diff options
Diffstat (limited to 'sys/dev/raidframe/rf_dagfuncs.c')
-rw-r--r-- | sys/dev/raidframe/rf_dagfuncs.c | 904 |
1 files changed, 904 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_dagfuncs.c b/sys/dev/raidframe/rf_dagfuncs.c new file mode 100644 index 0000000..09ee274 --- /dev/null +++ b/sys/dev/raidframe/rf_dagfuncs.c @@ -0,0 +1,904 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagfuncs.c,v 1.7 2001/02/03 12:51:10 mrg Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * dagfuncs.c -- DAG node execution routines + * + * Rules: + * 1. Every DAG execution function must eventually cause node->status to + * get set to "good" or "bad", and "FinishNode" to be called. In the + * case of nodes that complete immediately (xor, NullNodeFunc, etc), + * the node execution function can do these two things directly. In + * the case of nodes that have to wait for some event (a disk read to + * complete, a lock to be released, etc) to occur before they can + * complete, this is typically achieved by having whatever module + * is doing the operation call GenericWakeupFunc upon completion. + * 2. DAG execution functions should check the status in the DAG header + * and NOP out their operations if the status is not "enable". However, + * execution functions that release resources must be sure to release + * them even when they NOP out the function that would use them. + * Functions that acquire resources should go ahead and acquire them + * even when they NOP, so that a downstream release node will not have + * to check to find out whether or not the acquire was suppressed. + */ + +#include <sys/param.h> +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#include <sys/filio.h> +#endif + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_dagutils.h> + +#include <dev/raidframe/rf_kintf.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 +#include <dev/raidframe/rf_paritylog.h> +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + +int (*rf_DiskReadFunc) (RF_DagNode_t *); +int (*rf_DiskWriteFunc) (RF_DagNode_t *); +int (*rf_DiskReadUndoFunc) (RF_DagNode_t *); +int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *); +int (*rf_DiskUnlockFunc) (RF_DagNode_t *); +int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *); +int (*rf_RegularXorUndoFunc) (RF_DagNode_t *); +int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *); +int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *); + +/***************************************************************************************** + * main (only) configuration routine for this module + ****************************************************************************************/ +int +rf_ConfigureDAGFuncs(listp) + RF_ShutdownList_t **listp; +{ + RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2)); + rf_DiskReadFunc = rf_DiskReadFuncForThreads; + rf_DiskReadUndoFunc = rf_DiskUndoFunc; + rf_DiskWriteFunc = rf_DiskWriteFuncForThreads; + rf_DiskWriteUndoFunc = rf_DiskUndoFunc; + rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads; + rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc; + rf_RegularXorUndoFunc = rf_NullNodeUndoFunc; + rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc; + rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc; + return (0); +} + + + +/***************************************************************************************** + * the execution function associated with a terminate node + ****************************************************************************************/ +int +rf_TerminateFunc(node) + RF_DagNode_t *node; +{ + RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes); + node->status = rf_good; + return (rf_FinishNode(node, RF_THREAD_CONTEXT)); +} + +int +rf_TerminateUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} + + +/***************************************************************************************** + * execution functions associated with a mirror node + * + * parameters: + * + * 0 - physical disk addres of data + * 1 - buffer for holding read data + * 2 - parity stripe ID + * 3 - flags + * 4 - physical disk address of mirror (parity) + * + ****************************************************************************************/ + +int +rf_DiskReadMirrorIdleFunc(node) + RF_DagNode_t *node; +{ + /* select the mirror copy with the shortest queue and fill in node + * parameters with physical disk address */ + + rf_SelectMirrorDiskIdle(node); + return (rf_DiskReadFunc(node)); +} + +int +rf_DiskReadMirrorPartitionFunc(node) + RF_DagNode_t *node; +{ + /* select the mirror copy with the shortest queue and fill in node + * parameters with physical disk address */ + + rf_SelectMirrorDiskPartition(node); + return (rf_DiskReadFunc(node)); +} + +int +rf_DiskReadMirrorUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} + + + +#if RF_INCLUDE_PARITYLOGGING > 0 +/***************************************************************************************** + * the execution function associated with a parity log update node + ****************************************************************************************/ +int +rf_ParityLogUpdateFunc(node) + RF_DagNode_t *node; +{ + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_ParityLogData_t *logData; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + logData = rf_CreateParityLogData(RF_UPDATE, pda, buf, + (RF_Raid_t *) (node->dagHdr->raidPtr), + node->wakeFunc, (void *) node, + node->dagHdr->tracerec, timer); + if (logData) + rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); + else { + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->plog_us += RF_ETIMER_VAL_US(timer); + (node->wakeFunc) (node, ENOMEM); + } + } + return (0); +} + + +/***************************************************************************************** + * the execution function associated with a parity log overwrite node + ****************************************************************************************/ +int +rf_ParityLogOverwriteFunc(node) + RF_DagNode_t *node; +{ + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_ParityLogData_t *logData; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr), + node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer); + if (logData) + rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); + else { + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->plog_us += RF_ETIMER_VAL_US(timer); + (node->wakeFunc) (node, ENOMEM); + } + } + return (0); +} +#else /* RF_INCLUDE_PARITYLOGGING > 0 */ + +int +rf_ParityLogUpdateFunc(node) + RF_DagNode_t *node; +{ + return (0); +} +int +rf_ParityLogOverwriteFunc(node) + RF_DagNode_t *node; +{ + return (0); +} +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + +int +rf_ParityLogUpdateUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} + +int +rf_ParityLogOverwriteUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} +/***************************************************************************************** + * the execution function associated with a NOP node + ****************************************************************************************/ +int +rf_NullNodeFunc(node) + RF_DagNode_t *node; +{ + node->status = rf_good; + return (rf_FinishNode(node, RF_THREAD_CONTEXT)); +} + +int +rf_NullNodeUndoFunc(node) + RF_DagNode_t *node; +{ + node->status = rf_undone; + return (rf_FinishNode(node, RF_THREAD_CONTEXT)); +} + + +/***************************************************************************************** + * the execution function associated with a disk-read node + ****************************************************************************************/ +int +rf_DiskReadFuncForThreads(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; + unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); + unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v); + unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); + unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); + RF_DiskQueueDataFlags_t flags = 0; + RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + void *b_proc = NULL; + +#if defined(__NetBSD__) + if (node->dagHdr->bp) + b_proc = (void *) ((RF_Buf_t) node->dagHdr->bp)->b_proc; +#endif + + RF_ASSERT(!(lock && unlock)); + flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0; + flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0; + + req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, + buf, parityStripeID, which_ru, + (int (*) (void *, int)) node->wakeFunc, + node, NULL, node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), flags, b_proc); + if (!req) { + (node->wakeFunc) (node, ENOMEM); + } else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority); + } + return (0); +} + + +/***************************************************************************************** + * the execution function associated with a disk-write node + ****************************************************************************************/ +int +rf_DiskWriteFuncForThreads(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; + unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); + unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v); + unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); + unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); + RF_DiskQueueDataFlags_t flags = 0; + RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + void *b_proc = NULL; + +#if defined(__NetBSD__) + if (node->dagHdr->bp) + b_proc = (void *) ((RF_Buf_t) node->dagHdr->bp)->b_proc; +#endif + + /* normal processing (rollaway or forward recovery) begins here */ + RF_ASSERT(!