneg_mii __P((struct sf_softc *, int, int)); +static void sf_getmode_mii __P((struct sf_softc *)); +static void sf_setmode_mii __P((struct sf_softc *, int)); + +static u_int32_t csr_read_4 __P((struct sf_softc *, int)); +static void csr_write_4 __P((struct sf_softc *, int, u_int32_t)); + +#ifdef SF_USEIOSPACE +#define SF_RES SYS_RES_IOPORT +#define SF_RID SF_PCI_LOIO +#else +#define SF_RES SYS_RES_MEMORY +#define SF_RID SF_PCI_LOMEM +#endif + +static device_method_t sf_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, sf_probe), + DEVMETHOD(device_attach, sf_attach), + DEVMETHOD(device_detach, sf_detach), + DEVMETHOD(device_shutdown, sf_shutdown), + { 0, 0 } +}; + +static driver_t sf_driver = { + "sf", + sf_methods, + sizeof(struct sf_softc), +}; + +static devclass_t sf_devclass; + +DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0); + +#define SF_SETBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) | x) + +#define SF_CLRBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x) + +static u_int32_t csr_read_4(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int32_t val; + +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + val = CSR_READ_4(sc, SF_INDIRECTIO_DATA); +#else + val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE)); +#endif + + return(val); +} + +static u_int8_t sf_read_eeprom(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int8_t val; + + val = (csr_read_4(sc, SF_EEADDR_BASE + + (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF; + + return(val); +} + +static void csr_write_4(sc, reg, val) + struct sf_softc *sc; + int reg; + u_int32_t val; +{ +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val); +#else + CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val); +#endif + return; +} + +static u_int32_t sf_calchash(addr) + caddr_t addr; +{ + u_int32_t crc, carry; + int i, j; + u_int8_t c; + + /* Compute CRC for the address value. */ + crc = 0xFFFFFFFF; /* initial value */ + + for (i = 0; i < 6; i++) { + c = *(addr + i); + for (j = 0; j < 8; j++) { + carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); + crc <<= 1; + c >>= 1; + if (carry) + crc = (crc ^ 0x04c11db6) | carry; + } + } + + /* return the filter bit position */ + return(crc >> 23 & 0x1FF); +} + +/* + * Copy the address 'mac' into the perfect RX filter entry at + * offset 'idx.' The perfect filter only has 16 entries so do + * some sanity tests. + */ +static int sf_setperf(sc, idx, mac) + struct sf_softc *sc; + int idx; + caddr_t mac; +{ + u_int16_t *p; + + if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT) + return(EINVAL); + + if (mac == NULL) + return(EINVAL); + + p = (u_int16_t *)mac; + + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0])); + + return(0); +} + +/* + * Set the bit in the 512-bit hash table that corresponds to the + * specified mac address 'mac.' If 'prio' is nonzero, update the + * priority hash table instead of the filter hash table. + */ +static int sf_sethash(sc, mac, prio) + struct sf_softc *sc; + caddr_t mac; + int prio; +{ + u_int32_t h = 0; + + if (mac == NULL) + return(EINVAL); + + h = sf_calchash(mac); + + if (prio) { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } else { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } + + return(0); +} + +#ifdef notdef +/* + * Set a VLAN tag in the receive filter. + */ +static int sf_setvlan(sc, idx, vlan) + struct sf_softc *sc; + int idx; + u_int32_t vlan; +{ + if (idx < 0 || idx >> SF_RXFILT_HASH_CNT) + return(EINVAL); + + csr_write_4(sc, SF_RXFILT_HASH_BASE + + (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan); + + return(0); +} +#endif + +static int sf_phy_readreg(sc, reg) + struct sf_softc *sc; + int reg; +{ + int i; + u_int32_t val = 0; + + for (i = 0; i < SF_TIMEOUT; i++) { + val = csr_read_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg)); + if (val & SF_MII_DATAVALID) + break; + } + + if (i == SF_TIMEOUT) + return(0); + + if ((val & 0x0000FFFF) == 0xFFFF) + return(0); + + return(val & 0x0000FFFF); +} + +static void sf_phy_writereg(sc, reg, val) + struct sf_softc *sc; + int reg, val; +{ + int i; + int busy; + + csr_write_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg), val); + + for (i = 0; i < SF_TIMEOUT; i++) { + busy = csr_read_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg)); + if (!