diff options
Diffstat (limited to 'sys/dev/sf/if_sf.c')
-rw-r--r-- | sys/dev/sf/if_sf.c | 1558 |
1 files changed, 1558 insertions, 0 deletions
diff --git a/sys/dev/sf/if_sf.c b/sys/dev/sf/if_sf.c new file mode 100644 index 0000000..a148ba5 --- /dev/null +++ b/sys/dev/sf/if_sf.c @@ -0,0 +1,1558 @@ +/* + * Copyright (c) 1997, 1998, 1999 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + * + * $FreeBSD$ + */ + +/* + * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD. + * Programming manual is available from: + * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf. + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Department of Electical Engineering + * Columbia University, New York City + */ + +/* + * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet + * controller designed with flexibility and reducing CPU load in mind. + * The Starfire offers high and low priority buffer queues, a + * producer/consumer index mechanism and several different buffer + * queue and completion queue descriptor types. Any one of a number + * of different driver designs can be used, depending on system and + * OS requirements. This driver makes use of type0 transmit frame + * descriptors (since BSD fragments packets across an mbuf chain) + * and two RX buffer queues prioritized on size (one queue for small + * frames that will fit into a single mbuf, another with full size + * mbuf clusters for everything else). The producer/consumer indexes + * and completion queues are also used. + * + * One downside to the Starfire has to do with alignment: buffer + * queues must be aligned on 256-byte boundaries, and receive buffers + * must be aligned on longword boundaries. The receive buffer alignment + * causes problems on the Alpha platform, where the packet payload + * should be longword aligned. There is no simple way around this. + * + * For receive filtering, the Starfire offers 16 perfect filter slots + * and a 512-bit hash table. + * + * The Starfire has no internal transceiver, relying instead on an + * external MII-based transceiver. Accessing registers on external + * PHYs is done through a special register map rather than with the + * usual bitbang MDIO method. + * + * Acesssing the registers on the Starfire is a little tricky. The + * Starfire has a 512K internal register space. When programmed for + * PCI memory mapped mode, the entire register space can be accessed + * directly. However in I/O space mode, only 256 bytes are directly + * mapped into PCI I/O space. The other registers can be accessed + * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA + * registers inside the 256-byte I/O window. + */ + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> + +#include <net/if.h> +#include <net/if_arp.h> +#include <net/ethernet.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#include <net/bpf.h> + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/bus_pio.h> +#include <machine/bus_memio.h> +#include <machine/bus.h> +#include <machine/resource.h> +#include <sys/bus.h> +#include <sys/rman.h> + +#include <dev/mii/mii.h> +#include <dev/mii/miivar.h> + +/* "controller miibus0" required. See GENERIC if you get errors here. */ +#include "miibus_if.h" + +#include <pci/pcireg.h> +#include <pci/pcivar.h> + +#define SF_USEIOSPACE + +#include <pci/if_sfreg.h> + +MODULE_DEPEND(sf, miibus, 1, 1, 1); + +#ifndef lint +static const char rcsid[] = + "$FreeBSD$"; +#endif + +static struct sf_type sf_devs[] = { + { AD_VENDORID, AD_DEVICEID_STARFIRE, + "Adaptec AIC-6915 10/100BaseTX" }, + { 0, 0, NULL } +}; + +static int sf_probe (device_t); +static int sf_attach (device_t); +static int sf_detach (device_t); +static void sf_intr (void *); +static void sf_stats_update (void *); +static void sf_rxeof (struct sf_softc *); +static void sf_txeof (struct sf_softc *); +static int sf_encap (struct sf_softc *, + struct sf_tx_bufdesc_type0 *, + struct mbuf *); +static void sf_start (struct ifnet *); +static int sf_ioctl (struct ifnet *, u_long, caddr_t); +static void sf_init (void *); +static void sf_stop (struct sf_softc *); +static void sf_watchdog (struct ifnet *); +static void sf_shutdown (device_t); +static int sf_ifmedia_upd (struct ifnet *); +static void sf_ifmedia_sts (struct ifnet *, struct ifmediareq *); +static void sf_reset (struct sf_softc *); +static int sf_init_rx_ring (struct sf_softc *); +static void sf_init_tx_ring (struct sf_softc *); +static int sf_newbuf (struct sf_softc *, + struct sf_rx_bufdesc_type0 *, + struct mbuf *); +static void sf_setmulti (struct sf_softc *); +static int sf_setperf (struct sf_softc *, int, caddr_t); +static int sf_sethash (struct sf_softc *, caddr_t, int); +#ifdef notdef +static int sf_setvlan (struct sf_softc *, int, u_int32_t); +#endif + +static u_int8_t sf_read_eeprom (struct sf_softc *, int); +static u_int32_t sf_calchash (caddr_t); + +static int sf_miibus_readreg (device_t, int, int); +static int sf_miibus_writereg (device_t, int, int, int); +static void sf_miibus_statchg (device_t); + +static u_int32_t csr_read_4 (struct sf_softc *, int); +static void csr_write_4 (struct sf_softc *, int, u_int32_t); +static void sf_txthresh_adjust (struct sf_softc *); + +#ifdef SF_USEIOSPACE +#define SF_RES SYS_RES_IOPORT +#define SF_RID SF_PCI_LOIO +#else +#define SF_RES SYS_RES_MEMORY +#define SF_RID SF_PCI_LOMEM +#endif + +static device_method_t sf_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, sf_probe), + DEVMETHOD(device_attach, sf_attach), + DEVMETHOD(device_detach, sf_detach), + DEVMETHOD(device_shutdown, sf_shutdown), + + /* bus interface */ + DEVMETHOD(bus_print_child, bus_generic_print_child), + DEVMETHOD(bus_driver_added, bus_generic_driver_added), + + /* MII interface */ + DEVMETHOD(miibus_readreg, sf_miibus_readreg), + DEVMETHOD(miibus_writereg, sf_miibus_writereg), + DEVMETHOD(miibus_statchg, sf_miibus_statchg), + + { 0, 0 } +}; + +static driver_t sf_driver = { + "sf", + sf_methods, + sizeof(struct sf_softc), +}; + +static devclass_t sf_devclass; + +DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0); +DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0); + +#define SF_SETBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) | (x)) + +#define SF_CLRBIT(sc, reg, x) \ + csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x)) + +static u_int32_t +csr_read_4(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int32_t val; + +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + val = CSR_READ_4(sc, SF_INDIRECTIO_DATA); +#else + val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE)); +#endif + + return(val); +} + +static u_int8_t +sf_read_eeprom(sc, reg) + struct sf_softc *sc; + int reg; +{ + u_int8_t val; + + val = (csr_read_4(sc, SF_EEADDR_BASE + + (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF; + + return(val); +} + +static void +csr_write_4(sc, reg, val) + struct sf_softc *sc; + int reg; + u_int32_t val; +{ +#ifdef SF_USEIOSPACE + CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); + CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val); +#else + CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val); +#endif + return; +} + +static u_int32_t +sf_calchash(addr) + caddr_t addr; +{ + u_int32_t crc, carry; + int i, j; + u_int8_t c; + + /* Compute CRC for the address value. */ + crc = 0xFFFFFFFF; /* initial value */ + + for (i = 0; i < 6; i++) { + c = *(addr + i); + for (j = 0; j < 8; j++) { + carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); + crc <<= 1; + c >>= 1; + if (carry) + crc = (crc ^ 0x04c11db6) | carry; + } + } + + /* return the filter bit position */ + return(crc >> 23 & 0x1FF); +} + +/* + * Copy the address 'mac' into the perfect RX filter entry at + * offset 'idx.' The perfect filter only has 16 entries so do + * some sanity tests. + */ +static int +sf_setperf(sc, idx, mac) + struct sf_softc *sc; + int idx; + caddr_t mac; +{ + u_int16_t *p; + + if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT) + return(EINVAL); + + if (mac == NULL) + return(EINVAL); + + p = (u_int16_t *)mac; + + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1])); + csr_write_4(sc, SF_RXFILT_PERFECT_BASE + + (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0])); + + return(0); +} + +/* + * Set the bit in the 512-bit hash table that corresponds to the + * specified mac address 'mac.' If 'prio' is nonzero, update the + * priority hash table instead of the filter hash table. + */ +static int +sf_sethash(sc, mac, prio) + struct sf_softc *sc; + caddr_t mac; + int prio; +{ + u_int32_t h = 0; + + if (mac == NULL) + return(EINVAL); + + h = sf_calchash(mac); + + if (prio) { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } else { + SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF + + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); + } + + return(0); +} + +#ifdef notdef +/* + * Set a VLAN tag in the receive filter. + */ +static int +sf_setvlan(sc, idx, vlan) + struct sf_softc *sc; + int idx; + u_int32_t vlan; +{ + if (idx < 0 || idx >> SF_RXFILT_HASH_CNT) + return(EINVAL); + + csr_write_4(sc, SF_RXFILT_HASH_BASE + + (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan); + + return(0); +} +#endif + +static int +sf_miibus_readreg(dev, phy, reg) + device_t dev; + int phy, reg; +{ + struct sf_softc *sc; + int i; + u_int32_t val = 0; + + sc = device_get_softc(dev); + + for (i = 0; i < SF_TIMEOUT; i++) { + val = csr_read_4(sc, SF_PHY_REG(phy, reg)); + if (val & SF_MII_DATAVALID) + break; + } + + if (i == SF_TIMEOUT) + return(0); + + if ((val & 0x0000FFFF) == 0xFFFF) + return(0); + + return(val & 0x0000FFFF); +} + +static int +sf_miibus_writereg(dev, phy, reg, val) + device_t dev; + int phy, reg, val; +{ + struct sf_softc *sc; + int i; + int busy; + + sc = device_get_softc(dev); + + csr_write_4(sc, SF_PHY_REG(phy, reg), val); + + for (i = 0; i < SF_TIMEOUT; i++) { + busy = csr_read_4(sc, SF_PHY_REG(phy, reg)); + if (!(busy & SF_MII_BUSY)) + break; + } + + return(0); +} + +static void +sf_miibus_statchg(dev) + device_t dev; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = device_get_softc(dev); + mii = device_get_softc(sc->sf_miibus); + + if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX); + } else { + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); + csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX); + } + + return; +} + +static void +sf_setmulti(sc) + struct sf_softc *sc; +{ + struct ifnet *ifp; + int i; + struct ifmultiaddr *ifma; + u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 }; + + ifp = &sc->arpcom.ac_if; + + /* First zot all the existing filters. */ + for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++) + sf_setperf(sc, i, (char *)&dummy); + for (i = SF_RXFILT_HASH_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); + } else { + i = 1; + TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + /* + * Program the first 15 multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < SF_RXFILT_PERFECT_CNT) { + sf_setperf(sc, i, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); + i++; + continue; + } + + sf_sethash(sc, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0); + } + } + + return; +} + +/* + * Set media options. + */ +static int +sf_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + mii = device_get_softc(sc->sf_miibus); + sc->sf_link = 0; + if (mii->mii_instance) { + struct mii_softc *miisc; + LIST_FOREACH(miisc, &mii->mii_phys, mii_list) + mii_phy_reset(miisc); + } + mii_mediachg(mii); + + return(0); +} + +/* + * Report current media status. + */ +static void +sf_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct sf_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + mii = device_get_softc(sc->sf_miibus); + + mii_pollstat(mii); + ifmr->ifm_active = mii->mii_media_active; + ifmr->ifm_status = mii->mii_media_status; + + return; +} + +static int +sf_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct sf_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + struct mii_data *mii; + int error = 0; + + SF_LOCK(sc); + + switch(command) { + case SIOCSIFFLAGS: + if (ifp->if_flags & IFF_UP) { + if (ifp->if_flags & IFF_RUNNING && + ifp->if_flags & IFF_PROMISC && + !(sc->sf_if_flags & IFF_PROMISC)) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else if (ifp->if_flags & IFF_RUNNING && + !(ifp->if_flags & IFF_PROMISC) && + sc->sf_if_flags & IFF_PROMISC) { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else if (!(ifp->if_flags & IFF_RUNNING)) + sf_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) + sf_stop(sc); + } + sc->sf_if_flags = ifp->if_flags; + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + sf_setmulti(sc); + error = 0; + break; + case SIOCGIFMEDIA: + case SIOCSIFMEDIA: + mii = device_get_softc(sc->sf_miibus); + error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); + break; + default: + error = ether_ioctl(ifp, command, data); + break; + } + + SF_UNLOCK(sc); + + return(error); +} + +static void +sf_reset(sc) + struct sf_softc *sc; +{ + register int i; + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + DELAY(1000); + SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); + + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET); + + for (i = 0; i < SF_TIMEOUT; i++) { + DELAY(10); + if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET)) + break; + } + + if (i == SF_TIMEOUT) + printf("sf%d: reset never completed!\n", sc->sf_unit); + + /* Wait a little while for the chip to get its brains in order. */ + DELAY(1000); + return; +} + +/* + * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device + * IDs against our list and return a device name if we find a match. + * We also check the subsystem ID so that we can identify exactly which + * NIC has been found, if possible. + */ +static int +sf_probe(dev) + device_t dev; +{ + struct sf_type *t; + + t = sf_devs; + + while(t->sf_name != NULL) { + if ((pci_get_vendor(dev) == t->sf_vid) && + (pci_get_device(dev) == t->sf_did)) { + switch((pci_read_config(dev, + SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) { + case AD_SUBSYSID_62011_REV0: + case AD_SUBSYSID_62011_REV1: + device_set_desc(dev, + "Adaptec ANA-62011 10/100BaseTX"); + return(0); + break; + case AD_SUBSYSID_62022: + device_set_desc(dev, + "Adaptec ANA-62022 10/100BaseTX"); + return(0); + break; + case AD_SUBSYSID_62044_REV0: + case AD_SUBSYSID_62044_REV1: + device_set_desc(dev, + "Adaptec ANA-62044 10/100BaseTX"); + return(0); + break; + case AD_SUBSYSID_62020: + device_set_desc(dev, + "Adaptec ANA-62020 10/100BaseFX"); + return(0); + break; + case AD_SUBSYSID_69011: + device_set_desc(dev, + "Adaptec ANA-69011 10/100BaseTX"); + return(0); + break; + default: + device_set_desc(dev, t->sf_name); + return(0); + break; + } + } + t++; + } + + return(ENXIO); +} + +/* + * Attach the interface. Allocate softc structures, do ifmedia + * setup and ethernet/BPF attach. + */ +static int +sf_attach(dev) + device_t dev; +{ + int i; + u_int32_t command; + struct sf_softc *sc; + struct ifnet *ifp; + int unit, rid, error = 0; + + sc = device_get_softc(dev); + unit = device_get_unit(dev); + bzero(sc, sizeof(struct sf_softc)); + + mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, + MTX_DEF | MTX_RECURSE); + SF_LOCK(sc); + /* + * Handle power management nonsense. + */ + if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { + u_int32_t iobase, membase, irq; + + /* Save important PCI config data. */ + iobase = pci_read_config(dev, SF_PCI_LOIO, 4); + membase = pci_read_config(dev, SF_PCI_LOMEM, 4); + irq = pci_read_config(dev, SF_PCI_INTLINE, 4); + + /* Reset the power state. */ + printf("sf%d: chip is in D%d power mode " + "-- setting to D0\n", unit, + pci_get_powerstate(dev)); + pci_set_powerstate(dev, PCI_POWERSTATE_D0); + + /* Restore PCI config data. */ + pci_write_config(dev, SF_PCI_LOIO, iobase, 4); + pci_write_config(dev, SF_PCI_LOMEM, membase, 4); + pci_write_config(dev, SF_PCI_INTLINE, irq, 4); + } + + /* + * Map control/status registers. + */ + pci_enable_busmaster(dev); + pci_enable_io(dev, SYS_RES_IOPORT); + pci_enable_io(dev, SYS_RES_MEMORY); + command = pci_read_config(dev, PCIR_COMMAND, 4); + +#ifdef SF_USEIOSPACE + if (!(command & PCIM_CMD_PORTEN)) { + printf("sf%d: failed to enable I/O ports!\n", unit); + error = ENXIO; + goto fail; + } +#else + if (!(command & PCIM_CMD_MEMEN)) { + printf("sf%d: failed to enable memory mapping!\n", unit); + error = ENXIO; + goto fail; + } +#endif + + rid = SF_RID; + sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid, + 0, ~0, 1, RF_ACTIVE); + + if (sc->sf_res == NULL) { + printf ("sf%d: couldn't map ports\n", unit); + error = ENXIO; + goto fail; + } + + sc->sf_btag = rman_get_bustag(sc->sf_res); + sc->sf_bhandle = rman_get_bushandle(sc->sf_res); + + /* Allocate interrupt */ + rid = 0; + sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, + RF_SHAREABLE | RF_ACTIVE); + + if (sc->sf_irq == NULL) { + printf("sf%d: couldn't map interrupt\n", unit); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + error = ENXIO; + goto fail; + } + + error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET, + sf_intr, sc, &sc->sf_intrhand); + + if (error) { + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + printf("sf%d: couldn't set up irq\n", unit); + goto fail; + } + + callout_handle_init(&sc->sf_stat_ch); + /* Reset the adapter. */ + sf_reset(sc); + + /* + * Get station address from the EEPROM. + */ + for (i = 0; i < ETHER_ADDR_LEN; i++) + sc->arpcom.ac_enaddr[i] = + sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i); + + /* + * An Adaptec chip was detected. Inform the world. + */ + printf("sf%d: Ethernet address: %6D\n", unit, + sc->arpcom.ac_enaddr, ":"); + + sc->sf_unit = unit; + + /* Allocate the descriptor queues. */ + sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF, + M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); + + if (sc->sf_ldata == NULL) { + printf("sf%d: no memory for list buffers!