(lock && unlock)); + flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0; + flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0; + req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, + buf, parityStripeID, which_ru, + (int (*) (void *, int)) node->wakeFunc, + (void *) node, NULL, + node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), + flags, b_proc); + + if (!req) { + (node->wakeFunc) (node, ENOMEM); + } else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority); + } + + return (0); +} +/***************************************************************************************** + * the undo function for disk nodes + * Note: this is not a proper undo of a write node, only locks are released. + * old data is not restored to disk! + ****************************************************************************************/ +int +rf_DiskUndoFunc(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + + req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, + 0L, 0, NULL, 0L, 0, + (int (*) (void *, int)) node->wakeFunc, + (void *) node, + NULL, node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), + RF_UNLOCK_DISK_QUEUE, NULL); + if (!req) + (node->wakeFunc) (node, ENOMEM); + else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY); + } + + return (0); +} +/***************************************************************************************** + * the execution function associated with an "unlock disk queue" node + ****************************************************************************************/ +int +rf_DiskUnlockFuncForThreads(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + + req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, + 0L, 0, NULL, 0L, 0, + (int (*) (void *, int)) node->wakeFunc, + (void *) node, + NULL, node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), + RF_UNLOCK_DISK_QUEUE, NULL); + if (!req) + (node->wakeFunc) (node, ENOMEM); + else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY); + } + + return (0); +} +/***************************************************************************************** + * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes, + * the routine is called to set the node status and inform the execution engine that + * the node has fired. + ****************************************************************************************/ +int +rf_GenericWakeupFunc(node, status) + RF_DagNode_t *node; + int status; +{ + switch (node->status) { + case rf_bwd1: + node->status = rf_bwd2; + if (node->dagFuncData) + rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); + return (rf_DiskWriteFuncForThreads(node)); + break; + case rf_fired: + if (status) + node->status = rf_bad; + else + node->status = rf_good; + break; + case rf_recover: + /* probably should never reach this case */ + if (status) + node->status = rf_panic; + else + node->status = rf_undone; + break; + default: + printf("rf_GenericWakeupFunc:"); + printf("node->status is %d,", node->status); + printf("status is %d \n", status); + RF_PANIC(); + break; + } + if (node->dagFuncData) + rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); + return (rf_FinishNode(node, RF_INTR_CONTEXT)); +} + + +/***************************************************************************************** + * there are three distinct types of xor nodes + * A "regular xor" is used in the fault-free case where the access spans a complete + * stripe unit. It assumes that the result buffer is one full stripe unit in size, + * and uses the stripe-unit-offset values that it computes from the PDAs to determine + * where within the stripe unit to XOR each argument buffer. + * + * A "simple xor" is used in the fault-free case where the access touches only a portion + * of one (or two, in some cases) stripe unit(s). It assumes that all the argument + * buffers are of the same size and have the same stripe unit offset. + * + * A "recovery xor" is used in the degraded-mode case. It's similar to the regular + * xor function except that it takes the failed PDA as an additional parameter, and + * uses it to determine what portions of the argument buffers need to be xor'd into + * the result buffer, and where in the result buffer they should go. + ****************************************************************************************/ + +/* xor the params together and store the result in the result field. + * assume the result field points to a buffer that is the size of one SU, + * and use the pda params to determine where within the buffer to XOR + * the