(busy & SF_MII_BUSY)) + break; + } + + return; +} + +static void sf_setmulti(sc) + struct sf_softc *sc; +{ + struct ifnet *ifp; + int i; + struct ifmultiaddr *ifma; + u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 }; + + ifp = &sc->arpcom.ac_if; + + /* First zot all the existing filters. */ + for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++) + sf_setperf(sc, i, (char *)&dummy); + for (i = SF_RXFILT_HASH_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + } else { + i = 1; + /* First find the tail of the list. */ + for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; + ifma = ifma->ifma_link.le_next) { + if (ifma->ifma_link.le_next == NULL) + break; + } + /* Now traverse the list backwards. */ + for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs; + ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + /* + * Program the first 15 multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < SF_RXFILT_PERFECT_CNT) { + sf_setperf(sc, i, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); + i++; + continue; + } + + sf_sethash(sc, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0); + } + } + + return; +} + +/* + * Initiate an autonegotiation session. + */ +static void sf_autoneg_xmit(sc) + struct sf_softc *sc; +{ + u_int16_t phy_sts; + + sf_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + DELAY(500); + while(sf_phy_readreg(sc, PHY_BMCR) + & PHY_BMCR_RESET); + + phy_sts = sf_phy_readreg(sc, PHY_BMCR); + phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; + sf_phy_writereg(sc, PHY_BMCR, phy_sts); + + return; +} + +/* + * Invoke autonegotiation on a PHY. + */ +static void sf_autoneg_mii(sc, flag, verbose) + struct sf_softc *sc; + int flag; + int verbose; +{ + u_int16_t phy_sts = 0, media, advert, ability; + struct ifnet *ifp; + struct ifmedia *ifm; + + ifm = &sc->ifmedia; + ifp = &sc->arpcom.ac_if; + + ifm->ifm_media = IFM_ETHER | IFM_AUTO; + +#ifndef FORCE_AUTONEG_TFOUR + /* + * First, see if autoneg is supported. If not, there's + * no point in continuing. + */ + phy_sts = sf_phy_readreg(sc, PHY_BMSR); + if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { + if (verbose) + printf("sf%d: autonegotiation not supported\n", + sc->sf_unit); + ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; + return; + } +#endif + + switch (flag) { + case SF_FLAG_FORCEDELAY: + /* + * XXX Never use this option anywhere but in the probe + * routine: making the kernel stop dead in its tracks + * for three whole seconds after we've gone multi-user + * is really bad manners. + */ + sf_autoneg_xmit(sc); + DELAY(5000000); + break; + case SF_FLAG_SCHEDDELAY: + /* + * Wait for the transmitter to go idle before starting + * an autoneg session, otherwise sf_start() may clobber + * our timeout, and we don't want to allow transmission + * during an autoneg session since that can screw it up. + */ + if (sc->sf_tx_cnt) { + sc->sf_want_auto = 1; + return; + } + sf_autoneg_xmit(sc); + ifp->if_timer = 5; + sc->sf_autoneg = 1; + sc->sf_want_auto = 0; + return; + break; + case SF_FLAG_DELAYTIMEO: + ifp->if_timer = 0; + sc->sf_autoneg = 0; + break; + default: + printf("sf%d: invalid autoneg flag: %d\n", sc->sf_unit, flag); + return; + } + + if (sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) { + if (verbose) + printf("sf%d: autoneg complete, ", sc->sf_unit); + phy_sts = sf_phy_readreg(sc, PHY_BMSR); + } else { + if (verbose) + printf("sf%d: autoneg not complete, ", sc->sf_unit); + } + + media = sf_phy_readreg(sc, PHY_BMCR); + + /* Link is good. Report modes and set duplex mode. */ + if (sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) { + if (verbose) + printf("link status good "); + advert = sf_phy_readreg(sc, PHY_ANAR); + ability = sf_phy_readreg(sc, PHY_LPAR); + + if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { + ifm->ifm_media = IFM_ETHER|IFM_100_T4; + media |= PHY_BMCR_SPEEDSEL; + media &= ~PHY_BMCR_DUPLEX; + printf("(100baseT4)\n"); + } else if (advert & PHY_ANAR_100BTXFULL && + ability & PHY_ANAR_100BTXFULL) { + ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; + media |= PHY_BMCR_SPEEDSEL; + media |= PHY_BMCR_DUPLEX; + printf("(full-duplex, 100Mbps)\n"); + } else if (advert & PHY_ANAR_100BTXHALF && + ability & PHY_ANAR_100BTXHALF) { + ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; + media |= PHY_BMCR_SPEEDSEL; + media &= ~PHY_BMCR_DUPLEX; + printf("(half-duplex, 100Mbps)\n"); + } else if (advert & PHY_ANAR_10BTFULL && + ability & PHY_ANAR_10BTFULL) { + ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; + media &= ~PHY_BMCR_SPEEDSEL; + media |= PHY_BMCR_DUPLEX; + printf("(full-duplex, 10Mbps)\n"); + } else if (advert & PHY_ANAR_10BTHALF && + ability & PHY_ANAR_10BTHALF) { + ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; + media &= ~PHY_BMCR_SPEEDSEL; + media &= ~PHY_BMCR_DUPLEX; + printf("(half-duplex, 10Mbps)\n"); + } + + media &= ~PHY_BMCR_AUTONEGENBL; + + /* Set ASIC's duplex mode to match the PHY. */ + sf_phy_writereg(sc, PHY_BMCR, media); + if ((media & IFM_GMASK) == IFM_FDX) { + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } else { + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } + } else { + if (verbose) + printf("no carrier\n"); + } + + sf_init(sc); + + if (sc->sf_tx_pend) { + sc->sf_autoneg = 0; + sc->sf_tx_pend = 0; + sf_start(ifp); + } + + return; +} + +static void sf_getmode_mii(sc) + struct sf_softc *sc; +{ + u_int16_t bmsr; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + bmsr = sf_phy_readreg(sc, PHY_BMSR); + if (bootverbose) + printf("sf%d: PHY status word: %x\n", sc->sf_unit, bmsr); + + /* fallback */ + sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; + + if (bmsr & PHY_BMSR_10BTHALF) { + if (bootverbose) + printf("sf%d: 10Mbps half-duplex mode supported\n", + sc->sf_unit); + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); + } + + if (bmsr & PHY_BMSR_10BTFULL) { + if (bootverbose) + printf("sf%d: 10Mbps full-duplex mode supported\n", + sc->sf_unit); + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); + sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; + } + + if (bmsr & PHY_BMSR_100BTXHALF) { + if (bootverbose) + printf("sf%d: 100Mbps half-duplex mode supported\n", + sc->sf_unit); + ifp->if_baudrate = 100000000; + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); + sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; + } + + if (bmsr & PHY_BMSR_100BTXFULL) { + if (bootverbose) + printf("sf%d: 100Mbps full-duplex mode supported\n", + sc->sf_unit); + ifp->if_baudrate = 100000000; + ifmedia_add(&sc->ifmedia, + IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); + sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; + } + + /* Some also support 100BaseT4. */ + if (bmsr & PHY_BMSR_100BT4) { + if (bootverbose) + printf("sf%d: 100baseT4 mode supported\n", sc->sf_unit); + ifp->if_baudrate = 100000000; + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL); + sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4; +#ifdef FORCE_AUTONEG_TFOUR + if (bootverbose) + printf("sf%d: forcing on autoneg support for BT4\n", + sc->sf_unit); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL): + sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; +#endif + } + + if (bmsr & PHY_BMSR_CANAUTONEG) { + if (bootverbose) + printf("sf%d: autoneg supported\n", sc->sf_unit); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); + sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; + } + + return; +} + +/* + * Set speed and duplex mode. + */ +static void sf_setmode_mii(sc, media) + struct sf_softc *sc; + int media; +{ + u_int16_t bmcr; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + /* + * If an autoneg session is in progress, stop it. + */ + if (sc->sf_autoneg) { + printf("sf%d: canceling autoneg session\n", sc->sf_unit); + ifp->if_timer = sc->sf_autoneg = sc->sf_want_auto = 0; + bmcr = sf_phy_readreg(sc, PHY_BMCR); + bmcr &= ~PHY_BMCR_AUTONEGENBL; + sf_phy_writereg(sc, PHY_BMCR, bmcr); + } + + printf("sf%d: selecting MII, ", sc->sf_unit); + + bmcr = sf_phy_readreg(sc, PHY_BMCR); + + bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL| + PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK); + + if (IFM_SUBTYPE(media) == IFM_100_T4) { + printf("100Mbps/T4, half-duplex\n"); + bmcr |= PHY_BMCR_SPEEDSEL; + bmcr &= ~PHY_BMCR_DUPLEX; + } + + if (IFM_SUBTYPE(media) == IFM_100_TX) { + printf("100Mbps, "); + bmcr |= PHY_BMCR_SPEEDSEL; + } + + if (IFM_SUBTYPE(media) == IFM_10_T) { + printf("10Mbps, "); + bmcr &= ~PHY_BMCR_SPEEDSEL; + } + + if ((media & IFM_GMASK) == IFM_FDX) { + printf("full duplex\n"); + bmcr |= PHY_BMCR_DUPLEX; + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } else { + printf("half duplex\n"); + bmcr &= ~PHY_BMCR_DUPLEX; + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } + + sf_phy_writereg(sc, PHY_BMCR, bmcr); + + return; +} + +/* + * Set media options. + */ +static int sf_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct ifmedia *ifm; + + sc = ifp->if_softc; + ifm = &sc->ifmedia; + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return(EINVAL); + + if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) + sf_autoneg_mii(sc, SF_FLAG_SCHEDDELAY, 1); + else { + sf_setmode_mii(sc, ifm->ifm_media); + } + + return(0); +} + +/* + * Report current media status. + */ +static void sf_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct sf_softc *sc; + u_int16_t advert = 0, ability = 0; + + sc = ifp->if_softc; + + ifmr->ifm_active = IFM_ETHER; + + if (!(sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) { + if (sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL) + ifmr->ifm_active = IFM_ETHER|IFM_100_TX; + else + ifmr->ifm_active = IFM_ETHER|IFM_10_T; + if (sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + else + ifmr->ifm_active |= IFM_HDX; + return; + } + + ability = sf_phy_readreg(sc, PHY_LPAR); + advert = sf_phy_readreg(sc, PHY_ANAR); + if (advert & PHY_ANAR_100BT4 && + ability & PHY_ANAR_100BT4) { + ifmr->ifm_active = IFM_ETHER|IFM_100_T4; + } else if (advert & PHY_ANAR_100BTXFULL && + ability & PHY_ANAR_100BTXFULL) { + ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX; + } else if (advert & PHY_ANAR_100BTXHALF && + ability & PHY_ANAR_100BTXHALF) { + ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX; + } else if (advert & PHY_ANAR_10BTFULL && + ability & PHY_ANAR_10BTFULL) { + ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX; + } else if (advert & PHY_ANAR_10BTHALF && + ability & PHY_ANAR_10BTHALF) { + ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX; + } + + return; +} + +static int sf_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct sf_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + int s, error = 0; + + s = splimp(); + + switch(command) { + case SIOCSIFADDR: + case SIOCGIFADDR: + case SIOCSIFMTU: + error = ether_ioctl(ifp, command, data); + break; + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + sf_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) + sf_stop(sc); + } + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + sf_setmulti(sc); + error = 0; + break; + case SIOCGIFMEDIA: + case SIOCSIFMEDIA: + error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); + break; + default: + error = EINVAL; + break; + } + + (void)splx(s); + + return(error); +} + +static void sf_reset(sc) + struct sf_softc *sc; +{ + register int i; + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + DELAY(1000); + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET); + + for (i = 0; i < SF_TIMEOUT; i++) { + DELAY(10); + if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET)) + break; + } + + if (i == SF_TIMEOUT) + printf("sf%d: reset never completed!\n", sc->sf_unit); + + /* Wait a little while for the chip to get its brains in order. */ + DELAY(1000); + return; +} + +/* + * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device + * IDs against our list and return a device name if we find a match. + * We also check the subsystem ID so that we can identify exactly which + * NIC has been found, if possible. + */ +static int sf_probe(dev) + device_t dev; +{ + struct sf_type *t; + + t = sf_devs; + + while(t->sf_name != NULL) { + if ((pci_get_vendor(dev) == t->sf_vid) && + (pci_get_device(dev) == t->sf_did)) { + switch(pci_read_config(dev, + SF_PCI_SUBVEN_ID >> 16, 4) & 0x8FFF) { + case AD_SUBSYSID_62011_REV0: + case AD_SUBSYSID_62011_REV1: + device_set_desc(dev, + "Adaptec ANA-62011 10/100BaseTX"); + return(0); + break; + case AD_SUBSYSID_62022: + device_set_desc(dev, + "Adaptec ANA-62022 10/100BaseTX"); + return(0); + break; + case AD_SUBSYSID_62044: + device_set_desc(dev, + "Adaptec ANA-62044 10/100BaseTX"); + return(0); + break; + case AD_SUBSYSID_62020: + device_set_desc(dev, + "Adaptec ANA-62020 10/100BaseFX"); + return(0); + break; + case AD_SUBSYSID_69011: + device_set_desc(dev, + "Adaptec ANA-69011 10/100BaseTX"); + return(0); + break; + default: + device_set_desc(dev, t->sf_name); + return(0); + break; + } + } + t++; + } + + return(ENXIO); +} + +/* + * Attach the interface. Allocate softc structures, do ifmedia + * setup and ethernet/BPF attach. + */ +static int sf_attach(dev) + device_t dev; +{ + int s, i; + u_int32_t command; + struct sf_softc *sc; + struct ifnet *ifp; + int media = IFM_ETHER|IFM_100_TX|IFM_FDX; + struct sf_type *p; + u_int16_t phy_vid, phy_did, phy_sts; + int unit, rid, error = 0; + + s = splimp(); + + sc = device_get_softc(dev); + unit = device_get_unit(dev); + bzero(sc, sizeof(struct sf_softc)); + + /* + * Handle power management nonsense. + */ + command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF; + if (command == 0x01) { + + command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4); + if (command & SF_PSTATE_MASK) { + u_int32_t iobase, membase, irq; + + /* Save important PCI config data. */ + iobase = pci_read_config(dev, SF_PCI_LOIO, 4); + membase = pci_read_config(dev, SF_PCI_LOMEM, 4); + irq = pci_read_config(dev, SF_PCI_INTLINE, 4); + + /* Reset the power state. */ + printf("sf%d: chip is in D%d power mode " + "-- setting to D0\n", unit, command & SF_PSTATE_MASK); + command &= 0xFFFFFFFC; + pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4); + + /* Restore PCI config data. */ + pci_write_config(dev, SF_PCI_LOIO, iobase, 4); + pci_write_config(dev, SF_PCI_LOMEM, membase, 4); + pci_write_config(dev, SF_PCI_INTLINE, irq, 4); + } + } + + /* + * Map control/status registers. + */ + command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4); + command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); + pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4); + command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4); + +#ifdef SF_USEIOSPACE + if (!