\n", unit); + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + error = ENXIO; + goto fail; + } + + bzero(sc->sf_ldata, sizeof(struct sf_list_data)); + + /* Do MII setup. */ + if (mii_phy_probe(dev, &sc->sf_miibus, + sf_ifmedia_upd, sf_ifmedia_sts)) { + printf("sf%d: MII without any phy!\n", sc->sf_unit); + contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF); + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + error = ENXIO; + goto fail; + } + + ifp = &sc->arpcom.ac_if; + ifp->if_softc = sc; + ifp->if_unit = unit; + ifp->if_name = "sf"; + ifp->if_mtu = ETHERMTU; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = sf_ioctl; + ifp->if_output = ether_output; + ifp->if_start = sf_start; + ifp->if_watchdog = sf_watchdog; + ifp->if_init = sf_init; + ifp->if_baudrate = 10000000; + ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1; + + /* + * Call MI attach routine. + */ + ether_ifattach(ifp, sc->arpcom.ac_enaddr); + SF_UNLOCK(sc); + return(0); + +fail: + SF_UNLOCK(sc); + mtx_destroy(&sc->sf_mtx); + return(error); +} + +static int +sf_detach(dev) + device_t dev; +{ + struct sf_softc *sc; + struct ifnet *ifp; + + sc = device_get_softc(dev); + SF_LOCK(sc); + ifp = &sc->arpcom.ac_if; + + ether_ifdetach(ifp); + sf_stop(sc); + + bus_generic_detach(dev); + device_delete_child(dev, sc->sf_miibus); + + bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq); + bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res); + + contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF); + + SF_UNLOCK(sc); + mtx_destroy(&sc->sf_mtx); + + return(0); +} + +static int +sf_init_rx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_rx_dlist_big, + sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT); + bzero((char *)ld->sf_rx_clist, + sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT); + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS) + return(ENOBUFS); + } + + return(0); +} + +static void +sf_init_tx_ring(sc) + struct sf_softc *sc; +{ + struct sf_list_data *ld; + int i; + + ld = sc->sf_ldata; + + bzero((char *)ld->sf_tx_dlist, + sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT); + bzero((char *)ld->sf_tx_clist, + sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT); + + for (i = 0; i < SF_TX_DLIST_CNT; i++) + ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID; + for (i = 0; i < SF_TX_CLIST_CNT; i++) + ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX; + + ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1; + sc->sf_tx_cnt = 0; + + return; +} + +static int +sf_newbuf(sc, c, m) + struct sf_softc *sc; + struct sf_rx_bufdesc_type0 *c; + struct mbuf *m; +{ + struct mbuf *m_new = NULL; + + if (m == NULL) { + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) + return(ENOBUFS); + + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + return(ENOBUFS); + } + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + } else { + m_new = m; + m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; + m_new->m_data = m_new->m_ext.ext_buf; + } + + m_adj(m_new, sizeof(u_int64_t)); + + c->sf_mbuf = m_new; + c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t))); + c->sf_valid = 1; + + return(0); +} + +/* + * The starfire is programmed to use 'normal' mode for packet reception, + * which means we use the consumer/producer model for both the buffer + * descriptor queue and the completion descriptor queue. The only problem + * with this is that it involves a lot of register accesses: we have to + * read the RX completion consumer and producer indexes and the RX buffer + * producer index, plus the RX completion consumer and RX buffer producer + * indexes have to be updated. It would have been easier if Adaptec had + * put each index in a separate register, especially given that the damn + * NIC has a 512K register space. + * + * In spite of all the lovely features that Adaptec crammed into the 6915, + * it is marred by one truly stupid design flaw, which is that receive + * buffer addresses must be aligned on a longword boundary. This forces + * the