input buffers. + */ +int +rf_RegularXorFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + int i, retcode; + + retcode = 0; + if (node->dagHdr->status == rf_enable) { + /* don't do the XOR if the input is the same as the output */ + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 1; i += 2) + if (node->params[i + 1].p != node->results[0]) { + retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p, + (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, retcode)); /* call wake func + * explicitly since no + * I/O in this node */ +} +/* xor the inputs into the result buffer, ignoring placement issues */ +int +rf_SimpleXorFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + int i, retcode = 0; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + /* don't do the XOR if the input is the same as the output */ + for (i = 0; i < node->numParams - 1; i += 2) + if (node->params[i + 1].p != node->results[0]) { + retcode = rf_bxor((char *)node->params[i + 1].p, + (char *)node->results[0], + rf_RaidAddressToByte(raidPtr, + ((RF_PhysDiskAddr_t *)node->params[i].p)-> + numSector), (RF_Buf_t)node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, retcode)); /* call wake func + * explicitly since no + * I/O in this node */ +} +/* this xor is used by the degraded-mode dag functions to recover lost data. + * the second-to-last parameter is the PDA for the failed portion of the access. + * the code here looks at this PDA and assumes that the xor target buffer is + * equal in size to the number of sectors in the failed PDA. It then uses + * the other PDAs in the parameter list to determine where within the target + * buffer the corresponding data should be xored. + */ +int +rf_RecoveryXorFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; + int i, retcode = 0; + RF_PhysDiskAddr_t *pda; + int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 2; i += 2) + if (node->params[i + 1].p != node->results[0]) { + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + srcbuf = (char *) node->params[i + 1].p; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); + retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, retcode)); +} +/***************************************************************************************** + * The next three functions are utilities used by the above xor-execution functions. + ****************************************************************************************/ + + +/* + * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit + * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the + * access described by pda is one SU in size (which by implication means it's SU-aligned), + * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one + * SU in size the XOR occurs on only the portion of targbuf identified in the pda. + */ + +int +rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp) + RF_Raid_t *raidPtr; + RF_PhysDiskAddr_t *pda; + char *srcbuf; + char *targbuf; + void *bp; +{ + char *targptr; + int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; + int SUOffset = pda->startSector % sectPerSU; + int length, retcode = 0; + + RF_ASSERT(pda->numSector <= sectPerSU); + + targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset); + length = rf_RaidAddressToByte(raidPtr, pda->numSector); + retcode = rf_bxor(srcbuf, targptr, length, bp); + return (retcode); +} +/* it really should be the case that the buffer pointers (returned by malloc) + * are aligned to the natural word size of the machine, so this is the only + * case we optimize for. The length should always be a multiple of the sector + * size, so there should be no problem with leftover bytes at the end. + */ +int +rf_bxor(src, dest, len, bp) + char *src; + char *dest; + int len; + void *bp; +{ + unsigned mask = sizeof(long) - 1, retcode = 0; + + if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) { + retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp); + } else { + RF_ASSERT(0); + } + return (retcode); +} +/* map a user buffer into kernel space, if necessary */ +#define REMAP_VA(_bp,x,y) (y) = (x) + +/* When XORing in kernel mode, we need to map each user page to kernel space before we can access it. + * We don't want to assume anything about which input buffers are in kernel/user + * space, nor about their alignment, so in each loop we compute the maximum number + * of bytes that we can xor without crossing any page boundaries, and do only this many + * bytes before the next remap. + */ +int +rf_longword_bxor(src, dest, len, bp) + unsigned long *src; + unsigned long *dest; + int len; /* longwords */ + void *bp; +{ + unsigned long *end = src + len; + unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */ + unsigned long *pg_src, *pg_dest; /* per-page source/dest + * pointers */ + int longs_this_time;/* # longwords to xor in the current iteration */ + + REMAP_VA(bp, src, pg_src); + REMAP_VA(bp, dest, pg_dest); + if (!pg_src || !pg_dest) + return (EFAULT); + + while (len >= 4) { + longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */ + src += longs_this_time; + dest += longs_this_time; + len -= longs_this_time; + while (longs_this_time >= 4) { + d0 = pg_dest[0]; + d1 = pg_dest[1]; + d2 = pg_dest[2]; + d3 = pg_dest[3]; + s0 = pg_src[0]; + s1 = pg_src[1]; + s2 = pg_src[2]; + s3 = pg_src[3]; + pg_dest[0] = d0 ^ s0; + pg_dest[1] = d1 ^ s1; + pg_dest[2] = d2 ^ s2; + pg_dest[3] = d3 ^ s3; + pg_src += 4; + pg_dest += 4; + longs_this_time -= 4; + } + while (longs_this_time > 0) { /* cannot cross any page + * boundaries here */ + *pg_dest++ ^= *pg_src++; + longs_this_time--; + } + + /* either we're done, or we've reached a page boundary on one + * (or possibly both) of the pointers */ + if (len) { + if (RF_PAGE_ALIGNED(src)) + REMAP_VA(bp, src, pg_src); + if (RF_PAGE_ALIGNED(dest)) + REMAP_VA(bp, dest, pg_dest); + if (!pg_src || !pg_dest) + return (EFAULT); + } + } + while (src < end) { + *pg_dest++ ^= *pg_src++; + src++; + dest++; + len--; + if (RF_PAGE_ALIGNED(src)) + REMAP_VA(bp, src, pg_src); + if (RF_PAGE_ALIGNED(dest)) + REMAP_VA(bp, dest, pg_dest); + } + RF_ASSERT(len == 0); + return (0); +} + + +/* + dst = a ^ b ^ c; + a may equal dst + see comment above longword_bxor +*/ +int +rf_longword_bxor3(dst, a, b, c, len, bp) + unsigned long *dst; + unsigned long *a; + unsigned long *b; + unsigned long *c; + int len; /* length in longwords */ + void *bp; +{ + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest + * pointers */ + int longs_this_time;/* # longs to xor in the current iteration */ + char dst_is_a = 0; + + REMAP_VA(bp, a, pg_a); + REMAP_VA(bp, b, pg_b); + REMAP_VA(bp, c, pg_c); + if (a == dst) { + pg_dst = pg_a; + dst_is_a = 1; + } else { + REMAP_VA(bp, dst, pg_dst); + } + + /* align dest to cache line. Can't cross a pg boundary on dst here. */ + while ((((unsigned long) pg_dst) & 0x1f)) { + *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; + dst++; + a++; + b++; + c++; + if (RF_PAGE_ALIGNED(a)) { + REMAP_VA(bp, a, pg_a); + if (!pg_a) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(b)) { + REMAP_VA(bp, a, pg_b); + if (!pg_b) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(c)) { + REMAP_VA(bp, a, pg_c); + if (!pg_c) + return (EFAULT); + } + len--; + } + + while (len > 4) { + longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT); + a += longs_this_time; + b += longs_this_time; + c += longs_this_time; + dst += longs_this_time; + len -= longs_this_time; + while (longs_this_time >= 4) { + a0 = pg_a[0]; + longs_this_time -= 4; + + a1 = pg_a[1]; + a2 = pg_a[2]; + + a3 = pg_a[3]; + pg_a += 4; + + b0 = pg_b[0]; + b1 = pg_b[1]; + + b2 = pg_b[2]; + b3 = pg_b[3]; + /* start dual issue */ + a0 ^= b0; + b0 = pg_c[0]; + + pg_b += 4; + a1 ^= b1; + + a2 ^= b2; + a3 ^= b3; + + b1 = pg_c[1]; + a0 ^= b0; + + b2 = pg_c[2]; + a1 ^= b1; + + b3 = pg_c[3]; + a2 ^= b2; + + pg_dst[0] = a0; + a3 ^= b3; + pg_dst[1] = a1; + pg_c += 4; + pg_dst[2] = a2; + pg_dst[3] = a3; + pg_dst += 4; + } + while (longs_this_time > 0) { /* cannot cross any page + * boundaries here */ + *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; + longs_this_time--; + } + + if (len) { + if (RF_PAGE_ALIGNED(a)) { + REMAP_VA(bp, a, pg_a); + if (!pg_a) + return (EFAULT); + if (dst_is_a) + pg_dst = pg_a; + } + if (RF_PAGE_ALIGNED(b)) { + REMAP_VA(bp, b, pg_b); + if (!pg_b) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(c)) { + REMAP_VA(bp, c, pg_c); + if (!pg_c) + return (EFAULT); + } + if (!dst_is_a) + if (RF_PAGE_ALIGNED(dst)) { + REMAP_VA(bp, dst, pg_dst); + if (!pg_dst) + return (EFAULT); + } + } + } + while (len) { + *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; + dst++; + a++; + b++; + c++; + if (RF_PAGE_ALIGNED(a)) { + REMAP_VA(bp, a, pg_a); + if (!pg_a) + return (EFAULT); + if (dst_is_a) + pg_dst = pg_a; + } + if (RF_PAGE_ALIGNED(b)) { + REMAP_VA(bp, b, pg_b); + if (!pg_b) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(c)) { + REMAP_VA(bp, c, pg_c); + if (!pg_c) + return (EFAULT); + } + if (!dst_is_a) + if (RF_PAGE_ALIGNED(dst)) { + REMAP_VA(bp, dst, pg_dst); + if (!pg_dst) + return (EFAULT); + } + len--; + } + return (0); +} + +int +rf_bxor3(dst, a, b, c, len, bp) + unsigned char *dst; + unsigned char *a; + unsigned char *b; + unsigned char *c; + unsigned long len; + void *bp; +{ + RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0); + + return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a, + (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp)); +} |