(command & PCIM_CMD_PORTEN)) { + printf("sf%d: failed to enable I/O ports!\n", unit); + error = ENXIO; + goto fail; + } +#else + if (!(command & PCIM_CMD_MEMEN)) { + printf("sf%d: failed to enable memory mapping!\n", unit); + error = ENXIO; + goto fail; + } +#endif + + rid = SF_RID; + sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid, + 0, ~0, 1, RF_ACTIVE); + + if (sc->sf_res == NULL) { + printf ("sf%d: couldn't map ports\n", unit); + error = ENXIO; + goto fail; + } + + sc->sf_btag = rman_get_bustag(sc->sf_res); + sc->sf_bhandle = rman_get_bushandle(sc->sf_res); + + /* Allocate interrupt */ + rid = 0; + sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, + RF_SHAREABLE | RF_ACTIVE); + + if (sc->sf_irq == NULL) { + printf("sf%d: couldn't map interrupt\n", unit); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + error = ENXIO; + goto fail; + } + + error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET, + sf_intr, sc, &sc->sf_intrhand); + + if (error) { + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + printf("sf%d: couldn't set up irq\n", unit); + goto fail; + } + + callout_handle_init(&sc->sf_stat_ch); + + /* Reset the adapter. */ + sf_reset(sc); + + /* + * Get station address from the EEPROM. + */ + for (i = 0; i < ETHER_ADDR_LEN; i++) + sc->arpcom.ac_enaddr[i] = + sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i); + + /* + * An Adaptec chip was detected. Inform the world. + */ + printf("sf%d: Ethernet address: %6D\n", unit, + sc->arpcom.ac_enaddr, ":"); + + sc->sf_unit = unit; + + /* Allocate the descriptor queues. */ + sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF, + M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0); + + if (sc->sf_ldata == NULL) { + printf("sf%d: no memory for list buffers!\n", unit); + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + error = ENXIO; + goto fail; + } + + bzero(sc->sf_ldata, sizeof(struct sf_list_data)); + + if (bootverbose) + printf("sf%d: probing for a PHY\n", sc->sf_unit); + for (i = SF_PHYADDR_MIN; i < SF_PHYADDR_MAX + 1; i++) { + if (bootverbose) + printf("sf%d: checking address: %d\n", + sc->sf_unit, i); + sc->sf_phy_addr = i; + sf_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); + DELAY(500); + while(sf_phy_readreg(sc, PHY_BMCR) + & PHY_BMCR_RESET); + if ((phy_sts = sf_phy_readreg(sc, PHY_BMSR))) + break; + } + if (phy_sts) { + phy_vid = sf_phy_readreg(sc, PHY_VENID); + phy_did = sf_phy_readreg(sc, PHY_DEVID); + if (bootverbose) + printf("sf%d: found PHY at address %d, ", + sc->sf_unit, sc->sf_phy_addr); + if (bootverbose) + printf("vendor id: %x device id: %x\n", + phy_vid, phy_did); + p = sf_phys; + while(p->sf_vid) { + if (phy_vid == p->sf_vid && + (phy_did | 0x000F) == p->sf_did) { + sc->sf_pinfo = p; + break; + } + p++; + } + if (sc->sf_pinfo == NULL) + sc->sf_pinfo = &sf_phys[PHY_UNKNOWN]; + if (bootverbose) + printf("sf%d: PHY type: %s\n", + sc->sf_unit, sc->sf_pinfo->sf_name); + } else { + printf("sf%d: MII without any phy!\n", sc->sf_unit); + free(sc->sf_ldata, M_DEVBUF); + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + error = ENXIO; + goto fail; + } + + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_unit = unit; + ifp->if_name = "sf"; + ifp->if_mtu = ETHERMTU; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = sf_ioctl; + ifp->if_output = ether_output; + ifp->if_start = sf_start; + ifp->if_watchdog = sf_watchdog; + ifp->if_init = sf_init; + ifp->if_baudrate = 10000000; + ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1; + + /* + * Do ifmedia setup. + */ + ifmedia_init(&sc->ifmedia, 0, sf_ifmedia_upd, sf_ifmedia_sts); + + sf_getmode_mii(sc); + if (cold) { + sf_autoneg_mii(sc, SF_FLAG_FORCEDELAY, 1); + sf_stop(sc); + } else { + sf_init(sc); + sf_autoneg_mii(sc, SF_FLAG_SCHEDDELAY, 1); + } + + media = sc->ifmedia.ifm_media; + ifmedia_set(&sc->ifmedia, media); + + /* + * Call MI attach routines. + */ + if_attach(ifp); + ether_ifattach(ifp); + +#if NBPF > 0 + bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); +#endif + +fail: + splx(s); + return(error); +} + +static int sf_detach(dev) + device_t dev; +{ + struct sf_softc *sc; + struct ifnet *ifp; + int s; + + s = splimp(); + + sc = device_get_softc(dev); + ifp = &sc->arpcom.ac_if; + + if_detach(ifp); + sf_stop(sc); + + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + + free(sc->sf_ldata, M_DEVBUF); + ifmedia_removeall(&sc->ifmedia); + + splx(s); + + return(0); +} + +static int sf_init_rx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_rx_dlist_big, + sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT); + bzero((char *)ld->sf_rx_clist, + sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT); + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS) + return(ENOBUFS); + } + + return(0); +} + +static void sf_init_tx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_tx_dlist, + sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT); + bzero((char *)ld->sf_tx_clist, + sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT); + + for (i = 0; i < SF_TX_DLIST_CNT; i++) + ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID; + for (i = 0; i < SF_TX_CLIST_CNT; i++) + ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX; + + ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1; + sc->sf_tx_cnt = 0; + + return; +} + +static int sf_newbuf(sc, c, m) + struct sf_softc *sc; + struct sf_rx_bufdesc_type0 *c; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + + if (m == NULL) { + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("sf%d: no memory for rx list -- " + "packet dropped!\n", sc->sf_unit); + return(ENOBUFS); + } + + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + printf("sf%d: no memory for rx list -- " + "packet dropped!\n", sc->sf_unit); + m_freem(m_new); + return(ENOBUFS); + } + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + } else { + m_new = m; + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + m_new->m_data = m_new->m_ext.ext_buf; + } + + m_adj(m_new, sizeof(u_int64_t)); + + c->sf_mbuf = m_new; + c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t))); + c->sf_valid = 1; + + return(0); +} + +/* + * The starfire is programmed to use 'normal' mode for packet reception, + * which means we use the consumer/producer model for both the buffer + * descriptor queue and the completion descriptor queue. The only problem + * with this is that it involves a lot of register accesses: we have to + * read the RX completion consumer and producer indexes and the RX buffer + * producer index, plus the RX completion consumer and RX buffer producer + * indexes have to be updated. It would have been easier if Adaptec had + * put each index in a separate register, especially given that the damn + * NIC has a 512K register space. + * + * In spite of all the lovely features that Adaptec crammed into the 6915, + * it is marred by one truly stupid design flaw, which is that receive + * buffer addresses must be aligned on a longword boundary. This forces + * the packet payload to be unaligned, which is suboptimal on the x86 and + * completely unuseable on the Alpha. Our only recourse is to copy received + * packets into properly aligned buffers before handing them off. + */ + +static void sf_rxeof(sc) + struct sf_softc *sc; +{ + struct ether_header *eh; + struct mbuf *m; + struct ifnet *ifp; + struct sf_rx_bufdesc_type0 *desc; + struct sf_rx_cmpdesc_type3 *cur_rx; + u_int32_t rxcons, rxprod; + int cmpprodidx, cmpconsidx, bufprodidx; + + ifp = &sc->arpcom.ac_if; + + rxcons = csr_read_4(sc, SF_CQ_CONSIDX); + rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1); + cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_LO(rxcons); + bufprodidx = SF_IDX_LO(rxprod); + + while (cmpconsidx != cmpprodidx) { + struct mbuf *m0; + + cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx]; + desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx]; + m = desc->sf_mbuf; + SF_INC(cmpconsidx, SF_RX_CLIST_CNT); + SF_INC(bufprodidx, SF_RX_DLIST_CNT); + + if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) { + ifp->if_ierrors++; + sf_newbuf(sc, desc, m); + continue; + } + + m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, + cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL); + sf_newbuf(sc, desc, m); + if (m0 == NULL) { + ifp->if_ierrors++; + continue; + } + m_adj(m0, ETHER_ALIGN); + m = m0; + + eh = mtod(m, struct ether_header *); + ifp->if_ipackets++; + +#if NBPF > 0 + if (ifp->if_bpf) { + bpf_mtap(ifp, m); + if (ifp->if_flags & IFF_PROMISC && + (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, + ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) { + m_freem(m); + continue; + } + } +#endif + + /* Remove header from mbuf and pass it on. */ + m_adj(m, sizeof(struct ether_header)); + ether_input(ifp, eh, m); + + } + + csr_write_4(sc, SF_CQ_CONSIDX, + (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx); + csr_write_4(sc, SF_RXDQ_PTR_Q1, + (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx); + + return; +} + +/* + * Read the transmit status from the completion queue and release + * mbufs. Note that the buffer descriptor index in the completion + * descriptor is an offset from the start of the transmit buffer + * descriptor list in bytes. This is important because the manual + * gives the impression that it should match the producer/consumer + * index, which is the offset in 8 byte blocks. + */ +static void sf_txeof(sc) + struct sf_softc *sc; +{ + int txcons, cmpprodidx, cmpconsidx; + struct sf_tx_cmpdesc_type1 *cur_cmp; + struct sf_tx_bufdesc_type0 *cur_tx; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + txcons = csr_read_4(sc, SF_CQ_CONSIDX); + cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_HI(txcons); + + while (cmpconsidx != cmpprodidx) { + cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx]; + cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7]; + SF_INC(cmpconsidx, SF_TX_CLIST_CNT); + + if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK) + ifp->if_opackets++; + else + ifp->if_oerrors++; + + sc->sf_tx_cnt--; + if (cur_tx->sf_mbuf != NULL) { + m_freem(cur_tx->sf_mbuf); + cur_tx->sf_mbuf = NULL; + } + } + + ifp->if_timer = 0; + ifp->if_flags &= ~IFF_OACTIVE; + + csr_write_4(sc, SF_CQ_CONSIDX, + (txcons & ~SF_CQ_CONSIDX_TXQ) | + ((cmpconsidx << 16) & 0xFFFF0000)); + + return; +} + +static void sf_intr(arg) + void *arg; +{ + struct sf_softc *sc; + struct ifnet *ifp; + u_int32_t status; + + sc = arg; + ifp = &sc->arpcom.ac_if; + + if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) + return; + + /* Disable interrupts. */ + csr_write_4(sc, SF_IMR, 0x00000000); + + for (;;) { + status = csr_read_4(sc, SF_ISR); + if (status) + csr_write_4(sc, SF_ISR, status); + + if (!(status & SF_INTRS)) + break; + + if (status & SF_ISR_RXDQ1_DMADONE) + sf_rxeof(sc); + + if (status & SF_ISR_TX_TXDONE) + sf_txeof(sc); + + if (status & SF_ISR_ABNORMALINTR) { + if (status & SF_ISR_STATSOFLOW) { + untimeout(sf_stats_update, sc, + sc->sf_stat_ch); + sf_stats_update(sc); + } else + sf_init(sc); + } + } + + /* Re-enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + return; +} + +static void sf_init(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + int i, s; + + s = splimp(); + + sc = xsc; + ifp = &sc->arpcom.ac_if; + + sf_stop(sc); + sf_reset(sc); + + /* Init all the receive filter registers */ + for (i = SF_RXFILT_PERFECT_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + + /* Empty stats counter registers. */ + for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + /* Init our MAC address */ + csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); + csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); + sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr); + + if (sf_init_rx_ring(sc) == ENOBUFS) { + printf("sf%d: initialization failed: no " + "memory for rx buffers\n", sc->sf_unit); + (void)splx(s); + return; + } + + sf_init_tx_ring(sc); + + csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN); + + /* If we want promiscuous mode, set the allframes bit. */ + if (ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } + + if (ifp->if_flags & IFF_BROADCAST) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } + + /* Init the completion queue indexes */ + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + + /* Init the RX completion queue */ + csr_write_4(sc, SF_RXCQ_CTL_1, + vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR); + SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3); + + /* Init RX DMA control. */ + SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS); + + /* Init the RX buffer descriptor queue. */ + csr_write_4(sc, SF_RXDQ_ADDR_Q1, + vtophys(sc->sf_ldata->sf_rx_dlist_big)); + csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES); + csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1); + + /* Init the TX completion queue */ + csr_write_4(sc, SF_TXCQ_CTL, + vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR); + + /* Init the TX buffer descriptor queue. */ + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, + vtophys(sc->sf_ldata->sf_tx_dlist)); + SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX); + csr_write_4(sc, SF_TXDQ_CTL, + SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES); + SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP); + + /* Enable autopadding of short TX frames. */ + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD); + + /* Make sure the duplex mode is set correctly. */ + if ((sc->ifmedia.ifm_media & IFM_GMASK) == IFM_FDX) { + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } else { + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + } + + /* Enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB); + + /* Enable the RX and TX engines. */ + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB); + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + sc->sf_stat_ch = timeout(sf_stats_update, sc, hz); + + splx(s); + + return; +} + +static int sf_encap(sc, c, m_head) + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *c; + struct mbuf *m_head; +{ + int frag = 0; + struct sf_frag *f = NULL; + struct mbuf *m; + + m = m_head; + + for (m = m_head, frag = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (frag == SF_MAXFRAGS) + break; + f = &c->sf_frags[frag]; + if (frag == 0) + f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_fraglen = m->m_len; + f->sf_addr = vtophys(mtod(m, vm_offset_t)); + frag++; + } + } + + if (m != NULL) { + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("sf%d: no memory for tx list", sc->sf_unit); + return(1); + } + + if (m_head->m_pkthdr.len > MHLEN) { + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + printf("sf%d: no memory for tx list", + sc->sf_unit); + return(1); + } + } + m_copydata(m_head, 0, m_head->m_pkthdr.len, + mtod(m_new, caddr_t)); + m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; + m_freem(m_head); + m_head = m_new; + f = &c->sf_frags[0]; + f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_addr = vtophys(mtod(m_head, caddr_t)); + frag = 1; + } + + c->sf_mbuf = m_head; + c->sf_id = SF_TX_BUFDESC_ID; + c->sf_fragcnt = frag; + c->sf_intr = 1; + c->sf_caltcp = 0; + c->sf_crcen = 1; + + return(0); +} + +static void sf_start(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *cur_tx = NULL; + struct mbuf *m_head = NULL; + int i, txprod; + + sc = ifp->if_softc; + + if (ifp->if_flags & IFF_OACTIVE) + return; + + if (sc->sf_autoneg) { + sc->sf_tx_pend = 1; + return; + } + + txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); + i = SF_IDX_HI(txprod) >> 4; + + while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) { + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + cur_tx = &sc->sf_ldata->sf_tx_dlist[i]; + sf_encap(sc, cur_tx, m_head); + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ +#if NBPF > 0 + if (ifp->if_bpf) + bpf_mtap(ifp, m_head); +#endif + SF_INC(i, SF_TX_DLIST_CNT); + sc->sf_tx_cnt++; + if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2)) + break; + } + + if (cur_tx == NULL) + return; + + /* Transmit */ + csr_write_4(sc, SF_TXDQ_PRODIDX, + (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) | + ((i << 20) & 0xFFFF0000)); + + ifp->if_timer = 5; + + return; +} + +static void sf_stop(sc) + struct sf_softc *sc; +{ + int i; + + untimeout(sf_stats_update, sc, sc->sf_stat_ch); + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0); + csr_write_4(sc, SF_RXDQ_CTL_1, 0); + csr_write_4(sc, SF_RXDQ_PTR_Q1, 0); + csr_write_4(sc, SF_TXCQ_CTL, 0); + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0); + csr_write_4(sc, SF_TXDQ_CTL, 0); + sf_reset(sc); + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf); + sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL; + } + } + + for (i = 0; i < SF_TX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf); + sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL; + } + } + + return; +} + +/* + * Note: it is important that this function not be interrupted. We + * use a two-stage register access scheme: if we are interrupted in + * between setting the indirect address register and reading from the + * indirect data register, the contents of the address register could + * be changed out from under us. + */ +static void sf_stats_update(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + struct sf_stats stats; + u_int32_t *ptr; + int i, s; + + s = splimp(); + + sc = xsc; + ifp = &sc->arpcom.ac_if; + + ptr = (u_int32_t *)&stats; + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + ptr[i] = csr_read_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t))); + + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + ifp->if_collisions += stats.sf_tx_single_colls + + stats.sf_tx_multi_colls + stats.sf_tx_excess_colls; + + sc->sf_stat_ch = timeout(sf_stats_update, sc, hz); + + splx(s); + + return; +} + +static void sf_watchdog(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + + sc = ifp->if_softc; + + if (sc->sf_autoneg) { + sf_autoneg_mii(sc, SF_FLAG_DELAYTIMEO, 1); + if (!(ifp->if_flags & IFF_UP)) + sf_stop(sc); + return; + } + + ifp->if_oerrors++; + printf("sf%d: watchdog timeout\n", sc->sf_unit); + + if (sc->sf_pinfo != NULL) { + if (!(sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT)) + printf("sf%d: no carrier - transceiver " + "cable problem?\n", sc->sf_unit); + } + + sf_stop(sc); + sf_reset(sc); + sf_init(sc); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + return; +} + +static void sf_shutdown(dev) + device_t dev; +{ + struct sf_softc *sc; + + sc = device_get_softc(dev); + + sf_stop(sc); + + return; +} |