summaryrefslogtreecommitdiffstats
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c')
-rw-r--r--sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c1206
1 files changed, 857 insertions, 349 deletions
diff --git a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
index b966099..7d0602c 100644
--- a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
+++ b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
@@ -20,12 +20,10 @@
*/
/*
- * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
-#pragma ident "%Z%%M% %I% %E% SMI"
-
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
@@ -40,6 +38,7 @@
#include <sys/zio.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
+#include <sys/arc.h>
SYSCTL_DECL(_vfs_zfs);
SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
@@ -58,14 +57,18 @@ static vdev_ops_t *vdev_ops_table[] = {
&vdev_geom_ops,
#else
&vdev_disk_ops,
- &vdev_file_ops,
#endif
+ &vdev_file_ops,
&vdev_missing_ops,
NULL
};
-/* maximum scrub/resilver I/O queue */
-int zfs_scrub_limit = 70;
+/* maximum scrub/resilver I/O queue per leaf vdev */
+int zfs_scrub_limit = 10;
+
+TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
+SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
+ "Maximum scrub/resilver I/O queue");
/*
* Given a vdev type, return the appropriate ops vector.
@@ -143,8 +146,12 @@ vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd = spa->spa_root_vdev;
- if (vdev < rvd->vdev_children)
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
+
+ if (vdev < rvd->vdev_children) {
+ ASSERT(rvd->vdev_child[vdev] != NULL);
return (rvd->vdev_child[vdev]);
+ }
return (NULL);
}
@@ -173,7 +180,7 @@ vdev_add_child(vdev_t *pvd, vdev_t *cvd)
uint64_t id = cvd->vdev_id;
vdev_t **newchild;
- ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
+ ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(cvd->vdev_parent == NULL);
cvd->vdev_parent = pvd;
@@ -256,7 +263,7 @@ vdev_compact_children(vdev_t *pvd)
int oldc = pvd->vdev_children;
int newc, c;
- ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
+ ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
for (c = newc = 0; c < oldc; c++)
if (pvd->vdev_child[c])
@@ -319,6 +326,7 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
txg_list_create(&vd->vdev_ms_list,
@@ -326,44 +334,13 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
txg_list_create(&vd->vdev_dtl_list,
offsetof(struct vdev, vdev_dtl_node));
vd->vdev_stat.vs_timestamp = gethrtime();
+ vdev_queue_init(vd);
+ vdev_cache_init(vd);
return (vd);
}
/*
- * Free a vdev_t that has been removed from service.
- */
-static void
-vdev_free_common(vdev_t *vd)
-{
- spa_t *spa = vd->vdev_spa;
-
- if (vd->vdev_path)
- spa_strfree(vd->vdev_path);
- if (vd->vdev_devid)
- spa_strfree(vd->vdev_devid);
-
- if (vd->vdev_isspare)
- spa_spare_remove(vd);
-
- txg_list_destroy(&vd->vdev_ms_list);
- txg_list_destroy(&vd->vdev_dtl_list);
- mutex_enter(&vd->vdev_dtl_lock);
- space_map_unload(&vd->vdev_dtl_map);
- space_map_destroy(&vd->vdev_dtl_map);
- space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
- space_map_destroy(&vd->vdev_dtl_scrub);
- mutex_exit(&vd->vdev_dtl_lock);
- mutex_destroy(&vd->vdev_dtl_lock);
- mutex_destroy(&vd->vdev_stat_lock);
-
- if (vd == spa->spa_root_vdev)
- spa->spa_root_vdev = NULL;
-
- kmem_free(vd, sizeof (vdev_t));
-}
-
-/*
* Allocate a new vdev. The 'alloctype' is used to control whether we are
* creating a new vdev or loading an existing one - the behavior is slightly
* different for each case.
@@ -374,10 +351,10 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
{
vdev_ops_t *ops;
char *type;
- uint64_t guid = 0;
+ uint64_t guid = 0, islog, nparity;
vdev_t *vd;
- ASSERT(spa_config_held(spa, RW_WRITER));
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
return (EINVAL);
@@ -401,6 +378,9 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
} else if (alloctype == VDEV_ALLOC_SPARE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (EINVAL);
+ } else if (alloctype == VDEV_ALLOC_L2CACHE) {
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
+ return (EINVAL);
}
/*
@@ -409,47 +389,61 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
return (EINVAL);
- vd = vdev_alloc_common(spa, id, guid, ops);
-
- if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
- vd->vdev_path = spa_strdup(vd->vdev_path);
- if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
- vd->vdev_devid = spa_strdup(vd->vdev_devid);
+ /*
+ * Determine whether we're a log vdev.
+ */
+ islog = 0;
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
+ if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
+ return (ENOTSUP);
/*
- * Set the nparity propery for RAID-Z vdevs.
+ * Set the nparity property for RAID-Z vdevs.
*/
+ nparity = -1ULL;
if (ops == &vdev_raidz_ops) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
- &vd->vdev_nparity) == 0) {
+ &nparity) == 0) {
/*
* Currently, we can only support 2 parity devices.
*/
- if (vd->vdev_nparity > 2)
+ if (nparity == 0 || nparity > 2)
return (EINVAL);
/*
* Older versions can only support 1 parity device.
*/
- if (vd->vdev_nparity == 2 &&
- spa_version(spa) < ZFS_VERSION_RAID6)
+ if (nparity == 2 &&
+ spa_version(spa) < SPA_VERSION_RAID6)
return (ENOTSUP);
-
} else {
/*
* We require the parity to be specified for SPAs that
* support multiple parity levels.
*/
- if (spa_version(spa) >= ZFS_VERSION_RAID6)
+ if (spa_version(spa) >= SPA_VERSION_RAID6)
return (EINVAL);
-
/*
* Otherwise, we default to 1 parity device for RAID-Z.
*/
- vd->vdev_nparity = 1;
+ nparity = 1;
}
} else {
- vd->vdev_nparity = 0;
+ nparity = 0;
}
+ ASSERT(nparity != -1ULL);
+
+ vd = vdev_alloc_common(spa, id, guid, ops);
+
+ vd->vdev_islog = islog;
+ vd->vdev_nparity = nparity;
+
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
+ vd->vdev_path = spa_strdup(vd->vdev_path);
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
+ vd->vdev_devid = spa_strdup(vd->vdev_devid);
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
+ &vd->vdev_physpath) == 0)
+ vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
/*
* Set the whole_disk property. If it's not specified, leave the value
@@ -463,8 +457,9 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
* Look for the 'not present' flag. This will only be set if the device
* was not present at the time of import.
*/
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
- &vd->vdev_not_present);
+ if (!spa->spa_import_faulted)
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
+ &vd->vdev_not_present);
/*
* Get the alignment requirement.
@@ -484,13 +479,32 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
}
/*
- * If we're a leaf vdev, try to load the DTL object and offline state.
+ * If we're a leaf vdev, try to load the DTL object and other state.
*/
- if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
- (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
- &vd->vdev_dtl.smo_object);
+ if (vd->vdev_ops->vdev_op_leaf &&
+ (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
+ if (alloctype == VDEV_ALLOC_LOAD) {
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
+ &vd->vdev_dtl.smo_object);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
+ &vd->vdev_unspare);
+ }
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
&vd->vdev_offline);
+
+ /*
+ * When importing a pool, we want to ignore the persistent fault
+ * state, as the diagnosis made on another system may not be
+ * valid in the current context.
+ */
+ if (spa->spa_load_state == SPA_LOAD_OPEN) {
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
+ &vd->vdev_faulted);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
+ &vd->vdev_degraded);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
+ &vd->vdev_removed);
+ }
}
/*
@@ -507,6 +521,7 @@ void
vdev_free(vdev_t *vd)
{
int c;
+ spa_t *spa = vd->vdev_spa;
/*
* vdev_free() implies closing the vdev first. This is simpler than
@@ -514,7 +529,7 @@ vdev_free(vdev_t *vd)
*/
vdev_close(vd);
- ASSERT(!list_link_active(&vd->vdev_dirty_node));
+ ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
/*
* Free all children.
@@ -542,7 +557,40 @@ vdev_free(vdev_t *vd)
ASSERT(vd->vdev_parent == NULL);
- vdev_free_common(vd);
+ /*
+ * Clean up vdev structure.
+ */
+ vdev_queue_fini(vd);
+ vdev_cache_fini(vd);
+
+ if (vd->vdev_path)
+ spa_strfree(vd->vdev_path);
+ if (vd->vdev_devid)
+ spa_strfree(vd->vdev_devid);
+ if (vd->vdev_physpath)
+ spa_strfree(vd->vdev_physpath);
+
+ if (vd->vdev_isspare)
+ spa_spare_remove(vd);
+ if (vd->vdev_isl2cache)
+ spa_l2cache_remove(vd);
+
+ txg_list_destroy(&vd->vdev_ms_list);
+ txg_list_destroy(&vd->vdev_dtl_list);
+ mutex_enter(&vd->vdev_dtl_lock);
+ space_map_unload(&vd->vdev_dtl_map);
+ space_map_destroy(&vd->vdev_dtl_map);
+ space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
+ space_map_destroy(&vd->vdev_dtl_scrub);
+ mutex_exit(&vd->vdev_dtl_lock);
+ mutex_destroy(&vd->vdev_dtl_lock);
+ mutex_destroy(&vd->vdev_stat_lock);
+ mutex_destroy(&vd->vdev_probe_lock);
+
+ if (vd == spa->spa_root_vdev)
+ spa->spa_root_vdev = NULL;
+
+ kmem_free(vd, sizeof (vdev_t));
}
/*
@@ -592,16 +640,21 @@ vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
}
- if (list_link_active(&svd->vdev_dirty_node)) {
+ if (list_link_active(&svd->vdev_config_dirty_node)) {
vdev_config_clean(svd);
vdev_config_dirty(tvd);
}
- tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
- svd->vdev_reopen_wanted = 0;
+ if (list_link_active(&svd->vdev_state_dirty_node)) {
+ vdev_state_clean(svd);
+ vdev_state_dirty(tvd);
+ }
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
svd->vdev_deflate_ratio = 0;
+
+ tvd->vdev_islog = svd->vdev_islog;
+ svd->vdev_islog = 0;
}
static void
@@ -628,7 +681,7 @@ vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
vdev_t *pvd = cvd->vdev_parent;
vdev_t *mvd;
- ASSERT(spa_config_held(spa, RW_WRITER));
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
@@ -657,7 +710,7 @@ vdev_remove_parent(vdev_t *cvd)
vdev_t *mvd = cvd->vdev_parent;
vdev_t *pvd = mvd->vdev_parent;
- ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
+ ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(mvd->vdev_children == 1);
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
@@ -667,22 +720,16 @@ vdev_remove_parent(vdev_t *cvd)
vdev_remove_child(mvd, cvd);
vdev_remove_child(pvd, mvd);
- cvd->vdev_id = mvd->vdev_id;
- vdev_add_child(pvd, cvd);
/*
- * If we created a new toplevel vdev, then we need to change the child's
- * vdev GUID to match the old toplevel vdev. Otherwise, we could have
- * detached an offline device, and when we go to import the pool we'll
- * think we have two toplevel vdevs, instead of a different version of
- * the same toplevel vdev.
+ * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
+ * Otherwise, we could have detached an offline device, and when we
+ * go to import the pool we'll think we have two top-level vdevs,
+ * instead of a different version of the same top-level vdev.
