summaryrefslogtreecommitdiffstats
path: root/sys/crypto/sha2/sha2.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/crypto/sha2/sha2.c')
-rw-r--r--sys/crypto/sha2/sha2.c348
1 files changed, 1 insertions, 347 deletions
diff --git a/sys/crypto/sha2/sha2.c b/sys/crypto/sha2/sha2.c
index 66ec6e9..5bb52f3 100644
--- a/sys/crypto/sha2/sha2.c
+++ b/sys/crypto/sha2/sha2.c
@@ -121,20 +121,10 @@ __FBSDID("$FreeBSD$");
* Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
* types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
*/
-#if 0 /*def SHA2_USE_INTTYPES_H*/
-
typedef uint8_t sha2_byte; /* Exactly 1 byte */
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
-#else /* SHA2_USE_INTTYPES_H */
-
-typedef u_int8_t sha2_byte; /* Exactly 1 byte */
-typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
-typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
-
-#endif /* SHA2_USE_INTTYPES_H */
-
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
@@ -183,8 +173,6 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
-/* 32-bit Rotate-right (used in SHA-256): */
-#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
@@ -192,12 +180,6 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-/* Four of six logical functions used in SHA-256: */
-#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
-#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
-#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
-#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
-
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
@@ -210,43 +192,10 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
* only.
*/
static void SHA512_Last(SHA512_CTX*);
-static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
-/* Hash constant words K for SHA-256: */
-static const sha2_word32 K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
-};
-
-/* Initial hash value H for SHA-256: */
-static const sha2_word32 sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
-};
-
/* Hash constant words K for SHA-384 and SHA-512: */
static const sha2_word64 K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
@@ -323,301 +272,6 @@ static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-256: *********************************************************/
-void SHA256_Init(SHA256_CTX* context) {
- if (context == (SHA256_CTX*)0) {
- return;
- }
- bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
- bzero(context->buffer, SHA256_BLOCK_LENGTH);
- context->bitcount = 0;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-256 round macros: */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- REVERSE32(*data++, W256[j]); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + W256[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
-
-
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + (W256[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
-
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND256(a,b,c,d,e,f,g,h) \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
-
-static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, *W256;
- int j;
-
- W256 = (sha2_word32*)context->buffer;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds to 64: */
- do {
- ROUND256(a,b,c,d,e,f,g,h);
- ROUND256(h,a,b,c,d,e,f,g);
- ROUND256(g,h,a,b,c,d,e,f);
- ROUND256(f,g,h,a,b,c,d,e);
- ROUND256(e,f,g,h,a,b,c,d);
- ROUND256(d,e,f,g,h,a,b,c);
- ROUND256(c,d,e,f,g,h,a,b);
- ROUND256(b,c,d,e,f,g,h,a);
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, T2, *W256;
- int j;
-
- W256 = (sha2_word32*)context->buffer;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
-#if BYTE_ORDER == LITTLE_ENDIAN
- /* Copy data while converting to host byte order */
- REVERSE32(*data++,W256[j]);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
- /* Apply the SHA-256 compression function to update a..h with copy */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
-
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace, usedspace;
-
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
-
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- bcopy(data, &context->buffer[usedspace], freespace);
- context->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- } else {
- /* The buffer is not yet full */
- bcopy(data, &context->buffer[usedspace], len);
- context->bitcount += len << 3;
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- SHA256_Transform(context, (const sha2_word32*)data);
- context->bitcount += SHA256_BLOCK_LENGTH << 3;
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- bcopy(data, context->buffer, len);
- context->bitcount += len << 3;
- }
- /* Clean up: */
- usedspace = freespace = 0;
-}
-
-void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
- sha2_word32 *d = (sha2_word32*)digest;
- unsigned int usedspace;
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
-
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
-#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(context->bitcount,context->bitcount);
-#endif
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
-
- /* And set-up for the last transform: */
- bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- }
- } else {
- /* Set-up for the last transform: */
- bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Set the bit count: */
- *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
-
- /* Final transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
-
-#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- REVERSE32(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
-#else
- bcopy(context->state, d, SHA256_DIGEST_LENGTH);
-#endif
- }
-
- /* Clean up state data: */
- bzero(context, sizeof(*context));
- usedspace = 0;
-}
-
char *SHA256_End(SHA256_CTX* context, char buffer[]) {
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
@@ -641,7 +295,7 @@ char *SHA256_End(SHA256_CTX* context, char buffer[]) {
return buffer;
}
-char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
+char* SHA256_Data(const void *data, unsigned int len, char *digest) {
SHA256_CTX context;
SHA256_Init(&context);
OpenPOWER on IntegriCloud