diff options
Diffstat (limited to 'sys/dev/raidframe/rf_dagdegwr.c')
-rw-r--r-- | sys/dev/raidframe/rf_dagdegwr.c | 844 |
1 files changed, 844 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_dagdegwr.c b/sys/dev/raidframe/rf_dagdegwr.c new file mode 100644 index 0000000..68d1899 --- /dev/null +++ b/sys/dev/raidframe/rf_dagdegwr.c @@ -0,0 +1,844 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagdegwr.c,v 1.6 2001/01/26 04:05:08 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagdegwr.c + * + * code for creating degraded write DAGs + * + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagdegwr.h> + + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + +static +RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG) +{ + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, + flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE); +} + +void +rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + RF_DagHeader_t *dag_h; + void *bp; + RF_RaidAccessFlags_t flags; + RF_AllocListElem_t *allocList; +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; + + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "DegradedWriteDAG"; + + /* if the access writes only a portion of the failed unit, and also + * writes some portion of at least one surviving unit, we create two + * DAGs, one for the failed component and one for the non-failed + * component, and do them sequentially. Note that the fact that we're + * accessing only a portion of the failed unit indicates that the + * access either starts or ends in the failed unit, and hence we need + * create only two dags. This is inefficient in that the same data or + * parity can get read and written twice using this structure. I need + * to fix this to do the access all at once. */ + RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)); + rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList); +} + + + +/****************************************************************************** + * + * DAG creation code begins here + */ + + + +/****************************************************************************** + * + * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode + * write, which is as follows + * + * / {Wnq} --\ + * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term + * \ {Rod} / \ Wnd ---/ + * \ {Wnd} -/ + * + * commit nodes: Xor, Wnd + * + * IMPORTANT: + * This DAG generator does not work for double-degraded archs since it does not + * generate Q + * + * This dag is essentially identical to the large-write dag, except that the + * write to the failed data unit is suppressed. + * + * IMPORTANT: this dag does not work in the case where the access writes only + * a portion of the failed unit, and also writes some portion of at least one + * surviving SU. this case is handled in CreateDegradedWriteDAG above. + * + * The block & unblock nodes are leftovers from a previous version. They + * do nothing, but I haven't deleted them because it would be a tremendous + * effort to put them back in. + * + * This dag is used whenever a one of the data units in a write has failed. + * If it is the parity unit that failed, the nonredundant write dag (below) + * is used. + *****************************************************************************/ + +void +rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, nfaults, redFunc, allowBufferRecycle) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + RF_DagHeader_t *dag_h; + void *bp; + RF_RaidAccessFlags_t flags; + RF_AllocListElem_t *allocList; + int nfaults; + int (*redFunc) (RF_DagNode_t *); + int allowBufferRecycle; +{ + int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, + rdnodesFaked; + RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode; + RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode; + RF_SectorCount_t sectorsPerSU; + RF_ReconUnitNum_t which_ru; + char *xorTargetBuf = NULL; /* the target buffer for the XOR + * operation */ + char *overlappingPDAs;/* a temporary array of flags */ + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_PhysDiskAddr_t *pda, *parityPDA; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *failedPDA; + RF_RaidLayout_t *layoutPtr; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, + &which_ru); + sectorsPerSU = layoutPtr->sectorsPerStripeUnit; + /* failedPDA points to the pda within the asm that targets the failed + * disk */ + failedPDA = asmap->failedPDAs[0]; + + if (rf_dagDebug) + printf("[Creating degraded-write DAG]\n"); + + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "SimpleDegradedWriteDAG"; + + /* + * Generate two ASMs identifying the surviving data + * we need in order to recover the lost data. + */ + /* overlappingPDAs array must be zero'd */ + RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *)); + rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, + &nXorBufs, NULL, overlappingPDAs, allocList); + + /* create all the nodes at once */ + nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is + * generated for the + * failed pda */ + + nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + + ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); + /* + * XXX + * + * There's a bug with a complete stripe overwrite- that means 0 reads + * of old data, and the rest of the DAG generation code doesn't like + * that. A release is coming, and I don't wanna risk breaking a critical + * DAG generator, so here's what I'm gonna do- if there's no read nodes, + * I'm gonna fake there being a read node, and I'm gonna swap in a + * no-op node in its place (to make all the link-up code happy). + * This should be fixed at some point. --jimz + */ + if (nRrdNodes == 0) { + nRrdNodes = 1; + rdnodesFaked = 1; + } else { + rdnodesFaked = 0; + } + /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */ + nNodes = 5 + nfaults + nWndNodes + nRrdNodes; + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + wndNodes = &nodes[i]; + i += nWndNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + RF_ASSERT(i == nNodes); + + /* this dag can not commit until all rrd and xor Nodes have completed */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + RF_ASSERT(nRrdNodes > 0); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList); + + /* + * Fill in the Rrd nodes. If any of the rrd buffers are the same size as + * the failed buffer, save a pointer to it so we can use it as the target + * of the XOR. The pdas in the rrd nodes have been range-restricted, so if + * a buffer is the same size as the failed buffer, it must also be at the + * same alignment within the SU. + */ + i = 0; + if (new_asm_h[0]) { + for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo; + i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + i++, pda = pda->next) { + rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i].params[0].p = pda; + rrdNodes[i].params[1].p = pda->bufPtr; + rrdNodes[i].params[2].v = parityStripeID; + rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* i now equals the number of stripe units accessed in new_asm_h[0] */ + if (new_asm_h[1]) { + for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo; + j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + j++, pda = pda->next) { + rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i + j].params[0].p = pda; + rrdNodes[i + j].params[1].p = pda->bufPtr; + rrdNodes[i + j].params[2].v = parityStripeID; + rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + if (allowBufferRecycle && (pda->numSector == failedPDA->numSector)) + xorTargetBuf = pda->bufPtr; + } + } + if (rdnodesFaked) { + /* + * This is where we'll init that fake noop read node + * (XXX should the wakeup func be different?) + */ + rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "RrN", allocList); + } + /* + * Make a PDA for the parity unit. The parity PDA should start at + * the same offset into the SU as the failed PDA. + */ + /* Danner comment: I don't think this copy is really necessary. We are + * in one of two cases here. (1) The entire failed unit is written. + * Then asmap->parityInfo will describe the entire parity. (2) We are + * only writing a subset of the failed unit and nothing else. Then the + * asmap->parityInfo describes the failed unit and the copy can also + * be avoided. */ + + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->parityInfo->row; + parityPDA->col = asmap->parityInfo->col; + parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + if (!xorTargetBuf) { + RF_CallocAndAdd(xorTargetBuf, 1, + rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); + } + /* init the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = parityPDA; + wnpNode->params[1].p = xorTargetBuf; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + /* fill in the Wnq Node */ + if (nfaults == 2) { + { + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), + (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->qInfo->row; + parityPDA->col = asmap->qInfo->col; + parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = parityPDA; + RF_CallocAndAdd(xorNode->results[1], 1, + rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* fill in the Wnd nodes */ + for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) { + if (pda == failedPDA) { + i--; + continue; + } + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* fill in the results of the xor node */ + xorNode->results[0] = xorTargetBuf; + + /* fill in the params of the xor node */ + + paramNum = 0; + if (rdnodesFaked == 0) { + for (i = 0; i < nRrdNodes; i++) { + /* all the Rrd nodes need to be xored together */ + xorNode->params[paramNum++] = rrdNodes[i].params[0]; + xorNode->params[paramNum++] = rrdNodes[i].params[1]; + } + } + for (i = 0; i < nWndNodes; i++) { + /* any Wnd nodes that overlap the failed access need to be + * xored in */ + if (overlappingPDAs[i]) { + RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t)); + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); + xorNode->params[paramNum++].p = pda; + xorNode->params[paramNum++].p = pda->bufPtr; + } + } + RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); + + /* + * Install the failed PDA into the xor param list so that the + * new data gets xor'd in. + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = failedPDA->bufPtr; + + /* + * The last 2 params to the recovery xor node are always the failed + * PDA and the raidPtr. install the failedPDA even though we have just + * done