*/
- if (cvd->vdev_top == cvd) {
- pvd->vdev_guid_sum -= cvd->vdev_guid;
- cvd->vdev_guid_sum -= cvd->vdev_guid;
- cvd->vdev_guid = mvd->vdev_guid;
- cvd->vdev_guid_sum += mvd->vdev_guid;
- pvd->vdev_guid_sum += cvd->vdev_guid;
- }
+ if (mvd->vdev_top == mvd)
+ cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
+ cvd->vdev_id = mvd->vdev_id;
+ vdev_add_child(pvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (cvd == cvd->vdev_top)
@@ -697,7 +744,7 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
- metaslab_class_t *mc = spa_metaslab_class_select(spa);
+ metaslab_class_t *mc;
uint64_t m;
uint64_t oldc = vd->vdev_ms_count;
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
@@ -707,10 +754,13 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
return (0);
- dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
-
ASSERT(oldc <= newc);
+ if (vd->vdev_islog)
+ mc = spa->spa_log_class;
+ else
+ mc = spa->spa_normal_class;
+
if (vd->vdev_mg == NULL)
vd->vdev_mg = metaslab_group_create(mc, vd);
@@ -737,8 +787,8 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
error = dmu_bonus_hold(mos, object, FTAG, &db);
if (error)
return (error);
- ASSERT3U(db->db_size, ==, sizeof (smo));
- bcopy(db->db_data, &smo, db->db_size);
+ ASSERT3U(db->db_size, >=, sizeof (smo));
+ bcopy(db->db_data, &smo, sizeof (smo));
ASSERT3U(smo.smo_object, ==, object);
dmu_buf_rele(db, FTAG);
}
@@ -765,6 +815,112 @@ vdev_metaslab_fini(vdev_t *vd)
}
}
+typedef struct vdev_probe_stats {
+ boolean_t vps_readable;
+ boolean_t vps_writeable;
+ int vps_flags;
+ zio_t *vps_root;
+ vdev_t *vps_vd;
+} vdev_probe_stats_t;
+
+static void
+vdev_probe_done(zio_t *zio)
+{
+ vdev_probe_stats_t *vps = zio->io_private;
+ vdev_t *vd = vps->vps_vd;
+
+ if (zio->io_type == ZIO_TYPE_READ) {
+ ASSERT(zio->io_vd == vd);
+ if (zio->io_error == 0)
+ vps->vps_readable = 1;
+ if (zio->io_error == 0 && (spa_mode & FWRITE)) {
+ zio_nowait(zio_write_phys(vps->vps_root, vd,
+ zio->io_offset, zio->io_size, zio->io_data,
+ ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
+ ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
+ } else {
+ zio_buf_free(zio->io_data, zio->io_size);
+ }
+ } else if (zio->io_type == ZIO_TYPE_WRITE) {
+ ASSERT(zio->io_vd == vd);
+ if (zio->io_error == 0)
+ vps->vps_writeable = 1;
+ zio_buf_free(zio->io_data, zio->io_size);
+ } else if (zio->io_type == ZIO_TYPE_NULL) {
+ ASSERT(zio->io_vd == NULL);
+ ASSERT(zio == vps->vps_root);
+
+ vd->vdev_cant_read |= !vps->vps_readable;
+ vd->vdev_cant_write |= !vps->vps_writeable;
+
+ if (vdev_readable(vd) &&
+ (vdev_writeable(vd) || !(spa_mode & FWRITE))) {
+ zio->io_error = 0;
+ } else {
+ ASSERT(zio->io_error != 0);
+ zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
+ zio->io_spa, vd, NULL, 0, 0);
+ zio->io_error = ENXIO;
+ }
+ kmem_free(vps, sizeof (*vps));
+ }
+}
+
+/*
+ * Determine whether this device is accessible by reading and writing
+ * to several known locations: the pad regions of each vdev label
+ * but the first (which we leave alone in case it contains a VTOC).
+ */
+zio_t *
+vdev_probe(vdev_t *vd, zio_t *pio)
+{
+ spa_t *spa = vd->vdev_spa;
+ vdev_probe_stats_t *vps;
+ zio_t *zio;
+
+ vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
+
+ vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
+ ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
+
+ if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
+ /*
+ * vdev_cant_read and vdev_cant_write can only transition
+ * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
+ * otherwise they can only transition from FALSE to TRUE.
+ * This ensures that any zio looking at these values can
+ * assume that failures persist for the life of the I/O.
+ * That's important because when a device has intermittent
+ * connectivity problems, we want to ensure that they're
+ * ascribed to the device (ENXIO) and not the zio (EIO).
+ *
+ * Since we hold SCL_ZIO as writer here, clear both values
+ * so the probe can reevaluate from first principles.
+ */
+ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
+ vd->vdev_cant_read = B_FALSE;
+ vd->vdev_cant_write = B_FALSE;
+ }
+
+ ASSERT(vd->vdev_ops->vdev_op_leaf);
+
+ zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
+
+ vps->vps_root = zio;
+ vps->vps_vd = vd;
+
+ for (int l = 1; l < VDEV_LABELS; l++) {
+ zio_nowait(zio_read_phys(zio, vd,
+ vdev_label_offset(vd->vdev_psize, l,
+ offsetof(vdev_label_t, vl_pad)),
+ VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
+ ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
+ ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
+ }
+
+ return (zio);
+}
+
/*
* Prepare a virtual device for access.
*/
@@ -781,20 +937,14 @@ vdev_open(vdev_t *vd)
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
vd->vdev_state == VDEV_STATE_OFFLINE);
- if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
- vd->vdev_fault_arg >>= 1;
- else
- vd->vdev_fault_mode = VDEV_FAULT_NONE;
-
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
- if (vd->vdev_ops->vdev_op_leaf) {
- vdev_cache_init(vd);
- vdev_queue_init(vd);
- vd->vdev_cache_active = B_TRUE;
- }
-
- if (vd->vdev_offline) {
+ if (!vd->vdev_removed && vd->vdev_faulted) {
+ ASSERT(vd->vdev_children == 0);
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
+ VDEV_AUX_ERR_EXCEEDED);
+ return (ENXIO);
+ } else if (vd->vdev_offline) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
return (ENXIO);
@@ -805,16 +955,25 @@ vdev_open(vdev_t *vd)
if (zio_injection_enabled && error == 0)
error = zio_handle_device_injection(vd, ENXIO);
- dprintf("%s = %d, osize %llu, state = %d\n",
- vdev_description(vd), error, osize, vd->vdev_state);
-
if (error) {
+ if (vd->vdev_removed &&
+ vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
+ vd->vdev_removed = B_FALSE;
+
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
vd->vdev_stat.vs_aux);
return (error);
}
- vd->vdev_state = VDEV_STATE_HEALTHY;
+ vd->vdev_removed = B_FALSE;
+
+ if (vd->vdev_degraded) {
+ ASSERT(vd->vdev_children == 0);
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_ERR_EXCEEDED);
+ } else {
+ vd->vdev_state = VDEV_STATE_HEALTHY;
+ }
for (c = 0; c < vd->vdev_children; c++)
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
@@ -883,6 +1042,17 @@ vdev_open(vdev_t *vd)
}
/*
+ * Ensure we can issue some IO before declaring the
+ * vdev open for business.
