diff options
Diffstat (limited to 'sys/dev/raidframe/rf_dagdegrd.c')
-rw-r--r-- | sys/dev/raidframe/rf_dagdegrd.c | 1130 |
1 files changed, 1130 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_dagdegrd.c b/sys/dev/raidframe/rf_dagdegrd.c new file mode 100644 index 0000000..8e4c15a --- /dev/null +++ b/sys/dev/raidframe/rf_dagdegrd.c @@ -0,0 +1,1130 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagdegrd.c,v 1.7 2001/01/26 14:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagdegrd.c + * + * code for creating degraded read DAGs + */ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagdegrd.h> + + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + +void +rf_CreateRaidFiveDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + &rf_xorRecoveryFuncs); +} + + +/****************************************************************************** + * + * DAG creation code begins here + */ + + +/****************************************************************************** + * Create a degraded read DAG for RAID level 1 + * + * Hdr -> Nil -> R(p/s)d -> Commit -> Trm + * + * The "Rd" node reads data from the surviving disk in the mirror pair + * Rpd - read of primary copy + * Rsd - read of secondary copy + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (for holding write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidOneDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode; + RF_StripeNum_t parityStripeID; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda; + int useMirror, i; + + useMirror = 0; + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + if (rf_dagDebug) { + printf("[Creating RAID level 1 degraded read DAG]\n"); + } + dag_h->creator = "RaidOneDegradedReadDAG"; + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 0) + useMirror = RF_FALSE; + else + useMirror = RF_TRUE; + + /* total number of nodes = 1 + (block + commit + terminator) */ + RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + rdNode = &nodes[i]; + i++; + blockNode = &nodes[i]; + i++; + commitNode = &nodes[i]; + i++; + termNode = &nodes[i]; + i++; + + /* this dag can not commit until the commit node is reached. errors + * prior to the commit point imply the dag has failed and must be + * retried */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the block, commit, and terminator nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + pda = asmap->physInfo; + RF_ASSERT(pda != NULL); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + + /* initialize the data node */ + if (!useMirror) { + /* read primary copy of data */ + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList); + rdNode->params[0].p = pda; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } else { + /* read secondary copy of data */ + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList); + rdNode->params[0].p = asmap->parityInfo; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* connect header to block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect block node to rdnode */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(rdNode->numAntecedents == 1); + blockNode->succedents[0] = rdNode; + rdNode->antecedents[0] = blockNode; + rdNode->antType[0] = rf_control; + + /* connect rdnode to commit node */ + RF_ASSERT(rdNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + rdNode->succedents[0] = commitNode; + commitNode->antecedents[0] = rdNode; + commitNode->antType[0] = rf_control; + + /* connect commit node to terminator */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antecedents[0] = commitNode; + termNode->antType[0] = rf_control; +} + + + +/****************************************************************************** + * + * creates a DAG to perform a degraded-mode read of data within one stripe. + * This DAG is as follows: + * + * Hdr -> Block -> Rud -> Xor -> Cmt -> T + * -> Rrd -> + * -> Rp --> + * + * Each R node is a successor of the L node + * One successor arc from each R node goes to C, and the other to X + * There is one Rud for each chunk of surviving user data requested by the + * user, and one Rrd for each chunk of surviving user data _not_ being read by + * the user + * R = read, ud = user data, rd = recovery (surviving) data, p = parity + * X = XOR, C = Commit, T = terminate + * + * The block node guarantees a single source node. + * + * Note: The target buffer for the XOR node is set to the actual user buffer + * where the failed data is supposed to end up. This buffer is zero'd by the + * code here. Thus, if you create a degraded read dag, use it, and then + * re-use, you have to be sure to zero the target buffer prior to the re-use. + * + * The recfunc argument at the end specifies the name and function used for + * the redundancy + * recovery function. + * + *****************************************************************************/ + +void +rf_CreateDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * recFunc) +{ + RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode; + RF_DagNode_t *commitNode, *rpNode, *termNode; + int nNodes, nRrdNodes, nRudNodes, nXorBufs, i; + int j, paramNum; + RF_SectorCount_t sectorsPerSU; + RF_ReconUnitNum_t which_ru; + char *overlappingPDAs;/* a temporary array of flags */ + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_PhysDiskAddr_t *pda, *parityPDA; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *failedPDA; + RF_RaidLayout_t *layoutPtr; + char *rpBuf; + + layoutPtr = &(raidPtr->Layout); + /* failedPDA points to the pda within the asm that targets the failed + * disk */ + failedPDA = asmap->failedPDAs[0]; + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, + asmap->raidAddress, &which_ru); + sectorsPerSU = layoutPtr->sectorsPerStripeUnit; + + if (rf_dagDebug) { + printf("[Creating degraded read DAG]\n"); + } + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "DegradedReadDAG"; + + /* + * generate two ASMs identifying the surviving data we need + * in order to recover the lost data + */ + + /* overlappingPDAs array must be zero'd */ + RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *)); + rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs, + &rpBuf, overlappingPDAs, allocList); + + /* + * create all the nodes at once + * + * -1 because no access is generated for the failed pda + */ + nRudNodes = asmap->numStripeUnitsAccessed - 1; + nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + + ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); + nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud, + * Rrd */ + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), + allocList); + i = 0; + blockNode = &nodes[i]; + i++; + commitNode = &nodes[i]; + i++; + xorNode = &nodes[i]; + i++; + rpNode = &nodes[i]; + i++; + termNode = &nodes[i]; + i++; + rudNodes = &nodes[i]; + i += nRudNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + RF_ASSERT(i == nNodes); + + /* initialize nodes */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + /* this dag can not commit until the commit node is reached errors + * prior to the commit point imply the dag has failed */ + dag_h->numSuccedents = 1; + + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc, + NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h, + recFunc->SimpleName, allocList); + + /* fill in the Rud nodes */ + for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) { + if (pda == failedPDA) { + i--; + continue; + } + rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Rud", allocList); + RF_ASSERT(pda); + rudNodes[i].params[0].p = pda; + rudNodes[i].params[1].p = pda->bufPtr; + rudNodes[i].params[2].v = parityStripeID; + rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* fill in the Rrd nodes */ + i = 0; + if (new_asm_h[0]) { + for (pda = new_asm_h[0]->stripeMap->physInfo; + i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + i++, pda = pda->next) { + rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, + dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i].params[0].p = pda; + rrdNodes[i].params[1].p = pda->bufPtr; + rrdNodes[i].params[2].v = parityStripeID; + rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + if (new_asm_h[1]) { + for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo; + j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + j++, pda = pda->next) { + rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, + dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i + j].params[0].p = pda; + rrdNodes[i + j].params[1].p = pda->bufPtr; + rrdNodes[i + j].params[2].v = parityStripeID; + rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* make a PDA for the parity unit */ + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->parityInfo->row; + parityPDA->col = asmap->parityInfo->col; + parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + /* initialize the Rp node */ + rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList); + rpNode->params[0].p = parityPDA; + rpNode->params[1].p = rpBuf; + rpNode->params[2].v = parityStripeID; + rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + /* + * the last and nastiest step is to assign all + * the parameters of the Xor node + */ + paramNum = 0; + for (i = 0; i < nRrdNodes; i++) { + /* all the Rrd nodes need to be xored together */ + xorNode->params[paramNum++] = rrdNodes[i].params[0]; + xorNode->params[paramNum++] = rrdNodes[i].params[1]; + } + for (i = 0; i < nRudNodes; i++) { + /* any Rud nodes that overlap the failed access need to be + * xored in */ + if (overlappingPDAs[i]) { + RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t)); + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); + xorNode->params[paramNum++].p = pda; + xorNode->params[paramNum++].p = pda->bufPtr; + } + } + RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); + + /* install parity pda as last set of params to be xor'd */ + xorNode->params[paramNum++].p = parityPDA; + xorNode->params[paramNum++].p = rpBuf; + + /* + * the last 2 params to the recovery xor node are + * the failed PDA and the raidPtr + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = raidPtr; + RF_ASSERT(paramNum == 2 * nXorBufs + 2); + + /* + * The xor node uses results[0] as the target buffer. + * Set pointer and zero the buffer. In the kernel, this + * may be a user buffer in which case we have to remap it. + */ + xorNode->results[0] = failedPDA->bufPtr; + RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr, + failedPDA->numSector)); + + /* connect nodes