summaryrefslogtreecommitdiffstats
path: root/sys/contrib/opensolaris/uts/common/fs/zfs/zil.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/opensolaris/uts/common/fs/zfs/zil.c')
-rw-r--r--sys/contrib/opensolaris/uts/common/fs/zfs/zil.c1607
1 files changed, 1607 insertions, 0 deletions
diff --git a/sys/contrib/opensolaris/uts/common/fs/zfs/zil.c b/sys/contrib/opensolaris/uts/common/fs/zfs/zil.c
new file mode 100644
index 0000000..6e1d0a1
--- /dev/null
+++ b/sys/contrib/opensolaris/uts/common/fs/zfs/zil.c
@@ -0,0 +1,1607 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/zfs_context.h>
+#include <sys/spa.h>
+#include <sys/dmu.h>
+#include <sys/zap.h>
+#include <sys/arc.h>
+#include <sys/stat.h>
+#include <sys/resource.h>
+#include <sys/zil.h>
+#include <sys/zil_impl.h>
+#include <sys/dsl_dataset.h>
+#include <sys/vdev.h>
+#include <sys/dmu_tx.h>
+
+/*
+ * The zfs intent log (ZIL) saves transaction records of system calls
+ * that change the file system in memory with enough information
+ * to be able to replay them. These are stored in memory until
+ * either the DMU transaction group (txg) commits them to the stable pool
+ * and they can be discarded, or they are flushed to the stable log
+ * (also in the pool) due to a fsync, O_DSYNC or other synchronous
+ * requirement. In the event of a panic or power fail then those log
+ * records (transactions) are replayed.
+ *
+ * There is one ZIL per file system. Its on-disk (pool) format consists
+ * of 3 parts:
+ *
+ * - ZIL header
+ * - ZIL blocks
+ * - ZIL records
+ *
+ * A log record holds a system call transaction. Log blocks can
+ * hold many log records and the blocks are chained together.
+ * Each ZIL block contains a block pointer (blkptr_t) to the next
+ * ZIL block in the chain. The ZIL header points to the first
+ * block in the chain. Note there is not a fixed place in the pool
+ * to hold blocks. They are dynamically allocated and freed as
+ * needed from the blocks available. Figure X shows the ZIL structure:
+ */
+
+/*
+ * This global ZIL switch affects all pools
+ */
+int zil_disable = 0; /* disable intent logging */
+SYSCTL_DECL(_vfs_zfs);
+TUNABLE_INT("vfs.zfs.zil_disable", &zil_disable);
+SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_disable, CTLFLAG_RW, &zil_disable, 0,
+ "Disable ZFS Intent Log (ZIL)");
+
+/*
+ * Tunable parameter for debugging or performance analysis. Setting
+ * zfs_nocacheflush will cause corruption on power loss if a volatile
+ * out-of-order write cache is enabled.
+ */
+boolean_t zfs_nocacheflush = B_FALSE;
+TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
+SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
+ &zfs_nocacheflush, 0, "Disable cache flush");
+
+static kmem_cache_t *zil_lwb_cache;
+
+static int
+zil_dva_compare(const void *x1, const void *x2)
+{
+ const dva_t *dva1 = x1;
+ const dva_t *dva2 = x2;
+
+ if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
+ return (-1);
+ if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
+ return (1);
+
+ if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
+ return (-1);
+ if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
+ return (1);
+
+ return (0);
+}
+
+static void
+zil_dva_tree_init(avl_tree_t *t)
+{
+ avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
+ offsetof(zil_dva_node_t, zn_node));
+}
+
+static void
+zil_dva_tree_fini(avl_tree_t *t)
+{
+ zil_dva_node_t *zn;
+ void *cookie = NULL;
+
+ while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
+ kmem_free(zn, sizeof (zil_dva_node_t));
+
+ avl_destroy(t);
+}
+
+static int
+zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
+{
+ zil_dva_node_t *zn;
+ avl_index_t where;
+
+ if (avl_find(t, dva, &where) != NULL)
+ return (EEXIST);
+
+ zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
+ zn->zn_dva = *dva;
+ avl_insert(t, zn, where);
+
+ return (0);
+}
+
+static zil_header_t *
+zil_header_in_syncing_context(zilog_t *zilog)
+{
+ return ((zil_header_t *)zilog->zl_header);
+}
+
+static void
+zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
+{
+ zio_cksum_t *zc = &bp->blk_cksum;
+
+ zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
+ zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
+ zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
+ zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
+}
+
+/*
+ * Read a log block, make sure it's valid, and byteswap it if necessary.
+ */
+static int
+zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
+{
+ blkptr_t blk = *bp;
+ zbookmark_t zb;
+ uint32_t aflags = ARC_WAIT;
+ int error;
+
+ zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
+ zb.zb_object = 0;
+ zb.zb_level = -1;
+ zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
+
+ *abufpp = NULL;
+
+ error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array,
+ arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
+ ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb);
+
+ if (error == 0) {
+ char *data = (*abufpp)->b_data;
+ uint64_t blksz = BP_GET_LSIZE(bp);
+ zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
+ zio_cksum_t cksum = bp->blk_cksum;
+
+ /*
+ * Sequence numbers should be... sequential. The checksum
+ * verifier for the next block should be bp's checksum plus 1.
+ */
+ cksum.zc_word[ZIL_ZC_SEQ]++;
+
+ if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum)))
+ error = ESTALE;
+ else if (BP_IS_HOLE(&ztp->zit_next_blk))
+ error = ENOENT;
+ else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))
+ error = EOVERFLOW;
+
+ if (error) {
+ VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
+ *abufpp = NULL;
+ }
+ }
+
+ dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
+
+ return (error);
+}
+
+/*
+ * Parse the intent log, and call parse_func for each valid record within.
+ * Return the highest sequence number.
+ */
+uint64_t
+zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
+ zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ uint64_t claim_seq = zh->zh_claim_seq;
+ uint64_t seq = 0;
+ uint64_t max_seq = 0;
+ blkptr_t blk = zh->zh_log;
+ arc_buf_t *abuf;
+ char *lrbuf, *lrp;
+ zil_trailer_t *ztp;
+ int reclen, error;
+
+ if (BP_IS_HOLE(&blk))
+ return (max_seq);
+
+ /*
+ * Starting at the block pointed to by zh_log we read the log chain.
+ * For each block in the chain we strongly check that block to
+ * ensure its validity. We stop when an invalid block is found.
+ * For each block pointer in the chain we call parse_blk_func().
+ * For each record in each valid block we call parse_lr_func().
+ * If the log has been claimed, stop if we encounter a sequence
+ * number greater than the highest claimed sequence number.
+ */
+ zil_dva_tree_init(&zilog->zl_dva_tree);
+ for (;;) {
+ seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
+
+ if (claim_seq != 0 && seq > claim_seq)
+ break;
+
+ ASSERT(max_seq < seq);
+ max_seq = seq;
+
+ error = zil_read_log_block(zilog, &blk, &abuf);
+
+ if (parse_blk_func != NULL)
+ parse_blk_func(zilog, &blk, arg, txg);
+
+ if (error)
+ break;
+
+ lrbuf = abuf->b_data;
+ ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
+ blk = ztp->zit_next_blk;
+
+ if (parse_lr_func == NULL) {
+ VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
+ continue;
+ }
+
+ for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
+ lr_t *lr = (lr_t *)lrp;
+ reclen = lr->lrc_reclen;
+ ASSERT3U(reclen, >=, sizeof (lr_t));
+ parse_lr_func(zilog, lr, arg, txg);
+ }
+ VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
+ }
+ zil_dva_tree_fini(&zilog->zl_dva_tree);
+
+ return (max_seq);
+}
+
+/* ARGSUSED */
+static void
+zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
+{
+ spa_t *spa = zilog->zl_spa;
+ int err;
+
+ /*
+ * Claim log block if not already committed and not already claimed.
+ */
+ if (bp->blk_birth >= first_txg &&
+ zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
+ err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL));
+ ASSERT(err == 0);
+ }
+}
+
+static void
+zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
+{
+ if (lrc->lrc_txtype == TX_WRITE) {
+ lr_write_t *lr = (lr_write_t *)lrc;
+ zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
+ }
+}
+
+/* ARGSUSED */
+static void
+zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
+{
+ zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
+}
+
+static void
+zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
+{
+ /*
+ * If we previously claimed it, we need to free it.
+ */
+ if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
+ lr_write_t *lr = (lr_write_t *)lrc;
+ blkptr_t *bp = &lr->lr_blkptr;
+ if (bp->blk_birth >= claim_txg &&
+ !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
+ (void) arc_free(NULL, zilog->zl_spa,
+ dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
+ }
+ }
+}
+
+/*
+ * Create an on-disk intent log.
+ */
+static void
+zil_create(zilog_t *zilog)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ lwb_t *lwb;
+ uint64_t txg = 0;
+ dmu_tx_t *tx = NULL;
+ blkptr_t blk;
+ int error = 0;
+
+ /*
+ * Wait for any previous destroy to complete.
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
+
+ ASSERT(zh->zh_claim_txg == 0);
+ ASSERT(zh->zh_replay_seq == 0);
+
+ blk = zh->zh_log;
+
+ /*
+ * If we don't already have an initial log block, allocate one now.
+ */
+ if (BP_IS_HOLE(&blk)) {
+ tx = dmu_tx_create(zilog->zl_os);
+ (void) dmu_tx_assign(tx, TXG_WAIT);
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ txg = dmu_tx_get_txg(tx);
+
+ error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk,
+ NULL, txg);
+
+ if (error == 0)
+ zil_init_log_chain(zilog, &blk);
+ }
+
+ /*
+ * Allocate a log write buffer (lwb) for the first log block.
+ */
+ if (error == 0) {
+ lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
+ lwb->lwb_zilog = zilog;
+ lwb->lwb_blk = blk;
+ lwb->lwb_nused = 0;
+ lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
+ lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
+ lwb->lwb_max_txg = txg;
+ lwb->lwb_zio = NULL;
+
+ mutex_enter(&zilog->zl_lock);
+ list_insert_tail(&zilog->zl_lwb_list, lwb);
+ mutex_exit(&zilog->zl_lock);
+ }
+
+ /*
+ * If we just allocated the first log block, commit our transaction
+ * and wait for zil_sync() to stuff the block poiner into zh_log.
+ * (zh is part of the MOS, so we cannot modify it in open context.)
+ */
+ if (tx != NULL) {
+ dmu_tx_commit(tx);
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ }
+
+ ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
+}
+
+/*
+ * In one tx, free all log blocks and clear the log header.
+ * If keep_first is set, then we're replaying a log with no content.
+ * We want to keep the first block, however, so that the first
+ * synchronous transaction doesn't require a txg_wait_synced()
+ * in zil_create(). We don't need to txg_wait_synced() here either
+ * when keep_first is set, because both zil_create() and zil_destroy()
+ * will wait for any in-progress destroys to complete.
+ */
+void
+zil_destroy(zilog_t *zilog, boolean_t keep_first)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ lwb_t *lwb;
+ dmu_tx_t *tx;
+ uint64_t txg;
+
+ /*
+ * Wait for any previous destroy to complete.
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
+
+ if (BP_IS_HOLE(&zh->zh_log))
+ return;
+
+ tx = dmu_tx_create(zilog->zl_os);
+ (void) dmu_tx_assign(tx, TXG_WAIT);
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ txg = dmu_tx_get_txg(tx);
+
+ mutex_enter(&zilog->zl_lock);
+
+ ASSERT3U(zilog->zl_destroy_txg, <, txg);
+ zilog->zl_destroy_txg = txg;
+ zilog->zl_keep_first = keep_first;
+
+ if (!list_is_empty(&zilog->zl_lwb_list)) {
+ ASSERT(zh->zh_claim_txg == 0);
+ ASSERT(!keep_first);
+ while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
+ list_remove(&zilog->zl_lwb_list, lwb);
+ if (lwb->lwb_buf != NULL)
+ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
+ zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
+ kmem_cache_free(zil_lwb_cache, lwb);
+ }
+ } else {
+ if (!keep_first) {
+ (void) zil_parse(zilog, zil_free_log_block,
+ zil_free_log_record, tx, zh->zh_claim_txg);
+ }
+ }
+ mutex_exit(&zilog->zl_lock);
+
+ dmu_tx_commit(tx);
+
+ if (keep_first) /* no need to wait in this case */
+ return;
+
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ ASSERT(BP_IS_HOLE(&zh->zh_log));
+}
+
+int
+zil_claim(char *osname, void *txarg)
+{
+ dmu_tx_t *tx = txarg;
+ uint64_t first_txg = dmu_tx_get_txg(tx);
+ zilog_t *zilog;
+ zil_header_t *zh;
+ objset_t *os;
+ int error;
+
+ error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os);
+ if (error) {
+ cmn_err(CE_WARN, "can't process intent log for %s", osname);
+ return (0);
+ }
+
+ zilog = dmu_objset_zil(os);
+ zh = zil_header_in_syncing_context(zilog);
+
+ /*
+ * Claim all log blocks if we haven't already done so, and remember
+ * the highest claimed sequence number. This ensures that if we can
+ * read only part of the log now (e.g. due to a missing device),
+ * but we can read the entire log later, we will not try to replay
+ * or destroy beyond the last block we successfully claimed.
+ */
+ ASSERT3U(zh->zh_claim_txg, <=, first_txg);
+ if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
+ zh->zh_claim_txg = first_txg;
+ zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
+ zil_claim_log_record, tx, first_txg);
+ dsl_dataset_dirty(dmu_objset_ds(os), tx);
+ }
+
+ ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
+ dmu_objset_close(os);
+ return (0);
+}
+
+void
+zil_add_vdev(zilog_t *zilog, uint64_t vdev)
+{
+ zil_vdev_t *zv, *new;
+ uint64_t bmap_sz = sizeof (zilog->zl_vdev_bmap) << 3;
+ uchar_t *cp;
+
+ if (zfs_nocacheflush)
+ return;
+
+ if (vdev < bmap_sz) {
+ cp = zilog->zl_vdev_bmap + (vdev / 8);
+ atomic_or_8(cp, 1 << (vdev % 8));
+ } else {
+ /*
+ * insert into ordered list
+ */
+ mutex_enter(&zilog->zl_lock);
+ for (zv = list_head(&zilog->zl_vdev_list); zv != NULL;
+ zv = list_next(&zilog->zl_vdev_list, zv)) {
+ if (zv->vdev == vdev) {
+ /* duplicate found - just return */
+ mutex_exit(&zilog->zl_lock);
+ return;
+ }
+ if (zv->vdev > vdev) {
+ /* insert before this entry */
+ new = kmem_alloc(sizeof (zil_vdev_t),
+ KM_SLEEP);
+ new->vdev = vdev;
+ list_insert_before(&zilog->zl_vdev_list,
+ zv, new);
+ mutex_exit(&zilog->zl_lock);
+ return;
+ }
+ }
+ /* ran off end of list, insert at the end */
+ ASSERT(zv == NULL);
+ new = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP);
+ new->vdev = vdev;
+ list_insert_tail(&zilog->zl_vdev_list, new);
+ mutex_exit(&zilog->zl_lock);
+ }
+}
+
+/* start an async flush of the write cache for this vdev */
+void
+zil_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio)
+{
+ vdev_t *vd;
+
+ if (*zio == NULL)
+ *zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
+
+ vd = vdev_lookup_top(spa, vdev);
+ ASSERT(vd);
+
+ (void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE,
+ NULL, NULL, ZIO_PRIORITY_NOW,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
+}
+
+void
+zil_flush_vdevs(zilog_t *zilog)
+{
+ zil_vdev_t *zv;
+ zio_t *zio = NULL;
+ spa_t *spa = zilog->zl_spa;
+ uint64_t vdev;
+ uint8_t b;
+ int i, j;
+
+ ASSERT(zilog->zl_writer);
+
+ for (i = 0; i < sizeof (zilog->zl_vdev_bmap); i++) {
+ b = zilog->zl_vdev_bmap[i];
+ if (b == 0)
+ continue;
+ for (j = 0; j < 8; j++) {
+ if (b & (1 << j)) {
+ vdev = (i << 3) + j;
+ zil_flush_vdev(spa, vdev, &zio);
+ }
+ }
+ zilog->zl_vdev_bmap[i] = 0;
+ }
+
+ while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
+ zil_flush_vdev(spa, zv->vdev, &zio);
+ list_remove(&zilog->zl_vdev_list, zv);
+ kmem_free(zv, sizeof (zil_vdev_t));
+ }
+ /*
+ * Wait for all the flushes to complete. Not all devices actually
+ * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
+ */
+ if (zio)
+ (void) zio_wait(zio);
+}
+
+/*
+ * Function called when a log block write completes
+ */
+static void
+zil_lwb_write_done(zio_t *zio)
+{
+ lwb_t *lwb = zio->io_private;
+ zilog_t *zilog = lwb->lwb_zilog;
+
+ /*
+ * Now that we've written this log block, we have a stable pointer
+ * to the next block in the chain, so it's OK to let the txg in
+ * which we allocated the next block sync.
+ */
+ txg_rele_to_sync(&lwb->lwb_txgh);
+
+ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
+ mutex_enter(&zilog->zl_lock);
+ lwb->lwb_buf = NULL;
+ if (zio->io_error) {
+ zilog->zl_log_error = B_TRUE;
+ mutex_exit(&zilog->zl_lock);
+ return;
+ }
+ mutex_exit(&zilog->zl_lock);
+}
+
+/*
+ * Initialize the io for a log block.
+ *
+ * Note, we should not initialize the IO until we are about
+ * to use it, since zio_rewrite() does a spa_config_enter().
+ */
+static void
+zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
+{
+ zbookmark_t zb;
+
+ zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
+ zb.zb_object = 0;
+ zb.zb_level = -1;
+ zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
+
+ if (zilog->zl_root_zio == NULL) {
+ zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
+ ZIO_FLAG_CANFAIL);
+ }
+ if (lwb->lwb_zio == NULL) {
+ lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
+ ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf,
+ lwb->lwb_sz, zil_lwb_write_done, lwb,
+ ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
+ }
+}
+
+/*
+ * Start a log block write and advance to the next log block.
+ * Calls are serialized.
+ */
+static lwb_t *
+zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
+{
+ lwb_t *nlwb;
+ zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
+ spa_t *spa = zilog->zl_spa;
+ blkptr_t *bp = &ztp->zit_next_blk;
+ uint64_t txg;
+ uint64_t zil_blksz;
+ int error;
+
+ ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
+
+ /*
+ * Allocate the next block and save its address in this block
+ * before writing it in order to establish the log chain.
+ * Note that if the allocation of nlwb synced before we wrote
+ * the block that points at it (lwb), we'd leak it if we crashed.
+ * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
+ */
+ txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
+ txg_rele_to_quiesce(&lwb->lwb_txgh);
+
+ /*
+ * Pick a ZIL blocksize. We request a size that is the
+ * maximum of the previous used size, the current used size and
+ * the amount waiting in the queue.
+ */
+ zil_blksz = MAX(zilog->zl_prev_used,
+ zilog->zl_cur_used + sizeof (*ztp));
+ zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
+ zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
+ if (zil_blksz > ZIL_MAX_BLKSZ)
+ zil_blksz = ZIL_MAX_BLKSZ;
+
+ BP_ZERO(bp);
+ /* pass the old blkptr in order to spread log blocks across devs */
+ error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg);
+ if (error) {
+ dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg);
+
+ /*
+ * We dirty the dataset to ensure that zil_sync() will
+ * be called to remove this lwb from our zl_lwb_list.
+ * Failing to do so, may leave an lwb with a NULL lwb_buf
+ * hanging around on the zl_lwb_list.
+ */
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ dmu_tx_commit(tx);
+
+ /*
+ * Since we've just experienced an allocation failure so we
+ * terminate the current lwb and send it on its way.
+ */
+ ztp->zit_pad = 0;
+ ztp->zit_nused = lwb->lwb_nused;
+ ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
+ zio_nowait(lwb->lwb_zio);
+
+ /*
+ * By returning NULL the caller will call tx_wait_synced()
+ */
+ return (NULL);
+ }
+
+ ASSERT3U(bp->blk_birth, ==, txg);
+ ztp->zit_pad = 0;
+ ztp->zit_nused = lwb->lwb_nused;
+ ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
+ bp->blk_cksum = lwb->lwb_blk.blk_cksum;
+ bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
+
+ /*
+ * Allocate a new log write buffer (lwb).
+ */
+ nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
+
+ nlwb->lwb_zilog = zilog;
+ nlwb->lwb_blk = *bp;
+ nlwb->lwb_nused = 0;
+ nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
+ nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
+ nlwb->lwb_max_txg = txg;
+ nlwb->lwb_zio = NULL;
+
+ /*
+ * Put new lwb at the end of the log chain
+ */
+ mutex_enter(&zilog->zl_lock);
+ list_insert_tail(&zilog->zl_lwb_list, nlwb);
+ mutex_exit(&zilog->zl_lock);
+
+ /* Record the vdev for later flushing */
+ zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk))));
+
+ /*
+ * kick off the write for the old log block
+ */
+ dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
+ ASSERT(lwb->lwb_zio);
+ zio_nowait(lwb->lwb_zio);
+
+ return (nlwb);
+}
+
+static lwb_t *
+zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
+{
+ lr_t *lrc = &itx->itx_lr; /* common log record */
+ lr_write_t *lr = (lr_write_t *)lrc;
+ uint64_t txg = lrc->lrc_txg;
+ uint64_t reclen = lrc->lrc_reclen;
+ uint64_t dlen;
+
+ if (lwb == NULL)
+ return (NULL);
+ ASSERT(lwb->lwb_buf != NULL);
+
+ if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
+ dlen = P2ROUNDUP_TYPED(
+ lr->lr_length, sizeof (uint64_t), uint64_t);
+ else
+ dlen = 0;
+
+ zilog->zl_cur_used += (reclen + dlen);
+
+ zil_lwb_write_init(zilog, lwb);
+
+ /*
+ * If this record won't fit in the current log block, start a new one.
+ */
+ if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
+ lwb = zil_lwb_write_start(zilog, lwb);
+ if (lwb == NULL)
+ return (NULL);
+ zil_lwb_write_init(zilog, lwb);
+ ASSERT(lwb->lwb_nused == 0);
+ if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ return (lwb);
+ }
+ }
+
+ /*
+ * Update the lrc_seq, to be log record sequence number. See zil.h
+ * Then copy the record to the log buffer.
+ */
+ lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
+ bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
+
+ /*
+ * If it's a write, fetch the data or get its blkptr as appropriate.
+ */
+ if (lrc->lrc_txtype == TX_WRITE) {
+ if (txg > spa_freeze_txg(zilog->zl_spa))
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ if (itx->itx_wr_state != WR_COPIED) {
+ char *dbuf;
+ int error;
+
+ /* alignment is guaranteed */
+ lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
+ if (dlen) {
+ ASSERT(itx->itx_wr_state == WR_NEED_COPY);
+ dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
+ lr->lr_common.lrc_reclen += dlen;
+ } else {
+ ASSERT(itx->itx_wr_state == WR_INDIRECT);
+ dbuf = NULL;
+ }
+ error = zilog->zl_get_data(
+ itx->itx_private, lr, dbuf, lwb->lwb_zio);
+ if (error) {
+ ASSERT(error == ENOENT || error == EEXIST ||
+ error == EALREADY);
+ return (lwb);
+ }
+ }
+ }
+
+ lwb->lwb_nused += reclen + dlen;
+ lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
+ ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
+ ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
+
+ return (lwb);
+}
+
+itx_t *
+zil_itx_create(int txtype, size_t lrsize)
+{
+ itx_t *itx;
+
+ lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
+
+ itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
+ itx->itx_lr.lrc_txtype = txtype;
+ itx->itx_lr.lrc_reclen = lrsize;
+ itx->itx_lr.lrc_seq = 0; /* defensive */
+
+ return (itx);
+}
+
+uint64_t
+zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
+{
+ uint64_t seq;
+
+ ASSERT(itx->itx_lr.lrc_seq == 0);
+
+ mutex_enter(&zilog->zl_lock);
+ list_insert_tail(&zilog->zl_itx_list, itx);
+ zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen;
+ itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
+ itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
+ mutex_exit(&zilog->zl_lock);
+
+ return (seq);
+}
+
+/*
+ * Free up all in-memory intent log transactions that have now been synced.
+ */
+static void
+zil_itx_clean(zilog_t *zilog)
+{
+ uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
+ uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
+ list_t clean_list;
+ itx_t *itx;
+
+ list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
+
+ mutex_enter(&zilog->zl_lock);
+ /* wait for a log writer to finish walking list */
+ while (zilog->zl_writer) {
+ cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
+ }
+
+ /*
+ * Move the sync'd log transactions to a separate list so we can call
+ * kmem_free without holding the zl_lock.
+ *
+ * There is no need to set zl_writer as we don't drop zl_lock here
+ */
+ while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
+ itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
+ list_remove(&zilog->zl_itx_list, itx);
+ zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen;
+ list_insert_tail(&clean_list, itx);
+ }
+ cv_broadcast(&zilog->zl_cv_writer);
+ mutex_exit(&zilog->zl_lock);
+
+ /* destroy sync'd log transactions */
+ while ((itx = list_head(&clean_list)) != NULL) {
+ list_remove(&clean_list, itx);
+ kmem_free(itx, offsetof(itx_t, itx_lr)
+ + itx->itx_lr.lrc_reclen);
+ }
+ list_destroy(&clean_list);
+}
+
+/*
+ * If there are any in-memory intent log transactions which have now been
+ * synced then start up a taskq to free them.
+ */
+void
+zil_clean(zilog_t *zilog)
+{
+ itx_t *itx;
+
+ mutex_enter(&zilog->zl_lock);
+ itx = list_head(&zilog->zl_itx_list);
+ if ((itx != NULL) &&
+ (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) {
+ (void) taskq_dispatch(zilog->zl_clean_taskq,
+ (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP);
+ }
+ mutex_exit(&zilog->zl_lock);
+}
+
+void
+zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid)
+{
+ uint64_t txg;
+ uint64_t reclen;
+ uint64_t commit_seq = 0;
+ itx_t *itx, *itx_next = (itx_t *)-1;
+ lwb_t *lwb;
+ spa_t *spa;
+
+ zilog->zl_writer = B_TRUE;
+ zilog->zl_root_zio = NULL;
+ spa = zilog->zl_spa;
+
+ if (zilog->zl_suspend) {
+ lwb = NULL;
+ } else {
+ lwb = list_tail(&zilog->zl_lwb_list);
+ if (lwb == NULL) {
+ /*
+ * Return if there's nothing to flush before we
+ * dirty the fs by calling zil_create()
+ */
+ if (list_is_empty(&zilog->zl_itx_list)) {
+ zilog->zl_writer = B_FALSE;
+ return;
+ }
+ mutex_exit(&zilog->zl_lock);
+ zil_create(zilog);
+ mutex_enter(&zilog->zl_lock);
+ lwb = list_tail(&zilog->zl_lwb_list);
+ }
+ }
+
+ /* Loop through in-memory log transactions filling log blocks. */
+ DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
+ for (;;) {
+ /*
+ * Find the next itx to push:
+ * Push all transactions related to specified foid and all
+ * other transactions except TX_WRITE, TX_TRUNCATE,
+ * TX_SETATTR and TX_ACL for all other files.
+ */
+ if (itx_next != (itx_t *)-1)
+ itx = itx_next;
+ else
+ itx = list_head(&zilog->zl_itx_list);
+ for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) {
+ if (foid == 0) /* push all foids? */
+ break;
+ if (itx->itx_sync) /* push all O_[D]SYNC */
+ break;
+ switch (itx->itx_lr.lrc_txtype) {
+ case TX_SETATTR:
+ case TX_WRITE:
+ case TX_TRUNCATE:
+ case TX_ACL:
+ /* lr_foid is same offset for these records */
+ if (((lr_write_t *)&itx->itx_lr)->lr_foid
+ != foid) {
+ continue; /* skip this record */
+ }
+ }
+ break;
+ }
+ if (itx == NULL)
+ break;
+
+ reclen = itx->itx_lr.lrc_reclen;
+ if ((itx->itx_lr.lrc_seq > seq) &&
+ ((lwb == NULL) || (lwb->lwb_nused == 0) ||
+ (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) {
+ break;
+ }
+
+ /*
+ * Save the next pointer. Even though we soon drop
+ * zl_lock all threads that may change the list
+ * (another writer or zil_itx_clean) can't do so until
+ * they have zl_writer.
+ */
+ itx_next = list_next(&zilog->zl_itx_list, itx);
+ list_remove(&zilog->zl_itx_list, itx);
+ mutex_exit(&zilog->zl_lock);
+ txg = itx->itx_lr.lrc_txg;
+ ASSERT(txg);
+
+ if (txg > spa_last_synced_txg(spa) ||
+ txg > spa_freeze_txg(spa))
+ lwb = zil_lwb_commit(zilog, itx, lwb);
+ kmem_free(itx, offsetof(itx_t, itx_lr)
+ + itx->itx_lr.lrc_reclen);
+ mutex_enter(&zilog->zl_lock);
+ zilog->zl_itx_list_sz -= reclen;
+ }
+ DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
+ /* determine commit sequence number */
+ itx = list_head(&zilog->zl_itx_list);
+ if (itx)
+ commit_seq = itx->itx_lr.lrc_seq;
+ else
+ commit_seq = zilog->zl_itx_seq;
+ mutex_exit(&zilog->zl_lock);
+
+ /* write the last block out */
+ if (lwb != NULL && lwb->lwb_zio != NULL)
+ lwb = zil_lwb_write_start(zilog, lwb);
+
+ zilog->zl_prev_used = zilog->zl_cur_used;
+ zilog->zl_cur_used = 0;
+
+ /*
+ * Wait if necessary for the log blocks to be on stable storage.
+ */
+ if (zilog->zl_root_zio) {
+ DTRACE_PROBE1(zil__cw3, zilog_t *, zilog);
+ (void) zio_wait(zilog->zl_root_zio);
+ DTRACE_PROBE1(zil__cw4, zilog_t *, zilog);
+ if (!zfs_nocacheflush)
+ zil_flush_vdevs(zilog);
+ }
+
+ if (zilog->zl_log_error || lwb == NULL) {
+ zilog->zl_log_error = 0;
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+ }
+
+ mutex_enter(&zilog->zl_lock);
+ zilog->zl_writer = B_FALSE;
+
+ ASSERT3U(commit_seq, >=, zilog->zl_commit_seq);
+ zilog->zl_commit_seq = commit_seq;
+}
+
+/*
+ * Push zfs transactions to stable storage up to the supplied sequence number.
+ * If foid is 0 push out all transactions, otherwise push only those
+ * for that file or might have been used to create that file.
+ */
+void
+zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid)
+{
+ if (zilog == NULL || seq == 0)
+ return;
+
+ mutex_enter(&zilog->zl_lock);
+
+ seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */
+
+ while (zilog->zl_writer) {
+ cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
+ if (seq < zilog->zl_commit_seq) {
+ mutex_exit(&zilog->zl_lock);
+ return;
+ }
+ }
+ zil_commit_writer(zilog, seq, foid); /* drops zl_lock */
+ /* wake up others waiting on the commit */
+ cv_broadcast(&zilog->zl_cv_writer);
+ mutex_exit(&zilog->zl_lock);
+}
+
+/*
+ * Called in syncing context to free committed log blocks and update log header.
+ */
+void
+zil_sync(zilog_t *zilog, dmu_tx_t *tx)
+{
+ zil_header_t *zh = zil_header_in_syncing_context(zilog);
+ uint64_t txg = dmu_tx_get_txg(tx);
+ spa_t *spa = zilog->zl_spa;
+ lwb_t *lwb;
+
+ mutex_enter(&zilog->zl_lock);
+
+ ASSERT(zilog->zl_stop_sync == 0);
+
+ zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK];
+
+ if (zilog->zl_destroy_txg == txg) {
+ blkptr_t blk = zh->zh_log;
+
+ ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
+ ASSERT(spa_sync_pass(spa) == 1);
+
+ bzero(zh, sizeof (zil_header_t));
+ bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq));
+
+ if (zilog->zl_keep_first) {
+ /*
+ * If this block was part of log chain that couldn't
+ * be claimed because a device was missing during
+ * zil_claim(), but that device later returns,
+ * then this block could erroneously appear valid.
+ * To guard against this, assign a new GUID to the new
+ * log chain so it doesn't matter what blk points to.
+ */
+ zil_init_log_chain(zilog, &blk);
+ zh->zh_log = blk;
+ }
+ }
+
+ for (;;) {
+ lwb = list_head(&zilog->zl_lwb_list);
+ if (lwb == NULL) {
+ mutex_exit(&zilog->zl_lock);
+ return;
+ }
+ zh->zh_log = lwb->lwb_blk;
+ if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
+ break;
+ list_remove(&zilog->zl_lwb_list, lwb);
+ zio_free_blk(spa, &lwb->lwb_blk, txg);
+ kmem_cache_free(zil_lwb_cache, lwb);
+
+ /*
+ * If we don't have anything left in the lwb list then
+ * we've had an allocation failure and we need to zero
+ * out the zil_header blkptr so that we don't end
+ * up freeing the same block twice.
+ */
+ if (list_head(&zilog->zl_lwb_list) == NULL)
+ BP_ZERO(&zh->zh_log);
+ }
+ mutex_exit(&zilog->zl_lock);
+}
+
+void
+zil_init(void)
+{
+ zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
+ sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
+}
+
+void
+zil_fini(void)
+{
+ kmem_cache_destroy(zil_lwb_cache);
+}
+
+zilog_t *
+zil_alloc(objset_t *os, zil_header_t *zh_phys)
+{
+ zilog_t *zilog;
+
+ zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
+
+ zilog->zl_header = zh_phys;
+ zilog->zl_os = os;
+ zilog->zl_spa = dmu_objset_spa(os);
+ zilog->zl_dmu_pool = dmu_objset_pool(os);
+ zilog->zl_destroy_txg = TXG_INITIAL - 1;
+
+ mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
+ cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
+
+ list_create(&zilog->zl_itx_list, sizeof (itx_t),
+ offsetof(itx_t, itx_node));
+
+ list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
+ offsetof(lwb_t, lwb_node));
+
+ list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t),
+ offsetof(zil_vdev_t, vdev_seq_node));
+
+ return (zilog);
+}
+
+void
+zil_free(zilog_t *zilog)
+{
+ lwb_t *lwb;
+ zil_vdev_t *zv;
+
+ zilog->zl_stop_sync = 1;
+
+ while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
+ list_remove(&zilog->zl_lwb_list, lwb);
+ if (lwb->lwb_buf != NULL)
+ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
+ kmem_cache_free(zil_lwb_cache, lwb);
+ }
+ list_destroy(&zilog->zl_lwb_list);
+
+ while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
+ list_remove(&zilog->zl_vdev_list, zv);
+ kmem_free(zv, sizeof (zil_vdev_t));
+ }
+ list_destroy(&zilog->zl_vdev_list);
+
+ ASSERT(list_head(&zilog->zl_itx_list) == NULL);
+ list_destroy(&zilog->zl_itx_list);
+ cv_destroy(&zilog->zl_cv_suspend);
+ cv_destroy(&zilog->zl_cv_writer);
+ mutex_destroy(&zilog->zl_lock);
+
+ kmem_free(zilog, sizeof (zilog_t));
+}
+
+/*
+ * return true if the initial log block is not valid
+ */
+static int
+zil_empty(zilog_t *zilog)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ arc_buf_t *abuf = NULL;
+
+ if (BP_IS_HOLE(&zh->zh_log))
+ return (1);
+
+ if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
+ return (1);
+
+ VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
+ return (0);
+}
+
+/*
+ * Open an intent log.
+ */
+zilog_t *
+zil_open(objset_t *os, zil_get_data_t *get_data)
+{
+ zilog_t *zilog = dmu_objset_zil(os);
+
+ zilog->zl_get_data = get_data;
+ zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
+ 2, 2, TASKQ_PREPOPULATE);
+
+ return (zilog);
+}
+
+/*
+ * Close an intent log.
+ */
+void
+zil_close(zilog_t *zilog)
+{
+ /*
+ * If the log isn't already committed, mark the objset dirty
+ * (so zil_sync() will be called) and wait for that txg to sync.
+ */
+ if (!zil_is_committed(zilog)) {
+ uint64_t txg;
+ dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
+ (void) dmu_tx_assign(tx, TXG_WAIT);
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ txg = dmu_tx_get_txg(tx);
+ dmu_tx_commit(tx);
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ }
+
+ taskq_destroy(zilog->zl_clean_taskq);
+ zilog->zl_clean_taskq = NULL;
+ zilog->zl_get_data = NULL;
+
+ zil_itx_clean(zilog);
+ ASSERT(list_head(&zilog->zl_itx_list) == NULL);
+}
+
+/*
+ * Suspend an intent log. While in suspended mode, we still honor
+ * synchronous semantics, but we rely on txg_wait_synced() to do it.
+ * We suspend the log briefly when taking a snapshot so that the snapshot
+ * contains all the data it's supposed to, and has an empty intent log.
+ */
+int
+zil_suspend(zilog_t *zilog)
+{
+ const zil_header_t *zh = zilog->zl_header;
+
+ mutex_enter(&zilog->zl_lock);
+ if (zh->zh_claim_txg != 0) { /* unplayed log */
+ mutex_exit(&zilog->zl_lock);
+ return (EBUSY);
+ }
+ if (zilog->zl_suspend++ != 0) {
+ /*
+ * Someone else already began a suspend.
+ * Just wait for them to finish.
+ */
+ while (zilog->zl_suspending)
+ cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
+ ASSERT(BP_IS_HOLE(&zh->zh_log));
+ mutex_exit(&zilog->zl_lock);
+ return (0);
+ }
+ zilog->zl_suspending = B_TRUE;
+ mutex_exit(&zilog->zl_lock);
+
+ zil_commit(zilog, UINT64_MAX, 0);
+
+ /*
+ * Wait for any in-flight log writes to complete.
+ */
+ mutex_enter(&zilog->zl_lock);
+ while (zilog->zl_writer)
+ cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
+ mutex_exit(&zilog->zl_lock);
+
+ zil_destroy(zilog, B_FALSE);
+
+ mutex_enter(&zilog->zl_lock);
+ ASSERT(BP_IS_HOLE(&zh->zh_log));
+ zilog->zl_suspending = B_FALSE;
+ cv_broadcast(&zilog->zl_cv_suspend);
+ mutex_exit(&zilog->zl_lock);
+
+ return (0);
+}
+
+void
+zil_resume(zilog_t *zilog)
+{
+ mutex_enter(&zilog->zl_lock);
+ ASSERT(zilog->zl_suspend != 0);
+ zilog->zl_suspend--;
+ mutex_exit(&zilog->zl_lock);
+}
+
+typedef struct zil_replay_arg {
+ objset_t *zr_os;
+ zil_replay_func_t **zr_replay;
+ void *zr_arg;
+ uint64_t *zr_txgp;
+ boolean_t zr_byteswap;
+ char *zr_lrbuf;
+} zil_replay_arg_t;
+
+static void
+zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
+{
+ zil_replay_arg_t *zr = zra;
+ const zil_header_t *zh = zilog->zl_header;
+ uint64_t reclen = lr->lrc_reclen;
+ uint64_t txtype = lr->lrc_txtype;
+ char *name;
+ int pass, error, sunk;
+
+ if (zilog->zl_stop_replay)
+ return;
+
+ if (lr->lrc_txg < claim_txg) /* already committed */
+ return;
+
+ if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
+ return;
+
+ /*
+ * Make a copy of the data so we can revise and extend it.
+ */
+ bcopy(lr, zr->zr_lrbuf, reclen);
+
+ /*
+ * The log block containing this lr may have been byteswapped
+ * so that we can easily examine common fields like lrc_txtype.
+ * However, the log is a mix of different data types, and only the
+ * replay vectors know how to byteswap their records. Therefore, if
+ * the lr was byteswapped, undo it before invoking the replay vector.
+ */
+ if (zr->zr_byteswap)
+ byteswap_uint64_array(zr->zr_lrbuf, reclen);
+
+ /*
+ * If this is a TX_WRITE with a blkptr, suck in the data.
+ */
+ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
+ lr_write_t *lrw = (lr_write_t *)lr;
+ blkptr_t *wbp = &lrw->lr_blkptr;
+ uint64_t wlen = lrw->lr_length;
+ char *wbuf = zr->zr_lrbuf + reclen;
+
+ if (BP_IS_HOLE(wbp)) { /* compressed to a hole */
+ bzero(wbuf, wlen);
+ } else {
+ /*
+ * A subsequent write may have overwritten this block,
+ * in which case wbp may have been been freed and
+ * reallocated, and our read of wbp may fail with a
+ * checksum error. We can safely ignore this because
+ * the later write will provide the correct data.
+ */
+ zbookmark_t zb;
+
+ zb.zb_objset = dmu_objset_id(zilog->zl_os);
+ zb.zb_object = lrw->lr_foid;
+ zb.zb_level = -1;
+ zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp);
+
+ (void) zio_wait(zio_read(NULL, zilog->zl_spa,
+ wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL,
+ ZIO_PRIORITY_SYNC_READ,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
+ (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen);
+ }
+ }
+
+ /*
+ * We must now do two things atomically: replay this log record,
+ * and update the log header to reflect the fact that we did so.
+ * We use the DMU's ability to assign into a specific txg to do this.
+ */
+ for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) {
+ uint64_t replay_txg;
+ dmu_tx_t *replay_tx;
+
+ replay_tx = dmu_tx_create(zr->zr_os);
+ error = dmu_tx_assign(replay_tx, TXG_WAIT);
+ if (error) {
+ dmu_tx_abort(replay_tx);
+ break;
+ }
+
+ replay_txg = dmu_tx_get_txg(replay_tx);
+
+ if (txtype == 0 || txtype >= TX_MAX_TYPE) {
+ error = EINVAL;
+ } else {
+ /*
+ * On the first pass, arrange for the replay vector
+ * to fail its dmu_tx_assign(). That's the only way
+ * to ensure that those code paths remain well tested.
+ */
+ *zr->zr_txgp = replay_txg - (pass == 1);
+ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
+ zr->zr_byteswap);
+ *zr->zr_txgp = TXG_NOWAIT;
+ }
+
+ if (error == 0) {
+ dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx);
+ zilog->zl_replay_seq[replay_txg & TXG_MASK] =
+ lr->lrc_seq;
+ }
+
+ dmu_tx_commit(replay_tx);
+
+ if (!error)
+ return;
+
+ /*
+ * The DMU's dnode layer doesn't see removes until the txg
+ * commits, so a subsequent claim can spuriously fail with
+ * EEXIST. So if we receive any error other than ERESTART
+ * we try syncing out any removes then retrying the
+ * transaction.
+ */
+ if (error != ERESTART && !sunk) {
+ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
+ sunk = B_TRUE;
+ continue; /* retry */
+ }
+
+ if (error != ERESTART)
+ break;
+
+ if (pass != 1)
+ txg_wait_open(spa_get_dsl(zilog->zl_spa),
+ replay_txg + 1);
+
+ dprintf("pass %d, retrying\n", pass);
+ }
+
+ ASSERT(error && error != ERESTART);
+ name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
+ dmu_objset_name(zr->zr_os, name);
+ cmn_err(CE_WARN, "ZFS replay transaction error %d, "
+ "dataset %s, seq 0x%llx, txtype %llu\n",
+ error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype);
+ zilog->zl_stop_replay = 1;
+ kmem_free(name, MAXNAMELEN);
+}
+
+/* ARGSUSED */
+static void
+zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
+{
+ zilog->zl_replay_blks++;
+}
+
+/*
+ * If this dataset has a non-empty intent log, replay it and destroy it.
+ */
+void
+zil_replay(objset_t *os, void *arg, uint64_t *txgp,
+ zil_replay_func_t *replay_func[TX_MAX_TYPE])
+{
+ zilog_t *zilog = dmu_objset_zil(os);
+ const zil_header_t *zh = zilog->zl_header;
+ zil_replay_arg_t zr;
+
+ if (zil_empty(zilog)) {
+ zil_destroy(zilog, B_TRUE);
+ return;
+ }
+ //printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
+
+ zr.zr_os = os;
+ zr.zr_replay = replay_func;
+ zr.zr_arg = arg;
+ zr.zr_txgp = txgp;
+ zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
+ zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
+
+ /*
+ * Wait for in-progress removes to sync before starting replay.
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+
+ zilog->zl_stop_replay = 0;
+ zilog->zl_replay_time = lbolt;
+ ASSERT(zilog->zl_replay_blks == 0);
+ (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
+ zh->zh_claim_txg);
+ kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
+
+ zil_destroy(zilog, B_FALSE);
+ //printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
+}
+
+/*
+ * Report whether all transactions are committed
+ */
+int
+zil_is_committed(zilog_t *zilog)
+{
+ lwb_t *lwb;
+ int ret;
+
+ mutex_enter(&zilog->zl_lock);
+ while (zilog->zl_writer)
+ cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
+
+ /* recent unpushed intent log transactions? */
+ if (!list_is_empty(&zilog->zl_itx_list)) {
+ ret = B_FALSE;
+ goto out;
+ }
+
+ /* intent log never used? */
+ lwb = list_head(&zilog->zl_lwb_list);
+ if (lwb == NULL) {
+ ret = B_TRUE;
+ goto out;
+ }
+
+ /*
+ * more than 1 log buffer means zil_sync() hasn't yet freed
+ * entries after a txg has committed
+ */
+ if (list_next(&zilog->zl_lwb_list, lwb)) {
+ ret = B_FALSE;
+ goto out;
+ }
+
+ ASSERT(zil_empty(zilog));
+ ret = B_TRUE;
+out:
+ cv_broadcast(&zilog->zl_cv_writer);
+ mutex_exit(&zilog->zl_lock);
+ return (ret);
+}
OpenPOWER on IntegriCloud