+ */
+ if (vd->vdev_ops->vdev_op_leaf &&
+ (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_IO_FAILURE);
+ return (error);
+ }
+
+ /*
* If this is a top-level vdev, compute the raidz-deflation
* ratio. Note, we hard-code in 128k (1<<17) because it is the
* current "typical" blocksize. Even if SPA_MAXBLOCKSIZE
@@ -895,16 +1065,17 @@ vdev_open(vdev_t *vd)
}
/*
- * This allows the ZFS DE to close cases appropriately. If a device
- * goes away and later returns, we want to close the associated case.
- * But it's not enough to simply post this only when a device goes from
- * CANT_OPEN -> HEALTHY. If we reboot the system and the device is
- * back, we also need to close the case (otherwise we will try to replay
- * it). So we have to post this notifier every time. Since this only
- * occurs during pool open or error recovery, this should not be an
- * issue.
+ * If a leaf vdev has a DTL, and seems healthy, then kick off a
+ * resilver. But don't do this if we are doing a reopen for a
+ * scrub, since this would just restart the scrub we are already
+ * doing.
*/
- zfs_post_ok(vd->vdev_spa, vd);
+ if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
+ mutex_enter(&vd->vdev_dtl_lock);
+ if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
+ spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
+ mutex_exit(&vd->vdev_dtl_lock);
+ }
return (0);
}
@@ -912,8 +1083,7 @@ vdev_open(vdev_t *vd)
/*
* Called once the vdevs are all opened, this routine validates the label
* contents. This needs to be done before vdev_load() so that we don't
- * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen()
- * won't succeed if the device has been changed underneath.
+ * inadvertently do repair I/Os to the wrong device.
*
* This function will only return failure if one of the vdevs indicates that it
* has since been destroyed or exported. This is only possible if
@@ -926,7 +1096,7 @@ vdev_validate(vdev_t *vd)
spa_t *spa = vd->vdev_spa;
int c;
nvlist_t *label;
- uint64_t guid;
+ uint64_t guid, top_guid;
uint64_t state;
for (c = 0; c < vd->vdev_children; c++)
@@ -938,7 +1108,7 @@ vdev_validate(vdev_t *vd)
* any further validation. Otherwise, label I/O will fail and we will
* overwrite the previous state.
*/
- if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
+ if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
if ((label = vdev_label_read_config(vd)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
@@ -954,8 +1124,20 @@ vdev_validate(vdev_t *vd)
return (0);
}
+ /*
+ * If this vdev just became a top-level vdev because its
+ * sibling was detached, it will have adopted the parent's
+ * vdev guid -- but the label may or may not be on disk yet.
+ * Fortunately, either version of the label will have the
+ * same top guid, so if we're a top-level vdev, we can
+ * safely compare to that instead.
+ */
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
- &guid) != 0 || guid != vd->vdev_guid) {
+ &guid) != 0 ||
+ nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
+ &top_guid) != 0 ||
+ (vd->vdev_guid != guid &&
+ (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
@@ -975,14 +1157,15 @@ vdev_validate(vdev_t *vd)
if (spa->spa_load_state == SPA_LOAD_OPEN &&
state != POOL_STATE_ACTIVE)
return (EBADF);
- }
- /*
- * If we were able to open and validate a vdev that was previously
- * marked permanently unavailable, clear that state now.
- */
- if (vd->vdev_not_present)
- vd->vdev_not_present = 0;
+ /*
+ * If we were able to open and validate a vdev that was
+ * previously marked permanently unavailable, clear that state
+ * now.
+ */
+ if (vd->vdev_not_present)
+ vd->vdev_not_present = 0;
+ }
return (0);
}
@@ -995,11 +1178,7 @@ vdev_close(vdev_t *vd)
{
vd->vdev_ops->vdev_op_close(vd);
- if (vd->vdev_cache_active) {
- vdev_cache_fini(vd);
- vdev_queue_fini(vd);
- vd->vdev_cache_active = B_FALSE;
- }
+ vdev_cache_purge(vd);
/*
* We record the previous state before we close it, so that if we are
@@ -1020,7 +1199,7 @@ vdev_reopen(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
- ASSERT(spa_config_held(spa, RW_WRITER));
+ ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
vdev_close(vd);
(void) vdev_open(vd);
@@ -1029,22 +1208,24 @@ vdev_reopen(vdev_t *vd)
* Call vdev_validate() here to make sure we have the same device.
* Otherwise, a device with an invalid label could be successfully
* opened in response to vdev_reopen().
- *
- * The downside to this is that if the user is simply experimenting by
- * overwriting an entire disk, we'll fault the device rather than
- * demonstrate self-healing capabilities. On the other hand, with
- * proper FMA integration, the series of errors we'd see from the device
- * would result in a faulted device anyway. Given that this doesn't
- * model any real-world corruption, it's better to catch this here and
- * correctly identify that the device has either changed beneath us, or
- * is corrupted beyond recognition.
*/
- (void) vdev_validate(vd);
+ if (vd->vdev_aux) {
+ (void) vdev_validate_aux(vd);
+ if (vdev_readable(vd) && vdev_writeable(vd) &&
+ !l2arc_vdev_present(vd)) {
+ uint64_t size = vdev_get_rsize(vd);
+ l2arc_add_vdev(spa, vd,
+ VDEV_LABEL_START_SIZE,
+ size - VDEV_LABEL_START_SIZE);
+ }
+ } else {
+ (void) vdev_validate(vd);
+ }
/*
- * Reassess root vdev's health.
+ * Reassess parent vdev's health.
*/
- vdev_propagate_state(spa->spa_root_vdev);
+ vdev_propagate_state(vd);
}
int
@@ -1150,22 +1331,27 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
spa_t *spa = vd->vdev_spa;
int c;
- ASSERT(spa_config_held(spa, RW_WRITER));
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
if (vd->vdev_children == 0) {
mutex_enter(&vd->vdev_dtl_lock);
- /*
- * We're successfully scrubbed everything up to scrub_txg.
- * Therefore, excise all old DTLs up to that point, then
- * fold in the DTLs for everything we couldn't scrub.
- */
- if (scrub_txg != 0) {
+ if (scrub_txg != 0 &&
+ (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
+ /* XXX should check scrub_done? */
+ /*
+ * We completed a scrub up to scrub_txg. If we
+ * did it without rebooting, then the scrub dtl
+ * will be valid, so excise the old region and
+ * fold in the scrub dtl. Otherwise, leave the
+ * dtl as-is if there was an error.
+ */
space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
}
if (scrub_done)
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
mutex_exit(&vd->vdev_dtl_lock);
+
if (txg != 0)
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
return;
@@ -1212,8 +1398,8 @@ vdev_dtl_load(vdev_t *vd)
if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
return (error);
- ASSERT3U(db->db_size, ==, sizeof (*smo));
- bcopy(db->db_data, smo, db->db_size);
+ ASSERT3U(db->db_size, >=, sizeof (*smo));
+ bcopy(db->db_data, smo, sizeof (*smo));
dmu_buf_rele(db, FTAG);
mutex_enter(&vd->vdev_dtl_lock);
@@ -1235,9 +1421,6 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
dmu_buf_t *db;
dmu_tx_t *tx;
- dprintf("%s in txg %llu pass %d\n",
- vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
-
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (vd->vdev_detached) {
@@ -1247,8 +1430,6 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
smo->smo_object = 0;
}
dmu_tx_commit(tx);
- dprintf("detach %s committed in txg %llu\n",
- vdev_description(vd), txg);
return;
}
@@ -1283,13 +1464,56 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
dmu_buf_will_dirty(db, tx);
- ASSERT3U(db->db_size, ==, sizeof (*smo));
- bcopy(smo, db->db_data, db->db_size);
+ ASSERT3U(db->db_size, >=, sizeof (*smo));
+ bcopy(smo, db->db_data, sizeof (*smo));
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
}
+/*
+ * Determine if resilver is needed, and if so the txg range.
+ */
+boolean_t
+vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
+{
+ boolean_t needed = B_FALSE;
+ uint64_t thismin = UINT64_MAX;
+ uint64_t thismax = 0;
+
+ if (vd->vdev_children == 0) {
+ mutex_enter(&vd->vdev_dtl_lock);
+ if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
+ space_seg_t *ss;
+
+ ss = avl_first(&vd->vdev_dtl_map.sm_root);
+ thismin = ss->ss_start - 1;
+ ss = avl_last(&vd->vdev_dtl_map.sm_root);
+ thismax = ss->ss_end;
+ needed = B_TRUE;
+ }
+ mutex_exit(&vd->vdev_dtl_lock);
+ } else {
+ int c;
+ for (c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+ uint64_t cmin, cmax;
+
+ if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
+ thismin = MIN(thismin, cmin);
+ thismax = MAX(thismax, cmax);
+ needed = B_TRUE;
+ }
+ }
+ }
+
+ if (needed && minp) {
+ *minp = thismin;
+ *maxp = thismax;
+ }
+ return (needed);
+}
+
void
vdev_load(vdev_t *vd)
{
@@ -1319,19 +1543,22 @@ vdev_load(vdev_t *vd)
}
/*
- * This special case of vdev_spare() is used for hot spares. It's sole purpose
- * it to set the vdev state for the associated vdev. To do this, we make sure
- * that we can open the underlying device, then try to read the label, and make
- * sure that the label is sane and that it hasn't been repurposed to another
- * pool.
+ * The special vdev case is used for hot spares and l2cache devices. Its
+ * sole purpose it to set the vdev state for the associated vdev. To do this,
+ * we make sure that we can open the underlying device, then try to read the
+ * label, and make sure that the label is sane and that it hasn't been
+ * repurposed to another pool.
*/
int
-vdev_validate_spare(vdev_t *vd)
+vdev_validate_aux(vdev_t *vd)
{
nvlist_t *label;
uint64_t guid, version;
uint64_t state;
+ if (!vdev_readable(vd))
+ return (0);
+
if ((label = vdev_label_read_config(vd)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
@@ -1339,7 +1566,7 @@ vdev_validate_spare(vdev_t *vd)
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
- version > ZFS_VERSION ||
+ version > SPA_VERSION ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
guid != vd->vdev_guid ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
@@ -1349,8 +1576,6 @@ vdev_validate_spare(vdev_t *vd)
return (-1);
}
- spa_spare_add(vd);
-
/*
* We don't actually check the pool state here. If it's in fact in
* use by another pool, we update this fact on the fly when requested.
@@ -1364,8 +1589,6 @@ vdev_sync_done(vdev_t *vd, uint64_t txg)
{
metaslab_t *msp;
- dprintf("%s txg %llu\n", vdev_description(vd), txg);
-
while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
metaslab_sync_done(msp, txg);
}
@@ -1378,9 +1601,6 @@ vdev_sync(vdev_t *vd, uint64_t txg)
metaslab_t *msp;
dmu_tx_t *tx;
- dprintf("%s txg %llu pass %d\n",
- vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
-
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
ASSERT(vd == vd->vdev_top);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
@@ -1408,81 +1628,139 @@ vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
return (vd->vdev_ops->vdev_op_asize(vd, psize));
}
-void
-vdev_io_start(zio_t *zio)
+/*
+ * Mark the given vdev faulted. A faulted vdev behaves as if the device could
+ * not be opened, and no I/O is attempted.
+ */
+int
+vdev_fault(spa_t *spa, uint64_t guid)
{
- zio->io_vd->vdev_ops->vdev_op_io_start(zio);
-}
+ vdev_t *vd;
-void
-vdev_io_done(zio_t *zio)
-{
- zio->io_vd->vdev_ops->vdev_op_io_done(zio);
+ spa_vdev_state_enter(spa);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ /*
+ * Faulted state takes precedence over degraded.
+ */
+ vd->vdev_faulted = 1ULL;
+ vd->vdev_degraded = 0ULL;
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
+
+ /*
+ * If marking the vdev as faulted cause the top-level vdev to become
+ * unavailable, then back off and simply mark the vdev as degraded
+ * instead.
+ */
+ if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
+ vd->vdev_degraded = 1ULL;
+ vd->vdev_faulted = 0ULL;
+
+ /*
+ * If we reopen the device and it's not dead, only then do we
+ * mark it degraded.
+ */
+ vdev_reopen(vd);
+
+ if (vdev_readable(vd)) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_ERR_EXCEEDED);
+ }
+ }
+
+ return (spa_vdev_state_exit(spa, vd, 0));
}
-const char *
-vdev_description(vdev_t *vd)
+/*
+ * Mark the given vdev degraded. A degraded vdev is purely an indication to the
+ * user that something is wrong. The vdev continues to operate as normal as far
+ * as I/O is concerned.
+ */
+int
+vdev_degrade(spa_t *spa, uint64_t guid)
{
- if (vd == NULL || vd->vdev_ops == NULL)
- return ("<unknown>");
+ vdev_t *vd;
+
+ spa_vdev_state_enter(spa);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
- if (vd->vdev_path != NULL)
- return (vd->vdev_path);
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ /*
+ * If the vdev is already faulted, then don't do anything.
+ */
+ if (vd->vdev_faulted || vd->vdev_degraded)
+ return (spa_vdev_state_exit(spa, NULL, 0));
- if (vd->vdev_parent == NULL)
- return (spa_name(vd->vdev_spa));
+ vd->vdev_degraded = 1ULL;
+ if (!vdev_is_dead(vd))
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_ERR_EXCEEDED);
- return (vd->vdev_ops->vdev_op_type);
+ return (spa_vdev_state_exit(spa, vd, 0));
}
+/*
+ * Online the given vdev. If 'unspare' is set, it implies two things. First,
+ * any attached spare device should be detached when the device finishes
+ * resilvering. Second, the online should be treated like a 'test' online case,
+ * so no FMA events are generated if the device fails to open.
+ */
int
-vdev_online(spa_t *spa, uint64_t guid)
+vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
{
- vdev_t *rvd, *vd;
- uint64_t txg;
-
- txg = spa_vdev_enter(spa);
+ vdev_t *vd;
- rvd = spa->spa_root_vdev;
+ spa_vdev_state_enter(spa);
- if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
- return (spa_vdev_exit(spa, NULL, txg, ENODEV));
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
- return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
-
- dprintf("ONLINE: %s\n", vdev_description(vd));
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
vd->vdev_offline = B_FALSE;
vd->vdev_tmpoffline = B_FALSE;
+ vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
+ vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
vdev_reopen(vd->vdev_top);
+ vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
- vdev_config_dirty(vd->vdev_top);
+ if (newstate)
+ *newstate = vd->vdev_state;
+ if ((flags & ZFS_ONLINE_UNSPARE) &&
+ !vdev_is_dead(vd) && vd->vdev_parent &&
+ vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
+ vd->vdev_parent->vdev_child[0] == vd)
+ vd->vdev_unspare = B_TRUE;
- (void) spa_vdev_exit(spa, NULL, txg, 0);
+ (void) spa_vdev_state_exit(spa, vd, 0);
- VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
+ VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
return (0);
}
int
-vdev_offline(spa_t *spa, uint64_t guid, int istmp)
+vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
{
- vdev_t *rvd, *vd;
- uint64_t txg;
-
- txg = spa_vdev_enter(spa);
+ vdev_t *vd;
- rvd = spa->spa_root_vdev;
+ spa_vdev_state_enter(spa);
- if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
- return (spa_vdev_exit(spa, NULL, txg, ENODEV));
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
- return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
-
- dprintf("OFFLINE: %s\n", vdev_description(vd));
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
/*
* If the device isn't already offline, try to offline it.
@@ -1496,7 +1774,7 @@ vdev_offline(spa_t *spa, uint64_t guid, int istmp)
* as long as the remaining devices don't have any DTL holes.
*/
if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
- return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+ return (spa_vdev_state_exit(spa, NULL, EBUSY));
/*
* Offline this device and reopen its top-level vdev.
@@ -1505,18 +1783,16 @@ vdev_offline(spa_t *spa, uint64_t guid, int istmp)
*/
vd->vdev_offline = B_TRUE;
vdev_reopen(vd->vdev_top);
- if (vdev_is_dead(vd->vdev_top)) {
+ if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
vd->vdev_offline = B_FALSE;
vdev_reopen(vd->vdev_top);
- return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+ return (spa_vdev_state_exit(spa, NULL, EBUSY));
}
}
- vd->vdev_tmpoffline = istmp;
+ vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
- vdev_config_dirty(vd->vdev_top);
-
- return (spa_vdev_exit(spa, NULL, txg, 0));
+ return (spa_vdev_state_exit(spa, vd, 0));
}
/*
@@ -1527,56 +1803,78 @@ vdev_offline(spa_t *spa, uint64_t guid, int istmp)
void
vdev_clear(spa_t *spa, vdev_t *vd)
{
- int c;
+ vdev_t *rvd = spa->spa_root_vdev;
+
+ ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
if (vd == NULL)
- vd = spa->spa_root_vdev;
+ vd = rvd;
vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_write_errors = 0;
vd->vdev_stat.vs_checksum_errors = 0;
- for (c = 0; c < vd->vdev_children; c++)
+ for (int c = 0; c < vd->vdev_children; c++)
vdev_clear(spa, vd->vdev_child[c]);
+
+ /*
+ * If we're in the FAULTED state or have experienced failed I/O, then
+ * clear the persistent state and attempt to reopen the device. We
+ * also mark the vdev config dirty, so that the new faulted state is
+ * written out to disk.
+ */
+ if (vd->vdev_faulted || vd->vdev_degraded ||
+ !vdev_readable(vd) || !vdev_writeable(vd)) {
+
+ vd->vdev_faulted = vd->vdev_degraded = 0;
+ vd->vdev_cant_read = B_FALSE;
+ vd->vdev_cant_write = B_FALSE;
+
+ vdev_reopen(vd);
+
+ if (vd != rvd)
+ vdev_state_dirty(vd->vdev_top);
+
+ if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
+ spa_async_request(spa, SPA_ASYNC_RESILVER);
+
+ spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
+ }
}
-int
+boolean_t
vdev_is_dead(vdev_t *vd)
{
- return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
+ return (vd->vdev_state < VDEV_STATE_DEGRADED);
}
-int
-vdev_error_inject(vdev_t *vd, zio_t *zio)
+boolean_t
+vdev_readable(vdev_t *vd)
+{
+ return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
+}
+
+boolean_t
+vdev_writeable(vdev_t *vd)
{
- int error = 0;
+ return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
+}
- if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
- return (0);
+boolean_t
+vdev_accessible(vdev_t *vd, zio_t *zio)
+{
+ ASSERT(zio->io_vd == vd);
- if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
- return (0);
+ if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
+ return (B_FALSE);
- switch (vd->vdev_fault_mode) {
- case VDEV_FAULT_RANDOM:
- if (spa_get_random(vd->vdev_fault_arg) == 0)
- error = EIO;
- break;
-
- case VDEV_FAULT_COUNT:
- if ((int64_t)--vd->vdev_fault_arg <= 0)
- vd->vdev_fault_mode = VDEV_FAULT_NONE;
- error = EIO;
- break;
- }
+ if (zio->io_type == ZIO_TYPE_READ)
+ return (!vd->vdev_cant_read);
- if (error != 0) {
- dprintf("returning %d for type %d on %s state %d offset %llx\n",
- error, zio->io_type, vdev_description(vd),
- vd->vdev_state, zio->io_offset);
- }
+ if (zio->io_type == ZIO_TYPE_WRITE)
+ return (!vd->vdev_cant_write);
- return (error);
+ return (B_TRUE);
}
/*
@@ -1586,10 +1884,10 @@ void
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
{
vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
- int c, t;
mutex_enter(&vd->vdev_stat_lock);
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
+ vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
vs->vs_state = vd->vdev_state;
vs->vs_rsize = vdev_get_rsize(vd);
@@ -1600,49 +1898,80 @@ vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
* over all top-level vdevs (i.e. the direct children of the root).
*/
if (vd == rvd) {
- for (c = 0; c < rvd->vdev_children; c++) {
+ for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *cvd = rvd->vdev_child[c];
vdev_stat_t *cvs = &cvd->vdev_stat;
mutex_enter(&vd->vdev_stat_lock);
- for (t = 0; t < ZIO_TYPES; t++) {
+ for (int t = 0; t < ZIO_TYPES; t++) {
vs->vs_ops[t] += cvs->vs_ops[t];
vs->vs_bytes[t] += cvs->vs_bytes[t];
}
- vs->vs_read_errors += cvs->vs_read_errors;
- vs->vs_write_errors += cvs->vs_write_errors;
- vs->vs_checksum_errors += cvs->vs_checksum_errors;
vs->vs_scrub_examined += cvs->vs_scrub_examined;
- vs->vs_scrub_errors += cvs->vs_scrub_errors;
mutex_exit(&vd->vdev_stat_lock);
}
}
}
void
-vdev_stat_update(zio_t *zio)
+vdev_clear_stats(vdev_t *vd)
{
- vdev_t *vd = zio->io_vd;
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_space = 0;
+ vd->vdev_stat.vs_dspace = 0;
+ vd->vdev_stat.vs_alloc = 0;
+ mutex_exit(&vd->vdev_stat_lock);
+}
+
+void
+vdev_stat_update(zio_t *zio, uint64_t psize)
+{
+ vdev_t *rvd = zio->io_spa->spa_root_vdev;
+ vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
vdev_t *pvd;
uint64_t txg = zio->io_txg;
vdev_stat_t *vs = &vd->vdev_stat;
zio_type_t type = zio->io_type;
int flags = zio->io_flags;
+ /*
+ * If this i/o is a gang leader, it didn't do any actual work.
+ */
+ if (zio->io_gang_tree)
+ return;
+
if (zio->io_error == 0) {
+ /*
+ * If this is a root i/o, don't count it -- we've already
+ * counted the top-level vdevs, and vdev_get_stats() will
+ * aggregate them when asked. This reduces contention on
+ * the root vdev_stat_lock and implicitly handles blocks
+ * that compress away to holes, for which there is no i/o.
+ * (Holes never create vdev children, so all the counters
+ * remain zero, which is what we want.)
+ *
+ * Note: this only applies to successful i/o (io_error == 0)
+ * because unlike i/o counts, errors are not additive.
+ * When reading a ditto block, for example, failure of
+ * one top-level vdev does not imply a root-level error.