to form graph */ + /* connect the header to the block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect the block node to the read nodes */ + RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes)); + RF_ASSERT(rpNode->numAntecedents == 1); + blockNode->succedents[0] = rpNode; + rpNode->antecedents[0] = blockNode; + rpNode->antType[0] = rf_control; + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + blockNode->succedents[1 + i] = &rrdNodes[i]; + rrdNodes[i].antecedents[0] = blockNode; + rrdNodes[i].antType[0] = rf_control; + } + for (i = 0; i < nRudNodes; i++) { + RF_ASSERT(rudNodes[i].numSuccedents == 1); + blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i]; + rudNodes[i].antecedents[0] = blockNode; + rudNodes[i].antType[0] = rf_control; + } + + /* connect the read nodes to the xor node */ + RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes)); + RF_ASSERT(rpNode->numSuccedents == 1); + rpNode->succedents[0] = xorNode; + xorNode->antecedents[0] = rpNode; + xorNode->antType[0] = rf_trueData; + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + rrdNodes[i].succedents[0] = xorNode; + xorNode->antecedents[1 + i] = &rrdNodes[i]; + xorNode->antType[1 + i] = rf_trueData; + } + for (i = 0; i < nRudNodes; i++) { + RF_ASSERT(rudNodes[i].numSuccedents == 1); + rudNodes[i].succedents[0] = xorNode; + xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i]; + xorNode->antType[1 + nRrdNodes + i] = rf_trueData; + } + + /* connect the xor node to the commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* connect the termNode to the commit node */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antType[0] = rf_control; + termNode->antecedents[0] = commitNode; +} + +#if (RF_INCLUDE_CHAINDECLUSTER > 0) +/****************************************************************************** + * Create a degraded read DAG for Chained Declustering + * + * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm + * + * The "Rd" node reads data from the surviving disk in the mirror pair + * Rpd - read of primary copy + * Rsd - read of secondary copy + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (for holding write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidCDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode; + RF_StripeNum_t parityStripeID; + int useMirror, i, shiftable; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda; + + if ((asmap->numDataFailed + asmap->numParityFailed) == 0) { + shiftable = RF_TRUE; + } else { + shiftable = RF_FALSE; + } + useMirror = 0; + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + + if (rf_dagDebug) { + printf("[Creating RAID C degraded read DAG]\n"); + } + dag_h->creator = "RaidCDegradedReadDAG"; + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 0) + useMirror = RF_FALSE; + else + useMirror = RF_TRUE; + + /* total number of nodes = 1 + (block + commit + terminator) */ + RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + rdNode = &nodes[i]; + i++; + blockNode = &nodes[i]; + i++; + commitNode = &nodes[i]; + i++; + termNode = &nodes[i]; + i++; + + /* + * This dag can not commit until the commit node is reached. + * Errors prior to the commit point imply the dag has failed + * and must be retried. + */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the block, commit, and terminator nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + pda = asmap->physInfo; + RF_ASSERT(pda != NULL); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + + /* initialize the data node */ + if (!useMirror) { + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList); + if (shiftable && rf_compute_workload_shift(raidPtr, pda)) { + /* shift this read to the next disk in line */ + rdNode->params[0].p = asmap->parityInfo; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } else { + /* read primary copy */ + rdNode->params[0].p = pda; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } else { + /* read secondary copy of data */ + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList); + rdNode->params[0].p = asmap->parityInfo; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* connect header to block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect block node to rdnode */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(rdNode->numAntecedents == 1); + blockNode->succedents[0] = rdNode; + rdNode->antecedents[0] = blockNode; + rdNode->antType[0] = rf_control; + + /* connect rdnode to commit node */ + RF_ASSERT(rdNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + rdNode->succedents[0] = commitNode; + commitNode->antecedents[0] = rdNode; + commitNode->antType[0] = rf_control; + + /* connect commit node to terminator */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antecedents[0] = commitNode; + termNode->antType[0] = rf_control; +} +#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ + +#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) +/* + * XXX move this elsewhere? + */ +void +rf_DD_GenerateFailedAccessASMs( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_PhysDiskAddr_t ** pdap, + int *nNodep, + RF_PhysDiskAddr_t ** pqpdap, + int *nPQNodep, + RF_AllocListElem_t * allocList) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int PDAPerDisk, i; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + int numDataCol = layoutPtr->numDataCol; + int state; + RF_SectorNum_t suoff, suend; + unsigned firstDataCol, napdas, count; + RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0; + RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; + RF_PhysDiskAddr_t *pda_p; + RF_PhysDiskAddr_t *phys_p; + RF_RaidAddr_t sosAddr; + + /* determine how many pda's we will have to generate per unaccess + * stripe. If there is only one failed data unit, it is one; if two, + * possibly two, depending wether they overlap. */ + + fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector); + fone_end = fone_start + fone->numSector; + +#define CONS_PDA(if,start,num) \ + pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \ + pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ + pda_p->numSector = num; \ + pda_p->next = NULL; \ + RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList) + + if (asmap->numDataFailed == 1) { + PDAPerDisk = 1; + state = 1; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + /* build p */ + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + /* build q */ + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } else { + ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector); + ftwo_end = ftwo_start + ftwo->numSector; + if (fone->numSector + ftwo->numSector > secPerSU) { + PDAPerDisk = 1; + state = 2; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_Q; + } else { + PDAPerDisk = 2; + state = 3; + /* four of them, fone, then ftwo */ + RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + pda_p++; + CONS_PDA(parityInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } + } + /* figure out number of nonaccessed pda */ + napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0)); + *nPQNodep = PDAPerDisk; + + /* sweep over the over accessed pda's, figuring out the number of + * additional pda's to generate. Of course, skip the failed ones */ + + count = 0; + for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) { + if ((pda_p == fone) || (pda_p == ftwo)) + continue; + suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector); + suend = suoff + pda_p->numSector; + switch (state) { + case 1: /* one failed PDA to overlap */ + /* if a PDA doesn't contain the failed unit, it can + * only miss the start or end, not both */ + if ((suoff > fone_start) || (suend < fone_end)) + count++; + break; + case 2: /* whole stripe */ + if (suoff) /* leak at begining */ + count++; + if (suend < numDataCol) /* leak at end */ + count++; + break; + case 3: /* two disjoint units */ + if ((suoff > fone_start) || (suend < fone_end)) + count++; + if ((suoff > ftwo_start) || (suend < ftwo_end)) + count++; + break; + default: + RF_PANIC(); + } + } + + napdas += count; + *nNodep = napdas; + if (napdas == 0) + return; /* short circuit */ + + /* allocate up our list of pda's */ + + RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + *pdap = pda_p; + + /* linkem together */ + for (i = 0; i < (napdas - 1); i++) + pda_p[i].next = pda_p + (i + 1); + + /* march through the one's up to the first accessed disk */ + firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol; + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < firstDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; + } + + /* march through the touched stripe units */ + for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) { + if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1])) + continue; + suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector); + suend = suoff + phys_p->numSector; + switch (state) { + case 1: /* single buffer */ + if (suoff > fone_start) { + RF_ASSERT(suend >= fone_end); + /* The data read starts after the mapped + * access, snip off the begining */ + pda_p->numSector = suoff - fone_start; + pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start; + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + if (suend < fone_end) { + RF_ASSERT(suoff <= fone_start); + /* The data read stops before the end of the + * failed access, extend */ + pda_p->numSector = fone_end - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + break; + case 2: /* whole stripe unit */ + RF_ASSERT((suoff == 0) || (suend == secPerSU)); + if (suend < secPerSU) { /* short read, snip from end + * on */ + pda_p->numSector = secPerSU - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } else + if (suoff > 0) { /* short at front */ + pda_p->numSector = suoff; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + break; + case 3: /* two nonoverlapping failures */ + if ((suoff > fone_start) || (suend < fone_end)) { + if (suoff > fone_start) { + RF_ASSERT(suend >= fone_end); + /* The data read starts after the + * mapped access, snip off the + * begining */ + pda_p->numSector = suoff - fone_start; + pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start; + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + if (suend < fone_end) { + RF_ASSERT(suoff <= fone_start); + /* The data read stops before the end + * of the failed access, extend */ + pda_p->numSector = fone_end - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + } + if ((suoff > ftwo_start) || (suend < ftwo_end)) { + if (suoff > ftwo_start) { + RF_ASSERT(suend >= ftwo_end); + /* The data read starts after the + * mapped access, snip off the + * begining */ + pda_p->numSector = suoff - ftwo_start; + pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start; + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + if (suend < ftwo_end) { + RF_ASSERT(suoff <= ftwo_start); + /* The data read stops before the end + * of the failed access, extend */ + pda_p->numSector = ftwo_end - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + } + break; + default: + RF_PANIC(); + } + } + + /* after the last accessed disk */ + for (; i < numDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; + } + + RF_ASSERT(pda_p - *pdap == napdas); + return; +} +#define INIT_DISK_NODE(node,name) \ +rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \ +(node)->succedents[0] = unblockNode; \ +(node)->succedents[1] = recoveryNode; \ +(node)->antecedents[0] = blockNode; \ +(node)->antType[0] = rf_control + +#define DISK_NODE_PARAMS(_node_,_p_) \ + (_node_).params[0].p = _p_ ; \ + (_node_).params[1].p = (_p_)->bufPtr; \ + (_node_).params[2].v = parityStripeID; \ + (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru) + +void +rf_DoubleDegRead( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + char *redundantReadNodeName, + char *recoveryNodeName, + int (*recovFunc) (RF_DagNode_t *)) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode, + *unblockNode, *rpNodes, *rqNodes, *termNode; + RF_PhysDiskAddr_t *pda, *pqPDAs; + RF_PhysDiskAddr_t *npdas; + int nNodes, nRrdNodes, nRudNodes, i; + RF_ReconUnitNum_t which_ru; + int nReadNodes, nPQNodes; + RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; + RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1]; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); + + if (rf_dagDebug) + printf("[Creating Double Degraded Read DAG]\n"); + rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList); + + nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); + nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes; + nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes; + + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + recoveryNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + rudNodes = &nodes[i]; + i += nRudNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + rpNodes = &nodes[i]; + i += nPQNodes; + rqNodes = &nodes[i]; + i += nPQNodes; + RF_ASSERT(i == nNodes); + + dag_h->numSuccedents = 1; + dag_h->succedents[0] = blockNode; + dag_h->creator = "DoubleDegRead"; + dag_h->numCommits = 0; + dag_h->numCommitNodes = 1; /* unblock */ + + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList); + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + termNode->antecedents[1] = recoveryNode; + termNode->antType[1] = rf_control; + + /* init the block and unblock nodes */ + /* The block node has all nodes except itself, unblock and recovery as + * successors. Similarly for predecessors of the unblock. */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList); + + for (i = 0; i < nReadNodes; i++) { + blockNode->succedents[i] = rudNodes + i; + unblockNode->antecedents[i] = rudNodes + i; + unblockNode->antType[i] = rf_control; + } + unblockNode->succedents[0] = termNode; + + /* The recovery node has all the reads as predecessors, and the term + * node as successors. It gets a pda as a param from each of the read + * nodes plus the raidPtr. For each failed unit is has a result pda. */ + rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, + 1, /* succesors */ + nReadNodes, /* preds */ + nReadNodes + 2, /* params */ + asmap->numDataFailed, /* results */ + dag_h, recoveryNodeName, allocList); + + recoveryNode->succedents[0] = termNode; + for (i = 0; i < nReadNodes; i++) { + recoveryNode->antecedents[i] = rudNodes + i; + recoveryNode->antType[i] = rf_trueData; + } + + /* build the read nodes, then come back and fill in recovery params + * and results */ + pda = asmap->physInfo; + for (i = 0; i < nRudNodes; pda = pda->next) { + if ((pda == failedPDA) || (pda == failedPDAtwo)) + continue; + INIT_DISK_NODE(rudNodes + i, "Rud"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rudNodes[i], pda); + i++; + } + + pda = npdas; + for (i = 0; i < nRrdNodes; i++, pda = pda->next) { + INIT_DISK_NODE(rrdNodes + i, "Rrd"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rrdNodes[i], pda); + } + + /* redundancy pdas */ + pda = pqPDAs; + INIT_DISK_NODE(rpNodes, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[0], pda); + pda++; + INIT_DISK_NODE(rqNodes, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_DISK_NODE(rpNodes + 1, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[1], pda); + pda++; + INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[1], pda); + } + /* fill in recovery node params */ + for (i = 0; i < nReadNodes; i++) + recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */ + recoveryNode->params[i++].p = (void *) raidPtr; + recoveryNode->params[i++].p = (void *) asmap; + recoveryNode->results[0] = failedPDA; + if (asmap->numDataFailed == 2) + recoveryNode->results[1] = failedPDAtwo; + + /* zero fill the target data buffers? */ +} + +#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */ |