summaryrefslogtreecommitdiffstats
path: root/sys/contrib/opensolaris/uts/common/os/taskq.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/opensolaris/uts/common/os/taskq.c')
-rw-r--r--sys/contrib/opensolaris/uts/common/os/taskq.c1020
1 files changed, 0 insertions, 1020 deletions
diff --git a/sys/contrib/opensolaris/uts/common/os/taskq.c b/sys/contrib/opensolaris/uts/common/os/taskq.c
deleted file mode 100644
index 1558c1f..0000000
--- a/sys/contrib/opensolaris/uts/common/os/taskq.c
+++ /dev/null
@@ -1,1020 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License, Version 1.0 only
- * (the "License"). You may not use this file except in compliance
- * with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-/*
- * Kernel task queues: general-purpose asynchronous task scheduling.
- *
- * A common problem in kernel programming is the need to schedule tasks
- * to be performed later, by another thread. There are several reasons
- * you may want or need to do this:
- *
- * (1) The task isn't time-critical, but your current code path is.
- *
- * (2) The task may require grabbing locks that you already hold.
- *
- * (3) The task may need to block (e.g. to wait for memory), but you
- * cannot block in your current context.
- *
- * (4) Your code path can't complete because of some condition, but you can't
- * sleep or fail, so you queue the task for later execution when condition
- * disappears.
- *
- * (5) You just want a simple way to launch multiple tasks in parallel.
- *
- * Task queues provide such a facility. In its simplest form (used when
- * performance is not a critical consideration) a task queue consists of a
- * single list of tasks, together with one or more threads to service the
- * list. There are some cases when this simple queue is not sufficient:
- *
- * (1) The task queues are very hot and there is a need to avoid data and lock
- * contention over global resources.
- *
- * (2) Some tasks may depend on other tasks to complete, so they can't be put in
- * the same list managed by the same thread.
- *
- * (3) Some tasks may block for a long time, and this should not block other
- * tasks in the queue.
- *
- * To provide useful service in such cases we define a "dynamic task queue"
- * which has an individual thread for each of the tasks. These threads are
- * dynamically created as they are needed and destroyed when they are not in
- * use. The API for managing task pools is the same as for managing task queues
- * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
- * dynamic task pool behavior is desired.
- *
- * Dynamic task queues may also place tasks in the normal queue (called "backing
- * queue") when task pool runs out of resources. Users of task queues may
- * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
- * flags.
- *
- * The backing task queue is also used for scheduling internal tasks needed for
- * dynamic task queue maintenance.
- *
- * INTERFACES:
- *
- * taskq_t *taskq_create(name, nthreads, pri_t pri, minalloc, maxall, flags);
- *
- * Create a taskq with specified properties.
- * Possible 'flags':
- *
- * TASKQ_DYNAMIC: Create task pool for task management. If this flag is
- * specified, 'nthreads' specifies the maximum number of threads in
- * the task queue. Task execution order for dynamic task queues is
- * not predictable.
- *
- * If this flag is not specified (default case) a
- * single-list task queue is created with 'nthreads' threads
- * servicing it. Entries in this queue are managed by
- * taskq_ent_alloc() and taskq_ent_free() which try to keep the
- * task population between 'minalloc' and 'maxalloc', but the
- * latter limit is only advisory for TQ_SLEEP dispatches and the
- * former limit is only advisory for TQ_NOALLOC dispatches. If
- * TASKQ_PREPOPULATE is set in 'flags', the taskq will be
- * prepopulated with 'minalloc' task structures.
- *
- * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
- * executed in the order they are scheduled if nthreads == 1.
- * If nthreads > 1, task execution order is not predictable.
- *
- * TASKQ_PREPOPULATE: Prepopulate task queue with threads.
- * Also prepopulate the task queue with 'minalloc' task structures.
- *
- * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
- * use their own protocol for handling CPR issues. This flag is not
- * supported for DYNAMIC task queues.
- *
- * The 'pri' field specifies the default priority for the threads that
- * service all scheduled tasks.
- *
- * void taskq_destroy(tap):
- *
- * Waits for any scheduled tasks to complete, then destroys the taskq.
- * Caller should guarantee that no new tasks are scheduled in the closing
- * taskq.
- *
- * taskqid_t taskq_dispatch(tq, func, arg, flags):
- *
- * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
- * the caller is willing to block for memory. The function returns an
- * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP
- * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
- * and returns (taskqid_t)0.
- *
- * ASSUMES: func != NULL.
- *
- * Possible flags:
- * TQ_NOSLEEP: Do not wait for resources; may fail.
- *
- * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with
- * non-dynamic task queues.
- *
- * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
- * lack of available resources and fail. If this flag is not
- * set, and the task pool is exhausted, the task may be scheduled
- * in the backing queue. This flag may ONLY be used with dynamic
- * task queues.
- *
- * NOTE: This flag should always be used when a task queue is used
- * for tasks that may depend on each other for completion.
- * Enqueueing dependent tasks may create deadlocks.
- *
- * TQ_SLEEP: May block waiting for resources. May still fail for
- * dynamic task queues if TQ_NOQUEUE is also specified, otherwise
- * always succeed.
- *
- * NOTE: Dynamic task queues are much more likely to fail in
- * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
- * is important to have backup strategies handling such failures.
- *
- * void taskq_wait(tq):
- *
- * Waits for all previously scheduled tasks to complete.
- *
- * NOTE: It does not stop any new task dispatches.
- * Do NOT call taskq_wait() from a task: it will cause deadlock.
- *
- * void taskq_suspend(tq)
- *
- * Suspend all task execution. Tasks already scheduled for a dynamic task
- * queue will still be executed, but all new scheduled tasks will be
- * suspended until taskq_resume() is called.
- *
- * int taskq_suspended(tq)
- *
- * Returns 1 if taskq is suspended and 0 otherwise. It is intended to
- * ASSERT that the task queue is suspended.
- *
- * void taskq_resume(tq)
- *
- * Resume task queue execution.
- *
- * int taskq_member(tq, thread)
- *
- * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
- * intended use is to ASSERT that a given function is called in taskq
- * context only.
- *
- * system_taskq
- *
- * Global system-wide dynamic task queue for common uses. It may be used by
- * any subsystem that needs to schedule tasks and does not need to manage
- * its own task queues. It is initialized quite early during system boot.
- *
- * IMPLEMENTATION.
- *
- * This is schematic representation of the task queue structures.
- *
- * taskq:
- * +-------------+
- * |tq_lock | +---< taskq_ent_free()
- * +-------------+ |
- * |... | | tqent: tqent:
- * +-------------+ | +------------+ +------------+
- * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
- * +-------------+ +------------+ +------------+
- * |... | | ... | | ... |
- * +-------------+ +------------+ +------------+
- * | tq_task | |
- * | | +-------------->taskq_ent_alloc()
- * +--------------------------------------------------------------------------+
- * | | | tqent tqent |
- * | +---------------------+ +--> +------------+ +--> +------------+ |
- * | | ... | | | func, arg | | | func, arg | |
- * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ |
- * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+
- * +---------------------+ | +------------+ ^ | +------------+
- * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^
- * | +---------------------+ +------------+ | +------------+ |
- * | |... | | ... | | | ... | |
- * | +---------------------+ +------------+ | +------------+ |
- * | ^ | |
- * | | | |
- * +--------------------------------------+--------------+ TQ_APPEND() -+
- * | | |
- * |... | taskq_thread()-----+
- * +-------------+
- * | tq_buckets |--+-------> [ NULL ] (for regular task queues)
- * +-------------+ |
- * | DYNAMIC TASK QUEUES:
- * |
- * +-> taskq_bucket[nCPU] taskq_bucket_dispatch()
- * +-------------------+ ^
- * +--->| tqbucket_lock | |
- * | +-------------------+ +--------+ +--------+
- * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^
- * | +-------------------+<--+--------+<--...+--------+ |
- * | | ... | | thread | | thread | |
- * | +-------------------+ +--------+ +--------+ |
- * | +-------------------+ |
- * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+
- * TQ_HASH() | +-------------------+ +--------+ +--------+
- * | | tqbucket_freelist |-->| tqent |-->...| tqent |
- * | +-------------------+<--+--------+<--...+--------+
- * | | ... | | thread | | thread |
- * | +-------------------+ +--------+ +--------+
- * +---> ...
- *
- *
- * Task queues use tq_task field to link new entry in the queue. The queue is a
- * circular doubly-linked list. Entries are put in the end of the list with
- * TQ_APPEND() and processed from the front of the list by taskq_thread() in
- * FIFO order. Task queue entries are cached in the free list managed by
- * taskq_ent_alloc() and taskq_ent_free() functions.
- *
- * All threads used by task queues mark t_taskq field of the thread to
- * point to the task queue.
- *
- * Dynamic Task Queues Implementation.
- *
- * For a dynamic task queues there is a 1-to-1 mapping between a thread and
- * taskq_ent_structure. Each entry is serviced by its own thread and each thread
- * is controlled by a single entry.
- *
- * Entries are distributed over a set of buckets. To avoid using modulo
- * arithmetics the number of buckets is 2^n and is determined as the nearest
- * power of two roundown of the number of CPUs in the system. Tunable
- * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
- * is attached to a bucket for its lifetime and can't migrate to other buckets.
- *
- * Entries that have scheduled tasks are not placed in any list. The dispatch
- * function sets their "func" and "arg" fields and signals the corresponding
- * thread to execute the task. Once the thread executes the task it clears the
- * "func" field and places an entry on the bucket cache of free entries pointed
- * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
- * field equal to NULL. The free list is a circular doubly-linked list identical
- * in structure to the tq_task list above, but entries are taken from it in LIFO
- * order - the last freed entry is the first to be allocated. The
- * taskq_bucket_dispatch() function gets the most recently used entry from the
- * free list, sets its "func" and "arg" fields and signals a worker thread.
- *
- * After executing each task a per-entry thread taskq_d_thread() places its
- * entry on the bucket free list and goes to a timed sleep. If it wakes up
- * without getting new task it removes the entry from the free list and destroys
- * itself. The thread sleep time is controlled by a tunable variable
- * `taskq_thread_timeout'.
- *
- * There is various statistics kept in the bucket which allows for later
- * analysis of taskq usage patterns. Also, a global copy of taskq creation and
- * death statistics is kept in the global taskq data structure. Since thread
- * creation and death happen rarely, updating such global data does not present
- * a performance problem.
- *
- * NOTE: Threads are not bound to any CPU and there is absolutely no association
- * between the bucket and actual thread CPU, so buckets are used only to
- * split resources and reduce resource contention. Having threads attached
- * to the CPU denoted by a bucket may reduce number of times the job
- * switches between CPUs.
- *
- * Current algorithm creates a thread whenever a bucket has no free
- * entries. It would be nice to know how many threads are in the running
- * state and don't create threads if all CPUs are busy with existing
- * tasks, but it is unclear how such strategy can be implemented.
- *
- * Currently buckets are created statically as an array attached to task
- * queue. On some system with nCPUs < max_ncpus it may waste system
- * memory. One solution may be allocation of buckets when they are first
- * touched, but it is not clear how useful it is.
- *
- * SUSPEND/RESUME implementation.
- *
- * Before executing a task taskq_thread() (executing non-dynamic task
- * queues) obtains taskq's thread lock as a reader. The taskq_suspend()
- * function gets the same lock as a writer blocking all non-dynamic task
- * execution. The taskq_resume() function releases the lock allowing
- * taskq_thread to continue execution.
- *
- * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
- * taskq_suspend() function. After that taskq_bucket_dispatch() always
- * fails, so that taskq_dispatch() will either enqueue tasks for a
- * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
- * flags.
- *
- * NOTE: taskq_suspend() does not immediately block any tasks already
- * scheduled for dynamic task queues. It only suspends new tasks
- * scheduled after taskq_suspend() was called.
- *
- * taskq_member() function works by comparing a thread t_taskq pointer with
- * the passed thread pointer.
- *
- * LOCKS and LOCK Hierarchy:
- *
- * There are two locks used in task queues.
- *
- * 1) Task queue structure has a lock, protecting global task queue state.
- *
- * 2) Each per-CPU bucket has a lock for bucket management.
- *
- * If both locks are needed, task queue lock should be taken only after bucket
- * lock.
- *
- * DEBUG FACILITIES.
- *
- * For DEBUG kernels it is possible to induce random failures to
- * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
- * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
- * failures for dynamic and static task queues respectively.
- *
- * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
- *
- * TUNABLES
- *
- * system_taskq_size - Size of the global system_taskq.
- * This value is multiplied by nCPUs to determine
- * actual size.
- * Default value: 64
- *
- * taskq_thread_timeout - Maximum idle time for taskq_d_thread()
- * Default value: 5 minutes
- *
- * taskq_maxbuckets - Maximum number of buckets in any task queue
- * Default value: 128
- *
- * taskq_search_depth - Maximum # of buckets searched for a free entry
- * Default value: 4
- *
- * taskq_dmtbf - Mean time between induced dispatch failures
- * for dynamic task queues.
- * Default value: UINT_MAX (no induced failures)
- *
- * taskq_smtbf - Mean time between induced dispatch failures
- * for static task queues.
- * Default value: UINT_MAX (no induced failures)
- *
- * CONDITIONAL compilation.
- *
- * TASKQ_STATISTIC - If set will enable bucket statistic (default).
- *
- */
-
-#include <sys/taskq_impl.h>
-#include <sys/proc.h>
-#include <sys/kmem.h>
-#include <sys/callb.h>
-#include <sys/systm.h>
-#include <sys/cmn_err.h>
-#include <sys/debug.h>
-#include <sys/sysmacros.h>
-#include <sys/sdt.h>
-#include <sys/mutex.h>
-#include <sys/kernel.h>
-#include <sys/limits.h>
-
-static kmem_cache_t *taskq_ent_cache, *taskq_cache;
-
-/* Global system task queue for common use */
-taskq_t *system_taskq;
-
-/*
- * Maxmimum number of entries in global system taskq is
- * system_taskq_size * max_ncpus
- */
-#define SYSTEM_TASKQ_SIZE 1
-int system_taskq_size = SYSTEM_TASKQ_SIZE;
-
-/*
- * Dynamic task queue threads that don't get any work within
- * taskq_thread_timeout destroy themselves
- */
-#define TASKQ_THREAD_TIMEOUT (60 * 5)
-int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
-
-#define TASKQ_MAXBUCKETS 128
-int taskq_maxbuckets = TASKQ_MAXBUCKETS;
-
-/*
- * When a bucket has no available entries another buckets are tried.
- * taskq_search_depth parameter limits the amount of buckets that we search
- * before failing. This is mostly useful in systems with many CPUs where we may
- * spend too much time scanning busy buckets.
- */
-#define TASKQ_SEARCH_DEPTH 4
-int taskq_search_depth = TASKQ_SEARCH_DEPTH;
-
-/*
- * Hashing function: mix various bits of x. May be pretty much anything.
- */
-#define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
-
-/*
- * We do not create any new threads when the system is low on memory and start
- * throttling memory allocations. The following macro tries to estimate such
- * condition.
- */
-#define ENOUGH_MEMORY() (freemem > throttlefree)
-
-/*
- * Static functions.
- */
-static taskq_t *taskq_create_common(const char *, int, int, pri_t, int,
- int, uint_t);
-static void taskq_thread(void *);
-static int taskq_constructor(void *, void *, int);
-static void taskq_destructor(void *, void *);
-static int taskq_ent_constructor(void *, void *, int);
-static void taskq_ent_destructor(void *, void *);
-static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
-static void taskq_ent_free(taskq_t *, taskq_ent_t *);
-
-/*
- * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
- */
-#define TASKQ_STATISTIC 1
-
-#if TASKQ_STATISTIC
-#define TQ_STAT(b, x) b->tqbucket_stat.x++
-#else
-#define TQ_STAT(b, x)
-#endif
-
-/*
- * Random fault injection.
- */
-uint_t taskq_random;
-uint_t taskq_dmtbf = UINT_MAX; /* mean time between injected failures */
-uint_t taskq_smtbf = UINT_MAX; /* mean time between injected failures */
-
-/*
- * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
- *
- * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
- * they could prepopulate the cache and make sure that they do not use more
- * then minalloc entries. So, fault injection in this case insures that
- * either TASKQ_PREPOPULATE is not set or there are more entries allocated
- * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed
- * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
- * dispatches.
- */
-#ifdef DEBUG
-#define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \
- taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
- if ((flag & TQ_NOSLEEP) && \
- taskq_random < 1771875 / taskq_dmtbf) { \
- return (NULL); \
- }
-
-#define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \
- taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
- if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \
- (!(tq->tq_flags & TASKQ_PREPOPULATE) || \
- (tq->tq_nalloc > tq->tq_minalloc)) && \
- (taskq_random < (1771875 / taskq_smtbf))) { \
- mutex_exit(&tq->tq_lock); \
- return ((taskqid_t)0); \
- }
-#else
-#define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
-#define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
-#endif
-
-#define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \
- ((l).tqent_prev == &(l)))
-
-/*
- * Append `tqe' in the end of the doubly-linked list denoted by l.
- */
-#define TQ_APPEND(l, tqe) { \
- tqe->tqent_next = &l; \
- tqe->tqent_prev = l.tqent_prev; \
- tqe->tqent_next->tqent_prev = tqe; \
- tqe->tqent_prev->tqent_next = tqe; \
-}
-
-/*
- * Schedule a task specified by func and arg into the task queue entry tqe.
- */
-#define TQ_ENQUEUE(tq, tqe, func, arg) { \
- ASSERT(MUTEX_HELD(&tq->tq_lock)); \
- TQ_APPEND(tq->tq_task, tqe); \
- tqe->tqent_func = (func); \
- tqe->tqent_arg = (arg); \
- tq->tq_tasks++; \
- if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \
- tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \
- cv_signal(&tq->tq_dispatch_cv); \
- DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
-}
-
-/*
- * Do-nothing task which may be used to prepopulate thread caches.
- */
-/*ARGSUSED*/
-void
-nulltask(void *unused)
-{
-}
-
-
-/*ARGSUSED*/
-static int
-taskq_constructor(void *buf, void *cdrarg, int kmflags)
-{
- taskq_t *tq = buf;
-
- bzero(tq, sizeof (taskq_t));
-
- mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
- rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
- cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
- cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
-
- tq->tq_task.tqent_next = &tq->tq_task;
- tq->tq_task.tqent_prev = &tq->tq_task;
-
- return (0);
-}
-
-/*ARGSUSED*/
-static void
-taskq_destructor(void *buf, void *cdrarg)
-{
- taskq_t *tq = buf;
-
- mutex_destroy(&tq->tq_lock);
- rw_destroy(&tq->tq_threadlock);
- cv_destroy(&tq->tq_dispatch_cv);
- cv_destroy(&tq->tq_wait_cv);
-}
-
-/*ARGSUSED*/
-static int
-taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
-{
- taskq_ent_t *tqe = buf;
-
- tqe->tqent_thread = NULL;
- cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
-
- return (0);
-}
-
-/*ARGSUSED*/
-static void
-taskq_ent_destructor(void *buf, void *cdrarg)
-{
- taskq_ent_t *tqe = buf;
-
- ASSERT(tqe->tqent_thread == NULL);
- cv_destroy(&tqe->tqent_cv);
-}
-
-/*
- * Create global system dynamic task queue.
- */
-void
-system_taskq_init(void)
-{
- system_taskq = taskq_create_common("system_taskq", 0,
- system_taskq_size * max_ncpus, minclsyspri, 4, 512,
- TASKQ_PREPOPULATE);
-}
-
-void
-system_taskq_fini(void)
-{
- taskq_destroy(system_taskq);
-}
-
-static void
-taskq_init(void *dummy __unused)
-{
- taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
- sizeof (taskq_ent_t), 0, taskq_ent_constructor,
- taskq_ent_destructor, NULL, NULL, NULL, 0);
- taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
- 0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
- system_taskq_init();
-}
-
-static void
-taskq_fini(void *dummy __unused)
-{
- system_taskq_fini();
- kmem_cache_destroy(taskq_cache);
- kmem_cache_destroy(taskq_ent_cache);
-}
-
-/*
- * taskq_ent_alloc()
- *
- * Allocates a new taskq_ent_t structure either from the free list or from the
- * cache. Returns NULL if it can't be allocated.
- *
- * Assumes: tq->tq_lock is held.
- */
-static taskq_ent_t *
-taskq_ent_alloc(taskq_t *tq, int flags)
-{
- int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
-
- taskq_ent_t *tqe;
-
- ASSERT(MUTEX_HELD(&tq->tq_lock));
-
- /*
- * TQ_NOALLOC allocations are allowed to use the freelist, even if
- * we are below tq_minalloc.
- */
- if ((tqe = tq->tq_freelist) != NULL &&
- ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
- tq->tq_freelist = tqe->tqent_next;
- } else {
- if (flags & TQ_NOALLOC)
- return (NULL);
-
- mutex_exit(&tq->tq_lock);
- if (tq->tq_nalloc >= tq->tq_maxalloc) {
- if (kmflags & KM_NOSLEEP) {
- mutex_enter(&tq->tq_lock);
- return (NULL);
- }
- /*
- * We don't want to exceed tq_maxalloc, but we can't
- * wait for other tasks to complete (and thus free up
- * task structures) without risking deadlock with
- * the caller. So, we just delay for one second
- * to throttle the allocation rate.
- */
- delay(hz);
- }
- tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
- mutex_enter(&tq->tq_lock);
- if (tqe != NULL)
- tq->tq_nalloc++;
- }
- return (tqe);
-}
-
-/*
- * taskq_ent_free()
- *
- * Free taskq_ent_t structure by either putting it on the free list or freeing
- * it to the cache.
- *
- * Assumes: tq->tq_lock is held.
- */
-static void
-taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
-{
- ASSERT(MUTEX_HELD(&tq->tq_lock));
-
- if (tq->tq_nalloc <= tq->tq_minalloc) {
- tqe->tqent_next = tq->tq_freelist;
- tq->tq_freelist = tqe;
- } else {
- tq->tq_nalloc--;
- mutex_exit(&tq->tq_lock);
- kmem_cache_free(taskq_ent_cache, tqe);
- mutex_enter(&tq->tq_lock);
- }
-}
-
-/*
- * Dispatch a task.
- *
- * Assumes: func != NULL
- *
- * Returns: NULL if dispatch failed.
- * non-NULL if task dispatched successfully.
- * Actual return value is the pointer to taskq entry that was used to
- * dispatch a task. This is useful for debugging.
- */
-/* ARGSUSED */
-taskqid_t
-taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
-{
- taskq_ent_t *tqe = NULL;
-
- ASSERT(tq != NULL);
- ASSERT(func != NULL);
- ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
-
- /*
- * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
- */
- ASSERT(! (flags & TQ_NOQUEUE));
-
- /*
- * Enqueue the task to the underlying queue.
- */
- mutex_enter(&tq->tq_lock);
-
- TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
-
- if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
- mutex_exit(&tq->tq_lock);
- return ((taskqid_t)NULL);
- }
- TQ_ENQUEUE(tq, tqe, func, arg);
- mutex_exit(&tq->tq_lock);
- return ((taskqid_t)tqe);
-}
-
-/*
- * Wait for all pending tasks to complete.
- * Calling taskq_wait from a task will cause deadlock.
- */
-void
-taskq_wait(taskq_t *tq)
-{
-
- mutex_enter(&tq->tq_lock);
- while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
- cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
- mutex_exit(&tq->tq_lock);
-}
-
-/*
- * Suspend execution of tasks.
- *
- * Tasks in the queue part will be suspended immediately upon return from this
- * function. Pending tasks in the dynamic part will continue to execute, but all
- * new tasks will be suspended.
- */
-void
-taskq_suspend(taskq_t *tq)
-{
- rw_enter(&tq->tq_threadlock, RW_WRITER);
-
- /*
- * Mark task queue as being suspended. Needed for taskq_suspended().
- */
- mutex_enter(&tq->tq_lock);
- ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
- tq->tq_flags |= TASKQ_SUSPENDED;
- mutex_exit(&tq->tq_lock);
-}
-
-/*
- * returns: 1 if tq is suspended, 0 otherwise.
- */
-int
-taskq_suspended(taskq_t *tq)
-{
- return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
-}
-
-/*
- * Resume taskq execution.
- */
-void
-taskq_resume(taskq_t *tq)
-{
- ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
-
- mutex_enter(&tq->tq_lock);
- ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
- tq->tq_flags &= ~TASKQ_SUSPENDED;
- mutex_exit(&tq->tq_lock);
-
- rw_exit(&tq->tq_threadlock);
-}
-
-/*
- * Worker thread for processing task queue.
- */
-static void
-taskq_thread(void *arg)
-{
- taskq_t *tq = arg;
- taskq_ent_t *tqe;
- callb_cpr_t cprinfo;
- hrtime_t start, end;
-
- CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr, tq->tq_name);
-
- mutex_enter(&tq->tq_lock);
- while (tq->tq_flags & TASKQ_ACTIVE) {
- if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
- if (--tq->tq_active == 0)
- cv_broadcast(&tq->tq_wait_cv);
- if (tq->tq_flags & TASKQ_CPR_SAFE) {
- cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
- } else {
- CALLB_CPR_SAFE_BEGIN(&cprinfo);
- cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
- CALLB_CPR_SAFE_END(&cprinfo, &tq->tq_lock);
- }
- tq->tq_active++;
- continue;
- }
- tqe->tqent_prev->tqent_next = tqe->tqent_next;
- tqe->tqent_next->tqent_prev = tqe->tqent_prev;
- mutex_exit(&tq->tq_lock);
-
- rw_enter(&tq->tq_threadlock, RW_READER);
- start = gethrtime();
- DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
- taskq_ent_t *, tqe);
- tqe->tqent_func(tqe->tqent_arg);
- DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
- taskq_ent_t *, tqe);
- end = gethrtime();
- rw_exit(&tq->tq_threadlock);
-
- mutex_enter(&tq->tq_lock);
- tq->tq_totaltime += end - start;
- tq->tq_executed++;
-
- taskq_ent_free(tq, tqe);
- }
- tq->tq_nthreads--;
- cv_broadcast(&tq->tq_wait_cv);
- ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
- CALLB_CPR_EXIT(&cprinfo);
- thread_exit();
-}
-
-/*
- * Taskq creation. May sleep for memory.
- * Always use automatically generated instances to avoid kstat name space
- * collisions.
- */
-
-taskq_t *
-taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
- int maxalloc, uint_t flags)
-{
- return taskq_create_common(name, 0, nthreads, pri, minalloc,
- maxalloc, flags | TASKQ_NOINSTANCE);
-}
-
-static taskq_t *
-taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
- int minalloc, int maxalloc, uint_t flags)
-{
- taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
- uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
- uint_t bsize; /* # of buckets - always power of 2 */
-
- ASSERT(instance == 0);
- ASSERT(flags == TASKQ_PREPOPULATE | TASKQ_NOINSTANCE);
-
- /*
- * TASKQ_CPR_SAFE and TASKQ_DYNAMIC flags are mutually exclusive.
- */
- ASSERT((flags & (TASKQ_DYNAMIC | TASKQ_CPR_SAFE)) !=
- ((TASKQ_DYNAMIC | TASKQ_CPR_SAFE)));
-
- ASSERT(tq->tq_buckets == NULL);
-
- bsize = 1 << (highbit(ncpus) - 1);
- ASSERT(bsize >= 1);
- bsize = MIN(bsize, taskq_maxbuckets);
-
- tq->tq_maxsize = nthreads;
-
- (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
- tq->tq_name[TASKQ_NAMELEN] = '\0';
- /* Make sure the name conforms to the rules for C indentifiers */
- strident_canon(tq->tq_name, TASKQ_NAMELEN);
-
- tq->tq_flags = flags | TASKQ_ACTIVE;
- tq->tq_active = nthreads;
- tq->tq_nthreads = nthreads;
- tq->tq_minalloc = minalloc;
- tq->tq_maxalloc = maxalloc;
- tq->tq_nbuckets = bsize;
- tq->tq_pri = pri;
-
- if (flags & TASKQ_PREPOPULATE) {
- mutex_enter(&tq->tq_lock);
- while (minalloc-- > 0)
- taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
- mutex_exit(&tq->tq_lock);
- }
-
- if (nthreads == 1) {
- tq->tq_thread = thread_create(NULL, 0, taskq_thread, tq,
- 0, NULL, TS_RUN, pri);
- } else {
- kthread_t **tpp = kmem_alloc(sizeof (kthread_t *) * nthreads,
- KM_SLEEP);
-
- tq->tq_threadlist = tpp;
-
- mutex_enter(&tq->tq_lock);
- while (nthreads-- > 0) {
- *tpp = thread_create(NULL, 0, taskq_thread, tq,
- 0, NULL, TS_RUN, pri);
- tpp++;
- }
- mutex_exit(&tq->tq_lock);
- }
-
- return (tq);
-}
-
-/*
- * taskq_destroy().
- *
- * Assumes: by the time taskq_destroy is called no one will use this task queue
- * in any way and no one will try to dispatch entries in it.
- */
-void
-taskq_destroy(taskq_t *tq)
-{
- taskq_bucket_t *b = tq->tq_buckets;
- int bid = 0;
-
- ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
-
- /*
- * Wait for any pending entries to complete.
- */
- taskq_wait(tq);
-
- mutex_enter(&tq->tq_lock);
- ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
- (tq->tq_active == 0));
-
- if ((tq->tq_nthreads > 1) && (tq->tq_threadlist != NULL))
- kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
- tq->tq_nthreads);
-
- tq->tq_flags &= ~TASKQ_ACTIVE;
- cv_broadcast(&tq->tq_dispatch_cv);
- while (tq->tq_nthreads != 0)
- cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
-
- tq->tq_minalloc = 0;
- while (tq->tq_nalloc != 0)
- taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
-
- mutex_exit(&tq->tq_lock);
-
- /*
- * Mark each bucket as closing and wakeup all sleeping threads.
- */
- for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
- taskq_ent_t *tqe;
-
- mutex_enter(&b->tqbucket_lock);
-
- b->tqbucket_flags |= TQBUCKET_CLOSE;
- /* Wakeup all sleeping threads */
-
- for (tqe = b->tqbucket_freelist.tqent_next;
- tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
- cv_signal(&tqe->tqent_cv);
-
- ASSERT(b->tqbucket_nalloc == 0);
-
- /*
- * At this point we waited for all pending jobs to complete (in
- * both the task queue and the bucket and no new jobs should
- * arrive. Wait for all threads to die.
- */
- while (b->tqbucket_nfree > 0)
- cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
- mutex_exit(&b->tqbucket_lock);
- mutex_destroy(&b->tqbucket_lock);
- cv_destroy(&b->tqbucket_cv);
- }
-
- if (tq->tq_buckets != NULL) {
- ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
- kmem_free(tq->tq_buckets,
- sizeof (taskq_bucket_t) * tq->tq_nbuckets);
-
- /* Cleanup fields before returning tq to the cache */
- tq->tq_buckets = NULL;
- tq->tq_tcreates = 0;
- tq->tq_tdeaths = 0;
- } else {
- ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
- }
-
- tq->tq_totaltime = 0;
- tq->tq_tasks = 0;
- tq->tq_maxtasks = 0;
- tq->tq_executed = 0;
- kmem_cache_free(taskq_cache, tq);
-}
-
-SYSINIT(sol_taskq, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, taskq_init, NULL);
-SYSUNINIT(sol_taskq, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, taskq_fini, NULL);
OpenPOWER on IntegriCloud