diff options
Diffstat (limited to 'sys/dev/raidframe/rf_map.c')
-rw-r--r-- | sys/dev/raidframe/rf_map.c | 907 |
1 files changed, 907 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_map.c b/sys/dev/raidframe/rf_map.c new file mode 100644 index 0000000..98f455f --- /dev/null +++ b/sys/dev/raidframe/rf_map.c @@ -0,0 +1,907 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_map.c,v 1.5 2000/06/29 00:22:27 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************************** + * + * map.c -- main code for mapping RAID addresses to physical disk addresses + * + **************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_shutdown.h> + +static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count); +static void +rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end, + int count); + +/***************************************************************************************** + * + * MapAccess -- main 1st order mapping routine. + * + * Maps an access in the RAID address space to the corresponding set of physical disk + * addresses. The result is returned as a list of AccessStripeMap structures, one per + * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr + * structures, which describe the physical locations touched by the user access. Note + * that this routine returns only static mapping information, i.e. the list of physical + * addresses returned does not necessarily identify the set of physical locations that + * will actually be read or written. + * + * The routine also maps the parity. The physical disk location returned always + * indicates the entire parity unit, even when only a subset of it is being accessed. + * This is because an access that is not stripe unit aligned but that spans a stripe + * unit boundary may require access two distinct portions of the parity unit, and we + * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm + * selection code to decide what subset of the parity unit to access. + * + * Note that addresses in the RAID address space must always be maintained as + * longs, instead of ints. + * + * This routine returns NULL if numBlocks is 0 + * + ****************************************************************************************/ + +RF_AccessStripeMapHeader_t * +rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidAddress; /* starting address in RAID address + * space */ + RF_SectorCount_t numBlocks; /* number of blocks in RAID address + * space to access */ + caddr_t buffer; /* buffer to supply/receive data */ + int remap; /* 1 => remap addresses to spare space */ +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_AccessStripeMapHeader_t *asm_hdr = NULL; + RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL; + int faultsTolerated = layoutPtr->map->faultsTolerated; + RF_RaidAddr_t startAddress = raidAddress; /* we'll change + * raidAddress along the + * way */ + RF_RaidAddr_t endAddress = raidAddress + numBlocks; + RF_RaidDisk_t **disks = raidPtr->Disks; + + RF_PhysDiskAddr_t *pda_p, *pda_q; + RF_StripeCount_t numStripes = 0; + RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress; + RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr; + RF_StripeCount_t totStripes; + RF_StripeNum_t stripeID, lastSID, SUID, lastSUID; + RF_AccessStripeMap_t *asmList, *t_asm; + RF_PhysDiskAddr_t *pdaList, *t_pda; + + /* allocate all the ASMs and PDAs up front */ + lastRaidAddr = raidAddress + numBlocks - 1; + stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress); + lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr); + totStripes = lastSID - stripeID + 1; + SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress); + lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr); + + asmList = rf_AllocASMList(totStripes); + pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s) + * per stripe for parity */ + + if (raidAddress + numBlocks > raidPtr->totalSectors) { + RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n", + (int) raidAddress); + return (NULL); + } + if (rf_mapDebug) + rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks); + for (; raidAddress < endAddress;) { + /* make the next stripe structure */ + RF_ASSERT(asmList); + t_asm = asmList; + asmList = asmList->next; + bzero((char *) t_asm, sizeof(RF_AccessStripeMap_t)); + if (!asm_p) + asm_list = asm_p = t_asm; + else { + asm_p->next = t_asm; + asm_p = asm_p->next; + } + numStripes++; + + /* map SUs from current location to the end of the stripe */ + asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr, + raidAddress) */ stripeID++; + stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress); + stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress); + asm_p->raidAddress = raidAddress; + asm_p->endRaidAddress = stripeEndAddress; + + /* map each stripe unit in the stripe */ + pda_p = NULL; + startAddrWithinStripe = raidAddress; /* Raid addr of start of + * portion of access + * that is within this + * stripe */ + for (; raidAddress < stripeEndAddress;) { + RF_ASSERT(pdaList); + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + if (!pda_p) + asm_p->physInfo = pda_p = t_pda; + else { + pda_p->next = t_pda; + pda_p = pda_p->next; + } + + pda_p->type = RF_PDA_TYPE_DATA; + (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); + + /* mark any failures we find. failedPDA is don't-care + * if there is more than one failure */ + pda_p->raidAddress = raidAddress; /* the RAID address + * corresponding to this + * physical disk address */ + nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress); + pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress; + RF_ASSERT(pda_p->numSector != 0); + rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0); + pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress)); + asm_p->totalSectorsAccessed += pda_p->numSector; + asm_p->numStripeUnitsAccessed++; + asm_p->origRow = pda_p->row; /* redundant but + * harmless to do this + * in every loop + * iteration */ + + raidAddress = RF_MIN(endAddress, nextStripeUnitAddress); + } + + /* Map the parity. At this stage, the startSector and + * numSector fields for the parity unit are always set to + * indicate the entire parity unit. We may modify this after + * mapping the data portion. */ + switch (faultsTolerated) { + case 0: + break; + case 1: /* single fault tolerant */ + RF_ASSERT(pdaList); + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + pda_p = asm_p->parityInfo = t_pda; + pda_p->type = RF_PDA_TYPE_PARITY; + (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), + &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); + pda_p->numSector = layoutPtr->sectorsPerStripeUnit; + /* raidAddr may be needed to find unit to redirect to */ + pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); + rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); + rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); + + break; + case 2: /* two fault tolerant */ + RF_ASSERT(pdaList && pdaList->next); + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + pda_p = asm_p->parityInfo = t_pda; + pda_p->type = RF_PDA_TYPE_PARITY; + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + pda_q = asm_p->qInfo = t_pda; + pda_q->type = RF_PDA_TYPE_Q; + (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), + &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); + (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), + &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap); + pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit; + /* raidAddr may be needed to find unit to redirect to */ + pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); + pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); + /* failure mode stuff */ + rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); + rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1); + rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); + rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); + break; + } + } + RF_ASSERT(asmList == NULL && pdaList == NULL); + /* make the header structure */ + asm_hdr = rf_AllocAccessStripeMapHeader(); + RF_ASSERT(numStripes == totStripes); + asm_hdr->numStripes = numStripes; + asm_hdr->stripeMap = asm_list; + + if (rf_mapDebug) + rf_PrintAccessStripeMap(asm_hdr); + return (asm_hdr); +} +/***************************************************************************************** + * This routine walks through an ASM list and marks the PDAs that have failed. + * It's called only when a disk failure causes an in-flight DAG to fail. + * The parity may consist of two components, but we want to use only one failedPDA + * pointer. Thus we set failedPDA to point to the first parity component, and rely + * on the rest of the code to do the right thing with this. + ****************************************************************************************/ + +void +rf_MarkFailuresInASMList(raidPtr, asm_h) + RF_Raid_t *raidPtr; + RF_AccessStripeMapHeader_t *asm_h; +{ + RF_RaidDisk_t **disks = raidPtr->Disks; + RF_AccessStripeMap_t *asmap; + RF_PhysDiskAddr_t *pda; + + for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) { + asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0; + asmap->numFailedPDAs = 