summaryrefslogtreecommitdiffstats
path: root/sys/contrib/opensolaris/uts/common/fs/zfs/vdev.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/opensolaris/uts/common/fs/zfs/vdev.c')
-rw-r--r--sys/contrib/opensolaris/uts/common/fs/zfs/vdev.c1915
1 files changed, 0 insertions, 1915 deletions
diff --git a/sys/contrib/opensolaris/uts/common/fs/zfs/vdev.c b/sys/contrib/opensolaris/uts/common/fs/zfs/vdev.c
deleted file mode 100644
index b966099..0000000
--- a/sys/contrib/opensolaris/uts/common/fs/zfs/vdev.c
+++ /dev/null
@@ -1,1915 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#include <sys/zfs_context.h>
-#include <sys/fm/fs/zfs.h>
-#include <sys/spa.h>
-#include <sys/spa_impl.h>
-#include <sys/dmu.h>
-#include <sys/dmu_tx.h>
-#include <sys/vdev_impl.h>
-#include <sys/uberblock_impl.h>
-#include <sys/metaslab.h>
-#include <sys/metaslab_impl.h>
-#include <sys/space_map.h>
-#include <sys/zio.h>
-#include <sys/zap.h>
-#include <sys/fs/zfs.h>
-
-SYSCTL_DECL(_vfs_zfs);
-SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
-
-/*
- * Virtual device management.
- */
-
-static vdev_ops_t *vdev_ops_table[] = {
- &vdev_root_ops,
- &vdev_raidz_ops,
- &vdev_mirror_ops,
- &vdev_replacing_ops,
- &vdev_spare_ops,
-#ifdef _KERNEL
- &vdev_geom_ops,
-#else
- &vdev_disk_ops,
- &vdev_file_ops,
-#endif
- &vdev_missing_ops,
- NULL
-};
-
-/* maximum scrub/resilver I/O queue */
-int zfs_scrub_limit = 70;
-
-/*
- * Given a vdev type, return the appropriate ops vector.
- */
-static vdev_ops_t *
-vdev_getops(const char *type)
-{
- vdev_ops_t *ops, **opspp;
-
- for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
- if (strcmp(ops->vdev_op_type, type) == 0)
- break;
-
- return (ops);
-}
-
-/*
- * Default asize function: return the MAX of psize with the asize of
- * all children. This is what's used by anything other than RAID-Z.
- */
-uint64_t
-vdev_default_asize(vdev_t *vd, uint64_t psize)
-{
- uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
- uint64_t csize;
- uint64_t c;
-
- for (c = 0; c < vd->vdev_children; c++) {
- csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
- asize = MAX(asize, csize);
- }
-
- return (asize);
-}
-
-/*
- * Get the replaceable or attachable device size.
- * If the parent is a mirror or raidz, the replaceable size is the minimum
- * psize of all its children. For the rest, just return our own psize.
- *
- * e.g.
- * psize rsize
- * root - -
- * mirror/raidz - -
- * disk1 20g 20g
- * disk2 40g 20g
- * disk3 80g 80g
- */
-uint64_t
-vdev_get_rsize(vdev_t *vd)
-{
- vdev_t *pvd, *cvd;
- uint64_t c, rsize;
-
- pvd = vd->vdev_parent;
-
- /*
- * If our parent is NULL or the root, just return our own psize.
- */
- if (pvd == NULL || pvd->vdev_parent == NULL)
- return (vd->vdev_psize);
-
- rsize = 0;
-
- for (c = 0; c < pvd->vdev_children; c++) {
- cvd = pvd->vdev_child[c];
- rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
- }
-
- return (rsize);
-}
-
-vdev_t *
-vdev_lookup_top(spa_t *spa, uint64_t vdev)
-{
- vdev_t *rvd = spa->spa_root_vdev;
-
- if (vdev < rvd->vdev_children)
- return (rvd->vdev_child[vdev]);
-
- return (NULL);
-}
-
-vdev_t *
-vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
-{
- int c;
- vdev_t *mvd;
-
- if (vd->vdev_guid == guid)
- return (vd);
-
- for (c = 0; c < vd->vdev_children; c++)
- if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
- NULL)
- return (mvd);
-
- return (NULL);
-}
-
-void
-vdev_add_child(vdev_t *pvd, vdev_t *cvd)
-{
- size_t oldsize, newsize;
- uint64_t id = cvd->vdev_id;
- vdev_t **newchild;
-
- ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
- ASSERT(cvd->vdev_parent == NULL);
-
- cvd->vdev_parent = pvd;
-
- if (pvd == NULL)
- return;
-
- ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
-
- oldsize = pvd->vdev_children * sizeof (vdev_t *);
- pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
- newsize = pvd->vdev_children * sizeof (vdev_t *);
-
- newchild = kmem_zalloc(newsize, KM_SLEEP);
- if (pvd->vdev_child != NULL) {
- bcopy(pvd->vdev_child, newchild, oldsize);
- kmem_free(pvd->vdev_child, oldsize);
- }
-
- pvd->vdev_child = newchild;
- pvd->vdev_child[id] = cvd;
-
- cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
- ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
-
- /*
- * Walk up all ancestors to update guid sum.
- */
- for (; pvd != NULL; pvd = pvd->vdev_parent)
- pvd->vdev_guid_sum += cvd->vdev_guid_sum;
-
- if (cvd->vdev_ops->vdev_op_leaf)
- cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
-}
-
-void
-vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
-{
- int c;
- uint_t id = cvd->vdev_id;
-
- ASSERT(cvd->vdev_parent == pvd);
-
- if (pvd == NULL)
- return;
-
- ASSERT(id < pvd->vdev_children);
- ASSERT(pvd->vdev_child[id] == cvd);
-
- pvd->vdev_child[id] = NULL;
- cvd->vdev_parent = NULL;
-
- for (c = 0; c < pvd->vdev_children; c++)
- if (pvd->vdev_child[c])
- break;
-
- if (c == pvd->vdev_children) {
- kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
- pvd->vdev_child = NULL;
- pvd->vdev_children = 0;
- }
-
- /*
- * Walk up all ancestors to update guid sum.
- */
- for (; pvd != NULL; pvd = pvd->vdev_parent)
- pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
-
- if (cvd->vdev_ops->vdev_op_leaf)
- cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
-}
-
-/*
- * Remove any holes in the child array.
- */
-void
-vdev_compact_children(vdev_t *pvd)
-{
- vdev_t **newchild, *cvd;
- int oldc = pvd->vdev_children;
- int newc, c;
-
- ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
-
- for (c = newc = 0; c < oldc; c++)
- if (pvd->vdev_child[c])
- newc++;
-
- newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
-
- for (c = newc = 0; c < oldc; c++) {
- if ((cvd = pvd->vdev_child[c]) != NULL) {
- newchild[newc] = cvd;
- cvd->vdev_id = newc++;
- }
- }
-
- kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
- pvd->vdev_child = newchild;
- pvd->vdev_children = newc;
-}
-
-/*
- * Allocate and minimally initialize a vdev_t.
- */
-static vdev_t *
-vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
-{
- vdev_t *vd;
-
- vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
-
- if (spa->spa_root_vdev == NULL) {
- ASSERT(ops == &vdev_root_ops);
- spa->spa_root_vdev = vd;
- }
-
- if (guid == 0) {
- if (spa->spa_root_vdev == vd) {
- /*
- * The root vdev's guid will also be the pool guid,
- * which must be unique among all pools.
- */
- while (guid == 0 || spa_guid_exists(guid, 0))
- guid = spa_get_random(-1ULL);
- } else {
- /*
- * Any other vdev's guid must be unique within the pool.
- */
- while (guid == 0 ||
- spa_guid_exists(spa_guid(spa), guid))
- guid = spa_get_random(-1ULL);
- }
- ASSERT(!spa_guid_exists(spa_guid(spa), guid));
- }
-
- vd->vdev_spa = spa;
- vd->vdev_id = id;
- vd->vdev_guid = guid;
- vd->vdev_guid_sum = guid;
- vd->vdev_ops = ops;
- vd->vdev_state = VDEV_STATE_CLOSED;
-
- mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
- space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
- space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
- txg_list_create(&vd->vdev_ms_list,
- offsetof(struct metaslab, ms_txg_node));
- txg_list_create(&vd->vdev_dtl_list,
- offsetof(struct vdev, vdev_dtl_node));
- vd->vdev_stat.vs_timestamp = gethrtime();
-
- return (vd);
-}
-
-/*
- * Free a vdev_t that has been removed from service.
- */
-static void
-vdev_free_common(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
-
- if (vd->vdev_path)
- spa_strfree(vd->vdev_path);
- if (vd->vdev_devid)
- spa_strfree(vd->vdev_devid);
-
- if (vd->vdev_isspare)
- spa_spare_remove(vd);
-
- txg_list_destroy(&vd->vdev_ms_list);
- txg_list_destroy(&vd->vdev_dtl_list);
- mutex_enter(&vd->vdev_dtl_lock);
- space_map_unload(&vd->vdev_dtl_map);
- space_map_destroy(&vd->vdev_dtl_map);
- space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
- space_map_destroy(&vd->vdev_dtl_scrub);
- mutex_exit(&vd->vdev_dtl_lock);
- mutex_destroy(&vd->vdev_dtl_lock);
- mutex_destroy(&vd->vdev_stat_lock);
-
- if (vd == spa->spa_root_vdev)
- spa->spa_root_vdev = NULL;
-
- kmem_free(vd, sizeof (vdev_t));
-}
-
-/*
- * Allocate a new vdev. The 'alloctype' is used to control whether we are
- * creating a new vdev or loading an existing one - the behavior is slightly
- * different for each case.
- */
-int
-vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
- int alloctype)
-{
- vdev_ops_t *ops;
- char *type;
- uint64_t guid = 0;
- vdev_t *vd;
-
- ASSERT(spa_config_held(spa, RW_WRITER));
-
- if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
- return (EINVAL);
-
- if ((ops = vdev_getops(type)) == NULL)
- return (EINVAL);
-
- /*
- * If this is a load, get the vdev guid from the nvlist.
- * Otherwise, vdev_alloc_common() will generate one for us.
- */
- if (alloctype == VDEV_ALLOC_LOAD) {
- uint64_t label_id;
-
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
- label_id != id)
- return (EINVAL);
-
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
- return (EINVAL);
- } else if (alloctype == VDEV_ALLOC_SPARE) {
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
- return (EINVAL);
- }
-
- /*
- * The first allocated vdev must be of type 'root'.
- */
- if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
- return (EINVAL);
-
- vd = vdev_alloc_common(spa, id, guid, ops);
-
- if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
- vd->vdev_path = spa_strdup(vd->vdev_path);
- if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
- vd->vdev_devid = spa_strdup(vd->vdev_devid);
-
- /*
- * Set the nparity propery for RAID-Z vdevs.
- */
- if (ops == &vdev_raidz_ops) {
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
- &vd->vdev_nparity) == 0) {
- /*
- * Currently, we can only support 2 parity devices.
- */
- if (vd->vdev_nparity > 2)
- return (EINVAL);
- /*
- * Older versions can only support 1 parity device.
- */
- if (vd->vdev_nparity == 2 &&
- spa_version(spa) < ZFS_VERSION_RAID6)
- return (ENOTSUP);
-
- } else {
- /*
- * We require the parity to be specified for SPAs that
- * support multiple parity levels.
- */
- if (spa_version(spa) >= ZFS_VERSION_RAID6)
- return (EINVAL);
-
- /*
- * Otherwise, we default to 1 parity device for RAID-Z.
- */
- vd->vdev_nparity = 1;
- }
- } else {
- vd->vdev_nparity = 0;
- }
-
- /*
- * Set the whole_disk property. If it's not specified, leave the value
- * as -1.
- */
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
- &vd->vdev_wholedisk) != 0)
- vd->vdev_wholedisk = -1ULL;
-
- /*
- * Look for the 'not present' flag. This will only be set if the device
- * was not present at the time of import.
- */
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
- &vd->vdev_not_present);
-
- /*
- * Get the alignment requirement.
- */
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
-
- /*
- * If we're a top-level vdev, try to load the allocation parameters.
- */
- if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
- &vd->vdev_ms_array);
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
- &vd->vdev_ms_shift);
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
- &vd->vdev_asize);
- }
-
- /*
- * If we're a leaf vdev, try to load the DTL object and offline state.
- */
- if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
- &vd->vdev_dtl.smo_object);
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
- &vd->vdev_offline);
- }
-
- /*
- * Add ourselves to the parent's list of children.
- */
- vdev_add_child(parent, vd);
-
- *vdp = vd;
-
- return (0);
-}
-
-void
-vdev_free(vdev_t *vd)
-{
- int c;
-
- /*
- * vdev_free() implies closing the vdev first. This is simpler than
- * trying to ensure complicated semantics for all callers.
- */
- vdev_close(vd);
-
- ASSERT(!list_link_active(&vd->vdev_dirty_node));
-
- /*
- * Free all children.
- */
- for (c = 0; c < vd->vdev_children; c++)
- vdev_free(vd->vdev_child[c]);
-
- ASSERT(vd->vdev_child == NULL);
- ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
-
- /*
- * Discard allocation state.
- */
- if (vd == vd->vdev_top)
- vdev_metaslab_fini(vd);
-
- ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
- ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
- ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
-
- /*
- * Remove this vdev from its parent's child list.
- */
- vdev_remove_child(vd->vdev_parent, vd);
-
- ASSERT(vd->vdev_parent == NULL);
-
- vdev_free_common(vd);
-}
-
-/*
- * Transfer top-level vdev state from svd to tvd.
- */
-static void
-vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
-{
- spa_t *spa = svd->vdev_spa;
- metaslab_t *msp;
- vdev_t *vd;
- int t;
-
- ASSERT(tvd == tvd->vdev_top);
-
- tvd->vdev_ms_array = svd->vdev_ms_array;
- tvd->vdev_ms_shift = svd->vdev_ms_shift;
- tvd->vdev_ms_count = svd->vdev_ms_count;
-
- svd->vdev_ms_array = 0;
- svd->vdev_ms_shift = 0;
- svd->vdev_ms_count = 0;
-
- tvd->vdev_mg = svd->vdev_mg;
- tvd->vdev_ms = svd->vdev_ms;
-
- svd->vdev_mg = NULL;
- svd->vdev_ms = NULL;
-
- if (tvd->vdev_mg != NULL)
- tvd->vdev_mg->mg_vd = tvd;
-
- tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
- tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
- tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
-
- svd->vdev_stat.vs_alloc = 0;
- svd->vdev_stat.vs_space = 0;
- svd->vdev_stat.vs_dspace = 0;
-
- for (t = 0; t < TXG_SIZE; t++) {
- while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
- (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
- while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
- (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
- if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
- (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
- }
-
- if (list_link_active(&svd->vdev_dirty_node)) {
- vdev_config_clean(svd);
- vdev_config_dirty(tvd);
- }
-
- tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
- svd->vdev_reopen_wanted = 0;
-
- tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
- svd->vdev_deflate_ratio = 0;
-}
-
-static void
-vdev_top_update(vdev_t *tvd, vdev_t *vd)
-{
- int c;
-
- if (vd == NULL)
- return;
-
- vd->vdev_top = tvd;
-
- for (c = 0; c < vd->vdev_children; c++)
- vdev_top_update(tvd, vd->vdev_child[c]);
-}
-
-/*
- * Add a mirror/replacing vdev above an existing vdev.
- */
-vdev_t *
-vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
-{
- spa_t *spa = cvd->vdev_spa;
- vdev_t *pvd = cvd->vdev_parent;
- vdev_t *mvd;
-
- ASSERT(spa_config_held(spa, RW_WRITER));
-
- mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
-
- mvd->vdev_asize = cvd->vdev_asize;
- mvd->vdev_ashift = cvd->vdev_ashift;
- mvd->vdev_state = cvd->vdev_state;
-
- vdev_remove_child(pvd, cvd);
- vdev_add_child(pvd, mvd);
- cvd->vdev_id = mvd->vdev_children;
- vdev_add_child(mvd, cvd);
- vdev_top_update(cvd->vdev_top, cvd->vdev_top);
-
- if (mvd == mvd->vdev_top)
- vdev_top_transfer(cvd, mvd);
-
- return (mvd);
-}
-
-/*
- * Remove a 1-way mirror/replacing vdev from the tree.
- */
-void
-vdev_remove_parent(vdev_t *cvd)
-{
- vdev_t *mvd = cvd->vdev_parent;
- vdev_t *pvd = mvd->vdev_parent;
-
- ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
-
- ASSERT(mvd->vdev_children == 1);
- ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
- mvd->vdev_ops == &vdev_replacing_ops ||
- mvd->vdev_ops == &vdev_spare_ops);
- cvd->vdev_ashift = mvd->vdev_ashift;
-
- vdev_remove_child(mvd, cvd);
- vdev_remove_child(pvd, mvd);
- cvd->vdev_id = mvd->vdev_id;
- vdev_add_child(pvd, cvd);
- /*
- * If we created a new toplevel vdev, then we need to change the child's
- * vdev GUID to match the old toplevel vdev. Otherwise, we could have
- * detached an offline device, and when we go to import the pool we'll
- * think we have two toplevel vdevs, instead of a different version of
- * the same toplevel vdev.
- */
- if (cvd->vdev_top == cvd) {
- pvd->vdev_guid_sum -= cvd->vdev_guid;
- cvd->vdev_guid_sum -= cvd->vdev_guid;
- cvd->vdev_guid = mvd->vdev_guid;
- cvd->vdev_guid_sum += mvd->vdev_guid;
- pvd->vdev_guid_sum += cvd->vdev_guid;
- }
- vdev_top_update(cvd->vdev_top, cvd->vdev_top);
-
- if (cvd == cvd->vdev_top)
- vdev_top_transfer(mvd, cvd);
-
- ASSERT(mvd->vdev_children == 0);
- vdev_free(mvd);
-}
-
-int
-vdev_metaslab_init(vdev_t *vd, uint64_t txg)
-{
- spa_t *spa = vd->vdev_spa;
- objset_t *mos = spa->spa_meta_objset;
- metaslab_class_t *mc = spa_metaslab_class_select(spa);
- uint64_t m;
- uint64_t oldc = vd->vdev_ms_count;
- uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
- metaslab_t **mspp;
- int error;
-
- if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
- return (0);
-
- dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
-
- ASSERT(oldc <= newc);
-
- if (vd->vdev_mg == NULL)
- vd->vdev_mg = metaslab_group_create(mc, vd);
-
- mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
-
- if (oldc != 0) {
- bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
- kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
- }
-
- vd->vdev_ms = mspp;
- vd->vdev_ms_count = newc;
-
- for (m = oldc; m < newc; m++) {
- space_map_obj_t smo = { 0, 0, 0 };
- if (txg == 0) {
- uint64_t object = 0;
- error = dmu_read(mos, vd->vdev_ms_array,
- m * sizeof (uint64_t), sizeof (uint64_t), &object);
- if (error)
- return (error);
- if (object != 0) {
- dmu_buf_t *db;
- error = dmu_bonus_hold(mos, object, FTAG, &db);
- if (error)
- return (error);
- ASSERT3U(db->db_size, ==, sizeof (smo));
- bcopy(db->db_data, &smo, db->db_size);
- ASSERT3U(smo.smo_object, ==, object);
- dmu_buf_rele(db, FTAG);
- }
- }
- vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
- m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
- }
-
- return (0);
-}
-
-void
-vdev_metaslab_fini(vdev_t *vd)
-{
- uint64_t m;
- uint64_t count = vd->vdev_ms_count;
-
- if (vd->vdev_ms != NULL) {
- for (m = 0; m < count; m++)
- if (vd->vdev_ms[m] != NULL)
- metaslab_fini(vd->vdev_ms[m]);
- kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
- vd->vdev_ms = NULL;
- }
-}
-
-/*
- * Prepare a virtual device for access.
- */
-int
-vdev_open(vdev_t *vd)
-{
- int error;
- int c;
- uint64_t osize = 0;
- uint64_t asize, psize;
- uint64_t ashift = 0;
-
- ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
- vd->vdev_state == VDEV_STATE_CANT_OPEN ||
- vd->vdev_state == VDEV_STATE_OFFLINE);
-
- if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
- vd->vdev_fault_arg >>= 1;
- else
- vd->vdev_fault_mode = VDEV_FAULT_NONE;
-
- vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
-
- if (vd->vdev_ops->vdev_op_leaf) {
- vdev_cache_init(vd);
- vdev_queue_init(vd);
- vd->vdev_cache_active = B_TRUE;
- }
-
- if (vd->vdev_offline) {
- ASSERT(vd->vdev_children == 0);
- vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
- return (ENXIO);
- }
-
- error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
-
- if (zio_injection_enabled && error == 0)
- error = zio_handle_device_injection(vd, ENXIO);
-
- dprintf("%s = %d, osize %llu, state = %d\n",
- vdev_description(vd), error, osize, vd->vdev_state);
-
- if (error) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- vd->vdev_stat.vs_aux);
- return (error);
- }
-
- vd->vdev_state = VDEV_STATE_HEALTHY;
-
- for (c = 0; c < vd->vdev_children; c++)
- if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
- VDEV_AUX_NONE);
- break;
- }
-
- osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
-
- if (vd->vdev_children == 0) {
- if (osize < SPA_MINDEVSIZE) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_TOO_SMALL);
- return (EOVERFLOW);
- }
- psize = osize;
- asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
- } else {
- if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
- (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_TOO_SMALL);
- return (EOVERFLOW);
- }
- psize = 0;
- asize = osize;
- }
-
- vd->vdev_psize = psize;
-
- if (vd->vdev_asize == 0) {
- /*
- * This is the first-ever open, so use the computed values.
- * For testing purposes, a higher ashift can be requested.
- */
- vd->vdev_asize = asize;
- vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
- } else {
- /*
- * Make sure the alignment requirement hasn't increased.
- */
- if (ashift > vd->vdev_top->vdev_ashift) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_BAD_LABEL);
- return (EINVAL);
- }
-
- /*
- * Make sure the device hasn't shrunk.
- */
- if (asize < vd->vdev_asize) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_BAD_LABEL);
- return (EINVAL);
- }
-
- /*
- * If all children are healthy and the asize has increased,
- * then we've experienced dynamic LUN growth.
- */
- if (vd->vdev_state == VDEV_STATE_HEALTHY &&
- asize > vd->vdev_asize) {
- vd->vdev_asize = asize;
- }
- }
-
- /*
- * If this is a top-level vdev, compute the raidz-deflation
- * ratio. Note, we hard-code in 128k (1<<17) because it is the
- * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE
- * changes, this algorithm must never change, or we will
- * inconsistently account for existing bp's.
- */
- if (vd->vdev_top == vd) {
- vd->vdev_deflate_ratio = (1<<17) /
- (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
- }
-
- /*
- * This allows the ZFS DE to close cases appropriately. If a device
- * goes away and later returns, we want to close the associated case.
- * But it's not enough to simply post this only when a device goes from
- * CANT_OPEN -> HEALTHY. If we reboot the system and the device is
- * back, we also need to close the case (otherwise we will try to replay
- * it). So we have to post this notifier every time. Since this only
- * occurs during pool open or error recovery, this should not be an
- * issue.
- */
- zfs_post_ok(vd->vdev_spa, vd);
-
- return (0);
-}
-
-/*
- * Called once the vdevs are all opened, this routine validates the label
- * contents. This needs to be done before vdev_load() so that we don't
- * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen()
- * won't succeed if the device has been changed underneath.
- *
- * This function will only return failure if one of the vdevs indicates that it
- * has since been destroyed or exported. This is only possible if
- * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
- * will be updated but the function will return 0.
- */
-int
-vdev_validate(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
- int c;
- nvlist_t *label;
- uint64_t guid;
- uint64_t state;
-
- for (c = 0; c < vd->vdev_children; c++)
- if (vdev_validate(vd->vdev_child[c]) != 0)
- return (EBADF);
-
- /*
- * If the device has already failed, or was marked offline, don't do
- * any further validation. Otherwise, label I/O will fail and we will
- * overwrite the previous state.
- */
- if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
-
- if ((label = vdev_label_read_config(vd)) == NULL) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_BAD_LABEL);
- return (0);
- }
-
- if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
- &guid) != 0 || guid != spa_guid(spa)) {
- vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
- nvlist_free(label);
- return (0);
- }
-
- if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
- &guid) != 0 || guid != vd->vdev_guid) {
- vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
- nvlist_free(label);
- return (0);
- }
-
- if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
- &state) != 0) {
- vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
- nvlist_free(label);
- return (0);
- }
-
- nvlist_free(label);
-
- if (spa->spa_load_state == SPA_LOAD_OPEN &&
- state != POOL_STATE_ACTIVE)
- return (EBADF);
- }
-
- /*
- * If we were able to open and validate a vdev that was previously
- * marked permanently unavailable, clear that state now.
- */
- if (vd->vdev_not_present)
- vd->vdev_not_present = 0;
-
- return (0);
-}
-
-/*
- * Close a virtual device.
- */
-void
-vdev_close(vdev_t *vd)
-{
- vd->vdev_ops->vdev_op_close(vd);
-
- if (vd->vdev_cache_active) {
- vdev_cache_fini(vd);
- vdev_queue_fini(vd);
- vd->vdev_cache_active = B_FALSE;
- }
-
- /*
- * We record the previous state before we close it, so that if we are
- * doing a reopen(), we don't generate FMA ereports if we notice that
- * it's still faulted.
- */
- vd->vdev_prevstate = vd->vdev_state;
-
- if (vd->vdev_offline)
- vd->vdev_state = VDEV_STATE_OFFLINE;
- else
- vd->vdev_state = VDEV_STATE_CLOSED;
- vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
-}
-
-void
-vdev_reopen(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
-
- ASSERT(spa_config_held(spa, RW_WRITER));
-
- vdev_close(vd);
- (void) vdev_open(vd);
-
- /*
- * Call vdev_validate() here to make sure we have the same device.
- * Otherwise, a device with an invalid label could be successfully
- * opened in response to vdev_reopen().
- *
- * The downside to this is that if the user is simply experimenting by
- * overwriting an entire disk, we'll fault the device rather than
- * demonstrate self-healing capabilities. On the other hand, with
- * proper FMA integration, the series of errors we'd see from the device
- * would result in a faulted device anyway. Given that this doesn't
- * model any real-world corruption, it's better to catch this here and
- * correctly identify that the device has either changed beneath us, or
- * is corrupted beyond recognition.
- */
- (void) vdev_validate(vd);
-
- /*
- * Reassess root vdev's health.
- */
- vdev_propagate_state(spa->spa_root_vdev);
-}
-
-int
-vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
-{
- int error;
-
- /*
- * Normally, partial opens (e.g. of a mirror) are allowed.
- * For a create, however, we want to fail the request if
- * there are any components we can't open.
- */
- error = vdev_open(vd);
-
- if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
- vdev_close(vd);
- return (error ? error : ENXIO);
- }
-
- /*
- * Recursively initialize all labels.
- */
- if ((error = vdev_label_init(vd, txg, isreplacing ?
- VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
- vdev_close(vd);
- return (error);
- }
-
- return (0);
-}
-
-/*
- * The is the latter half of vdev_create(). It is distinct because it
- * involves initiating transactions in order to do metaslab creation.
- * For creation, we want to try to create all vdevs at once and then undo it
- * if anything fails; this is much harder if we have pending transactions.
- */
-void
-vdev_init(vdev_t *vd, uint64_t txg)
-{
- /*
- * Aim for roughly 200 metaslabs per vdev.
- */
- vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
- vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
-
- /*
- * Initialize the vdev's metaslabs. This can't fail because
- * there's nothing to read when creating all new metaslabs.
- */
- VERIFY(vdev_metaslab_init(vd, txg) == 0);
-}
-
-void
-vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
-{
- ASSERT(vd == vd->vdev_top);
- ASSERT(ISP2(flags));
-
- if (flags & VDD_METASLAB)
- (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
-
- if (flags & VDD_DTL)
- (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
-
- (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
-}
-
-void
-vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
-{
- mutex_enter(sm->sm_lock);
- if (!space_map_contains(sm, txg, size))
- space_map_add(sm, txg, size);
- mutex_exit(sm->sm_lock);
-}
-
-int
-vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
-{
- int dirty;
-
- /*
- * Quick test without the lock -- covers the common case that
- * there are no dirty time segments.
- */
- if (sm->sm_space == 0)
- return (0);
-
- mutex_enter(sm->sm_lock);
- dirty = space_map_contains(sm, txg, size);
- mutex_exit(sm->sm_lock);
-
- return (dirty);
-}
-
-/*
- * Reassess DTLs after a config change or scrub completion.
- */
-void
-vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
-{
- spa_t *spa = vd->vdev_spa;
- int c;
-
- ASSERT(spa_config_held(spa, RW_WRITER));
-
- if (vd->vdev_children == 0) {
- mutex_enter(&vd->vdev_dtl_lock);
- /*
- * We're successfully scrubbed everything up to scrub_txg.
- * Therefore, excise all old DTLs up to that point, then
- * fold in the DTLs for everything we couldn't scrub.
- */
- if (scrub_txg != 0) {
- space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
- space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
- }
- if (scrub_done)
- space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
- mutex_exit(&vd->vdev_dtl_lock);
- if (txg != 0)
- vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
- return;
- }
-
- /*
- * Make sure the DTLs are always correct under the scrub lock.
- */
- if (vd == spa->spa_root_vdev)
- mutex_enter(&spa->spa_scrub_lock);
-
- mutex_enter(&vd->vdev_dtl_lock);
- space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
- space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
- mutex_exit(&vd->vdev_dtl_lock);
-
- for (c = 0; c < vd->vdev_children; c++) {
- vdev_t *cvd = vd->vdev_child[c];
- vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
- mutex_enter(&vd->vdev_dtl_lock);
- space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
- space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
- mutex_exit(&vd->vdev_dtl_lock);
- }
-
- if (vd == spa->spa_root_vdev)
- mutex_exit(&spa->spa_scrub_lock);
-}
-
-static int
-vdev_dtl_load(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
- space_map_obj_t *smo = &vd->vdev_dtl;
- objset_t *mos = spa->spa_meta_objset;
- dmu_buf_t *db;
- int error;
-
- ASSERT(vd->vdev_children == 0);
-
- if (smo->smo_object == 0)
- return (0);
-
- if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
- return (error);
-
- ASSERT3U(db->db_size, ==, sizeof (*smo));
- bcopy(db->db_data, smo, db->db_size);
- dmu_buf_rele(db, FTAG);
-
- mutex_enter(&vd->vdev_dtl_lock);
- error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
- mutex_exit(&vd->vdev_dtl_lock);
-
- return (error);
-}
-
-void
-vdev_dtl_sync(vdev_t *vd, uint64_t txg)
-{
- spa_t *spa = vd->vdev_spa;
- space_map_obj_t *smo = &vd->vdev_dtl;
- space_map_t *sm = &vd->vdev_dtl_map;
- objset_t *mos = spa->spa_meta_objset;
- space_map_t smsync;
- kmutex_t smlock;
- dmu_buf_t *db;
- dmu_tx_t *tx;
-
- dprintf("%s in txg %llu pass %d\n",
- vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
-
- tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
-
- if (vd->vdev_detached) {
- if (smo->smo_object != 0) {
- int err = dmu_object_free(mos, smo->smo_object, tx);
- ASSERT3U(err, ==, 0);
- smo->smo_object = 0;
- }
- dmu_tx_commit(tx);
- dprintf("detach %s committed in txg %llu\n",
- vdev_description(vd), txg);
- return;
- }
-
- if (smo->smo_object == 0) {
- ASSERT(smo->smo_objsize == 0);
- ASSERT(smo->smo_alloc == 0);
- smo->smo_object = dmu_object_alloc(mos,
- DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
- DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
- ASSERT(smo->smo_object != 0);
- vdev_config_dirty(vd->vdev_top);
- }
-
- mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
-
- space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
- &smlock);
-
- mutex_enter(&smlock);
-
- mutex_enter(&vd->vdev_dtl_lock);
- space_map_walk(sm, space_map_add, &smsync);
- mutex_exit(&vd->vdev_dtl_lock);
-
- space_map_truncate(smo, mos, tx);
- space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
-
- space_map_destroy(&smsync);
-
- mutex_exit(&smlock);
- mutex_destroy(&smlock);
-
- VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
- dmu_buf_will_dirty(db, tx);
- ASSERT3U(db->db_size, ==, sizeof (*smo));
- bcopy(smo, db->db_data, db->db_size);
- dmu_buf_rele(db, FTAG);
-
- dmu_tx_commit(tx);
-}
-
-void
-vdev_load(vdev_t *vd)
-{
- int c;
-
- /*
- * Recursively load all children.
- */
- for (c = 0; c < vd->vdev_children; c++)
- vdev_load(vd->vdev_child[c]);
-
- /*
- * If this is a top-level vdev, initialize its metaslabs.
- */
- if (vd == vd->vdev_top &&
- (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
- vdev_metaslab_init(vd, 0) != 0))
- vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
-
- /*
- * If this is a leaf vdev, load its DTL.
- */
- if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
- vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
-}
-
-/*
- * This special case of vdev_spare() is used for hot spares. It's sole purpose
- * it to set the vdev state for the associated vdev. To do this, we make sure
- * that we can open the underlying device, then try to read the label, and make
- * sure that the label is sane and that it hasn't been repurposed to another
- * pool.
- */
-int
-vdev_validate_spare(vdev_t *vd)
-{
- nvlist_t *label;
- uint64_t guid, version;
- uint64_t state;
-
- if ((label = vdev_label_read_config(vd)) == NULL) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
- return (-1);
- }
-
- if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
- version > ZFS_VERSION ||
- nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
- guid != vd->vdev_guid ||
- nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
- vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
- nvlist_free(label);
- return (-1);
- }
-
- spa_spare_add(vd);
-
- /*
- * We don't actually check the pool state here. If it's in fact in
- * use by another pool, we update this fact on the fly when requested.
- */
- nvlist_free(label);
- return (0);
-}
-
-void
-vdev_sync_done(vdev_t *vd, uint64_t txg)
-{
- metaslab_t *msp;
-
- dprintf("%s txg %llu\n", vdev_description(vd), txg);
-
- while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
- metaslab_sync_done(msp, txg);
-}
-
-void
-vdev_sync(vdev_t *vd, uint64_t txg)
-{
- spa_t *spa = vd->vdev_spa;
- vdev_t *lvd;
- metaslab_t *msp;
- dmu_tx_t *tx;
-
- dprintf("%s txg %llu pass %d\n",
- vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
-
- if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
- ASSERT(vd == vd->vdev_top);
- tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
- vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
- DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
- ASSERT(vd->vdev_ms_array != 0);
- vdev_config_dirty(vd);
- dmu_tx_commit(tx);
- }
-
- while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
- metaslab_sync(msp, txg);
- (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
- }
-
- while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
- vdev_dtl_sync(lvd, txg);
-
- (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
-}
-
-uint64_t
-vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
-{
- return (vd->vdev_ops->vdev_op_asize(vd, psize));
-}
-
-void
-vdev_io_start(zio_t *zio)
-{
- zio->io_vd->vdev_ops->vdev_op_io_start(zio);
-}
-
-void
-vdev_io_done(zio_t *zio)
-{
- zio->io_vd->vdev_ops->vdev_op_io_done(zio);
-}
-
-const char *
-vdev_description(vdev_t *vd)
-{
- if (vd == NULL || vd->vdev_ops == NULL)
- return ("<unknown>");
-
- if (vd->vdev_path != NULL)
- return (vd->vdev_path);
-
- if (vd->vdev_parent == NULL)
- return (spa_name(vd->vdev_spa));
-
- return (vd->vdev_ops->vdev_op_type);
-}
-
-int
-vdev_online(spa_t *spa, uint64_t guid)
-{
- vdev_t *rvd, *vd;
- uint64_t txg;
-
- txg = spa_vdev_enter(spa);
-
- rvd = spa->spa_root_vdev;
-
- if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
- return (spa_vdev_exit(spa, NULL, txg, ENODEV));
-
- if (!vd->vdev_ops->vdev_op_leaf)
- return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
-
- dprintf("ONLINE: %s\n", vdev_description(vd));
-
- vd->vdev_offline = B_FALSE;
- vd->vdev_tmpoffline = B_FALSE;
- vdev_reopen(vd->vdev_top);
-
- vdev_config_dirty(vd->vdev_top);
-
- (void) spa_vdev_exit(spa, NULL, txg, 0);
-
- VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
-
- return (0);
-}
-
-int
-vdev_offline(spa_t *spa, uint64_t guid, int istmp)
-{
- vdev_t *rvd, *vd;
- uint64_t txg;
-
- txg = spa_vdev_enter(spa);
-
- rvd = spa->spa_root_vdev;
-
- if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
- return (spa_vdev_exit(spa, NULL, txg, ENODEV));
-
- if (!vd->vdev_ops->vdev_op_leaf)
- return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
-
- dprintf("OFFLINE: %s\n", vdev_description(vd));
-
- /*
- * If the device isn't already offline, try to offline it.
- */
- if (!vd->vdev_offline) {
- /*
- * If this device's top-level vdev has a non-empty DTL,
- * don't allow the device to be offlined.
- *
- * XXX -- make this more precise by allowing the offline
- * as long as the remaining devices don't have any DTL holes.
- */
- if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
- return (spa_vdev_exit(spa, NULL, txg, EBUSY));
-
- /*
- * Offline this device and reopen its top-level vdev.
- * If this action results in the top-level vdev becoming
- * unusable, undo it and fail the request.
- */
- vd->vdev_offline = B_TRUE;
- vdev_reopen(vd->vdev_top);
- if (vdev_is_dead(vd->vdev_top)) {
- vd->vdev_offline = B_FALSE;
- vdev_reopen(vd->vdev_top);
- return (spa_vdev_exit(spa, NULL, txg, EBUSY));
- }
- }
-
- vd->vdev_tmpoffline = istmp;
-
- vdev_config_dirty(vd->vdev_top);
-
- return (spa_vdev_exit(spa, NULL, txg, 0));
-}
-
-/*
- * Clear the error counts associated with this vdev. Unlike vdev_online() and
- * vdev_offline(), we assume the spa config is locked. We also clear all
- * children. If 'vd' is NULL, then the user wants to clear all vdevs.
- */
-void
-vdev_clear(spa_t *spa, vdev_t *vd)
-{
- int c;
-
- if (vd == NULL)
- vd = spa->spa_root_vdev;
-
- vd->vdev_stat.vs_read_errors = 0;
- vd->vdev_stat.vs_write_errors = 0;
- vd->vdev_stat.vs_checksum_errors = 0;
-
- for (c = 0; c < vd->vdev_children; c++)
- vdev_clear(spa, vd->vdev_child[c]);
-}
-
-int
-vdev_is_dead(vdev_t *vd)
-{
- return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
-}
-
-int
-vdev_error_inject(vdev_t *vd, zio_t *zio)
-{
- int error = 0;
-
- if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
- return (0);
-
- if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
- return (0);
-
- switch (vd->vdev_fault_mode) {
- case VDEV_FAULT_RANDOM:
- if (spa_get_random(vd->vdev_fault_arg) == 0)
- error = EIO;
- break;
-
- case VDEV_FAULT_COUNT:
- if ((int64_t)--vd->vdev_fault_arg <= 0)
- vd->vdev_fault_mode = VDEV_FAULT_NONE;
- error = EIO;
- break;
- }
-
- if (error != 0) {
- dprintf("returning %d for type %d on %s state %d offset %llx\n",
- error, zio->io_type, vdev_description(vd),
- vd->vdev_state, zio->io_offset);
- }
-
- return (error);
-}
-
-/*
- * Get statistics for the given vdev.
- */
-void
-vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
-{
- vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
- int c, t;
-
- mutex_enter(&vd->vdev_stat_lock);
- bcopy(&vd->vdev_stat, vs, sizeof (*vs));
- vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
- vs->vs_state = vd->vdev_state;
- vs->vs_rsize = vdev_get_rsize(vd);
- mutex_exit(&vd->vdev_stat_lock);
-
- /*
- * If we're getting stats on the root vdev, aggregate the I/O counts
- * over all top-level vdevs (i.e. the direct children of the root).
- */
- if (vd == rvd) {
- for (c = 0; c < rvd->vdev_children; c++) {
- vdev_t *cvd = rvd->vdev_child[c];
- vdev_stat_t *cvs = &cvd->vdev_stat;
-
- mutex_enter(&vd->vdev_stat_lock);
- for (t = 0; t < ZIO_TYPES; t++) {
- vs->vs_ops[t] += cvs->vs_ops[t];
- vs->vs_bytes[t] += cvs->vs_bytes[t];
- }
- vs->vs_read_errors += cvs->vs_read_errors;
- vs->vs_write_errors += cvs->vs_write_errors;
- vs->vs_checksum_errors += cvs->vs_checksum_errors;
- vs->vs_scrub_examined += cvs->vs_scrub_examined;
- vs->vs_scrub_errors += cvs->vs_scrub_errors;
- mutex_exit(&vd->vdev_stat_lock);
- }
- }
-}
-
-void
-vdev_stat_update(zio_t *zio)
-{
- vdev_t *vd = zio->io_vd;
- vdev_t *pvd;
- uint64_t txg = zio->io_txg;
- vdev_stat_t *vs = &vd->vdev_stat;
- zio_type_t type = zio->io_type;
- int flags = zio->io_flags;
-
- if (zio->io_error == 0) {
- if (!(flags & ZIO_FLAG_IO_BYPASS)) {
- mutex_enter(&vd->vdev_stat_lock);
- vs->vs_ops[type]++;
- vs->vs_bytes[type] += zio->io_size;
- mutex_exit(&vd->vdev_stat_lock);
- }
- if ((flags & ZIO_FLAG_IO_REPAIR) &&
- zio->io_delegate_list == NULL) {
- mutex_enter(&vd->vdev_stat_lock);
- if (flags & ZIO_FLAG_SCRUB_THREAD)
- vs->vs_scrub_repaired += zio->io_size;
- else
- vs->vs_self_healed += zio->io_size;
- mutex_exit(&vd->vdev_stat_lock);
- }
- return;
- }
-
- if (flags & ZIO_FLAG_SPECULATIVE)
- return;
-
- if (!vdev_is_dead(vd)) {
- mutex_enter(&vd->vdev_stat_lock);
- if (type == ZIO_TYPE_READ) {
- if (zio->io_error == ECKSUM)
- vs->vs_checksum_errors++;
- else
- vs->vs_read_errors++;
- }
- if (type == ZIO_TYPE_WRITE)
- vs->vs_write_errors++;
- mutex_exit(&vd->vdev_stat_lock);
- }
-
- if (type == ZIO_TYPE_WRITE) {
- if (txg == 0 || vd->vdev_children != 0)
- return;
- if (flags & ZIO_FLAG_SCRUB_THREAD) {
- ASSERT(flags & ZIO_FLAG_IO_REPAIR);
- for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
- vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
- }
- if (!(flags & ZIO_FLAG_IO_REPAIR)) {
- if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
- return;
- vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
- for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
- vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
- }
- }
-}
-
-void
-vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
-{
- int c;
- vdev_stat_t *vs = &vd->vdev_stat;
-
- for (c = 0; c < vd->vdev_children; c++)
- vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
-
- mutex_enter(&vd->vdev_stat_lock);
-
- if (type == POOL_SCRUB_NONE) {
- /*
- * Update completion and end time. Leave everything else alone
- * so we can report what happened during the previous scrub.
- */
- vs->vs_scrub_complete = complete;
- vs->vs_scrub_end = gethrestime_sec();
- } else {
- vs->vs_scrub_type = type;
- vs->vs_scrub_complete = 0;
- vs->vs_scrub_examined = 0;
- vs->vs_scrub_repaired = 0;
- vs->vs_scrub_errors = 0;
- vs->vs_scrub_start = gethrestime_sec();
- vs->vs_scrub_end = 0;
- }
-
- mutex_exit(&vd->vdev_stat_lock);
-}
-
-/*
- * Update the in-core space usage stats for this vdev and the root vdev.
- */
-void
-vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta)
-{
- ASSERT(vd == vd->vdev_top);
- int64_t dspace_delta = space_delta;
-
- do {
- if (vd->vdev_ms_count) {
- /*
- * If this is a top-level vdev, apply the
- * inverse of its psize-to-asize (ie. RAID-Z)
- * space-expansion factor. We must calculate
- * this here and not at the root vdev because
- * the root vdev's psize-to-asize is simply the
- * max of its childrens', thus not accurate
- * enough for us.
- */
- ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
- dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
- vd->vdev_deflate_ratio;
- }
-
- mutex_enter(&vd->vdev_stat_lock);
- vd->vdev_stat.vs_space += space_delta;
- vd->vdev_stat.vs_alloc += alloc_delta;
- vd->vdev_stat.vs_dspace += dspace_delta;
- mutex_exit(&vd->vdev_stat_lock);
- } while ((vd = vd->vdev_parent) != NULL);
-}
-
-/*
- * Mark a top-level vdev's config as dirty, placing it on the dirty list
- * so that it will be written out next time the vdev configuration is synced.
- * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
- */
-void
-vdev_config_dirty(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
- vdev_t *rvd = spa->spa_root_vdev;
- int c;
-
- /*
- * The dirty list is protected by the config lock. The caller must
- * either hold the config lock as writer, or must be the sync thread
- * (which holds the lock as reader). There's only one sync thread,
- * so this is sufficient to ensure mutual exclusion.
- */
- ASSERT(spa_config_held(spa, RW_WRITER) ||
- dsl_pool_sync_context(spa_get_dsl(spa)));
-
- if (vd == rvd) {
- for (c = 0; c < rvd->vdev_children; c++)
- vdev_config_dirty(rvd->vdev_child[c]);
- } else {
- ASSERT(vd == vd->vdev_top);
-
- if (!list_link_active(&vd->vdev_dirty_node))
- list_insert_head(&spa->spa_dirty_list, vd);
- }
-}
-
-void
-vdev_config_clean(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
-
- ASSERT(spa_config_held(spa, RW_WRITER) ||
- dsl_pool_sync_context(spa_get_dsl(spa)));
-
- ASSERT(list_link_active(&vd->vdev_dirty_node));
- list_remove(&spa->spa_dirty_list, vd);
-}
-
-void
-vdev_propagate_state(vdev_t *vd)
-{
- vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
- int degraded = 0, faulted = 0;
- int corrupted = 0;
- int c;
- vdev_t *child;
-
- for (c = 0; c < vd->vdev_children; c++) {
- child = vd->vdev_child[c];
- if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
- faulted++;
- else if (child->vdev_state == VDEV_STATE_DEGRADED)
- degraded++;
-
- if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
- corrupted++;
- }
-
- vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
-
- /*
- * Root special: if there is a toplevel vdev that cannot be
- * opened due to corrupted metadata, then propagate the root
- * vdev's aux state as 'corrupt' rather than 'insufficient
- * replicas'.
- */
- if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN)
- vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
-}
-
-/*
- * Set a vdev's state. If this is during an open, we don't update the parent
- * state, because we're in the process of opening children depth-first.
- * Otherwise, we propagate the change to the parent.
- *
- * If this routine places a device in a faulted state, an appropriate ereport is
- * generated.
- */
-void
-vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
-{
- uint64_t save_state;
-
- if (state == vd->vdev_state) {
- vd->vdev_stat.vs_aux = aux;
- return;
- }
-
- save_state = vd->vdev_state;
-
- vd->vdev_state = state;
- vd->vdev_stat.vs_aux = aux;
-
- /*
- * If we are setting the vdev state to anything but an open state, then
- * always close the underlying device. Otherwise, we keep accessible
- * but invalid devices open forever. We don't call vdev_close() itself,
- * because that implies some extra checks (offline, etc) that we don't
- * want here. This is limited to leaf devices, because otherwise
- * closing the device will affect other children.
- */
- if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
- vd->vdev_ops->vdev_op_close(vd);
-
- if (state == VDEV_STATE_CANT_OPEN) {
- /*
- * If we fail to open a vdev during an import, we mark it as
- * "not available", which signifies that it was never there to
- * begin with. Failure to open such a device is not considered
- * an error.
- */
- if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
- vd->vdev_ops->vdev_op_leaf)
- vd->vdev_not_present = 1;
-
- /*
- * Post the appropriate ereport. If the 'prevstate' field is
- * set to something other than VDEV_STATE_UNKNOWN, it indicates
- * that this is part of a vdev_reopen(). In this case, we don't
- * want to post the ereport if the device was already in the
- * CANT_OPEN state beforehand.
- */
- if (vd->vdev_prevstate != state && !vd->vdev_not_present &&
- vd != vd->vdev_spa->spa_root_vdev) {
- const char *class;
-
- switch (aux) {
- case VDEV_AUX_OPEN_FAILED:
- class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
- break;
- case VDEV_AUX_CORRUPT_DATA:
- class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
- break;
- case VDEV_AUX_NO_REPLICAS:
- class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
- break;
- case VDEV_AUX_BAD_GUID_SUM:
- class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
- break;
- case VDEV_AUX_TOO_SMALL:
- class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
- break;
- case VDEV_AUX_BAD_LABEL:
- class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
- break;
- default:
- class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
- }
-
- zfs_ereport_post(class, vd->vdev_spa,
- vd, NULL, save_state, 0);
- }
- }
-
- if (isopen)
- return;
-
- if (vd->vdev_parent != NULL)
- vdev_propagate_state(vd->vdev_parent);
-}
OpenPOWER on IntegriCloud