summaryrefslogtreecommitdiffstats
path: root/sys/dev/raidframe/rf_dagdegrd.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/raidframe/rf_dagdegrd.c')
-rw-r--r--sys/dev/raidframe/rf_dagdegrd.c1130
1 files changed, 1130 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_dagdegrd.c b/sys/dev/raidframe/rf_dagdegrd.c
new file mode 100644
index 0000000..8e4c15a
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagdegrd.c
@@ -0,0 +1,1130 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagdegrd.c,v 1.7 2001/01/26 14:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_dagdegrd.c
+ *
+ * code for creating degraded read DAGs
+ */
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+
+
+/******************************************************************************
+ *
+ * General comments on DAG creation:
+ *
+ * All DAGs in this file use roll-away error recovery. Each DAG has a single
+ * commit node, usually called "Cmt." If an error occurs before the Cmt node
+ * is reached, the execution engine will halt forward execution and work
+ * backward through the graph, executing the undo functions. Assuming that
+ * each node in the graph prior to the Cmt node are undoable and atomic - or -
+ * does not make changes to permanent state, the graph will fail atomically.
+ * If an error occurs after the Cmt node executes, the engine will roll-forward
+ * through the graph, blindly executing nodes until it reaches the end.
+ * If a graph reaches the end, it is assumed to have completed successfully.
+ *
+ * A graph has only 1 Cmt node.
+ *
+ */
+
+
+/******************************************************************************
+ *
+ * The following wrappers map the standard DAG creation interface to the
+ * DAG creation routines. Additionally, these wrappers enable experimentation
+ * with new DAG structures by providing an extra level of indirection, allowing
+ * the DAG creation routines to be replaced at this single point.
+ */
+
+void
+rf_CreateRaidFiveDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ &rf_xorRecoveryFuncs);
+}
+
+
+/******************************************************************************
+ *
+ * DAG creation code begins here
+ */
+
+
+/******************************************************************************
+ * Create a degraded read DAG for RAID level 1
+ *
+ * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
+ *
+ * The "Rd" node reads data from the surviving disk in the mirror pair
+ * Rpd - read of primary copy
+ * Rsd - read of secondary copy
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (for holding write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+void
+rf_CreateRaidOneDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
+ RF_StripeNum_t parityStripeID;
+ RF_ReconUnitNum_t which_ru;
+ RF_PhysDiskAddr_t *pda;
+ int useMirror, i;
+
+ useMirror = 0;
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+ if (rf_dagDebug) {
+ printf("[Creating RAID level 1 degraded read DAG]\n");
+ }
+ dag_h->creator = "RaidOneDegradedReadDAG";
+ /* alloc the Wnd nodes and the Wmir node */
+ if (asmap->numDataFailed == 0)
+ useMirror = RF_FALSE;
+ else
+ useMirror = RF_TRUE;
+
+ /* total number of nodes = 1 + (block + commit + terminator) */
+ RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ rdNode = &nodes[i];
+ i++;
+ blockNode = &nodes[i];
+ i++;
+ commitNode = &nodes[i];
+ i++;
+ termNode = &nodes[i];
+ i++;
+
+ /* this dag can not commit until the commit node is reached. errors
+ * prior to the commit point imply the dag has failed and must be
+ * retried */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* initialize the block, commit, and terminator nodes */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ pda = asmap->physInfo;
+ RF_ASSERT(pda != NULL);
+ /* parityInfo must describe entire parity unit */
+ RF_ASSERT(asmap->parityInfo->next == NULL);
+
+ /* initialize the data node */
+ if (!useMirror) {
+ /* read primary copy of data */
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
+ rdNode->params[0].p = pda;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ } else {
+ /* read secondary copy of data */
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
+ rdNode->params[0].p = asmap->parityInfo;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* connect header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to rdnode */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(rdNode->numAntecedents == 1);
+ blockNode->succedents[0] = rdNode;
+ rdNode->antecedents[0] = blockNode;
+ rdNode->antType[0] = rf_control;
+
+ /* connect rdnode to commit node */
+ RF_ASSERT(rdNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ rdNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = rdNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect commit node to terminator */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antecedents[0] = commitNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a degraded-mode read of data within one stripe.