0; + bzero((char *) asmap->failedPDAs, + RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *)); + for (pda = asmap->physInfo; pda; pda = pda->next) { + if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) { + asmap->numDataFailed++; + asmap->failedPDAs[asmap->numFailedPDAs] = pda; + asmap->numFailedPDAs++; + } + } + pda = asmap->parityInfo; + if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) { + asmap->numParityFailed++; + asmap->failedPDAs[asmap->numFailedPDAs] = pda; + asmap->numFailedPDAs++; + } + pda = asmap->qInfo; + if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) { + asmap->numQFailed++; + asmap->failedPDAs[asmap->numFailedPDAs] = pda; + asmap->numFailedPDAs++; + } + } +} +/***************************************************************************************** + * + * DuplicateASM -- duplicates an ASM and returns the new one + * + ****************************************************************************************/ +RF_AccessStripeMap_t * +rf_DuplicateASM(asmap) + RF_AccessStripeMap_t *asmap; +{ + RF_AccessStripeMap_t *new_asm; + RF_PhysDiskAddr_t *pda, *new_pda, *t_pda; + + new_pda = NULL; + new_asm = rf_AllocAccessStripeMapComponent(); + bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t)); + new_asm->numFailedPDAs = 0; /* ??? */ + new_asm->failedPDAs[0] = NULL; + new_asm->physInfo = NULL; + new_asm->parityInfo = NULL; + new_asm->next = NULL; + + for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo + * list */ + t_pda = rf_AllocPhysDiskAddr(); + bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + t_pda->next = NULL; + if (!new_asm->physInfo) { + new_asm->physInfo = t_pda; + new_pda = t_pda; + } else { + new_pda->next = t_pda; + new_pda = new_pda->next; + } + if (pda == asmap->failedPDAs[0]) + new_asm->failedPDAs[0] = t_pda; + } + for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo + * list */ + t_pda = rf_AllocPhysDiskAddr(); + bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + t_pda->next = NULL; + if (!new_asm->parityInfo) { + new_asm->parityInfo = t_pda; + new_pda = t_pda; + } else { + new_pda->next = t_pda; + new_pda = new_pda->next; + } + if (pda == asmap->failedPDAs[0]) + new_asm->failedPDAs[0] = t_pda; + } + return (new_asm); +} +/***************************************************************************************** + * + * DuplicatePDA -- duplicates a PDA and returns the new one + * + ****************************************************************************************/ +RF_PhysDiskAddr_t * +rf_DuplicatePDA(pda) + RF_PhysDiskAddr_t *pda; +{ + RF_PhysDiskAddr_t *new; + + new = rf_AllocPhysDiskAddr(); + bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t)); + return (new); +} +/***************************************************************************************** + * + * routines to allocate and free list elements. All allocation routines zero the + * structure before returning it. + * + * FreePhysDiskAddr is static. It should never be called directly, because + * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list. + * + ****************************************************************************************/ + +static RF_FreeList_t *rf_asmhdr_freelist; +#define RF_MAX_FREE_ASMHDR 128 +#define RF_ASMHDR_INC 16 +#define RF_ASMHDR_INITIAL 32 + +static RF_FreeList_t *rf_asm_freelist; +#define RF_MAX_FREE_ASM 192 +#define RF_ASM_INC 24 +#define RF_ASM_INITIAL 64 + +static RF_FreeList_t *rf_pda_freelist; +#define RF_MAX_FREE_PDA 192 +#define RF_PDA_INC 24 +#define RF_PDA_INITIAL 64 + +/* called at shutdown time. So far, all that is necessary is to release all the free lists */ +static void rf_ShutdownMapModule(void *); +static void +rf_ShutdownMapModule(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); + RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *)); + RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *)); +} + +int +rf_ConfigureMapModule(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR, + RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t)); + if (rf_asmhdr_freelist == NULL) { + return (ENOMEM); + } + RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM, + RF_ASM_INC, sizeof(RF_AccessStripeMap_t)); + if (rf_asm_freelist == NULL) { + RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); + return (ENOMEM); + } + RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA, + RF_PDA_INC, sizeof(RF_PhysDiskAddr_t)); + if (rf_pda_freelist == NULL) { + RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); + RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *)); + return (ENOMEM); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownMapModule(NULL); + return (rc); + } + RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next, + (RF_AccessStripeMapHeader_t *)); + RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next, + (RF_AccessStripeMap_t *)); + RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next, + (RF_PhysDiskAddr_t *)); + + return (0); +} + +RF_AccessStripeMapHeader_t * +rf_AllocAccessStripeMapHeader() +{ + RF_AccessStripeMapHeader_t *p; + + RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *)); + bzero((char *) p, sizeof(RF_AccessStripeMapHeader_t)); + + return (p); +} + + +void +rf_FreeAccessStripeMapHeader(p) + RF_AccessStripeMapHeader_t *p; +{ + RF_FREELIST_FREE(rf_asmhdr_freelist, p, next); +} + +RF_PhysDiskAddr_t * +rf_AllocPhysDiskAddr() +{ + RF_PhysDiskAddr_t *p; + + RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *)); + bzero((char *) p, sizeof(RF_PhysDiskAddr_t)); + + return (p); +} +/* allocates a list of PDAs, locking the free list only once + * when we have to call calloc, we do it one component at a time to simplify + * the process of freeing the list at program shutdown. This should not be + * much of a performance hit, because it should be very infrequently executed. + */ +RF_PhysDiskAddr_t * +rf_AllocPDAList(count) + int count; +{ + RF_PhysDiskAddr_t *p = NULL; + + RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count); + return (p); +} + +void +rf_FreePhysDiskAddr(p) + RF_PhysDiskAddr_t *p; +{ + RF_FREELIST_FREE(rf_pda_freelist, p, next); +} + +static void +rf_FreePDAList(l_start, l_end, count) + RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end + * of list */ + int count; /* number of elements in list */ +{ + RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count); +} + +RF_AccessStripeMap_t * +rf_AllocAccessStripeMapComponent() +{ + RF_AccessStripeMap_t *p; + + RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *)); + bzero((char *) p, sizeof(RF_AccessStripeMap_t)); + + return (p); +} +/* this is essentially identical to AllocPDAList. I should combine the two. + * when we have to call calloc, we do it one component at a time to simplify + * the process of freeing the list at program shutdown. This should not be + * much of a performance hit, because it should be very infrequently executed. + */ +RF_AccessStripeMap_t * +rf_AllocASMList(count) + int count; +{ + RF_AccessStripeMap_t *p = NULL; + + RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count); + return (p); +} + +void +rf_FreeAccessStripeMapComponent(p) + RF_AccessStripeMap_t *p; +{ + RF_FREELIST_FREE(rf_asm_freelist, p, next); +} + +static void +rf_FreeASMList(l_start, l_end, count) + RF_AccessStripeMap_t *l_start, *l_end; + int count; +{ + RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count); +} + +void +rf_FreeAccessStripeMap(hdr) + RF_AccessStripeMapHeader_t *hdr; +{ + RF_AccessStripeMap_t *p, *pt = NULL; + RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL; + int count = 0, t, asm_count = 0; + + for (p = hdr->stripeMap; p; p = p->next) { + + /* link the 3 pda lists into the accumulating pda list */ + + if (!pdaList) + pdaList = p->qInfo; + else + pdaEnd->next = p->qInfo; + for (trailer = NULL, pdp = p->qInfo; pdp;) { + trailer = pdp; + pdp = pdp->next; + count++; + } + if (trailer) + pdaEnd = trailer; + + if (!pdaList) + pdaList = p->parityInfo; + else + pdaEnd->next = p->parityInfo; + for (trailer = NULL, pdp = p->parityInfo; pdp;) { + trailer = pdp; + pdp = pdp->next; + count++; + } + if (trailer) + pdaEnd = trailer; + + if (!pdaList) + pdaList = p->physInfo; + else + pdaEnd->next = p->physInfo; + for (trailer = NULL, pdp = p->physInfo; pdp;) { + trailer = pdp; + pdp = pdp->next; + count++; + } + if (trailer) + pdaEnd = trailer; + + pt = p; + asm_count++; + } + + /* debug only */ + for (t = 0, pdp = pdaList; pdp; pdp = pdp->next) + t++; + RF_ASSERT(t == count); + + if (pdaList) + rf_FreePDAList(pdaList, pdaEnd, count); + rf_FreeASMList(hdr->stripeMap, pt, asm_count); + rf_FreeAccessStripeMapHeader(hdr); +} +/* We can't use the large write optimization if there are any failures in the stripe. + * In the declustered layout, there is no way to immediately determine what disks + * constitute a stripe, so we actually have to hunt through the stripe looking for failures. + * The reason we map the parity instead of just using asm->parityInfo->col is because + * the latter may have been already redirected to a spare drive, which would + * mess up the computation of the stripe offset. + * + * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. + */ +int +rf_CheckStripeForFailures(raidPtr, asmap) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; +{ + RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_StripeCount_t stripeOffset; + int numFailures; + RF_RaidAddr_t sosAddr; + RF_SectorNum_t diskOffset, poffset; + RF_RowCol_t testrow; + + /* quick out in the fault-free case. */ + RF_LOCK_MUTEX(raidPtr->mutex); + numFailures = raidPtr->numFailures; + RF_UNLOCK_MUTEX(raidPtr->mutex); + if (numFailures == 0) + return (0); + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + row = asmap->physInfo->row; + (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow); + (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */ + + /* this need not be true if we've redirected the access to a spare in + * another row RF_ASSERT(row == testrow); */ + stripeOffset = 0; + for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) { + if (diskids[i] != pcol) { + if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) { + if (raidPtr->status[testrow] != rf_rs_reconstructing) + return (1); + RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]); + layoutPtr->map->MapSector(raidPtr, + sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit, + &trow, &tcol, &diskOffset, 0); + RF_ASSERT((trow == testrow) && (tcol == diskids[i])); + if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset)) + return (1); + asmap->flags |= RF_ASM_REDIR_LARGE_WRITE; + return (0); + } + stripeOffset++; + } + } + return (0); +} +/* + return the number of failed data units in the stripe. +*/ + +int +rf_NumFailedDataUnitsInStripe(raidPtr, asmap) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_RowCol_t trow, tcol, row, i; + RF_SectorNum_t diskOffset; + RF_RaidAddr_t sosAddr; + int numFailures; + + /* quick out in the fault-free case. */ + RF_LOCK_MUTEX(raidPtr->mutex); + numFailures = raidPtr->numFailures; + RF_UNLOCK_MUTEX(raidPtr->mutex); + if (numFailures == 0) + return (0); + numFailures = 0; + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + row = asmap->physInfo->row; + for (i = 0; i < layoutPtr->numDataCol; i++) { + (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit, + &trow, &tcol, &diskOffset, 0); + if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status)) + numFailures++; + } + + return numFailures; +} + + +/***************************************************************************************** + * + * debug routines + * + ****************************************************************************************/ + +void +rf_PrintAccessStripeMap(asm_h) + RF_AccessStripeMapHeader_t *asm_h; +{ + rf_PrintFullAccessStripeMap(asm_h, 0); +} + +void +rf_PrintFullAccessStripeMap(asm_h, prbuf) + RF_AccessStripeMapHeader_t *asm_h; + int prbuf; /* flag to print buffer pointers */ +{ + int i; + RF_AccessStripeMap_t *asmap = asm_h->stripeMap; + RF_PhysDiskAddr_t *p; + printf("%d stripes total\n", (int) asm_h->numStripes); + for (; asmap; asmap = asmap->next) { + /* printf("Num failures: %d\n",asmap->numDataFailed); */ + /* printf("Num sectors: + * %d\n",(int)asmap->totalSectorsAccessed); */ + printf("Stripe %d (%d sectors), failures: %d data, %d parity: ", + (int) asmap->stripeID, + (int) asmap->totalSectorsAccessed, + (int) asmap->numDataFailed, + (int) asmap->numParityFailed); + if (asmap->parityInfo) { + printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col, + (int) asmap->parityInfo->startSector, + (int) (asmap->parityInfo->startSector + + asmap->parityInfo->numSector - 1)); + if (prbuf) + printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr); + if (asmap->parityInfo->next) { + printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row, + asmap->parityInfo->next->col, + (int) asmap->parityInfo->next->startSector, + (int) (asmap->parityInfo->next->startSector + + asmap->parityInfo->next->numSector - 1)); + if (prbuf) + printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr); + RF_ASSERT(asmap->parityInfo->next->next == NULL); + } + printf("]\n\t"); + } + for (i = 0, p = asmap->physInfo; p; p = p->next, i++) { + printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector, + (int) (p->startSector + p->numSector - 1)); + if (prbuf) + printf("b0x%lx ", (unsigned long) p->bufPtr); + if (i && !(i & 1)) + printf("\n\t"); + } + printf("\n"); + p = asm_h->stripeMap->failedPDAs[0]; + if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1) + printf("[multiple failures]\n"); + else + if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0) + printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col, + (int) p->startSector, (int) (p->startSector + p->numSector - 1)); + } +} + +void +rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidAddr; + RF_SectorCount_t numBlocks; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); + + printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t"); + for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) { + printf("%d (0x%x), ", (int) ra, (int) ra); + } + printf("\n"); + printf("Offset into stripe unit: %d (0x%x)\n", + (int) (raidAddr % layoutPtr->sectorsPerStripeUnit), + (int) (raidAddr % layoutPtr->sectorsPerStripeUnit)); +} +/* + given a parity descriptor and the starting address within a stripe, + range restrict the parity descriptor to touch only the correct stuff. +*/ +void +rf_ASMParityAdjust( + RF_PhysDiskAddr_t * toAdjust, + RF_StripeNum_t startAddrWithinStripe, + RF_SectorNum_t endAddress, + RF_RaidLayout_t * layoutPtr, + RF_AccessStripeMap_t * asm_p) +{ + RF_PhysDiskAddr_t *new_pda; + + /* when we're accessing only a portion of one stripe unit, we want the + * parity descriptor to identify only the chunk of parity associated + * with the data. When the access spans exactly one stripe unit + * boundary and is less than a stripe unit in size, it uses two + * disjoint regions of the parity unit. When an access spans more + * than one stripe unit boundary, it uses all of the parity unit. + * + * To better handle the case where stripe units are small, we may + * eventually want to change the 2nd case so that if the SU size is + * below some threshold, we just read/write the whole thing instead of + * breaking it up into two accesses. */ + if (asm_p->numStripeUnitsAccessed == 1) { + int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); + toAdjust->startSector += x; + toAdjust->raidAddress += x; + toAdjust->numSector = asm_p->physInfo->numSector; + RF_ASSERT(toAdjust->numSector != 0); + } else + if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) { + int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); + + /* create a second pda and copy the parity map info + * into it */ + RF_ASSERT(toAdjust->next == NULL); + new_pda = toAdjust->next = rf_AllocPhysDiskAddr(); + *new_pda = *toAdjust; /* structure assignment */ + new_pda->next = NULL; + + /* adjust the start sector & number of blocks for the + * first parity pda */ + toAdjust->startSector += x; + toAdjust->raidAddress += x; + toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe; + RF_ASSERT(toAdjust->numSector != 0); + + /* adjust the second pda */ + new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress); + /* new_pda->raidAddress = + * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, + * toAdjust->raidAddress); */ + RF_ASSERT(new_pda->numSector != 0); + } +} +/* + Check if a disk has been spared or failed. If spared, + redirect the I/O. + If it has been failed, record it in the asm pointer. + Fourth arg is whether data or parity. +*/ +void +rf_ASMCheckStatus( + RF_Raid_t * raidPtr, + RF_PhysDiskAddr_t * pda_p, + RF_AccessStripeMap_t * asm_p, + RF_RaidDisk_t ** disks, + int parity) +{ + RF_DiskStatus_t dstatus; + RF_RowCol_t frow, fcol; + + dstatus = disks[pda_p->row][pda_p->col].status; + + if (dstatus == rf_ds_spared) { + /* if the disk has been spared, redirect access to the spare */ + frow = pda_p->row; + fcol = pda_p->col; + pda_p->row = disks[frow][fcol].spareRow; + pda_p->col = disks[frow][fcol].spareCol; + } else + if (dstatus == rf_ds_dist_spared) { + /* ditto if disk has been spared to dist spare space */ + RF_RowCol_t or = pda_p->row, oc = pda_p->col; + RF_SectorNum_t oo = pda_p->startSector; + + if (pda_p->type == RF_PDA_TYPE_DATA) + raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP); + else + raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP); + + if (rf_mapDebug) { + printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo, + pda_p->row, pda_p->col, (int) pda_p->startSector); + } + } else + if (RF_DEAD_DISK(dstatus)) { + /* if the disk is inaccessible, mark the + * failure */ + if (parity) + asm_p->numParityFailed++; + else { + asm_p->numDataFailed++; +#if 0 + /* XXX Do we really want this spewing + * out on the console? GO */ + printf("DATA_FAILED!\n"); +#endif + } + asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p; + asm_p->numFailedPDAs++; +#if 0 + switch (asm_p->numParityFailed + asm_p->numDataFailed) { + case 1: + asm_p->failedPDAs[0] = pda_p; + break; + case 2: + asm_p->failedPDAs[1] = pda_p; + default: + break; + } +#endif + } + /* the redirected access should never span a stripe unit boundary */ + RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) == + rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1)); + RF_ASSERT(pda_p->col != -1); +} |