diff options
Diffstat (limited to 'sys/dev/raidframe/rf_dagffwr.c')
-rw-r--r-- | sys/dev/raidframe/rf_dagffwr.c | 2129 |
1 files changed, 2129 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_dagffwr.c b/sys/dev/raidframe/rf_dagffwr.c new file mode 100644 index 0000000..7520cba --- /dev/null +++ b/sys/dev/raidframe/rf_dagffwr.c @@ -0,0 +1,2129 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagffwr.c,v 1.5 2000/01/07 03:40:58 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagff.c + * + * code for creating fault-free DAGs + * + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagffwr.h> + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + + +void +rf_CreateNonRedundantWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_IoType_t type) +{ + rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_WRITE); +} + +void +rf_CreateRAID0WriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_IoType_t type) +{ + rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_WRITE); +} + +void +rf_CreateSmallWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + /* "normal" rollaway */ + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + &rf_xorFuncs, NULL); +} + +void +rf_CreateLargeWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + /* "normal" rollaway */ + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + 1, rf_RegularXorFunc, RF_TRUE); +} + + +/****************************************************************************** + * + * DAG creation code begins here + */ + + +/****************************************************************************** + * + * creates a DAG to perform a large-write operation: + * + * / Rod \ / Wnd \ + * H -- block- Rod - Xor - Cmt - Wnd --- T + * \ Rod / \ Wnp / + * \[Wnq]/ + * + * The XOR node also does the Q calculation in the P+Q architecture. + * All nodes are before the commit node (Cmt) are assumed to be atomic and + * undoable - or - they make no changes to permanent state. + * + * Rod = read old data + * Cmt = commit node + * Wnp = write new parity + * Wnd = write new data + * Wnq = write new "q" + * [] denotes optional segments in the graph + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + * nfaults - number of faults array can tolerate + * (equal to # redundancy units in stripe) + * redfuncs - list of redundancy generating functions + * + *****************************************************************************/ + +void +rf_CommonCreateLargeWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int nfaults, + int (*redFunc) (RF_DagNode_t *), + int allowBufferRecycle) +{ + RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode; + RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode; + int nWndNodes, nRodNodes, i, nodeNum, asmNum; + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_StripeNum_t parityStripeID; + char *sosBuffer, *eosBuffer; + RF_ReconUnitNum_t which_ru; + RF_RaidLayout_t *layoutPtr; + RF_PhysDiskAddr_t *pda; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, + &which_ru); + + if (rf_dagDebug) { + printf("[Creating large-write DAG]\n"); + } + dag_h->creator = "LargeWriteDAG"; + + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */ + nWndNodes = asmap->numStripeUnitsAccessed; + RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + wndNodes = &nodes[i]; + i += nWndNodes; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, + &nRodNodes, &sosBuffer, &eosBuffer, allocList); + if (nRodNodes > 0) { + RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + } else { + rodNodes = NULL; + } + + /* begin node initialization */ + if (nRodNodes > 0) { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList); + } else { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + } + + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, + nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, + 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); + + /* initialize the Rod nodes */ + for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { + if (new_asm_h[asmNum]) { + pda = new_asm_h[asmNum]->stripeMap->physInfo; + while (pda) { + rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Rod", allocList); + rodNodes[nodeNum].params[0].p = pda; + rodNodes[nodeNum].params[1].p = pda->bufPtr; + rodNodes[nodeNum].params[2].v = parityStripeID; + rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + nodeNum++; + pda = pda->next; + } + } + } + RF_ASSERT(nodeNum == nRodNodes); + + /* initialize the wnd nodes */ + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda != NULL); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + + /* initialize the redundancy node */ + if (nRodNodes > 0) { + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, + "Xr ", allocList); + } else { + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + 1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); + } + xorNode->flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < nWndNodes; i++) { + xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ + xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ + } + for (i = 0; i < nRodNodes; i++) { + xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ + xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ + } + /* xor node needs to get at RAID information */ + xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; + + /* + * Look for an Rod node that reads a complete SU. If none, alloc a buffer + * to receive the parity info. Note that we can't use a new data buffer + * because it will not have gotten written when the xor occurs. + */ + if (allowBufferRecycle) { + for (i = 0; i < nRodNodes; i++) { + if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) + break; + } + } + if ((!allowBufferRecycle) || (i == nRodNodes)) { + RF_CallocAndAdd(xorNode->results[0], 1, + rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), + (void *), allocList); + } else { + xorNode->results[0] = rodNodes[i].params[1].p; + } + + /* initialize the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = asmap->parityInfo; + wnpNode->params[1].p = xorNode->results[0]; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + + if (nfaults == 2) { + /* + * We never try to recycle a buffer for the Q calcuation + * in addition to the parity. This would cause two buffers + * to get smashed during the P and Q calculation, guaranteeing + * one would be wrong. + */ + RF_CallocAndAdd(xorNode->results[1], 1, + rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), + (void *), allocList); + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = asmap->qInfo; + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + } + /* + * Connect nodes to form graph. + */ + + /* connect dag header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + if (nRodNodes > 0) { + /* connect the block node to the Rod nodes */ + RF_ASSERT(blockNode->numSuccedents == nRodNodes); + RF_ASSERT(xorNode->numAntecedents == nRodNodes); + for (i = 0; i < nRodNodes; i++) { + RF_ASSERT(rodNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rodNodes[i]; + rodNodes[i].antecedents[0] = blockNode; + rodNodes[i].antType[0] = rf_control; + + /* connect the Rod nodes to the Xor node */ + RF_ASSERT(rodNodes[i].numSuccedents == 1); + rodNodes[i].succedents[0] = xorNode; + xorNode->antecedents[i] = &rodNodes[i]; + xorNode->antType[i] = rf_trueData; + } + } else { + /* connect the block node to the Xor node */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(xorNode->numAntecedents == 1); + blockNode->succedents[0] = xorNode; + xorNode->antecedents[0] = blockNode; + xorNode->antType[0] = rf_control; + } + + /* connect the xor node to the commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* connect the commit node to the write nodes */ + RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numAntecedents == 1); + commitNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = commitNode; + wndNodes[i].antType[0] = rf_control; + } + RF_ASSERT(wnpNode->numAntecedents == 1); + commitNode->succedents[nWndNodes] = wnpNode; + wnpNode->antecedents[0] = commitNode; + wnpNode->antType[0] = rf_trueData; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + commitNode->succedents[nWndNodes + 1] = wnqNode; + wnqNode->antecedents[0] = commitNode; + wnqNode->antType[0] = rf_trueData; + } + /* connect the write nodes to the term node */ + RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numSuccedents == 1); + wndNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &wndNodes[i]; + termNode->antType[i] = rf_control; + } + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes] = wnpNode; + termNode->antType[nWndNodes] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes + 1] = wnqNode; + termNode->antType[nWndNodes + 1] = rf_control; + } +} +/****************************************************************************** + * + * creates a DAG to perform a small-write operation (either raid 5 or pq), + * which is as follows: + * + * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm + * \- Rod X / \----> Wnd [Und]-/ + * [\- Rod X / \---> Wnd [Und]-/] + * [\- Roq -> Q / \--> Wnq [Unq]-/] + * + * Rop = read old parity + * Rod = read old data + * Roq = read old "q" + * Cmt = commit node + * Und = unlock data disk + * Unp = unlock parity disk + * Unq = unlock q disk + * Wnp = write new parity + * Wnd = write new data + * Wnq = write new "q" + * [ ] denotes optional segments in the graph + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + * pfuncs - list of parity generating functions + * qfuncs - list of q generating functions + * + * A null qfuncs indicates single fault tolerant + *****************************************************************************/ + +void +rf_CommonCreateSmallWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, + RF_RedFuncs_t * qfuncs) +{ + RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; + RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; + RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes; + RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; + int i, j, nNodes, totalNumNodes, lu_flag; + RF_ReconUnitNum_t which_ru; + int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *); + int (*qfunc) (RF_DagNode_t *); + int numDataNodes, numParityNodes; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *pda; + char *name, *qname; + long nfaults; + + nfaults = qfuncs ? 2 : 1; + lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + pda = asmap->physInfo; + numDataNodes = asmap->numStripeUnitsAccessed; + numParityNodes = (asmap->parityInfo->next) ? 2 : 1; + + if (rf_dagDebug) { + printf("[Creating small-write DAG]\n"); + } + RF_ASSERT(numDataNodes > 0); + dag_h->creator = "SmallWriteDAG"; + + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* + * DAG creation occurs in four steps: + * 1. count the number of nodes in the DAG + * 2. create the nodes + * 3. initialize the nodes + * 4. connect the nodes + */ + + /* + * Step 1. compute number of nodes in the graph + */ + + /* number of nodes: a read and write for each data unit a redundancy + * computation node for each parity node (nfaults * nparity) a read + * and write for each parity unit a block and commit node (2) a + * terminate node if atomic RMW an unlock node for each data unit, + * redundancy unit */ + totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + + (nfaults * 2 * numParityNodes) + 3; + if (lu_flag) { + totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); + } + /* + * Step 2. create the nodes + */ + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + readDataNodes = &nodes[i]; + i += numDataNodes; + readParityNodes = &nodes[i]; + i += numParityNodes; + writeDataNodes = &nodes[i]; + i += numDataNodes; + writeParityNodes = &nodes[i]; + i += numParityNodes; + xorNodes = &nodes[i]; + i += numParityNodes; + termNode = &nodes[i]; + i += 1; + if (lu_flag) { + unlockDataNodes = &nodes[i]; + i += numDataNodes; + unlockParityNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockDataNodes = unlockParityNodes = NULL; + } + if (nfaults == 2) { + readQNodes = &nodes[i]; + i += numParityNodes; + writeQNodes = &nodes[i]; + i += numParityNodes; + qNodes = &nodes[i]; + i += numParityNodes; + if (lu_flag) { + unlockQNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockQNodes = NULL; + } + } else { + readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; + } + RF_ASSERT(i == totalNumNodes); + + /* + * Step 3. initialize the nodes + */ + /* initialize block node (Nil) */ + nNodes = numDataNodes + (nfaults * numParityNodes); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); + + /* initialize commit node (Cmt) */ + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList); + + /* initialize terminate node (Trm) */ + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList); + + /* initialize nodes which read old data (Rod) */ + for (i = 0; i < numDataNodes; i++) { + rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h, + "Rod", allocList); + RF_ASSERT(pda != NULL); + /* physical disk addr desc */ + readDataNodes[i].params[0].p = pda; + /* buffer to hold old data */ + readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, + dag_h, pda, allocList); + readDataNodes[i].params[2].v = parityStripeID; + readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readDataNodes[i].numSuccedents; j++) { + readDataNodes[i].propList[j] = NULL; + } + } + + /* initialize nodes which read old parity (Rop) */ + pda = asmap->parityInfo; + i = 0; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, + 0, dag_h, "Rop", allocList); + readParityNodes[i].params[0].p = pda; + /* buffer to hold old parity */ + readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, + dag_h, pda, allocList); + readParityNodes[i].params[2].v = parityStripeID; + readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readParityNodes[i].numSuccedents; j++) { + readParityNodes[i].propList[0] = NULL; + } + } + + /* initialize nodes which read old Q (Roq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList); + readQNodes[i].params[0].p = pda; + /* buffer to hold old Q */ + readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, + allocList); + readQNodes[i].params[2].v = parityStripeID; + readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readQNodes[i].numSuccedents; j++) { + readQNodes[i].propList[0] = NULL; + } + } + } + /* initialize nodes which write new data (Wnd) */ + pda = asmap->physInfo; + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, + rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Wnd", allocList); + /* physical disk addr desc */ + writeDataNodes[i].params[0].p = pda; + /* buffer holding new data to be written */ + writeDataNodes[i].params[1].p = pda->bufPtr; + writeDataNodes[i].params[2].v = parityStripeID; + writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, + rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, + "Und", allocList); + /* physical disk addr desc */ + unlockDataNodes[i].params[0].p = pda; + unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, lu_flag, which_ru); + } + pda = pda->next; + } + + /* + * Initialize nodes which compute new parity and Q. + */ + /* + * We use the simple XOR func in the double-XOR case, and when + * we're accessing only a portion of one stripe unit. The distinction + * between the two is that the regular XOR func assumes that the targbuf + * is a full SU in size, and examines the pda associated with the buffer + * to decide where within the buffer to XOR the data, whereas + * the simple XOR func just XORs the data into the start of the buffer. + */ + if ((numParityNodes == 2) || ((numDataNodes == 1) + && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { + func = pfuncs->simple; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->SimpleName; + if (qfuncs) { + qfunc = qfuncs->simple; + qname = qfuncs->SimpleName; + } else { + qfunc = NULL; + qname = NULL; + } + } else { + func = pfuncs->regular; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->RegularName; + if (qfuncs) { + qfunc = qfuncs->regular; + qname = qfuncs->RegularName; + } else { + qfunc = NULL; + qname = NULL; + } + } + /* + * Initialize the xor nodes: params are {pda,buf} + * from {Rod,Wnd,Rop} nodes, and raidPtr + */ + if (numParityNodes == 2) { + /* double-xor case */ + for (i = 0; i < numParityNodes; i++) { + /* note: no wakeup func for xor */ + rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, + 1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList); + xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; + xorNodes[i].params[0] = readDataNodes[i].params[0]; + xorNodes[i].params[1] = readDataNodes[i].params[1]; + xorNodes[i].params[2] = readParityNodes[i].params[0]; + xorNodes[i].params[3] = readParityNodes[i].params[1]; + xorNodes[i].params[4] = writeDataNodes[i].params[0]; + xorNodes[i].params[5] = writeDataNodes[i].params[1]; + xorNodes[i].params[6].p = raidPtr; + /* use old parity buf as target buf */ + xorNodes[i].results[0] = readParityNodes[i].params[1].p; + if (nfaults == 2) { + /* note: no wakeup func for qor */ + rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1, + (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList); + qNodes[i].params[0] = readDataNodes[i].params[0]; + qNodes[i].params[1] = readDataNodes[i].params[1]; + qNodes[i].params[2] = readQNodes[i].params[0]; + qNodes[i].params[3] = readQNodes[i].params[1]; + qNodes[i].params[4] = writeDataNodes[i].params[0]; + qNodes[i].params[5] = writeDataNodes[i].params[1]; + qNodes[i].params[6].p = raidPtr; + /* use old Q buf as target buf */ + qNodes[i].results[0] = readQNodes[i].params[1].p; + } + } + } else { + /* there is only one xor node in this case */ + rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1, + (numDataNodes + numParityNodes), + (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); + xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < numDataNodes + 1; i++) { + /* set up params related to Rod and Rop nodes */ + xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */ + } + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd and Wnp nodes */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */ + writeDataNodes[i].params[0]; + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */ + writeDataNodes[i].params[1]; + } + /* xor node needs to get at RAID information */ + xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; + xorNodes[0].results[0] = readParityNodes[0].params[1].p; + if (nfaults == 2) { + rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1, + (numDataNodes + numParityNodes), + (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, + qname, allocList); + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Rod */ + qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */ + } + /* and read old q */ + qNodes[0].params[2 * numDataNodes + 0] = /* pda */ + readQNodes[0].params[0]; + qNodes[0].params[2 * numDataNodes + 1] = /* buffer ptr */ + readQNodes[0].params[1]; + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd nodes */ + qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */ + writeDataNodes[i].params[0]; + qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */ + writeDataNodes[i].params[1]; + } + /* xor node needs to get at RAID information */ + qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; + qNodes[0].results[0] = readQNodes[0].params[1].p; + } + } + + /* initialize nodes which write new parity (Wnp) */ + pda = asmap->parityInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, + rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Wnp", allocList); + RF_ASSERT(pda != NULL); + writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeParityNodes[i].params[2].v = parityStripeID; + writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, + rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, + "Unp", allocList); + unlockParityNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, lu_flag, which_ru); + } + pda = pda->next; + } + + /* initialize nodes which write new Q (Wnq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, + rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Wnq", allocList); + RF_ASSERT(pda != NULL); + writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeQNodes[i].params[2].v = parityStripeID; + writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, + rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, + "Unq", allocList); + unlockQNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, lu_flag, which_ru); + } + pda = pda->next; + } + } + /* + * Step 4. connect the nodes. + */ + + /* connect header to block node */ + dag_h->succedents[0] = blockNode; + + /* connect block node to read old data nodes */ + RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults))); + for (i = 0; i < numDataNodes; i++) { + blockNode->succedents[i] = &readDataNodes[i]; + RF_ASSERT(readDataNodes[i].numAntecedents == 1); + readDataNodes[i].antecedents[0] = blockNode; + readDataNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old parity nodes */ + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; + RF_ASSERT(readParityNodes[i].numAntecedents == 1); + readParityNodes[i].antecedents[0] = blockNode; + readParityNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old Q nodes */ + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i]; + RF_ASSERT(readQNodes[i].numAntecedents == 1); + readQNodes[i].antecedents[0] = blockNode; + readQNodes[i].antType[0] = rf_control; + } + } + /* connect read old data nodes to xor nodes */ + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes)); + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[j] = &xorNodes[j]; + xorNodes[j].antecedents[i] = &readDataNodes[i]; + xorNodes[j].antType[i] = rf_trueData; + } + } + + /* connect read old data nodes to q nodes */ + if (nfaults == 2) { + for (i = 0; i < numDataNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j]; + qNodes[j].antecedents[i] = &readDataNodes[i]; + qNodes[j].antType[i] = rf_trueData; + } + } + } + /* connect read old parity nodes to xor nodes */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + readParityNodes[i].succedents[j] = &xorNodes[j]; + xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; + xorNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + + /* connect read old q nodes to q nodes */ + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + readQNodes[i].succedents[j] = &qNodes[j]; + qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i]; + qNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + } + /* connect xor nodes to commit node */ + RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes)); + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(xorNodes[i].numSuccedents == 1); + xorNodes[i].succedents[0] = commitNode; + commitNode->antecedents[i] = &xorNodes[i]; + commitNode->antType[i] = rf_control; + } + + /* connect q nodes to commit node */ + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(qNodes[i].numSuccedents == 1); + qNodes[i].succedents[0] = commitNode; + commitNode->antecedents[i + numParityNodes] = &qNodes[i]; + commitNode->antType[i + numParityNodes] = rf_control; + } + } + /* connect commit node to write nodes */ + RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes))); + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(writeDataNodes[i].numAntecedents == 1); + commitNode->succedents[i] = &writeDataNodes[i]; + writeDataNodes[i].antecedents[0] = commitNode; + writeDataNodes[i].antType[0] = rf_trueData; + } + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeParityNodes[i].numAntecedents == 1); + commitNode->succedents[i + numDataNodes] = &writeParityNodes[i]; + writeParityNodes[i].antecedents[0] = commitNode; + writeParityNodes[i].antType[0] = rf_trueData; + } + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeQNodes[i].numAntecedents == 1); + commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i]; + writeQNodes[i].antecedents[0] = commitNode; + writeQNodes[i].antType[0] = rf_trueData; + } + } + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < numDataNodes; i++) { + if (lu_flag) { + /* connect write new data nodes to unlock nodes */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); + writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; + unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; + unlockDataNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); + unlockDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &unlockDataNodes[i]; + termNode->antType[i] = rf_control; + } else { + /* connect write new data nodes to term node */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + writeDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &writeDataNodes[i]; + termNode->antType[i] = rf_control; + } + } + + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new parity nodes to unlock nodes */ + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + RF_ASSERT(unlockParityNodes[i].numAntecedents == 1); + writeParityNodes[i].succedents[0] = &unlockParityNodes[i]; + unlockParityNodes[i].antecedents[0] = &writeParityNodes[i]; + unlockParityNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockParityNodes[i].numSuccedents == 1); + unlockParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } else { + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + writeParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &writeParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } + } + + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new Q nodes to unlock nodes */ + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + RF_ASSERT(unlockQNodes[i].numAntecedents == 1); + writeQNodes[i].succedents[0] = &unlockQNodes[i]; + unlockQNodes[i].antecedents[0] = &writeQNodes[i]; + unlockQNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to unblock node */ + RF_ASSERT(unlockQNodes[i].numSuccedents == 1); + unlockQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } else { + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + writeQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } + } + } +} + + +/****************************************************************************** + * create a write graph (fault-free or degraded) for RAID level 1 + * + * Hdr -> Commit -> Wpd -> Nil -> Trm + * -> Wsd -> + * + * The "Wpd" node writes data to the primary copy in the mirror pair + * The "Wsd" node writes data to the secondary copy in the mirror pair + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidOneWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *unblockNode, *termNode, *commitNode; + RF_DagNode_t *nodes, *wndNode, *wmirNode; + int nWndNodes, nWmirNodes, i; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda, *pdaP; + RF_StripeNum_t parityStripeID; + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + if (rf_dagDebug) { + printf("[Creating RAID level 1 write DAG]\n"); + } + dag_h->creator = "RaidOneWriteDAG"; + + /* 2 implies access not SU aligned */ + nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; + nWndNodes = (asmap->physInfo->next) ? 