packet payload to be unaligned, which is suboptimal on the x86 and + * completely unuseable on the Alpha. Our only recourse is to copy received + * packets into properly aligned buffers before handing them off. + */ + +static void +sf_rxeof(sc) + struct sf_softc *sc; +{ + struct mbuf *m; + struct ifnet *ifp; + struct sf_rx_bufdesc_type0 *desc; + struct sf_rx_cmpdesc_type3 *cur_rx; + u_int32_t rxcons, rxprod; + int cmpprodidx, cmpconsidx, bufprodidx; + + ifp = &sc->arpcom.ac_if; + + rxcons = csr_read_4(sc, SF_CQ_CONSIDX); + rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1); + cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_LO(rxcons); + bufprodidx = SF_IDX_LO(rxprod); + + while (cmpconsidx != cmpprodidx) { + struct mbuf *m0; + + cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx]; + desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx]; + m = desc->sf_mbuf; + SF_INC(cmpconsidx, SF_RX_CLIST_CNT); + SF_INC(bufprodidx, SF_RX_DLIST_CNT); + + if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) { + ifp->if_ierrors++; + sf_newbuf(sc, desc, m); + continue; + } + + m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN, + ifp, NULL); + sf_newbuf(sc, desc, m); + if (m0 == NULL) { + ifp->if_ierrors++; + continue; + } + m = m0; + + ifp->if_ipackets++; + (*ifp->if_input)(ifp, m); + } + + csr_write_4(sc, SF_CQ_CONSIDX, + (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx); + csr_write_4(sc, SF_RXDQ_PTR_Q1, + (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx); + + return; +} + +/* + * Read the transmit status from the completion queue and release + * mbufs. Note that the buffer descriptor index in the completion + * descriptor is an offset from the start of the transmit buffer + * descriptor list in bytes. This is important because the manual + * gives the impression that it should match the producer/consumer + * index, which is the offset in 8 byte blocks. + */ +static void +sf_txeof(sc) + struct sf_softc *sc; +{ + int txcons, cmpprodidx, cmpconsidx; + struct sf_tx_cmpdesc_type1 *cur_cmp; + struct sf_tx_bufdesc_type0 *cur_tx; + struct ifnet *ifp; + + ifp = &sc->arpcom.ac_if; + + txcons = csr_read_4(sc, SF_CQ_CONSIDX); + cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX)); + cmpconsidx = SF_IDX_HI(txcons); + + while (cmpconsidx != cmpprodidx) { + cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx]; + cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7]; + + if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK) + ifp->if_opackets++; + else { + if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN) + sf_txthresh_adjust(sc); + ifp->if_oerrors++; + } + + sc->sf_tx_cnt--; + if (cur_tx->sf_mbuf != NULL) { + m_freem(cur_tx->sf_mbuf); + cur_tx->sf_mbuf = NULL; + } else + break; + SF_INC(cmpconsidx, SF_TX_CLIST_CNT); + } + + ifp->if_timer = 0; + ifp->if_flags &= ~IFF_OACTIVE; + + csr_write_4(sc, SF_CQ_CONSIDX, + (txcons & ~SF_CQ_CONSIDX_TXQ) | + ((cmpconsidx << 16) & 0xFFFF0000)); + + return; +} + +static void +sf_txthresh_adjust(sc) + struct sf_softc *sc; +{ + u_int32_t txfctl; + u_int8_t txthresh; + + txfctl = csr_read_4(sc, SF_TX_FRAMCTL); + txthresh = txfctl & SF_TXFRMCTL_TXTHRESH; + if (txthresh < 0xFF) { + txthresh++; + txfctl &= ~SF_TXFRMCTL_TXTHRESH; + txfctl |= txthresh; +#ifdef DIAGNOSTIC + printf("sf%d: tx underrun, increasing " + "tx threshold to %d bytes\n", + sc->sf_unit, txthresh * 4); +#endif + csr_write_4(sc, SF_TX_FRAMCTL, txfctl); + } + + return; +} + +static void +sf_intr(arg) + void *arg; +{ + struct sf_softc *sc; + struct ifnet *ifp; + u_int32_t status; + + sc = arg; + SF_LOCK(sc); + + ifp = &sc->arpcom.ac_if; + + if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) { + SF_UNLOCK(sc); + return; + } + + /* Disable interrupts. */ + csr_write_4(sc, SF_IMR, 0x00000000); + + for (;;) { + status = csr_read_4(sc, SF_ISR); + if (status) + csr_write_4(sc, SF_ISR, status); + + if (!(status & SF_INTRS)) + break; + + if (status & SF_ISR_RXDQ1_DMADONE) + sf_rxeof(sc); + + if (status & SF_ISR_TX_TXDONE || + status & SF_ISR_TX_DMADONE || + status & SF_ISR_TX_QUEUEDONE) + sf_txeof(sc); + + if (status & SF_ISR_TX_LOFIFO) + sf_txthresh_adjust(sc); + + if (status & SF_ISR_ABNORMALINTR) { + if (status & SF_ISR_STATSOFLOW) { + untimeout(sf_stats_update, sc, + sc->sf_stat_ch); + sf_stats_update(sc); + } else + sf_init(sc); + } + } + + /* Re-enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + SF_UNLOCK(sc); + return; +} + +static void +sf_init(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + struct mii_data *mii; + int i; + + sc = xsc; + SF_LOCK(sc); + ifp = &sc->arpcom.ac_if; + mii = device_get_softc(sc->sf_miibus); + + sf_stop(sc); + sf_reset(sc); + + /* Init all the receive filter registers */ + for (i = SF_RXFILT_PERFECT_BASE; + i < (SF_RXFILT_HASH_MAX + 1); i += 4) + csr_write_4(sc, i, 0); + + /* Empty stats counter registers. */ + for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + /* Init our MAC address */ + csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); + csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); + sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr); + + if (sf_init_rx_ring(sc) == ENOBUFS) { + printf("sf%d: initialization failed: no " + "memory for rx buffers\n", sc->sf_unit); + SF_UNLOCK(sc); + return; + } + + sf_init_tx_ring(sc); + + csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN); + + /* If we want promiscuous mode, set the allframes bit. */ + if (ifp->if_flags & IFF_PROMISC) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); + } + + if (ifp->if_flags & IFF_BROADCAST) { + SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } else { + SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); + } + + /* + * Load the multicast filter. + */ + sf_setmulti(sc); + + /* Init the completion queue indexes */ + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + + /* Init the RX completion queue */ + csr_write_4(sc, SF_RXCQ_CTL_1, + vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR); + SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3); + + /* Init RX DMA control. */ + SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS); + + /* Init the RX buffer descriptor queue. */ + csr_write_4(sc, SF_RXDQ_ADDR_Q1, + vtophys(sc->sf_ldata->sf_rx_dlist_big)); + csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES); + csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1); + + /* Init the TX completion queue */ + csr_write_4(sc, SF_TXCQ_CTL, + vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR); + + /* Init the TX buffer descriptor queue. */ + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, + vtophys(sc->sf_ldata->sf_tx_dlist)); + SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX); + csr_write_4(sc, SF_TXDQ_CTL, + SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES); + SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP); + + /* Enable autopadding of short TX frames. */ + SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD); + + /* Enable interrupts. */ + csr_write_4(sc, SF_IMR, SF_INTRS); + SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB); + + /* Enable the RX and TX engines. */ + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB); + SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB); + + /*mii_mediachg(mii);*/ + sf_ifmedia_upd(ifp); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + + sc->sf_stat_ch = timeout(sf_stats_update, sc, hz); + + SF_UNLOCK(sc); + + return; +} + +static int +sf_encap(sc, c, m_head) + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *c; + struct mbuf *m_head; +{ + int frag = 0; + struct sf_frag *f = NULL; + struct mbuf *m; + + m = m_head; + + for (m = m_head, frag = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (frag == SF_MAXFRAGS) + break; + f = &c->sf_frags[frag]; + if (frag == 0) + f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_fraglen = m->m_len; + f->sf_addr = vtophys(mtod(m, vm_offset_t)); + frag++; + } + } + + if (m != NULL) { + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + printf("sf%d: no memory for tx list\n", sc->sf_unit); + return(1); + } + + if (m_head->m_pkthdr.len > MHLEN) { + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + printf("sf%d: no memory for tx list\n", + sc->sf_unit); + return(1); + } + } + m_copydata(m_head, 0, m_head->m_pkthdr.len, + mtod(m_new, caddr_t)); + m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; + m_freem(m_head); + m_head = m_new; + f = &c->sf_frags[0]; + f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len; + f->sf_addr = vtophys(mtod(m_head, caddr_t)); + frag = 1; + } + + c->sf_mbuf = m_head; + c->sf_id = SF_TX_BUFDESC_ID; + c->sf_fragcnt = frag; + c->sf_intr = 1; + c->sf_caltcp = 0; + c->sf_crcen = 1; + + return(0); +} + +static void +sf_start(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + struct sf_tx_bufdesc_type0 *cur_tx = NULL; + struct mbuf *m_head = NULL; + int i, txprod; + + sc = ifp->if_softc; + SF_LOCK(sc); + + if (!sc->sf_link && ifp->if_snd.ifq_len < 10) { + SF_UNLOCK(sc); + return; + } + + if (ifp->if_flags & IFF_OACTIVE) { + SF_UNLOCK(sc); + return; + } + + txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); + i = SF_IDX_HI(txprod) >> 4; + + if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { + printf("sf%d: TX ring full, resetting\n", sc->sf_unit); + sf_init(sc); + txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); + i = SF_IDX_HI(txprod) >> 4; + } + + while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) { + if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) { + ifp->if_flags |= IFF_OACTIVE; + cur_tx = NULL; + break; + } + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + cur_tx = &sc->sf_ldata->sf_tx_dlist[i]; + if (sf_encap(sc, cur_tx, m_head)) { + IF_PREPEND(&ifp->if_snd, m_head); + ifp->if_flags |= IFF_OACTIVE; + cur_tx = NULL; + break; + } + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ + BPF_MTAP(ifp, m_head); + + SF_INC(i, SF_TX_DLIST_CNT); + sc->sf_tx_cnt++; + /* + * Don't get the TX DMA queue get too full. + */ + if (sc->sf_tx_cnt > 64) + break; + } + + if (cur_tx == NULL) { + SF_UNLOCK(sc); + return; + } + + /* Transmit */ + csr_write_4(sc, SF_TXDQ_PRODIDX, + (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) | + ((i << 20) & 0xFFFF0000)); + + ifp->if_timer = 5; + + SF_UNLOCK(sc); + + return; +} + +static void +sf_stop(sc) + struct sf_softc *sc; +{ + int i; + struct ifnet *ifp; + + SF_LOCK(sc); + + ifp = &sc->arpcom.ac_if; + + untimeout(sf_stats_update, sc, sc->sf_stat_ch); + + csr_write_4(sc, SF_GEN_ETH_CTL, 0); + csr_write_4(sc, SF_CQ_CONSIDX, 0); + csr_write_4(sc, SF_CQ_PRODIDX, 0); + csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0); + csr_write_4(sc, SF_RXDQ_CTL_1, 0); + csr_write_4(sc, SF_RXDQ_PTR_Q1, 0); + csr_write_4(sc, SF_TXCQ_CTL, 0); + csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0); + csr_write_4(sc, SF_TXDQ_CTL, 0); + sf_reset(sc); + + sc->sf_link = 0; + + for (i = 0; i < SF_RX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf); + sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL; + } + } + + for (i = 0; i < SF_TX_DLIST_CNT; i++) { + if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { + m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf); + sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL; + } + } + + ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); + SF_UNLOCK(sc); + + return; +} + +/* + * Note: it is important that this function not be interrupted. We + * use a two-stage register access scheme: if we are interrupted in + * between setting the indirect address register and reading from the + * indirect data register, the contents of the address register could + * be changed out from under us. + */ +static void +sf_stats_update(xsc) + void *xsc; +{ + struct sf_softc *sc; + struct ifnet *ifp; + struct mii_data *mii; + struct sf_stats stats; + u_int32_t *ptr; + int i; + + sc = xsc; + SF_LOCK(sc); + ifp = &sc->arpcom.ac_if; + mii = device_get_softc(sc->sf_miibus); + + ptr = (u_int32_t *)&stats; + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + ptr[i] = csr_read_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t))); + + for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) + csr_write_4(sc, SF_STATS_BASE + + (i + sizeof(u_int32_t)), 0); + + ifp->if_collisions += stats.sf_tx_single_colls + + stats.sf_tx_multi_colls + stats.sf_tx_excess_colls; + + mii_tick(mii); + + if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE && + IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { + sc->sf_link++; + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + } + + sc->sf_stat_ch = timeout(sf_stats_update, sc, hz); + + SF_UNLOCK(sc); + + return; +} + +static void +sf_watchdog(ifp) + struct ifnet *ifp; +{ + struct sf_softc *sc; + + sc = ifp->if_softc; + + SF_LOCK(sc); + + ifp->if_oerrors++; + printf("sf%d: watchdog timeout\n", sc->sf_unit); + + sf_stop(sc); + sf_reset(sc); + sf_init(sc); + + if (ifp->if_snd.ifq_head != NULL) + sf_start(ifp); + + SF_UNLOCK(sc); + + return; +} + +static void +sf_shutdown(dev) + device_t dev; +{ + struct sf_softc *sc; + + sc = device_get_softc(dev); + + sf_stop(sc); + + return; +} |