so above. This allows us to use the same XOR function for both + * degraded reads and degraded writes. + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = raidPtr; + RF_ASSERT(paramNum == 2 * nXorBufs + 2); + + /* + * Code to link nodes begins here + */ + + /* link header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* link block node to rd nodes */ + RF_ASSERT(blockNode->numSuccedents == nRrdNodes); + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rrdNodes[i]; + rrdNodes[i].antecedents[0] = blockNode; + rrdNodes[i].antType[0] = rf_control; + } + + /* link read nodes to xor node */ + RF_ASSERT(xorNode->numAntecedents == nRrdNodes); + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + rrdNodes[i].succedents[0] = xorNode; + xorNode->antecedents[i] = &rrdNodes[i]; + xorNode->antType[i] = rf_trueData; + } + + /* link xor node to commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* link commit node to wnd nodes */ + RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes[i].numAntecedents == 1); + commitNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = commitNode; + wndNodes[i].antType[0] = rf_control; + } + + /* link the commit node to wnp, wnq nodes */ + RF_ASSERT(wnpNode->numAntecedents == 1); + commitNode->succedents[nWndNodes] = wnpNode; + wnpNode->antecedents[0] = commitNode; + wnpNode->antType[0] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + commitNode->succedents[nWndNodes + 1] = wnqNode; + wnqNode->antecedents[0] = commitNode; + wnqNode->antType[0] = rf_control; + } + /* link write new data nodes to unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes[i].numSuccedents == 1); + wndNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNodes[i]; + unblockNode->antType[i] = rf_control; + } + + /* link write new parity node to unblock node */ + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes] = wnpNode; + unblockNode->antType[nWndNodes] = rf_control; + + /* link write new q node to unblock node */ + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes + 1] = wnqNode; + unblockNode->antType[nWndNodes + 1] = rf_control; + } + /* link unblock node to term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} +#define CONS_PDA(if,start,num) \ + pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \ + pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ + pda_p->numSector = num; \ + pda_p->next = NULL; \ + RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList) +#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) +void +rf_WriteGenerateFailedAccessASMs( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_PhysDiskAddr_t ** pdap, + int *nNodep, + RF_PhysDiskAddr_t ** pqpdap, + int *nPQNodep, + RF_AllocListElem_t * allocList) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int PDAPerDisk, i; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + int numDataCol = layoutPtr->numDataCol; + int state; + unsigned napdas; + RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end; + RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; + RF_PhysDiskAddr_t *pda_p; + RF_RaidAddr_t sosAddr; + + /* determine how many pda's we will have to generate per unaccess + * stripe. If there is only one failed data unit, it is one; if two, + * possibly two, depending wether they overlap. */ + + fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector); + fone_end = fone_start + fone->numSector; + + if (asmap->numDataFailed == 1) { + PDAPerDisk = 1; + state = 1; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + /* build p */ + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + /* build q */ + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } else { + ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector); + ftwo_end = ftwo_start + ftwo->numSector; + if (fone->numSector + ftwo->numSector > secPerSU) { + PDAPerDisk = 1; + state = 2; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_Q; + } else { + PDAPerDisk = 2; + state = 3; + /* four of them, fone, then ftwo */ + RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + pda_p++; + CONS_PDA(parityInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } + } + /* figure out number of nonaccessed pda */ + napdas = PDAPerDisk * (numDataCol - 2); + *nPQNodep = PDAPerDisk; + + *nNodep = napdas; + if (napdas == 0) + return; /* short circuit */ + + /* allocate up our list of pda's */ + + RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + *pdap = pda_p; + + /* linkem together */ + for (i = 0; i < (napdas - 1); i++) + pda_p[i].next = pda_p + (i + 1); + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < numDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; + } + + RF_ASSERT(pda_p - *pdap == napdas); + return; +} +#define DISK_NODE_PDA(node) ((node)->params[0].p) + +#define DISK_NODE_PARAMS(_node_,_p_) \ + (_node_).params[0].p = _p_ ; \ + (_node_).params[1].p = (_p_)->bufPtr; \ + (_node_).params[2].v = parityStripeID; \ + (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru) + +void +rf_DoubleDegSmallWrite( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + char *redundantReadNodeName, + char *redundantWriteNodeName, + char *recoveryNodeName, + int (*recovFunc) (RF_DagNode_t *)) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, + *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode; + RF_PhysDiskAddr_t *pda, *pqPDAs; + RF_PhysDiskAddr_t *npdas; + int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i; + RF_ReconUnitNum_t which_ru; + int nPQNodes; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); + + /* simple small write case - First part looks like a reconstruct-read + * of the failed data units. Then a write of all data units not + * failed. */ + + + /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \ + * / -------PQ----- / \ \ Wud Wp WQ \ | / + * --Unblock- | T + * + * Rrd = read recovery data (potentially none) Wud = write user data + * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q + * (could be two) + * + */ + + rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList); + + RF_ASSERT(asmap->numDataFailed == 1); + + nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); + nReadNodes = nRrdNodes + 2 * nPQNodes; + nWriteNodes = nWudNodes + 2 * nPQNodes; + nNodes = 4 + nReadNodes + nWriteNodes; + + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + blockNode = nodes; + unblockNode = blockNode + 1; + termNode = unblockNode + 1; + recoveryNode = termNode + 1; + rrdNodes = recoveryNode + 1; + rpNodes = rrdNodes + nRrdNodes; + rqNodes = rpNodes + nPQNodes; + wudNodes = rqNodes + nPQNodes; + wpNodes = wudNodes + nWudNodes; + wqNodes = wpNodes + nPQNodes; + + dag_h->creator = "PQ_DDSimpleSmallWrite"; + dag_h->numSuccedents = 1; + dag_h->succedents[0] = blockNode; + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + + /* init the block and unblock nodes */ + /* The block node has all the read nodes as successors */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList); + for (i = 0; i < nReadNodes; i++) + blockNode->succedents[i] = rrdNodes + i; + + /* The unblock node has all the writes as successors */ + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList); + for (i = 0; i < nWriteNodes; i++) { + unblockNode->antecedents[i] = wudNodes + i; + unblockNode->antType[i] = rf_control; + } + unblockNode->succedents[0] = termNode; + +#define INIT_READ_NODE(node,name) \ + rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \ + (node)->succedents[0] = recoveryNode; \ + (node)->antecedents[0] = blockNode; \ + (node)->antType[0] = rf_control; + + /* build the read nodes */ + pda = npdas; + for (i = 0; i < nRrdNodes; i++, pda = pda->next) { + INIT_READ_NODE(rrdNodes + i, "rrd"); + DISK_NODE_PARAMS(rrdNodes[i], pda); + } + + /* read redundancy pdas */ + pda = pqPDAs; + INIT_READ_NODE(rpNodes, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[0], pda); + pda++; + INIT_READ_NODE(rqNodes, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_READ_NODE(rpNodes + 1, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[1], pda); + pda++; + INIT_READ_NODE(rqNodes + 1, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[1], pda); + } + /* the recovery node has all reads as precedessors and all writes as + * successors. It generates a result for every write P or write Q + * node. As parameters, it takes a pda per read and a pda per stripe + * of user data written. It also takes as the last params the raidPtr + * and asm. For results, it takes PDA for P & Q. */ + + + rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, + nWriteNodes, /* succesors */ + nReadNodes, /* preds */ + nReadNodes + nWudNodes + 3, /* params */ + 2 * nPQNodes, /* results */ + dag_h, recoveryNodeName, allocList); + + + + for (i = 0; i < nReadNodes; i++) { + recoveryNode->antecedents[i] = rrdNodes + i; + recoveryNode->antType[i] = rf_control; + recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i); + } + for (i = 0; i < nWudNodes; i++) { + recoveryNode->succedents[i] = wudNodes + i; + } + recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0]; + recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr; + recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap; + + for (; i < nWriteNodes; i++) + recoveryNode->succedents[i] = wudNodes + i; + + pda = pqPDAs; + recoveryNode->results[0] = pda; + pda++; + recoveryNode->results[1] = pda; + if (nPQNodes == 2) { + pda++; + recoveryNode->results[2] = pda; + pda++; + recoveryNode->results[3] = pda; + } + /* fill writes */ +#define INIT_WRITE_NODE(node,name) \ + rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \ + (node)->succedents[0] = unblockNode; \ + (node)->antecedents[0] = recoveryNode; \ + (node)->antType[0] = rf_control; + + pda = asmap->physInfo; + for (i = 0; i < nWudNodes; i++) { + INIT_WRITE_NODE(wudNodes + i, "Wd"); + DISK_NODE_PARAMS(wudNodes[i], pda); + recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i); + pda = pda->next; + } + /* write redundancy pdas */ + pda = pqPDAs; + INIT_WRITE_NODE(wpNodes, "Wp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wpNodes[0], pda); + pda++; + INIT_WRITE_NODE(wqNodes, "Wq"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_WRITE_NODE(wpNodes + 1, "Wp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wpNodes[1], pda); + pda++; + INIT_WRITE_NODE(wqNodes + 1, "Wq"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wqNodes[1], pda); + } +} +#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */ |