diff options
Diffstat (limited to 'sys/dev/fxp/if_fxp.c')
-rw-r--r-- | sys/dev/fxp/if_fxp.c | 1997 |
1 files changed, 1997 insertions, 0 deletions
diff --git a/sys/dev/fxp/if_fxp.c b/sys/dev/fxp/if_fxp.c new file mode 100644 index 0000000..d98a0f2 --- /dev/null +++ b/sys/dev/fxp/if_fxp.c @@ -0,0 +1,1997 @@ +/* + * Copyright (c) 1995, David Greenman + * All rights reserved. + * + * Modifications to support NetBSD and media selection: + * Copyright (c) 1997 Jason R. Thorpe. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice unmodified, this list of conditions, and the following + * disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $FreeBSD$ + */ + +/* + * Intel EtherExpress Pro/100B PCI Fast Ethernet driver + */ + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/socket.h> + +#include <net/if.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#ifdef NS +#include <netns/ns.h> +#include <netns/ns_if.h> +#endif + +#include <net/bpf.h> + +#if defined(__NetBSD__) + +#include <sys/ioctl.h> +#include <sys/errno.h> +#include <sys/device.h> + +#include <net/if_dl.h> +#include <net/if_ether.h> + +#include <netinet/if_inarp.h> + +#include <vm/vm.h> + +#include <machine/cpu.h> +#include <machine/bus.h> +#include <machine/intr.h> + +#include <dev/pci/if_fxpreg.h> +#include <dev/pci/if_fxpvar.h> + +#include <dev/pci/pcivar.h> +#include <dev/pci/pcireg.h> +#include <dev/pci/pcidevs.h> + + +#else /* __FreeBSD__ */ + +#include <sys/sockio.h> +#include <sys/bus.h> +#include <machine/bus.h> +#include <sys/rman.h> +#include <machine/resource.h> + +#include <net/ethernet.h> +#include <net/if_arp.h> + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/clock.h> /* for DELAY */ + +#include <pci/pcivar.h> +#include <pci/pcireg.h> /* for PCIM_CMD_xxx */ +#include <pci/if_fxpreg.h> +#include <pci/if_fxpvar.h> + +#endif /* __NetBSD__ */ + +#ifdef __alpha__ /* XXX */ +/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ +#undef vtophys +#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va)) +#endif /* __alpha__ */ + + +#include "opt_bdg.h" +#ifdef BRIDGE +#include <net/if_types.h> +#include <net/bridge.h> +#endif + +/* + * NOTE! On the Alpha, we have an alignment constraint. The + * card DMAs the packet immediately following the RFA. However, + * the first thing in the packet is a 14-byte Ethernet header. + * This means that the packet is misaligned. To compensate, + * we actually offset the RFA 2 bytes into the cluster. This + * alignes the packet after the Ethernet header at a 32-bit + * boundary. HOWEVER! This means that the RFA is misaligned! + */ +#define RFA_ALIGNMENT_FUDGE 2 + +/* + * Inline function to copy a 16-bit aligned 32-bit quantity. + */ +static __inline void fxp_lwcopy __P((volatile u_int32_t *, + volatile u_int32_t *)); +static __inline void +fxp_lwcopy(src, dst) + volatile u_int32_t *src, *dst; +{ + volatile u_int16_t *a = (volatile u_int16_t *)src; + volatile u_int16_t *b = (volatile u_int16_t *)dst; + + b[0] = a[0]; + b[1] = a[1]; +} + +/* + * Template for default configuration parameters. + * See struct fxp_cb_config for the bit definitions. + */ +static u_char fxp_cb_config_template[] = { + 0x0, 0x0, /* cb_status */ + 0x80, 0x2, /* cb_command */ + 0xff, 0xff, 0xff, 0xff, /* link_addr */ + 0x16, /* 0 */ + 0x8, /* 1 */ + 0x0, /* 2 */ + 0x0, /* 3 */ + 0x0, /* 4 */ + 0x80, /* 5 */ + 0xb2, /* 6 */ + 0x3, /* 7 */ + 0x1, /* 8 */ + 0x0, /* 9 */ + 0x26, /* 10 */ + 0x0, /* 11 */ + 0x60, /* 12 */ + 0x0, /* 13 */ + 0xf2, /* 14 */ + 0x48, /* 15 */ + 0x0, /* 16 */ + 0x40, /* 17 */ + 0xf3, /* 18 */ + 0x0, /* 19 */ + 0x3f, /* 20 */ + 0x5 /* 21 */ +}; + +/* Supported media types. */ +struct fxp_supported_media { + const int fsm_phy; /* PHY type */ + const int *fsm_media; /* the media array */ + const int fsm_nmedia; /* the number of supported media */ + const int fsm_defmedia; /* default media for this PHY */ +}; + +static const int fxp_media_standard[] = { + IFM_ETHER|IFM_10_T, + IFM_ETHER|IFM_10_T|IFM_FDX, + IFM_ETHER|IFM_100_TX, + IFM_ETHER|IFM_100_TX|IFM_FDX, + IFM_ETHER|IFM_AUTO, +}; +#define FXP_MEDIA_STANDARD_DEFMEDIA (IFM_ETHER|IFM_AUTO) + +static const int fxp_media_default[] = { + IFM_ETHER|IFM_MANUAL, /* XXX IFM_AUTO ? */ +}; +#define FXP_MEDIA_DEFAULT_DEFMEDIA (IFM_ETHER|IFM_MANUAL) + +static const struct fxp_supported_media fxp_media[] = { + { FXP_PHY_DP83840, fxp_media_standard, + sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), + FXP_MEDIA_STANDARD_DEFMEDIA }, + { FXP_PHY_DP83840A, fxp_media_standard, + sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), + FXP_MEDIA_STANDARD_DEFMEDIA }, + { FXP_PHY_82553A, fxp_media_standard, + sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), + FXP_MEDIA_STANDARD_DEFMEDIA }, + { FXP_PHY_82553C, fxp_media_standard, + sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), + FXP_MEDIA_STANDARD_DEFMEDIA }, + { FXP_PHY_82555, fxp_media_standard, + sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), + FXP_MEDIA_STANDARD_DEFMEDIA }, + { FXP_PHY_82555B, fxp_media_standard, + sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), + FXP_MEDIA_STANDARD_DEFMEDIA }, + { FXP_PHY_80C24, fxp_media_default, + sizeof(fxp_media_default) / sizeof(fxp_media_default[0]), + FXP_MEDIA_DEFAULT_DEFMEDIA }, +}; +#define NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0])) + +static int fxp_mediachange __P((struct ifnet *)); +static void fxp_mediastatus __P((struct ifnet *, struct ifmediareq *)); +static void fxp_set_media __P((struct fxp_softc *, int)); +static __inline void fxp_scb_wait __P((struct fxp_softc *)); +static FXP_INTR_TYPE fxp_intr __P((void *)); +static void fxp_start __P((struct ifnet *)); +static int fxp_ioctl __P((struct ifnet *, + FXP_IOCTLCMD_TYPE, caddr_t)); +static void fxp_init __P((void *)); +static void fxp_stop __P((struct fxp_softc *)); +static void fxp_watchdog __P((struct ifnet *)); +static int fxp_add_rfabuf __P((struct fxp_softc *, struct mbuf *)); +static int fxp_mdi_read __P((struct fxp_softc *, int, int)); +static void fxp_mdi_write __P((struct fxp_softc *, int, int, int)); +static void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, + int, int)); +static int fxp_attach_common __P((struct fxp_softc *, u_int8_t *)); +static void fxp_stats_update __P((void *)); +static void fxp_mc_setup __P((struct fxp_softc *)); + +/* + * Set initial transmit threshold at 64 (512 bytes). This is + * increased by 64 (512 bytes) at a time, to maximum of 192 + * (1536 bytes), if an underrun occurs. + */ +static int tx_threshold = 64; + +/* + * Number of transmit control blocks. This determines the number + * of transmit buffers that can be chained in the CB list. + * This must be a power of two. + */ +#define FXP_NTXCB 128 + +/* + * Number of completed TX commands at which point an interrupt + * will be generated to garbage collect the attached buffers. + * Must be at least one less than FXP_NTXCB, and should be + * enough less so that the transmitter doesn't becomes idle + * during the buffer rundown (which would reduce performance). + */ +#define FXP_CXINT_THRESH 120 + +/* + * TxCB list index mask. This is used to do list wrap-around. + */ +#define FXP_TXCB_MASK (FXP_NTXCB - 1) + +/* + * Number of receive frame area buffers. These are large so chose + * wisely. + */ +#define FXP_NRFABUFS 64 + +/* + * Maximum number of seconds that the receiver can be idle before we + * assume it's dead and attempt to reset it by reprogramming the + * multicast filter. This is part of a work-around for a bug in the + * NIC. See fxp_stats_update(). + */ +#define FXP_MAX_RX_IDLE 15 + +/* + * Wait for the previous command to be accepted (but not necessarily + * completed). + */ +static __inline void +fxp_scb_wait(sc) + struct fxp_softc *sc; +{ + int i = 10000; + + while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i); +} + +/************************************************************* + * Operating system-specific autoconfiguration glue + *************************************************************/ + +#if defined(__NetBSD__) + +#ifdef __BROKEN_INDIRECT_CONFIG +static int fxp_match __P((struct device *, void *, void *)); +#else +static int fxp_match __P((struct device *, struct cfdata *, void *)); +#endif +static void fxp_attach __P((struct device *, struct device *, void *)); + +static void fxp_shutdown __P((void *)); + +/* Compensate for lack of a generic ether_ioctl() */ +static int fxp_ether_ioctl __P((struct ifnet *, + FXP_IOCTLCMD_TYPE, caddr_t)); +#define ether_ioctl fxp_ether_ioctl + +struct cfattach fxp_ca = { + sizeof(struct fxp_softc), fxp_match, fxp_attach +}; + +struct cfdriver fxp_cd = { + NULL, "fxp", DV_IFNET +}; + +/* + * Check if a device is an 82557. + */ +static int +fxp_match(parent, match, aux) + struct device *parent; +#ifdef __BROKEN_INDIRECT_CONFIG + void *match; +#else + struct cfdata *match; +#endif + void *aux; +{ + struct pci_attach_args *pa = aux; + + if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) + return (0); + + switch (PCI_PRODUCT(pa->pa_id)) { + case PCI_PRODUCT_INTEL_82557: + return (1); + } + + return (0); +} + +static void +fxp_attach(parent, self, aux) + struct device *parent, *self; + void *aux; +{ + struct fxp_softc *sc = (struct fxp_softc *)self; + struct pci_attach_args *pa = aux; + pci_chipset_tag_t pc = pa->pa_pc; + pci_intr_handle_t ih; + const char *intrstr = NULL; + u_int8_t enaddr[6]; + struct ifnet *ifp; + + /* + * Map control/status registers. + */ + if (pci_mapreg_map(pa, FXP_PCI_MMBA, PCI_MAPREG_TYPE_MEM, 0, + &sc->sc_st, &sc->sc_sh, NULL, NULL)) { + printf(": can't map registers\n"); + return; + } + printf(": Intel EtherExpress Pro 10/100B Ethernet\n"); + + /* + * Allocate our interrupt. + */ + if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, + pa->pa_intrline, &ih)) { + printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); + return; + } + intrstr = pci_intr_string(pc, ih); + sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, fxp_intr, sc); + if (sc->sc_ih == NULL) { + printf("%s: couldn't establish interrupt", + sc->sc_dev.dv_xname); + if (intrstr != NULL) + printf(" at %s", intrstr); + printf("\n"); + return; + } + printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); + + /* Do generic parts of attach. */ + if (fxp_attach_common(sc, enaddr)) { + /* Failed! */ + return; + } + + printf("%s: Ethernet address %s%s\n", sc->sc_dev.dv_xname, + ether_sprintf(enaddr), sc->phy_10Mbps_only ? ", 10Mbps" : ""); + + ifp = &sc->sc_ethercom.ec_if; + bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); + ifp->if_softc = sc; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = fxp_ioctl; + ifp->if_start = fxp_start; + ifp->if_watchdog = fxp_watchdog; + + /* + * Attach the interface. + */ + if_attach(ifp); + /* + * Let the system queue as many packets as we have available + * TX descriptors. + */ + ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; + ether_ifattach(ifp, enaddr); + bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB, + sizeof(struct ether_header)); + + /* + * Add shutdown hook so that DMA is disabled prior to reboot. Not + * doing do could allow DMA to corrupt kernel memory during the + * reboot before the driver initializes. + */ + shutdownhook_establish(fxp_shutdown, sc); +} + +/* + * Device shutdown routine. Called at system shutdown after sync. The + * main purpose of this routine is to shut off receiver DMA so that + * kernel memory doesn't get clobbered during warmboot. + */ +static void +fxp_shutdown(sc) + void *sc; +{ + fxp_stop((struct fxp_softc *) sc); +} + +static int +fxp_ether_ioctl(ifp, cmd, data) + struct ifnet *ifp; + FXP_IOCTLCMD_TYPE cmd; + caddr_t data; +{ + struct ifaddr *ifa = (struct ifaddr *) data; + struct fxp_softc *sc = ifp->if_softc; + + switch (cmd) { + case SIOCSIFADDR: + ifp->if_flags |= IFF_UP; + + switch (ifa->ifa_addr->sa_family) { +#ifdef INET + case AF_INET: + fxp_init(sc); + arp_ifinit(ifp, ifa); + break; +#endif +#ifdef NS + case AF_NS: + { + register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; + + if (ns_nullhost(*ina)) + ina->x_host = *(union ns_host *) + LLADDR(ifp->if_sadl); + else + bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl), + ifp->if_addrlen); + /* Set new address. */ + fxp_init(sc); + break; + } +#endif + default: + fxp_init(sc); + break; + } + break; + + default: + return (EINVAL); + } + + return (0); +} + +#else /* __FreeBSD__ */ + +/* + * Return identification string if this is device is ours. + */ +static int +fxp_probe(device_t dev) +{ + if ((pci_get_vendor(dev) == FXP_VENDORID_INTEL) && + (pci_get_device(dev) == FXP_DEVICEID_i82557)) { + device_set_desc(dev, "Intel EtherExpress Pro 10/100B Ethernet"); + return 0; + } + if ((pci_get_vendor(dev) == FXP_VENDORID_INTEL) && + (pci_get_device(dev) == FXP_DEVICEID_i82559)) { + device_set_desc(dev, "Intel InBusiness 10/100 Ethernet"); + return 0; + } + + return ENXIO; +} + +static int +fxp_attach(device_t dev) +{ + int error = 0; + struct fxp_softc *sc = device_get_softc(dev); + struct ifnet *ifp; + int s; + u_long val; + int rid; + + callout_handle_init(&sc->stat_ch); + + s = splimp(); + + /* + * Enable bus mastering. + */ + val = pci_read_config(dev, PCIR_COMMAND, 2); + val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); + pci_write_config(dev, PCIR_COMMAND, val, 2); + + /* + * Map control/status registers. + */ + rid = FXP_PCI_MMBA; + sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, + 0, ~0, 1, RF_ACTIVE); + if (!sc->mem) { + device_printf(dev, "could not map memory\n"); + error = ENXIO; + goto fail; + } + + sc->sc_st = rman_get_bustag(sc->mem); + sc->sc_sh = rman_get_bushandle(sc->mem); + + /* + * Allocate our interrupt. + */ + rid = 0; + sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, + RF_SHAREABLE | RF_ACTIVE); + if (sc->irq == NULL) { + device_printf(dev, "could not map interrupt\n"); + error = ENXIO; + goto fail; + } + + error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, + fxp_intr, sc, &sc->ih); + if (error) { + device_printf(dev, "could not setup irq\n"); + goto fail; + } + + /* Do generic parts of attach. */ + if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) { + /* Failed! */ + bus_teardown_intr(dev, sc->irq, sc->ih); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq); + bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem); + error = ENXIO; + goto fail; + } + + device_printf(dev, "Ethernet address %6D%s\n", + sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : ""); + + ifp = &sc->arpcom.ac_if; + ifp->if_unit = device_get_unit(dev); + ifp->if_name = "fxp"; + ifp->if_output = ether_output; + ifp->if_baudrate = 100000000; + ifp->if_init = fxp_init; + ifp->if_softc = sc; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = fxp_ioctl; + ifp->if_start = fxp_start; + ifp->if_watchdog = fxp_watchdog; + + /* + * Attach the interface. + */ + if_attach(ifp); + /* + * Let the system queue as many packets as we have available + * TX descriptors. + */ + ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; + ether_ifattach(ifp); + bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); + + splx(s); + return 0; + + fail: + splx(s); + return error; +} + +/* + * Detach interface. + */ +static int +fxp_detach(device_t dev) +{ + struct fxp_softc *sc = device_get_softc(dev); + int s; + + s = splimp(); + + /* + * Close down routes etc. + */ + if_detach(&sc->arpcom.ac_if); + + /* + * Stop DMA and drop transmit queue. + */ + fxp_stop(sc); + + /* + * Deallocate resources. + */ + bus_teardown_intr(dev, sc->irq, sc->ih); + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq); + bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem); + + /* + * Free all the receive buffers. + */ + if (sc->rfa_headm != NULL) + m_freem(sc->rfa_headm); + + /* + * Free all media structures. + */ + ifmedia_removeall(&sc->sc_media); + + /* + * Free anciliary structures. + */ + free(sc->cbl_base, M_DEVBUF); + free(sc->fxp_stats, M_DEVBUF); + free(sc->mcsp, M_DEVBUF); + + splx(s); + + return 0; +} + +/* + * Device shutdown routine. Called at system shutdown after sync. The + * main purpose of this routine is to shut off receiver DMA so that + * kernel memory doesn't get clobbered during warmboot. + */ +static int +fxp_shutdown(device_t dev) +{ + /* + * Make sure that DMA is disabled prior to reboot. Not doing + * do could allow DMA to corrupt kernel memory during the + * reboot before the driver initializes. + */ + fxp_stop((struct fxp_softc *) device_get_softc(dev)); + return 0; +} + +static device_method_t fxp_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, fxp_probe), + DEVMETHOD(device_attach, fxp_attach), + DEVMETHOD(device_detach, fxp_detach), + DEVMETHOD(device_shutdown, fxp_shutdown), + + { 0, 0 } +}; + +static driver_t fxp_driver = { + "fxp", + fxp_methods, + sizeof(struct fxp_softc), +}; + +static devclass_t fxp_devclass; + +DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); + +#endif /* __NetBSD__ */ + +/************************************************************* + * End of operating system-specific autoconfiguration glue + *************************************************************/ + +/* + * Do generic parts of attach. + */ +static int +fxp_attach_common(sc, enaddr) + struct fxp_softc *sc; + u_int8_t *enaddr; +{ + u_int16_t data; + int i, nmedia, defmedia; + const int *media; + + /* + * Reset to a stable state. + */ + CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); + DELAY(10); + + sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, + M_DEVBUF, M_NOWAIT); + if (sc->cbl_base == NULL) + goto fail; + bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB); + + sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT); + if (sc->fxp_stats == NULL) + goto fail; + bzero(sc->fxp_stats, sizeof(struct fxp_stats)); + + sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT); + if (sc->mcsp == NULL) + goto fail; + + /* + * Pre-allocate our receive buffers. + */ + for (i = 0; i < FXP_NRFABUFS; i++) { + if (fxp_add_rfabuf(sc, NULL) != 0) { + goto fail; + } + } + + /* + * Get info about the primary PHY + */ + fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1); + sc->phy_primary_addr = data & 0xff; + sc->phy_primary_device = (data >> 8) & 0x3f; + sc->phy_10Mbps_only = data >> 15; + + /* + * Read MAC address. + */ + fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3); + + /* + * Initialize the media structures. + */ + + media = fxp_media_default; + nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]); + defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA; + + for (i = 0; i < NFXPMEDIA; i++) { + if (sc->phy_primary_device == fxp_media[i].fsm_phy) { + media = fxp_media[i].fsm_media; + nmedia = fxp_media[i].fsm_nmedia; + defmedia = fxp_media[i].fsm_defmedia; + } + } + + ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus); + for (i = 0; i < nmedia; i++) { + if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only) + continue; + ifmedia_add(&sc->sc_media, media[i], 0, NULL); + } + ifmedia_set(&sc->sc_media, defmedia); + + return (0); + + fail: + printf(FXP_FORMAT ": Failed to malloc memory\n", FXP_ARGS(sc)); + if (sc->cbl_base) + free(sc->cbl_base, M_DEVBUF); + if (sc->fxp_stats) + free(sc->fxp_stats, M_DEVBUF); + if (sc->mcsp) + free(sc->mcsp, M_DEVBUF); + /* frees entire chain */ + if (sc->rfa_headm) + m_freem(sc->rfa_headm); + + return (ENOMEM); +} + +/* + * Read from the serial EEPROM. Basically, you manually shift in + * the read opcode (one bit at a time) and then shift in the address, + * and then you shift out the data (all of this one bit at a time). + * The word size is 16 bits, so you have to provide the address for + * every 16 bits of data. + */ +static void +fxp_read_eeprom(sc, data, offset, words) + struct fxp_softc *sc; + u_short *data; + int offset; + int words; +{ + u_int16_t reg; + int i, x; + + for (i = 0; i < words; i++) { + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); + /* + * Shift in read opcode. + */ + for (x = 3; x > 0; x--) { + if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { + reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; + } else { + reg = FXP_EEPROM_EECS; + } + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, + reg | FXP_EEPROM_EESK); + DELAY(1); + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); + DELAY(1); + } + /* + * Shift in address. + */ + for (x = 6; x > 0; x--) { + if ((i + offset) & (1 << (x - 1))) { + reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; + } else { + reg = FXP_EEPROM_EECS; + } + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, + reg | FXP_EEPROM_EESK); + DELAY(1); + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); + DELAY(1); + } + reg = FXP_EEPROM_EECS; + data[i] = 0; + /* + * Shift out data. + */ + for (x = 16; x > 0; x--) { + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, + reg | FXP_EEPROM_EESK); + DELAY(1); + if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & + FXP_EEPROM_EEDO) + data[i] |= (1 << (x - 1)); + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); + DELAY(1); + } + CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); + DELAY(1); + } +} + +/* + * Start packet transmission on the interface. + */ +static void +fxp_start(ifp) + struct ifnet *ifp; +{ + struct fxp_softc *sc = ifp->if_softc; + struct fxp_cb_tx *txp; + + /* + * See if we need to suspend xmit until the multicast filter + * has been reprogrammed (which can only be done at the head + * of the command chain). + */ + if (sc->need_mcsetup) + return; + + txp = NULL; + + /* + * We're finished if there is nothing more to add to the list or if + * we're all filled up with buffers to transmit. + * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add + * a NOP command when needed. + */ + while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { + struct mbuf *m, *mb_head; + int segment; + + /* + * Grab a packet to transmit. + */ + IF_DEQUEUE(&ifp->if_snd, mb_head); + + /* + * Get pointer to next available tx desc. + */ + txp = sc->cbl_last->next; + + /* + * Go through each of the mbufs in the chain and initialize + * the transmit buffer descriptors with the physical address + * and size of the mbuf. + */ +tbdinit: + for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (segment == FXP_NTXSEG) + break; + txp->tbd[segment].tb_addr = + vtophys(mtod(m, vm_offset_t)); + txp->tbd[segment].tb_size = m->m_len; + segment++; + } + } + if (m != NULL) { + struct mbuf *mn; + + /* + * We ran out of segments. We have to recopy this mbuf + * chain first. Bail out if we can't get the new buffers. + */ + MGETHDR(mn, M_DONTWAIT, MT_DATA); + if (mn == NULL) { + m_freem(mb_head); + break; + } + if (mb_head->m_pkthdr.len > MHLEN) { + MCLGET(mn, M_DONTWAIT); + if ((mn->m_flags & M_EXT) == 0) { + m_freem(mn); + m_freem(mb_head); + break; + } + } + m_copydata(mb_head, 0, mb_head->m_pkthdr.len, + mtod(mn, caddr_t)); + mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; + m_freem(mb_head); + mb_head = mn; + goto tbdinit; + } + + txp->tbd_number = segment; + txp->mb_head = mb_head; + txp->cb_status = 0; + if (sc->tx_queued != FXP_CXINT_THRESH - 1) { + txp->cb_command = + FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S; + } else { + txp->cb_command = + FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; + /* + * Set a 5 second timer just in case we don't hear from the + * card again. + */ + ifp->if_timer = 5; + } + txp->tx_threshold = tx_threshold; + + /* + * Advance the end of list forward. + */ + sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; + sc->cbl_last = txp; + + /* + * Advance the beginning of the list forward if there are + * no other packets queued (when nothing is queued, cbl_first + * sits on the last TxCB that was sent out). + */ + if (sc->tx_queued == 0) + sc->cbl_first = txp; + + sc->tx_queued++; + + /* + * Pass packet to bpf if there is a listener. + */ + if (ifp->if_bpf) + bpf_mtap(FXP_BPFTAP_ARG(ifp), mb_head); + } + + /* + * We're finished. If we added to the list, issue a RESUME to get DMA + * going again if suspended. + */ + if (txp != NULL) { + fxp_scb_wait(sc); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME); + } +} + +/* + * Process interface interrupts. + */ +static FXP_INTR_TYPE +fxp_intr(arg) + void *arg; +{ + struct fxp_softc *sc = arg; + struct ifnet *ifp = &sc->sc_if; + u_int8_t statack; +#if defined(__NetBSD__) + int claimed = 0; +#endif + + while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { +#if defined(__NetBSD__) + claimed = 1; +#endif + /* + * First ACK all the interrupts in this pass. + */ + CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); + + /* + * Free any finished transmit mbuf chains. + */ + if (statack & FXP_SCB_STATACK_CXTNO) { + struct fxp_cb_tx *txp; + + for (txp = sc->cbl_first; sc->tx_queued && + (txp->cb_status & FXP_CB_STATUS_C) != 0; + txp = txp->next) { + if (txp->mb_head != NULL) { + m_freem(txp->mb_head); + txp->mb_head = NULL; + } + sc->tx_queued--; + } + sc->cbl_first = txp; + ifp->if_timer = 0; + if (sc->tx_queued == 0) { + if (sc->need_mcsetup) + fxp_mc_setup(sc); + } + /* + * Try to start more packets transmitting. + */ + if (ifp->if_snd.ifq_head != NULL) + fxp_start(ifp); + } + /* + * Process receiver interrupts. If a no-resource (RNR) + * condition exists, get whatever packets we can and + * re-start the receiver. + */ + if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) { + struct mbuf *m; + struct fxp_rfa *rfa; +rcvloop: + m = sc->rfa_headm; + rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + + RFA_ALIGNMENT_FUDGE); + + if (rfa->rfa_status & FXP_RFA_STATUS_C) { + /* + * Remove first packet from the chain. + */ + sc->rfa_headm = m->m_next; + m->m_next = NULL; + + /* + * Add a new buffer to the receive chain. + * If this fails, the old buffer is recycled + * instead. + */ + if (fxp_add_rfabuf(sc, m) == 0) { + struct ether_header *eh; + u_int16_t total_len; + + total_len = rfa->actual_size & + (MCLBYTES - 1); + if (total_len < + sizeof(struct ether_header)) { + m_freem(m); + goto rcvloop; + } + m->m_pkthdr.rcvif = ifp; + m->m_pkthdr.len = m->m_len = + total_len ; + eh = mtod(m, struct ether_header *); + if (ifp->if_bpf) + bpf_tap(FXP_BPFTAP_ARG(ifp), + mtod(m, caddr_t), + total_len); +#ifdef BRIDGE + if (do_bridge) { + struct ifnet *bdg_ifp ; + bdg_ifp = bridge_in(m); + if (bdg_ifp == BDG_DROP) + goto dropit ; + if (bdg_ifp != BDG_LOCAL) + bdg_forward(&m, bdg_ifp); + if (bdg_ifp != BDG_LOCAL && + bdg_ifp != BDG_BCAST && + bdg_ifp != BDG_MCAST) + goto dropit ; + goto getit ; + } +#endif + /* + * Only pass this packet up + * if it is for us. + */ + if ((ifp->if_flags & + IFF_PROMISC) && + (rfa->rfa_status & + FXP_RFA_STATUS_IAMATCH) && + (eh->ether_dhost[0] & 1) + == 0) { +#ifdef BRIDGE +dropit: +#endif + if (m) + m_freem(m); + goto rcvloop; + } +#ifdef BRIDGE +getit: +#endif + m->m_data += + sizeof(struct ether_header); + m->m_len -= + sizeof(struct ether_header); + m->m_pkthdr.len = m->m_len ; + ether_input(ifp, eh, m); + } + goto rcvloop; + } + if (statack & FXP_SCB_STATACK_RNR) { + fxp_scb_wait(sc); + CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, + vtophys(sc->rfa_headm->m_ext.ext_buf) + + RFA_ALIGNMENT_FUDGE); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, + FXP_SCB_COMMAND_RU_START); + } + } + } +#if defined(__NetBSD__) + return (claimed); +#endif +} + +/* + * Update packet in/out/collision statistics. The i82557 doesn't + * allow you to access these counters without doing a fairly + * expensive DMA to get _all_ of the statistics it maintains, so + * we do this operation here only once per second. The statistics + * counters in the kernel are updated from the previous dump-stats + * DMA and then a new dump-stats DMA is started. The on-chip + * counters are zeroed when the DMA completes. If we can't start + * the DMA immediately, we don't wait - we just prepare to read + * them again next time. + */ +static void +fxp_stats_update(arg) + void *arg; +{ + struct fxp_softc *sc = arg; + struct ifnet *ifp = &sc->sc_if; + struct fxp_stats *sp = sc->fxp_stats; + struct fxp_cb_tx *txp; + int s; + + ifp->if_opackets += sp->tx_good; + ifp->if_collisions += sp->tx_total_collisions; + if (sp->rx_good) { + ifp->if_ipackets += sp->rx_good; + sc->rx_idle_secs = 0; + } else { + /* + * Receiver's been idle for another second. + */ + sc->rx_idle_secs++; + } + ifp->if_ierrors += + sp->rx_crc_errors + + sp->rx_alignment_errors + + sp->rx_rnr_errors + + sp->rx_overrun_errors; + /* + * If any transmit underruns occured, bump up the transmit + * threshold by another 512 bytes (64 * 8). + */ + if (sp->tx_underruns) { + ifp->if_oerrors += sp->tx_underruns; + if (tx_threshold < 192) + tx_threshold += 64; + } + s = splimp(); + /* + * Release any xmit buffers that have completed DMA. This isn't + * strictly necessary to do here, but it's advantagous for mbufs + * with external storage to be released in a timely manner rather + * than being defered for a potentially long time. This limits + * the delay to a maximum of one second. + */ + for (txp = sc->cbl_first; sc->tx_queued && + (txp->cb_status & FXP_CB_STATUS_C) != 0; + txp = txp->next) { + if (txp->mb_head != NULL) { + m_freem(txp->mb_head); + txp->mb_head = NULL; + } + sc->tx_queued--; + } + sc->cbl_first = txp; + /* + * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, + * then assume the receiver has locked up and attempt to clear + * the condition by reprogramming the multicast filter. This is + * a work-around for a bug in the 82557 where the receiver locks + * up if it gets certain types of garbage in the syncronization + * bits prior to the packet header. This bug is supposed to only + * occur in 10Mbps mode, but has been seen to occur in 100Mbps + * mode as well (perhaps due to a 10/100 speed transition). + */ + if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { + sc->rx_idle_secs = 0; + fxp_mc_setup(sc); + } + /* + * If there is no pending command, start another stats + * dump. Otherwise punt for now. + */ + if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { + /* + * Start another stats dump. + */ + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, + FXP_SCB_COMMAND_CU_DUMPRESET); + } else { + /* + * A previous command is still waiting to be accepted. + * Just zero our copy of the stats and wait for the + * next timer event to update them. + */ + sp->tx_good = 0; + sp->tx_underruns = 0; + sp->tx_total_collisions = 0; + + sp->rx_good = 0; + sp->rx_crc_errors = 0; + sp->rx_alignment_errors = 0; + sp->rx_rnr_errors = 0; + sp->rx_overrun_errors = 0; + } + splx(s); + /* + * Schedule another timeout one second from now. + */ + sc->stat_ch = timeout(fxp_stats_update, sc, hz); +} + +/* + * Stop the interface. Cancels the statistics updater and resets + * the interface. + */ +static void +fxp_stop(sc) + struct fxp_softc *sc; +{ + struct ifnet *ifp = &sc->sc_if; + struct fxp_cb_tx *txp; + int i; + + /* + * Cancel stats updater. + */ + untimeout(fxp_stats_update, sc, sc->stat_ch); + + /* + * Issue software reset + */ + CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); + DELAY(10); + + /* + * Release any xmit buffers. + */ + txp = sc->cbl_base; + if (txp != NULL) { + for (i = 0; i < FXP_NTXCB; i++) { + if (txp[i].mb_head != NULL) { + m_freem(txp[i].mb_head); + txp[i].mb_head = NULL; + } + } + } + sc->tx_queued = 0; + + /* + * Free all the receive buffers then reallocate/reinitialize + */ + if (sc->rfa_headm != NULL) + m_freem(sc->rfa_headm); + sc->rfa_headm = NULL; + sc->rfa_tailm = NULL; + for (i = 0; i < FXP_NRFABUFS; i++) { + if (fxp_add_rfabuf(sc, NULL) != 0) { + /* + * This "can't happen" - we're at splimp() + * and we just freed all the buffers we need + * above. + */ + panic("fxp_stop: no buffers!"); + } + } + + ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); + ifp->if_timer = 0; +} + +/* + * Watchdog/transmission transmit timeout handler. Called when a + * transmission is started on the interface, but no interrupt is + * received before the timeout. This usually indicates that the + * card has wedged for some reason. + */ +static void +fxp_watchdog(ifp) + struct ifnet *ifp; +{ + struct fxp_softc *sc = ifp->if_softc; + + printf(FXP_FORMAT ": device timeout\n", FXP_ARGS(sc)); + ifp->if_oerrors++; + + fxp_init(sc); +} + +static void +fxp_init(xsc) + void *xsc; +{ + struct fxp_softc *sc = xsc; + struct ifnet *ifp = &sc->sc_if; + struct fxp_cb_config *cbp; + struct fxp_cb_ias *cb_ias; + struct fxp_cb_tx *txp; + int i, s, prm; + + s = splimp(); + /* + * Cancel any pending I/O + */ + fxp_stop(sc); + + prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; + + /* + * Initialize base of CBL and RFA memory. Loading with zero + * sets it up for regular linear addressing. + */ + CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE); + + fxp_scb_wait(sc); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE); + + /* + * Initialize base of dump-stats buffer. + */ + fxp_scb_wait(sc); + CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR); + + /* + * We temporarily use memory that contains the TxCB list to + * construct the config CB. The TxCB list memory is rebuilt + * later. + */ + cbp = (struct fxp_cb_config *) sc->cbl_base; + + /* + * This bcopy is kind of disgusting, but there are a bunch of must be + * zero and must be one bits in this structure and this is the easiest + * way to initialize them all to proper values. + */ + bcopy(fxp_cb_config_template, (volatile void *)&cbp->cb_status, + sizeof(fxp_cb_config_template)); + + cbp->cb_status = 0; + cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; + cbp->link_addr = -1; /* (no) next command */ + cbp->byte_count = 22; /* (22) bytes to config */ + cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ + cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ + cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ + cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ + cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ + cbp->dma_bce = 0; /* (disable) dma max counters */ + cbp->late_scb = 0; /* (don't) defer SCB update */ + cbp->tno_int = 0; /* (disable) tx not okay interrupt */ + cbp->ci_int = 1; /* interrupt on CU idle */ + cbp->save_bf = prm; /* save bad frames */ + cbp->disc_short_rx = !prm; /* discard short packets */ + cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */ + cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */ + cbp->nsai = 1; /* (don't) disable source addr insert */ + cbp->preamble_length = 2; /* (7 byte) preamble */ + cbp->loopback = 0; /* (don't) loopback */ + cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ + cbp->linear_pri_mode = 0; /* (wait after xmit only) */ + cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ + cbp->promiscuous = prm; /* promiscuous mode */ + cbp->bcast_disable = 0; /* (don't) disable broadcasts */ + cbp->crscdt = 0; /* (CRS only) */ + cbp->stripping = !prm; /* truncate rx packet to byte count */ + cbp->padding = 1; /* (do) pad short tx packets */ + cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ + cbp->force_fdx = 0; /* (don't) force full duplex */ + cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ + cbp->multi_ia = 0; /* (don't) accept multiple IAs */ + cbp->mc_all = sc->all_mcasts;/* accept all multicasts */ + + /* + * Start the config command/DMA. + */ + fxp_scb_wait(sc); + CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); + /* ...and wait for it to complete. */ + while (!(cbp->cb_status & FXP_CB_STATUS_C)); + + /* + * Now initialize the station address. Temporarily use the TxCB + * memory area like we did above for the config CB. + */ + cb_ias = (struct fxp_cb_ias *) sc->cbl_base; + cb_ias->cb_status = 0; + cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; + cb_ias->link_addr = -1; +#if defined(__NetBSD__) + bcopy(LLADDR(ifp->if_sadl), (void *)cb_ias->macaddr, 6); +#else + bcopy(sc->arpcom.ac_enaddr, (volatile void *)cb_ias->macaddr, + sizeof(sc->arpcom.ac_enaddr)); +#endif /* __NetBSD__ */ + + /* + * Start the IAS (Individual Address Setup) command/DMA. + */ + fxp_scb_wait(sc); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); + /* ...and wait for it to complete. */ + while (!(cb_ias->cb_status & FXP_CB_STATUS_C)); + + /* + * Initialize transmit control block (TxCB) list. + */ + + txp = sc->cbl_base; + bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); + for (i = 0; i < FXP_NTXCB; i++) { + txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; + txp[i].cb_command = FXP_CB_COMMAND_NOP; + txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); + txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); + txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; + } + /* + * Set the suspend flag on the first TxCB and start the control + * unit. It will execute the NOP and then suspend. + */ + txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; + sc->cbl_first = sc->cbl_last = txp; + sc->tx_queued = 1; + + fxp_scb_wait(sc); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); + + /* + * Initialize receiver buffer area - RFA. + */ + fxp_scb_wait(sc); + CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, + vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START); + + /* + * Set current media. + */ + fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media); + + ifp->if_flags |= IFF_RUNNING; + ifp->if_flags &= ~IFF_OACTIVE; + splx(s); + + /* + * Start stats updater. + */ + sc->stat_ch = timeout(fxp_stats_update, sc, hz); +} + +static void +fxp_set_media(sc, media) + struct fxp_softc *sc; + int media; +{ + + switch (sc->phy_primary_device) { + case FXP_PHY_DP83840: + case FXP_PHY_DP83840A: + fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR, + fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) | + FXP_DP83840_PCR_LED4_MODE | /* LED4 always indicates duplex */ + FXP_DP83840_PCR_F_CONNECT | /* force link disconnect bypass */ + FXP_DP83840_PCR_BIT10); /* XXX I have no idea */ + /* fall through */ + case FXP_PHY_82553A: + case FXP_PHY_82553C: /* untested */ + case FXP_PHY_82555: + case FXP_PHY_82555B: + if (IFM_SUBTYPE(media) != IFM_AUTO) { + int flags; + + flags = (IFM_SUBTYPE(media) == IFM_100_TX) ? + FXP_PHY_BMCR_SPEED_100M : 0; + flags |= (media & IFM_FDX) ? + FXP_PHY_BMCR_FULLDUPLEX : 0; + fxp_mdi_write(sc, sc->phy_primary_addr, + FXP_PHY_BMCR, + (fxp_mdi_read(sc, sc->phy_primary_addr, + FXP_PHY_BMCR) & + ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M | + FXP_PHY_BMCR_FULLDUPLEX)) | flags); + } else { + fxp_mdi_write(sc, sc->phy_primary_addr, + FXP_PHY_BMCR, + (fxp_mdi_read(sc, sc->phy_primary_addr, + FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN)); + } + break; + /* + * The Seeq 80c24 doesn't have a PHY programming interface, so do + * nothing. + */ + case FXP_PHY_80C24: + break; + default: + printf(FXP_FORMAT + ": warning: unsupported PHY, type = %d, addr = %d\n", + FXP_ARGS(sc), sc->phy_primary_device, + sc->phy_primary_addr); + } +} + +/* + * Change media according to request. + */ +int +fxp_mediachange(ifp) + struct ifnet *ifp; +{ + struct fxp_softc *sc = ifp->if_softc; + struct ifmedia *ifm = &sc->sc_media; + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return (EINVAL); + + fxp_set_media(sc, ifm->ifm_media); + return (0); +} + +/* + * Notify the world which media we're using. + */ +void +fxp_mediastatus(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct fxp_softc *sc = ifp->if_softc; + int flags, stsflags; + + switch (sc->phy_primary_device) { + case FXP_PHY_82555: + case FXP_PHY_82555B: + case FXP_PHY_DP83840: + case FXP_PHY_DP83840A: + ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */ + ifmr->ifm_active = IFM_ETHER; + /* + * the following is not an error. + * You need to read this register twice to get current + * status. This is correct documented behaviour, the + * first read gets latched values. + */ + stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS); + stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS); + if (stsflags & FXP_PHY_STS_LINK_STS) + ifmr->ifm_status |= IFM_ACTIVE; + + /* + * If we are in auto mode, then try report the result. + */ + flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR); + if (flags & FXP_PHY_BMCR_AUTOEN) { + ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */ + if (stsflags & FXP_PHY_STS_AUTO_DONE) { + /* + * Intel and National parts report + * differently on what they found. + */ + if ((sc->phy_primary_device == FXP_PHY_82555) + || (sc->phy_primary_device == FXP_PHY_82555B)) { + flags = fxp_mdi_read(sc, + sc->phy_primary_addr, + FXP_PHY_USC); + + if (flags & FXP_PHY_USC_SPEED) + ifmr->ifm_active |= IFM_100_TX; + else + ifmr->ifm_active |= IFM_10_T; + + if (flags & FXP_PHY_USC_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + } else { /* it's National. only know speed */ + flags = fxp_mdi_read(sc, + sc->phy_primary_addr, + FXP_DP83840_PAR); + + if (flags & FXP_DP83840_PAR_SPEED_10) + ifmr->ifm_active |= IFM_10_T; + else + ifmr->ifm_active |= IFM_100_TX; + } + } + } else { /* in manual mode.. just report what we were set to */ + if (flags & FXP_PHY_BMCR_SPEED_100M) + ifmr->ifm_active |= IFM_100_TX; + else + ifmr->ifm_active |= IFM_10_T; + + if (flags & FXP_PHY_BMCR_FULLDUPLEX) + ifmr->ifm_active |= IFM_FDX; + } + break; + + case FXP_PHY_80C24: + default: + ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */ + } +} + +/* + * Add a buffer to the end of the RFA buffer list. + * Return 0 if successful, 1 for failure. A failure results in + * adding the 'oldm' (if non-NULL) on to the end of the list - + * tossing out its old contents and recycling it. + * The RFA struct is stuck at the beginning of mbuf cluster and the + * data pointer is fixed up to point just past it. + */ +static int +fxp_add_rfabuf(sc, oldm) + struct fxp_softc *sc; + struct mbuf *oldm; +{ + u_int32_t v; + struct mbuf *m; + struct fxp_rfa *rfa, *p_rfa; + + MGETHDR(m, M_DONTWAIT, MT_DATA); + if (m != NULL) { + MCLGET(m, M_DONTWAIT); + if ((m->m_flags & M_EXT) == 0) { + m_freem(m); + if (oldm == NULL) + return 1; + m = oldm; + m->m_data = m->m_ext.ext_buf; + } + } else { + if (oldm == NULL) + return 1; + m = oldm; + m->m_data = m->m_ext.ext_buf; + } + + /* + * Move the data pointer up so that the incoming data packet + * will be 32-bit aligned. + */ + m->m_data += RFA_ALIGNMENT_FUDGE; + + /* + * Get a pointer to the base of the mbuf cluster and move + * data start past it. + */ + rfa = mtod(m, struct fxp_rfa *); + m->m_data += sizeof(struct fxp_rfa); + rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); + + /* + * Initialize the rest of the RFA. Note that since the RFA + * is misaligned, we cannot store values directly. Instead, + * we use an optimized, inline copy. + */ + + rfa->rfa_status = 0; + rfa->rfa_control = FXP_RFA_CONTROL_EL; + rfa->actual_size = 0; + + v = -1; + fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); + fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); + + /* + * If there are other buffers already on the list, attach this + * one to the end by fixing up the tail to point to this one. + */ + if (sc->rfa_headm != NULL) { + p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + + RFA_ALIGNMENT_FUDGE); + sc->rfa_tailm->m_next = m; + v = vtophys(rfa); + fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); + p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL; + } else { + sc->rfa_headm = m; + } + sc->rfa_tailm = m; + + return (m == oldm); +} + +static volatile int +fxp_mdi_read(sc, phy, reg) + struct fxp_softc *sc; + int phy; + int reg; +{ + int count = 10000; + int value; + + CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, + (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); + + while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 + && count--) + DELAY(10); + + if (count <= 0) + printf(FXP_FORMAT ": fxp_mdi_read: timed out\n", + FXP_ARGS(sc)); + + return (value & 0xffff); +} + +static void +fxp_mdi_write(sc, phy, reg, value) + struct fxp_softc *sc; + int phy; + int reg; + int value; +{ + int count = 10000; + + CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, + (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | + (value & 0xffff)); + + while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && + count--) + DELAY(10); + + if (count <= 0) + printf(FXP_FORMAT ": fxp_mdi_write: timed out\n", + FXP_ARGS(sc)); +} + +static int +fxp_ioctl(ifp, command, data) + struct ifnet *ifp; + FXP_IOCTLCMD_TYPE command; + caddr_t data; +{ + struct fxp_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *)data; + int s, error = 0; + + s = splimp(); + + switch (command) { + + case SIOCSIFADDR: +#if !defined(__NetBSD__) + case SIOCGIFADDR: + case SIOCSIFMTU: +#endif + error = ether_ioctl(ifp, command, data); + break; + + case SIOCSIFFLAGS: + sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; + + /* + * If interface is marked up and not running, then start it. + * If it is marked down and running, stop it. + * XXX If it's up then re-initialize it. This is so flags + * such as IFF_PROMISC are handled. + */ + if (ifp->if_flags & IFF_UP) { + fxp_init(sc); + } else { + if (ifp->if_flags & IFF_RUNNING) + fxp_stop(sc); + } + break; + + case SIOCADDMULTI: + case SIOCDELMULTI: + sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; +#if defined(__NetBSD__) + error = (command == SIOCADDMULTI) ? + ether_addmulti(ifr, &sc->sc_ethercom) : + ether_delmulti(ifr, &sc->sc_ethercom); + + if (error == ENETRESET) { + /* + * Multicast list has changed; set the hardware + * filter accordingly. + */ + if (!sc->all_mcasts) + fxp_mc_setup(sc); + /* + * fxp_mc_setup() can turn on all_mcasts if we run + * out of space, so check it again rather than else {}. + */ + if (sc->all_mcasts) + fxp_init(sc); + error = 0; + } +#else /* __FreeBSD__ */ + /* + * Multicast list has changed; set the hardware filter + * accordingly. + */ + if (!sc->all_mcasts) + fxp_mc_setup(sc); + /* + * fxp_mc_setup() can turn on sc->all_mcasts, so check it + * again rather than else {}. + */ + if (sc->all_mcasts) + fxp_init(sc); + error = 0; +#endif /* __NetBSD__ */ + break; + + case SIOCSIFMEDIA: + case SIOCGIFMEDIA: + error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); + break; + + default: + error = EINVAL; + } + (void) splx(s); + return (error); +} + +/* + * Program the multicast filter. + * + * We have an artificial restriction that the multicast setup command + * must be the first command in the chain, so we take steps to ensure + * this. By requiring this, it allows us to keep up the performance of + * the pre-initialized command ring (esp. link pointers) by not actually + * inserting the mcsetup command in the ring - i.e. its link pointer + * points to the TxCB ring, but the mcsetup descriptor itself is not part + * of it. We then can do 'CU_START' on the mcsetup descriptor and have it + * lead into the regular TxCB ring when it completes. + * + * This function must be called at splimp. + */ +static void +fxp_mc_setup(sc) + struct fxp_softc *sc; +{ + struct fxp_cb_mcs *mcsp = sc->mcsp; + struct ifnet *ifp = &sc->sc_if; + struct ifmultiaddr *ifma; + int nmcasts; + + /* + * If there are queued commands, we must wait until they are all + * completed. If we are already waiting, then add a NOP command + * with interrupt option so that we're notified when all commands + * have been completed - fxp_start() ensures that no additional + * TX commands will be added when need_mcsetup is true. + */ + if (sc->tx_queued) { + struct fxp_cb_tx *txp; + + /* + * need_mcsetup will be true if we are already waiting for the + * NOP command to be completed (see below). In this case, bail. + */ + if (sc->need_mcsetup) + return; + sc->need_mcsetup = 1; + + /* + * Add a NOP command with interrupt so that we are notified when all + * TX commands have been processed. + */ + txp = sc->cbl_last->next; + txp->mb_head = NULL; + txp->cb_status = 0; + txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; + /* + * Advance the end of list forward. + */ + sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; + sc->cbl_last = txp; + sc->tx_queued++; + /* + * Issue a resume in case the CU has just suspended. + */ + fxp_scb_wait(sc); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME); + /* + * Set a 5 second timer just in case we don't hear from the + * card again. + */ + ifp->if_timer = 5; + + return; + } + sc->need_mcsetup = 0; + + /* + * Initialize multicast setup descriptor. + */ + mcsp->next = sc->cbl_base; + mcsp->mb_head = NULL; + mcsp->cb_status = 0; + mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; + mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); + + nmcasts = 0; + if (!sc->all_mcasts) { + for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; + ifma = ifma->ifma_link.le_next) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + if (nmcasts >= MAXMCADDR) { + sc->all_mcasts = 1; + nmcasts = 0; + break; + } + bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), + (volatile void *) &sc->mcsp->mc_addr[nmcasts][0], 6); + nmcasts++; + } + } + mcsp->mc_cnt = nmcasts * 6; + sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; + sc->tx_queued = 1; + + /* + * Wait until command unit is not active. This should never + * be the case when nothing is queued, but make sure anyway. + */ + while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == + FXP_SCB_CUS_ACTIVE) ; + + /* + * Start the multicast setup command. + */ + fxp_scb_wait(sc); + CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); + CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); + + ifp->if_timer = 2; + return; +} |