2 : 1; + + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 1) + nWndNodes--; + if (asmap->numParityFailed == 1) + nWmirNodes--; + + /* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock + * + terminator) */ + RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + wndNode = &nodes[i]; + i += nWndNodes; + wmirNode = &nodes[i]; + i += nWmirNodes; + commitNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + RF_ASSERT(i == (nWndNodes + nWmirNodes + 3)); + + /* this dag can commit immediately */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the commit, unblock, and term nodes */ + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + /* initialize the wnd nodes */ + if (nWndNodes > 0) { + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList); + RF_ASSERT(pda != NULL); + wndNode[i].params[0].p = pda; + wndNode[i].params[1].p = pda->bufPtr; + wndNode[i].params[2].v = parityStripeID; + wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + RF_ASSERT(pda == NULL); + } + /* initialize the mirror nodes */ + if (nWmirNodes > 0) { + pda = asmap->physInfo; + pdaP = asmap->parityInfo; + for (i = 0; i < nWmirNodes; i++) { + rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList); + RF_ASSERT(pda != NULL); + wmirNode[i].params[0].p = pdaP; + wmirNode[i].params[1].p = pda->bufPtr; + wmirNode[i].params[2].v = parityStripeID; + wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + pdaP = pdaP->next; + } + RF_ASSERT(pda == NULL); + RF_ASSERT(pdaP == NULL); + } + /* link the header node to the commit node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 0); + dag_h->succedents[0] = commitNode; + + /* link the commit node to the write nodes */ + RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numAntecedents == 1); + commitNode->succedents[i] = &wndNode[i]; + wndNode[i].antecedents[0] = commitNode; + wndNode[i].antType[0] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numAntecedents == 1); + commitNode->succedents[i + nWndNodes] = &wmirNode[i]; + wmirNode[i].antecedents[0] = commitNode; + wmirNode[i].antType[0] = rf_control; + } + + /* link the write nodes to the unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numSuccedents == 1); + wndNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNode[i]; + unblockNode->antType[i] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numSuccedents == 1); + wmirNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i + nWndNodes] = &wmirNode[i]; + unblockNode->antType[i + nWndNodes] = rf_control; + } + + /* link the unblock node to the term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} + + + +/* DAGs which have no commit points. + * + * The following DAGs are used in forward and backward error recovery experiments. + * They are identical to the DAGs above this comment with the exception that the + * the commit points have been removed. + */ + + + +void +rf_CommonCreateLargeWriteDAGFwd( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int nfaults, + int (*redFunc) (RF_DagNode_t *), + int allowBufferRecycle) +{ + RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode; + RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode; + int nWndNodes, nRodNodes, i, nodeNum, asmNum; + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_StripeNum_t parityStripeID; + char *sosBuffer, *eosBuffer; + RF_ReconUnitNum_t which_ru; + RF_RaidLayout_t *layoutPtr; + RF_PhysDiskAddr_t *pda; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); + + if (rf_dagDebug) + printf("[Creating large-write DAG]\n"); + dag_h->creator = "LargeWriteDAGFwd"; + + dag_h->numCommitNodes = 0; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */ + nWndNodes = asmap->numStripeUnitsAccessed; + RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + wndNodes = &nodes[i]; + i += nWndNodes; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + blockNode = &nodes[i]; + i += 1; + syncNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList); + if (nRodNodes > 0) { + RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + } else { + rodNodes = NULL; + } + + /* begin node initialization */ + if (nRodNodes > 0) { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList); + } else { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList); + } + + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); + + /* initialize the Rod nodes */ + for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { + if (new_asm_h[asmNum]) { + pda = new_asm_h[asmNum]->stripeMap->physInfo; + while (pda) { + rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); + rodNodes[nodeNum].params[0].p = pda; + rodNodes[nodeNum].params[1].p = pda->bufPtr; + rodNodes[nodeNum].params[2].v = parityStripeID; + rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + nodeNum++; + pda = pda->next; + } + } + } + RF_ASSERT(nodeNum == nRodNodes); + + /* initialize the wnd nodes */ + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda != NULL); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + + /* initialize the redundancy node */ + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); + xorNode->flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < nWndNodes; i++) { + xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ + xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ + } + for (i = 0; i < nRodNodes; i++) { + xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ + xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ + } + xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get + * at RAID information */ + + /* look for an Rod node that reads a complete SU. If none, alloc a + * buffer to receive the parity info. Note that we can't use a new + * data buffer because it will not have gotten written when the xor + * occurs. */ + if (allowBufferRecycle) { + for (i = 0; i < nRodNodes; i++) + if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) + break; + } + if ((!allowBufferRecycle) || (i == nRodNodes)) { + RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); + } else + xorNode->results[0] = rodNodes[i].params[1].p; + + /* initialize the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = asmap->parityInfo; + wnpNode->params[1].p = xorNode->results[0]; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must + * describe entire + * parity unit */ + + if (nfaults == 2) { + /* we never try to recycle a buffer for the Q calcuation in + * addition to the parity. This would cause two buffers to get + * smashed during the P and Q calculation, guaranteeing one + * would be wrong. */ + RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = asmap->qInfo; + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must + * describe entire + * parity unit */ + } + /* connect nodes to form graph */ + + /* connect dag header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + if (nRodNodes > 0) { + /* connect the block node to the Rod nodes */ + RF_ASSERT(blockNode->numSuccedents == nRodNodes); + RF_ASSERT(syncNode->numAntecedents == nRodNodes); + for (i = 0; i < nRodNodes; i++) { + RF_ASSERT(rodNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rodNodes[i]; + rodNodes[i].antecedents[0] = blockNode; + rodNodes[i].antType[0] = rf_control; + + /* connect the Rod nodes to the Nil node */ + RF_ASSERT(rodNodes[i].numSuccedents == 1); + rodNodes[i].succedents[0] = syncNode; + syncNode->antecedents[i] = &rodNodes[i]; + syncNode->antType[i] = rf_trueData; + } + } else { + /* connect the block node to the Nil node */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(syncNode->numAntecedents == 1); + blockNode->succedents[0] = syncNode; + syncNode->antecedents[0] = blockNode; + syncNode->antType[0] = rf_control; + } + + /* connect the sync node to the Wnd nodes */ + RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numAntecedents == 1); + syncNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = syncNode; + wndNodes[i].antType[0] = rf_control; + } + + /* connect the sync node to the Xor node */ + RF_ASSERT(xorNode->numAntecedents == 1); + syncNode->succedents[nWndNodes] = xorNode; + xorNode->antecedents[0] = syncNode; + xorNode->antType[0] = rf_control; + + /* connect the xor node to the write parity node */ + RF_ASSERT(xorNode->numSuccedents == nfaults); + RF_ASSERT(wnpNode->numAntecedents == 1); + xorNode->succedents[0] = wnpNode; + wnpNode->antecedents[0] = xorNode; + wnpNode->antType[0] = rf_trueData; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + xorNode->succedents[1] = wnqNode; + wnqNode->antecedents[0] = xorNode; + wnqNode->antType[0] = rf_trueData; + } + /* connect the write nodes to the term node */ + RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numSuccedents == 1); + wndNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &wndNodes[i]; + termNode->antType[i] = rf_control; + } + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes] = wnpNode; + termNode->antType[nWndNodes] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes + 1] = wnqNode; + termNode->antType[nWndNodes + 1] = rf_control; + } +} + + +/****************************************************************************** + * + * creates a DAG to perform a small-write operation (either raid 5 or pq), + * which is as follows: + * + * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm + * \- Rod X- Wnd [Und] -------/ + * [\- Rod X- Wnd [Und] ------/] + * [\- Roq - Q --> Wnq [Unq]-/] + * + * Rop = read old parity + * Rod = read old data + * Roq = read old "q" + * Cmt = commit node + * Und = unlock data disk + * Unp = unlock parity disk + * Unq = unlock q disk + * Wnp = write new parity + * Wnd = write new data + * Wnq = write new "q" + * [ ] denotes optional segments in the graph + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + * pfuncs - list of parity generating functions + * qfuncs - list of q generating functions + * + * A null qfuncs indicates single fault tolerant + *****************************************************************************/ + +void +rf_CommonCreateSmallWriteDAGFwd( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, + RF_RedFuncs_t * qfuncs) +{ + RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; + RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; + RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes; + RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; + int i, j, nNodes, totalNumNodes, lu_flag; + RF_ReconUnitNum_t which_ru; + int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *); + int (*qfunc) (RF_DagNode_t *); + int numDataNodes, numParityNodes; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *pda; + char *name, *qname; + long nfaults; + + nfaults = qfuncs ? 2 : 1; + lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); + pda = asmap->physInfo; + numDataNodes = asmap->numStripeUnitsAccessed; + numParityNodes = (asmap->parityInfo->next) ? 2 : 1; + + if (rf_dagDebug) + printf("[Creating small-write DAG]\n"); + RF_ASSERT(numDataNodes > 0); + dag_h->creator = "SmallWriteDAGFwd"; + + dag_h->numCommitNodes = 0; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + qfunc = NULL; + qname = NULL; + + /* DAG creation occurs in four steps: 1. count the number of nodes in + * the DAG 2. create the nodes 3. initialize the nodes 4. connect the + * nodes */ + + /* Step 1. compute number of nodes in the graph */ + + /* number of nodes: a read and write for each data unit a redundancy + * computation node for each parity node (nfaults * nparity) a read + * and write for each parity unit a block node a terminate node if + * atomic RMW an unlock node for each data unit, redundancy unit */ + totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2; + if (lu_flag) + totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); + + + /* Step 2. create the nodes */ + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + readDataNodes = &nodes[i]; + i += numDataNodes; + readParityNodes = &nodes[i]; + i += numParityNodes; + writeDataNodes = &nodes[i]; + i += numDataNodes; + writeParityNodes = &nodes[i]; + i += numParityNodes; + xorNodes = &nodes[i]; + i += numParityNodes; + termNode = &nodes[i]; + i += 1; + if (lu_flag) { + unlockDataNodes = &nodes[i]; + i += numDataNodes; + unlockParityNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockDataNodes = unlockParityNodes = NULL; + } + if (nfaults == 2) { + readQNodes = &nodes[i]; + i += numParityNodes; + writeQNodes = &nodes[i]; + i += numParityNodes; + qNodes = &nodes[i]; + i += numParityNodes; + if (lu_flag) { + unlockQNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockQNodes = NULL; + } + } else { + readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; + } + RF_ASSERT(i == totalNumNodes); + + /* Step 3. initialize the nodes */ + /* initialize block node (Nil) */ + nNodes = numDataNodes + (nfaults * numParityNodes); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); + + /* initialize terminate node (Trm) */ + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList); + + /* initialize nodes which read old data (Rod) */ + for (i = 0; i < numDataNodes; i++) { + rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList); + RF_ASSERT(pda != NULL); + readDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old + * data */ + readDataNodes[i].params[2].v = parityStripeID; + readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readDataNodes[i].numSuccedents; j++) + readDataNodes[i].propList[j] = NULL; + } + + /* initialize nodes which read old parity (Rop) */ + pda = asmap->parityInfo; + i = 0; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList); + readParityNodes[i].params[0].p = pda; + readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old + * parity */ + readParityNodes[i].params[2].v = parityStripeID; + readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + for (j = 0; j < readParityNodes[i].numSuccedents; j++) + readParityNodes[i].propList[0] = NULL; + pda = pda->next; + } + + /* initialize nodes which read old Q (Roq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList); + readQNodes[i].params[0].p = pda; + readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old Q */ + readQNodes[i].params[2].v = parityStripeID; + readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + for (j = 0; j < readQNodes[i].numSuccedents; j++) + readQNodes[i].propList[0] = NULL; + pda = pda->next; + } + } + /* initialize nodes which write new data (Wnd) */ + pda = asmap->physInfo; + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + writeDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new + * data to be written */ + writeDataNodes[i].params[2].v = parityStripeID; + writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList); + unlockDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + + + /* initialize nodes which compute new parity and Q */ + /* we use the simple XOR func in the double-XOR case, and when we're + * accessing only a portion of one stripe unit. the distinction + * between the two is that the regular XOR func assumes that the + * targbuf is a full SU in size, and examines the pda associated with + * the buffer to decide where within the buffer to XOR the data, + * whereas the simple XOR func just XORs the data into the start of + * the buffer. */ + if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { + func = pfuncs->simple; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->SimpleName; + if (qfuncs) { + qfunc = qfuncs->simple; + qname = qfuncs->SimpleName; + } + } else { + func = pfuncs->regular; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->RegularName; + if (qfuncs) { + qfunc = qfuncs->regular; + qname = qfuncs->RegularName; + } + } + /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop} + * nodes, and raidPtr */ + if (numParityNodes == 2) { /* double-xor case */ + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for + * xor */ + xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; + xorNodes[i].params[0] = readDataNodes[i].params[0]; + xorNodes[i].params[1] = readDataNodes[i].params[1]; + xorNodes[i].params[2] = readParityNodes[i].params[0]; + xorNodes[i].params[3] = readParityNodes[i].params[1]; + xorNodes[i].params[4] = writeDataNodes[i].params[0]; + xorNodes[i].params[5] = writeDataNodes[i].params[1]; + xorNodes[i].params[6].p = raidPtr; + xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as + * target buf */ + if (nfaults == 2) { + rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList); /* no wakeup func for + * xor */ + qNodes[i].params[0] = readDataNodes[i].params[0]; + qNodes[i].params[1] = readDataNodes[i].params[1]; + qNodes[i].params[2] = readQNodes[i].params[0]; + qNodes[i].params[3] = readQNodes[i].params[1]; + qNodes[i].params[4] = writeDataNodes[i].params[0]; + qNodes[i].params[5] = writeDataNodes[i].params[1]; + qNodes[i].params[6].p = raidPtr; + qNodes[i].results[0] = readQNodes[i].params[1].p; /* use old Q buf as + * target buf */ + } + } + } else { + /* there is only one xor node in this case */ + rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); + xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < numDataNodes + 1; i++) { + /* set up params related to Rod and Rop nodes */ + xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ + } + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd and Wnp nodes */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ + } + xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get + * at RAID information */ + xorNodes[0].results[0] = readParityNodes[0].params[1].p; + if (nfaults == 2) { + rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList); + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Rod */ + qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ + } + /* and read old q */ + qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0]; /* pda */ + qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1]; /* buffer pointer */ + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd nodes */ + qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ + qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ + } + qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get + * at RAID information */ + qNodes[0].results[0] = readQNodes[0].params[1].p; + } + } + + /* initialize nodes which write new parity (Wnp) */ + pda = asmap->parityInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList); + RF_ASSERT(pda != NULL); + writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeParityNodes[i].params[2].v = parityStripeID; + writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList); + unlockParityNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + + /* initialize nodes which write new Q (Wnq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList); + RF_ASSERT(pda != NULL); + writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeQNodes[i].params[2].v = parityStripeID; + writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList); + unlockQNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + } + /* Step 4. connect the nodes */ + + /* connect header to block node */ + dag_h->succedents[0] = blockNode; + + /* connect block node to read old data nodes */ + RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults))); + for (i = 0; i < numDataNodes; i++) { + blockNode->succedents[i] = &readDataNodes[i]; + RF_ASSERT(readDataNodes[i].numAntecedents == 1); + readDataNodes[i].antecedents[0] = blockNode; + readDataNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old parity nodes */ + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; + RF_ASSERT(readParityNodes[i].numAntecedents == 1); + readParityNodes[i].antecedents[0] = blockNode; + readParityNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old Q nodes */ + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i]; + RF_ASSERT(readQNodes[i].numAntecedents == 1); + readQNodes[i].antecedents[0] = blockNode; + readQNodes[i].antType[0] = rf_control; + } + + /* connect read old data nodes to write new data nodes */ + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1)); + RF_ASSERT(writeDataNodes[i].numAntecedents == 1); + readDataNodes[i].succedents[0] = &writeDataNodes[i]; + writeDataNodes[i].antecedents[0] = &readDataNodes[i]; + writeDataNodes[i].antType[0] = rf_antiData; + } + + /* connect read old data nodes to xor nodes */ + for (i = 0; i < numDataNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[1 + j] = &xorNodes[j]; + xorNodes[j].antecedents[i] = &readDataNodes[i]; + xorNodes[j].antType[i] = rf_trueData; + } + } + + /* connect read old data nodes to q nodes */ + if (nfaults == 2) + for (i = 0; i < numDataNodes; i++) + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j]; + qNodes[j].antecedents[i] = &readDataNodes[i]; + qNodes[j].antType[i] = rf_trueData; + } + + /* connect read old parity nodes to xor nodes */ + for (i = 0; i < numParityNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); + readParityNodes[i].succedents[j] = &xorNodes[j]; + xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; + xorNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + + /* connect read old q nodes to q nodes */ + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes); + readQNodes[i].succedents[j] = &qNodes[j]; + qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i]; + qNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + + /* connect xor nodes to the write new parity nodes */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes); + xorNodes[i].succedents[j] = &writeParityNodes[j]; + writeParityNodes[j].antecedents[i] = &xorNodes[i]; + writeParityNodes[j].antType[i] = rf_trueData; + } + } + + /* connect q nodes to the write new q nodes */ + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(qNodes[j].numSuccedents == 1); + qNodes[i].succedents[j] = &writeQNodes[j]; + writeQNodes[j].antecedents[i] = &qNodes[i]; + writeQNodes[j].antType[i] = rf_trueData; + } + } + + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < numDataNodes; i++) { + if (lu_flag) { + /* connect write new data nodes to unlock nodes */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); + writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; + unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; + unlockDataNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); + unlockDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &unlockDataNodes[i]; + termNode->antType[i] = rf_control; + } else { + /* connect write new data nodes to term node */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + writeDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &writeDataNodes[i]; + termNode->antType[i] = rf_control; + } + } + + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new parity nodes to unlock nodes */ + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + RF_ASSERT(unlockParityNodes[i].numAntecedents == 1); + writeParityNodes[i].succedents[0] = &unlockParityNodes[i]; + unlockParityNodes[i].antecedents[0] = &writeParityNodes[i]; + unlockParityNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockParityNodes[i].numSuccedents == 1); + unlockParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } else { + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + writeParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &writeParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } + } + + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new Q nodes to unlock nodes */ + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + RF_ASSERT(unlockQNodes[i].numAntecedents == 1); + writeQNodes[i].succedents[0] = &unlockQNodes[i]; + unlockQNodes[i].antecedents[0] = &writeQNodes[i]; + unlockQNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to unblock node */ + RF_ASSERT(unlockQNodes[i].numSuccedents == 1); + unlockQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } else { + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + writeQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } + } +} + + + +/****************************************************************************** + * create a write graph (fault-free or degraded) for RAID level 1 + * + * Hdr Nil -> Wpd -> Nil -> Trm + * Nil -> Wsd -> + * + * The "Wpd" node writes data to the primary copy in the mirror pair + * The "Wsd" node writes data to the secondary copy in the mirror pair + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidOneWriteDAGFwd( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *blockNode, *unblockNode, *termNode; + RF_DagNode_t *nodes, *wndNode, *wmirNode; + int nWndNodes, nWmirNodes, i; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda, *pdaP; + RF_StripeNum_t parityStripeID; + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + if (rf_dagDebug) { + printf("[Creating RAID level 1 write DAG]\n"); + } + nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; /* 2 implies access not + * SU aligned */ + nWndNodes = (asmap->physInfo->next) ? 2 : 1; + + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 1) + nWndNodes--; + if (asmap->numParityFailed == 1) + nWmirNodes--; + + /* total number of nodes = nWndNodes + nWmirNodes + (block + unblock + + * terminator) */ + RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + wndNode = &nodes[i]; + i += nWndNodes; + wmirNode = &nodes[i]; + i += nWmirNodes; + blockNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + RF_ASSERT(i == (nWndNodes + nWmirNodes + 3)); + + /* this dag can commit immediately */ + dag_h->numCommitNodes = 0; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the unblock and term nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + /* initialize the wnd nodes */ + if (nWndNodes > 0) { + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList); + RF_ASSERT(pda != NULL); + wndNode[i].params[0].p = pda; + wndNode[i].params[1].p = pda->bufPtr; + wndNode[i].params[2].v = parityStripeID; + wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + RF_ASSERT(pda == NULL); + } + /* initialize the mirror nodes */ + if (nWmirNodes > 0) { + pda = asmap->physInfo; + pdaP = asmap->parityInfo; + for (i = 0; i < nWmirNodes; i++) { + rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList); + RF_ASSERT(pda != NULL); + wmirNode[i].params[0].p = pdaP; + wmirNode[i].params[1].p = pda->bufPtr; + wmirNode[i].params[2].v = parityStripeID; + wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + pdaP = pdaP->next; + } + RF_ASSERT(pda == NULL); + RF_ASSERT(pdaP == NULL); + } + /* link the header node to the block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* link the block node to the write nodes */ + RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numAntecedents == 1); + blockNode->succedents[i] = &wndNode[i]; + wndNode[i].antecedents[0] = blockNode; + wndNode[i].antType[0] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numAntecedents == 1); + blockNode->succedents[i + nWndNodes] = &wmirNode[i]; + wmirNode[i].antecedents[0] = blockNode; + wmirNode[i].antType[0] = rf_control; + } + + /* link the write nodes to the unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numSuccedents == 1); + wndNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNode[i]; + unblockNode->antType[i] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numSuccedents == 1); + wmirNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i + nWndNodes] = &wmirNode[i]; + unblockNode->antType[i + nWndNodes] = rf_control; + } + + /* link the unblock node to the term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + + return; +} |