+ * This DAG is as follows:
+ *
+ * Hdr -> Block -> Rud -> Xor -> Cmt -> T
+ * -> Rrd ->
+ * -> Rp -->
+ *
+ * Each R node is a successor of the L node
+ * One successor arc from each R node goes to C, and the other to X
+ * There is one Rud for each chunk of surviving user data requested by the
+ * user, and one Rrd for each chunk of surviving user data _not_ being read by
+ * the user
+ * R = read, ud = user data, rd = recovery (surviving) data, p = parity
+ * X = XOR, C = Commit, T = terminate
+ *
+ * The block node guarantees a single source node.
+ *
+ * Note: The target buffer for the XOR node is set to the actual user buffer
+ * where the failed data is supposed to end up. This buffer is zero'd by the
+ * code here. Thus, if you create a degraded read dag, use it, and then
+ * re-use, you have to be sure to zero the target buffer prior to the re-use.
+ *
+ * The recfunc argument at the end specifies the name and function used for
+ * the redundancy
+ * recovery function.
+ *
+ *****************************************************************************/
+
+void
+rf_CreateDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * recFunc)
+{
+ RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
+ RF_DagNode_t *commitNode, *rpNode, *termNode;
+ int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
+ int j, paramNum;
+ RF_SectorCount_t sectorsPerSU;
+ RF_ReconUnitNum_t which_ru;
+ char *overlappingPDAs;/* a temporary array of flags */
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ RF_PhysDiskAddr_t *pda, *parityPDA;
+ RF_StripeNum_t parityStripeID;
+ RF_PhysDiskAddr_t *failedPDA;
+ RF_RaidLayout_t *layoutPtr;
+ char *rpBuf;
+
+ layoutPtr = &(raidPtr->Layout);
+ /* failedPDA points to the pda within the asm that targets the failed
+ * disk */
+ failedPDA = asmap->failedPDAs[0];
+ parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
+ asmap->raidAddress, &which_ru);
+ sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
+
+ if (rf_dagDebug) {
+ printf("[Creating degraded read DAG]\n");
+ }
+ RF_ASSERT(asmap->numDataFailed == 1);
+ dag_h->creator = "DegradedReadDAG";
+
+ /*
+ * generate two ASMs identifying the surviving data we need
+ * in order to recover the lost data
+ */
+
+ /* overlappingPDAs array must be zero'd */
+ RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
+ rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
+ &rpBuf, overlappingPDAs, allocList);
+
+ /*
+ * create all the nodes at once
+ *
+ * -1 because no access is generated for the failed pda
+ */
+ nRudNodes = asmap->numStripeUnitsAccessed - 1;
+ nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
+ ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
+ nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
+ * Rrd */
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
+ allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i++;
+ commitNode = &nodes[i];
+ i++;
+ xorNode = &nodes[i];
+ i++;
+ rpNode = &nodes[i];
+ i++;
+ termNode = &nodes[i];
+ i++;
+ rudNodes = &nodes[i];
+ i += nRudNodes;
+ rrdNodes = &nodes[i];
+ i += nRrdNodes;
+ RF_ASSERT(i == nNodes);
+
+ /* initialize nodes */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ /* this dag can not commit until the commit node is reached errors
+ * prior to the commit point imply the dag has failed */
+ dag_h->numSuccedents = 1;
+
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
+ NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
+ recFunc->SimpleName, allocList);
+
+ /* fill in the Rud nodes */
+ for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ continue;
+ }
+ rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
+ "Rud", allocList);
+ RF_ASSERT(pda);
+ rudNodes[i].params[0].p = pda;
+ rudNodes[i].params[1].p = pda->bufPtr;
+ rudNodes[i].params[2].v = parityStripeID;
+ rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* fill in the Rrd nodes */
+ i = 0;
+ if (new_asm_h[0]) {
+ for (pda = new_asm_h[0]->stripeMap->physInfo;
+ i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ i++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
+ dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i].params[0].p = pda;
+ rrdNodes[i].params[1].p = pda->bufPtr;
+ rrdNodes[i].params[2].v = parityStripeID;
+ rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ if (new_asm_h[1]) {
+ for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
+ j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ j++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
+ dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i + j].params[0].p = pda;
+ rrdNodes[i + j].params[1].p = pda->bufPtr;
+ rrdNodes[i + j].params[2].v = parityStripeID;
+ rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ /* make a PDA for the parity unit */
+ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ parityPDA->row = asmap->parityInfo->row;
+ parityPDA->col = asmap->parityInfo->col;
+ parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
+ * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
+ parityPDA->numSector = failedPDA->numSector;
+
+ /* initialize the Rp node */
+ rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
+ rpNode->params[0].p = parityPDA;
+ rpNode->params[1].p = rpBuf;
+ rpNode->params[2].v = parityStripeID;
+ rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ /*
+ * the last and nastiest step is to assign all
+ * the parameters of the Xor node
+ */
+ paramNum = 0;
+ for (i = 0; i < nRrdNodes; i++) {
+ /* all the Rrd nodes need to be xored together */
+ xorNode->params[paramNum++] = rrdNodes[i].params[0];
+ xorNode->params[paramNum++] = rrdNodes[i].params[1];
+ }
+ for (i = 0; i < nRudNodes; i++) {
+ /* any Rud nodes that overlap the failed access need to be
+ * xored in */
+ if (overlappingPDAs[i]) {
+ RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
+ xorNode->params[paramNum++].p = pda;
+ xorNode->params[paramNum++].p = pda->bufPtr;
+ }
+ }
+ RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
+
+ /* install parity pda as last set of params to be xor'd */
+ xorNode->params[paramNum++].p = parityPDA;
+ xorNode->params[paramNum++].p = rpBuf;
+
+ /*
+ * the last 2 params to the recovery xor node are
+ * the failed PDA and the raidPtr
+ */
+ xorNode->params[paramNum++].p = failedPDA;
+ xorNode->params[paramNum++].p = raidPtr;
+ RF_ASSERT(paramNum == 2 * nXorBufs + 2);
+
+ /*
+ * The xor node uses results[0] as the target buffer.
+ * Set pointer and zero the buffer. In the kernel, this
+ * may be a user buffer in which case we have to remap it.
+ */
+ xorNode->results[0] = failedPDA->bufPtr;
+ RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
+ failedPDA->numSector));
+
+ /* connect nodes to form graph */
+ /* connect the header to the block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect the block node to the read nodes */
+ RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
+ RF_ASSERT(rpNode->numAntecedents == 1);
+ blockNode->succedents[0] = rpNode;
+ rpNode->antecedents[0] = blockNode;
+ rpNode->antType[0] = rf_control;
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numSuccedents == 1);
+ blockNode->succedents[1 + i] = &rrdNodes[i];
+ rrdNodes[i].antecedents[0] = blockNode;
+ rrdNodes[i].antType[0] = rf_control;
+ }
+ for (i = 0; i < nRudNodes; i++) {
+ RF_ASSERT(rudNodes[i].numSuccedents == 1);
+ blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
+ rudNodes[i].antecedents[0] = blockNode;
+ rudNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the read nodes to the xor node */
+ RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
+ RF_ASSERT(rpNode->numSuccedents == 1);
+ rpNode->succedents[0] = xorNode;
+ xorNode->antecedents[0] = rpNode;
+ xorNode->antType[0] = rf_trueData;
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numSuccedents == 1);
+ rrdNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[1 + i] = &rrdNodes[i];
+ xorNode->antType[1 + i] = rf_trueData;
+ }
+ for (i = 0; i < nRudNodes; i++) {
+ RF_ASSERT(rudNodes[i].numSuccedents == 1);
+ rudNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
+ xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
+ }
+
+ /* connect the xor node to the commit node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ xorNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = xorNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect the termNode to the commit node */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antType[0] = rf_control;
+ termNode->antecedents[0] = commitNode;
+}
+
+#if (RF_INCLUDE_CHAINDECLUSTER > 0)
+/******************************************************************************
+ * Create a degraded read DAG for Chained Declustering
+ *
+ * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
+ *
+ * The "Rd" node reads data from the surviving disk in the mirror pair
+ * Rpd - read of primary copy
+ * Rsd - read of secondary copy
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (for holding write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+void
+rf_CreateRaidCDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
+ RF_StripeNum_t parityStripeID;
+ int useMirror, i, shiftable;
+ RF_ReconUnitNum_t which_ru;
+ RF_PhysDiskAddr_t *pda;
+
+ if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
+ shiftable = RF_TRUE;
+ } else {
+ shiftable = RF_FALSE;
+ }
+ useMirror = 0;
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug) {
+ printf("[Creating RAID C degraded read DAG]\n");
+ }
+ dag_h->creator = "RaidCDegradedReadDAG";
+ /* alloc the Wnd nodes and the Wmir node */
+ if (asmap->numDataFailed == 0)
+ useMirror = RF_FALSE;
+ else
+ useMirror = RF_TRUE;
+
+ /* total number of nodes = 1 + (block + commit + terminator) */
+ RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ rdNode = &nodes[i];
+ i++;
+ blockNode = &nodes[i];
+ i++;
+ commitNode = &nodes[i];
+ i++;
+ termNode = &nodes[i];
+ i++;
+
+ /*
+ * This dag can not commit until the commit node is reached.
+ * Errors prior to the commit point imply the dag has failed
+ * and must be retried.
+ */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* initialize the block, commit, and terminator nodes */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ pda = asmap->physInfo;
+ RF_ASSERT(pda != NULL);
+ /* parityInfo must describe entire parity unit */
+ RF_ASSERT(asmap->parityInfo->next == NULL);
+
+ /* initialize the data node */
+ if (!useMirror) {
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
+ if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
+ /* shift this read to the next disk in line */
+ rdNode->params[0].p = asmap->parityInfo;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ } else {
+ /* read primary copy */
+ rdNode->params[0].p = pda;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ } else {
+ /* read secondary copy of data */
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
+ rdNode->params[0].p = asmap->parityInfo;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* connect header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to rdnode */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(rdNode->numAntecedents == 1);
+ blockNode->succedents[0] = rdNode;
+ rdNode->antecedents[0] = blockNode;
+ rdNode->antType[0] = rf_control;
+
+ /* connect rdnode to commit node */
+ RF_ASSERT(rdNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ rdNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = rdNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect commit node to terminator */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antecedents[0] = commitNode;
+ termNode->antType[0] = rf_control;
+}
+#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
+
+#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
+/*
+ * XXX move this elsewhere?
+ */
+void
+rf_DD_GenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t ** pdap,
+ int *nNodep,
+ RF_PhysDiskAddr_t ** pqpdap,
+ int *nPQNodep,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ int PDAPerDisk, i;
+ RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ int numDataCol = layoutPtr->numDataCol;
+ int state;
+ RF_SectorNum_t suoff, suend;
+ unsigned firstDataCol, napdas, count;
+ RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
+ RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
+ RF_PhysDiskAddr_t *pda_p;
+ RF_PhysDiskAddr_t *phys_p;
+ RF_RaidAddr_t sosAddr;
+
+ /* determine how many pda's we will have to generate per unaccess
+ * stripe. If there is only one failed data unit, it is one; if two,
+ * possibly two, depending wether they overlap. */
+
+ fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
+ fone_end = fone_start + fone->numSector;
+
+#define CONS_PDA(if,start,num) \
+ pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
+ pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
+ pda_p->numSector = num; \
+ pda_p->next = NULL; \
+ RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
+
+ if (asmap->numDataFailed == 1) {
+ PDAPerDisk = 1;
+ state = 1;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ /* build p */
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ /* build q */
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
+ ftwo_end = ftwo_start + ftwo->numSector;
+ if (fone->numSector + ftwo->numSector > secPerSU) {
+ PDAPerDisk = 1;
+ state = 2;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ PDAPerDisk = 2;
+ state = 3;
+ /* four of them, fone, then ftwo */
+ RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ pda_p++;
+ CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ }
+ }
+ /* figure out number of nonaccessed pda */
+ napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
+ *nPQNodep = PDAPerDisk;
+
+ /* sweep over the over accessed pda's, figuring out the number of
+ * additional pda's to generate. Of course, skip the failed ones */
+
+ count = 0;
+ for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
+ if ((pda_p == fone) || (pda_p == ftwo))
+ continue;
+ suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
+ suend = suoff + pda_p->numSector;
+ switch (state) {
+ case 1: /* one failed PDA to overlap */
+ /* if a PDA doesn't contain the failed unit, it can
+ * only miss the start or end, not both */
+ if ((suoff > fone_start) || (suend < fone_end))
+ count++;
+ break;
+ case 2: /* whole stripe */
+ if (suoff) /* leak at begining */
+ count++;
+ if (suend < numDataCol) /* leak at end */
+ count++;
+ break;
+ case 3: /* two disjoint units */
+ if ((suoff > fone_start) || (suend < fone_end))
+ count++;
+ if ((suoff > ftwo_start) || (suend < ftwo_end))
+ count++;
+ break;
+ default:
+ RF_PANIC();
+ }
+ }
+
+ napdas += count;
+ *nNodep = napdas;
+ if (napdas == 0)
+ return; /* short circuit */
+
+ /* allocate up our list of pda's */
+
+ RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ *pdap = pda_p;
+
+ /* linkem together */
+ for (i = 0; i < (napdas - 1); i++)
+ pda_p[i].next = pda_p + (i + 1);
+
+ /* march through the one's up to the first accessed disk */
+ firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ for (i = 0; i < firstDataCol; i++) {
+ if ((pda_p - (*pdap)) == napdas)
+ continue;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
+ continue;
+ switch (state) {
+ case 1: /* fone */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ case 2: /* full stripe */
+ pda_p->numSector = secPerSU;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
+ break;
+ case 3: /* two slabs */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ pda_p->numSector = ftwo->numSector;
+ pda_p->raidAddress += ftwo_start;
+ pda_p->startSector += ftwo_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+ pda_p++;
+ }
+
+ /* march through the touched stripe units */
+ for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
+ if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
+ continue;
+ suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
+ suend = suoff + phys_p->numSector;
+ switch (state) {
+ case 1: /* single buffer */
+ if (suoff > fone_start) {
+ RF_ASSERT(suend >= fone_end);
+ /* The data read starts after the mapped
+ * access, snip off the begining */
+ pda_p->numSector = suoff - fone_start;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ if (suend < fone_end) {
+ RF_ASSERT(suoff <= fone_start);
+ /* The data read stops before the end of the
+ * failed access, extend */
+ pda_p->numSector = fone_end - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ break;
+ case 2: /* whole stripe unit */
+ RF_ASSERT((suoff == 0) || (suend == secPerSU));
+ if (suend < secPerSU) { /* short read, snip from end
+ * on */
+ pda_p->numSector = secPerSU - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ } else
+ if (suoff > 0) { /* short at front */
+ pda_p->numSector = suoff;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ break;
+ case 3: /* two nonoverlapping failures */
+ if ((suoff > fone_start) || (suend < fone_end)) {
+ if (suoff > fone_start) {
+ RF_ASSERT(suend >= fone_end);
+ /* The data read starts after the
+ * mapped access, snip off the
+ * begining */
+ pda_p->numSector = suoff - fone_start;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ if (suend < fone_end) {
+ RF_ASSERT(suoff <= fone_start);
+ /* The data read stops before the end
+ * of the failed access, extend */
+ pda_p->numSector = fone_end - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ }
+ if ((suoff > ftwo_start) || (suend < ftwo_end)) {
+ if (suoff > ftwo_start) {
+ RF_ASSERT(suend >= ftwo_end);
+ /* The data read starts after the
+ * mapped access, snip off the
+ * begining */
+ pda_p->numSector = suoff - ftwo_start;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ if (suend < ftwo_end) {
+ RF_ASSERT(suoff <= ftwo_start);
+ /* The data read stops before the end
+ * of the failed access, extend */
+ pda_p->numSector = ftwo_end - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ }
+ break;
+ default:
+ RF_PANIC();
+ }
+ }
+
+ /* after the last accessed disk */
+ for (; i < numDataCol; i++) {
+ if ((pda_p - (*pdap)) == napdas)
+ continue;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
+ continue;
+ switch (state) {
+ case 1: /* fone */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ case 2: /* full stripe */
+ pda_p->numSector = secPerSU;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
+ break;
+ case 3: /* two slabs */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ pda_p->numSector = ftwo->numSector;
+ pda_p->raidAddress += ftwo_start;
+ pda_p->startSector += ftwo_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+ pda_p++;
+ }
+
+ RF_ASSERT(pda_p - *pdap == napdas);
+ return;
+}
+#define INIT_DISK_NODE(node,name) \
+rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
+(node)->succedents[0] = unblockNode; \
+(node)->succedents[1] = recoveryNode; \
+(node)->antecedents[0] = blockNode; \
+(node)->antType[0] = rf_control
+
+#define DISK_NODE_PARAMS(_node_,_p_) \
+ (_node_).params[0].p = _p_ ; \
+ (_node_).params[1].p = (_p_)->bufPtr; \
+ (_node_).params[2].v = parityStripeID; \
+ (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
+
+void
+rf_DoubleDegRead(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ char *redundantReadNodeName,
+ char *recoveryNodeName,
+ int (*recovFunc) (RF_DagNode_t *))
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
+ *unblockNode, *rpNodes, *rqNodes, *termNode;
+ RF_PhysDiskAddr_t *pda, *pqPDAs;
+ RF_PhysDiskAddr_t *npdas;
+ int nNodes, nRrdNodes, nRudNodes, i;
+ RF_ReconUnitNum_t which_ru;
+ int nReadNodes, nPQNodes;
+ RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
+ RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug)
+ printf("[Creating Double Degraded Read DAG]\n");
+ rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
+
+ nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
+ nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
+ nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
+
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ recoveryNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ rudNodes = &nodes[i];
+ i += nRudNodes;
+ rrdNodes = &nodes[i];
+ i += nRrdNodes;
+ rpNodes = &nodes[i];
+ i += nPQNodes;
+ rqNodes = &nodes[i];
+ i += nPQNodes;
+ RF_ASSERT(i == nNodes);
+
+ dag_h->numSuccedents = 1;
+ dag_h->succedents[0] = blockNode;
+ dag_h->creator = "DoubleDegRead";
+ dag_h->numCommits = 0;
+ dag_h->numCommitNodes = 1; /* unblock */
+
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+ termNode->antecedents[1] = recoveryNode;
+ termNode->antType[1] = rf_control;
+
+ /* init the block and unblock nodes */
+ /* The block node has all nodes except itself, unblock and recovery as
+ * successors. Similarly for predecessors of the unblock. */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
+
+ for (i = 0; i < nReadNodes; i++) {
+ blockNode->succedents[i] = rudNodes + i;
+ unblockNode->antecedents[i] = rudNodes + i;
+ unblockNode->antType[i] = rf_control;
+ }
+ unblockNode->succedents[0] = termNode;
+
+ /* The recovery node has all the reads as predecessors, and the term
+ * node as successors. It gets a pda as a param from each of the read
+ * nodes plus the raidPtr. For each failed unit is has a result pda. */
+ rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
+ 1, /* succesors */
+ nReadNodes, /* preds */
+ nReadNodes + 2, /* params */
+ asmap->numDataFailed, /* results */
+ dag_h, recoveryNodeName, allocList);
+
+ recoveryNode->succedents[0] = termNode;
+ for (i = 0; i < nReadNodes; i++) {
+ recoveryNode->antecedents[i] = rudNodes + i;
+ recoveryNode->antType[i] = rf_trueData;
+ }
+
+ /* build the read nodes, then come back and fill in recovery params
+ * and results */
+ pda = asmap->physInfo;
+ for (i = 0; i < nRudNodes; pda = pda->next) {
+ if ((pda == failedPDA) || (pda == failedPDAtwo))
+ continue;
+ INIT_DISK_NODE(rudNodes + i, "Rud");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rudNodes[i], pda);
+ i++;
+ }
+
+ pda = npdas;
+ for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
+ INIT_DISK_NODE(rrdNodes + i, "Rrd");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rrdNodes[i], pda);
+ }
+
+ /* redundancy pdas */
+ pda = pqPDAs;
+ INIT_DISK_NODE(rpNodes, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[0], pda);
+ pda++;
+ INIT_DISK_NODE(rqNodes, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[0], pda);
+ if (nPQNodes == 2) {
+ pda++;
+ INIT_DISK_NODE(rpNodes + 1, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[1], pda);
+ pda++;
+ INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[1], pda);
+ }
+ /* fill in recovery node params */
+ for (i = 0; i < nReadNodes; i++)
+ recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
+ recoveryNode->params[i++].p = (void *) raidPtr;
+ recoveryNode->params[i++].p = (void *) asmap;
+ recoveryNode->results[0] = failedPDA;
+ if (asmap->numDataFailed == 2)
+ recoveryNode->results[1] = failedPDAtwo;
+
+ /* zero fill the target data buffers? */
+}
+
+#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
OpenPOWER on IntegriCloud