+ */
+ if (vd == rvd)
+ return;
+
+ ASSERT(vd == zio->io_vd);
if (!(flags & ZIO_FLAG_IO_BYPASS)) {
mutex_enter(&vd->vdev_stat_lock);
vs->vs_ops[type]++;
- vs->vs_bytes[type] += zio->io_size;
+ vs->vs_bytes[type] += psize;
mutex_exit(&vd->vdev_stat_lock);
}
- if ((flags & ZIO_FLAG_IO_REPAIR) &&
- zio->io_delegate_list == NULL) {
+ if (flags & ZIO_FLAG_IO_REPAIR) {
+ ASSERT(zio->io_delegate_list == NULL);
mutex_enter(&vd->vdev_stat_lock);
if (flags & ZIO_FLAG_SCRUB_THREAD)
- vs->vs_scrub_repaired += zio->io_size;
+ vs->vs_scrub_repaired += psize;
else
- vs->vs_self_healed += zio->io_size;
+ vs->vs_self_healed += psize;
mutex_exit(&vd->vdev_stat_lock);
}
return;
@@ -1651,22 +1980,18 @@ vdev_stat_update(zio_t *zio)
if (flags & ZIO_FLAG_SPECULATIVE)
return;
- if (!vdev_is_dead(vd)) {
- mutex_enter(&vd->vdev_stat_lock);
- if (type == ZIO_TYPE_READ) {
- if (zio->io_error == ECKSUM)
- vs->vs_checksum_errors++;
- else
- vs->vs_read_errors++;
- }
- if (type == ZIO_TYPE_WRITE)
- vs->vs_write_errors++;
- mutex_exit(&vd->vdev_stat_lock);
+ mutex_enter(&vd->vdev_stat_lock);
+ if (type == ZIO_TYPE_READ) {
+ if (zio->io_error == ECKSUM)
+ vs->vs_checksum_errors++;
+ else
+ vs->vs_read_errors++;
}
+ if (type == ZIO_TYPE_WRITE)
+ vs->vs_write_errors++;
+ mutex_exit(&vd->vdev_stat_lock);
- if (type == ZIO_TYPE_WRITE) {
- if (txg == 0 || vd->vdev_children != 0)
- return;
+ if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
if (flags & ZIO_FLAG_SCRUB_THREAD) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
@@ -1705,7 +2030,6 @@ vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
vs->vs_scrub_complete = 0;
vs->vs_scrub_examined = 0;
vs->vs_scrub_repaired = 0;
- vs->vs_scrub_errors = 0;
vs->vs_scrub_start = gethrestime_sec();
vs->vs_scrub_end = 0;
}
@@ -1717,33 +2041,48 @@ vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
* Update the in-core space usage stats for this vdev and the root vdev.
*/
void
-vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta)
+vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
+ boolean_t update_root)
{
- ASSERT(vd == vd->vdev_top);
int64_t dspace_delta = space_delta;
+ spa_t *spa = vd->vdev_spa;
+ vdev_t *rvd = spa->spa_root_vdev;
- do {
- if (vd->vdev_ms_count) {
- /*
- * If this is a top-level vdev, apply the
- * inverse of its psize-to-asize (ie. RAID-Z)
- * space-expansion factor. We must calculate
- * this here and not at the root vdev because
- * the root vdev's psize-to-asize is simply the
- * max of its childrens', thus not accurate
- * enough for us.
- */
- ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
- dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
- vd->vdev_deflate_ratio;
- }
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
+ * factor. We must calculate this here and not at the root vdev
+ * because the root vdev's psize-to-asize is simply the max of its
+ * childrens', thus not accurate enough for us.
+ */
+ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
+ dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
+ vd->vdev_deflate_ratio;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_space += space_delta;
+ vd->vdev_stat.vs_alloc += alloc_delta;
+ vd->vdev_stat.vs_dspace += dspace_delta;
+ mutex_exit(&vd->vdev_stat_lock);
+
+ if (update_root) {
+ ASSERT(rvd == vd->vdev_parent);
+ ASSERT(vd->vdev_ms_count != 0);
+
+ /*
+ * Don't count non-normal (e.g. intent log) space as part of
+ * the pool's capacity.
+ */
+ if (vd->vdev_mg->mg_class != spa->spa_normal_class)
+ return;
- mutex_enter(&vd->vdev_stat_lock);
- vd->vdev_stat.vs_space += space_delta;
- vd->vdev_stat.vs_alloc += alloc_delta;
- vd->vdev_stat.vs_dspace += dspace_delta;
- mutex_exit(&vd->vdev_stat_lock);
- } while ((vd = vd->vdev_parent) != NULL);
+ mutex_enter(&rvd->vdev_stat_lock);
+ rvd->vdev_stat.vs_space += space_delta;
+ rvd->vdev_stat.vs_alloc += alloc_delta;
+ rvd->vdev_stat.vs_dspace += dspace_delta;
+ mutex_exit(&rvd->vdev_stat_lock);
+ }
}
/*
@@ -1759,13 +2098,53 @@ vdev_config_dirty(vdev_t *vd)
int c;
/*
- * The dirty list is protected by the config lock. The caller must
- * either hold the config lock as writer, or must be the sync thread
- * (which holds the lock as reader). There's only one sync thread,
+ * If this is an aux vdev (as with l2cache devices), then we update the
+ * vdev config manually and set the sync flag.
+ */
+ if (vd->vdev_aux != NULL) {
+ spa_aux_vdev_t *sav = vd->vdev_aux;
+ nvlist_t **aux;
+ uint_t naux;
+
+ for (c = 0; c < sav->sav_count; c++) {
+ if (sav->sav_vdevs[c] == vd)
+ break;
+ }
+
+ if (c == sav->sav_count) {
+ /*
+ * We're being removed. There's nothing more to do.
+ */
+ ASSERT(sav->sav_sync == B_TRUE);
+ return;
+ }
+
+ sav->sav_sync = B_TRUE;
+
+ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
+ ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
+
+ ASSERT(c < naux);
+
+ /*
+ * Setting the nvlist in the middle if the array is a little
+ * sketchy, but it will work.
+ */
+ nvlist_free(aux[c]);
+ aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
+
+ return;
+ }
+
+ /*
+ * The dirty list is protected by the SCL_CONFIG lock. The caller
+ * must either hold SCL_CONFIG as writer, or must be the sync thread
+ * (which holds SCL_CONFIG as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
- ASSERT(spa_config_held(spa, RW_WRITER) ||
- dsl_pool_sync_context(spa_get_dsl(spa)));
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_CONFIG, RW_READER)));
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
@@ -1773,8 +2152,8 @@ vdev_config_dirty(vdev_t *vd)
} else {
ASSERT(vd == vd->vdev_top);
- if (!list_link_active(&vd->vdev_dirty_node))
- list_insert_head(&spa->spa_dirty_list, vd);
+ if (!list_link_active(&vd->vdev_config_dirty_node))
+ list_insert_head(&spa->spa_config_dirty_list, vd);
}
}
@@ -1783,14 +2162,58 @@ vdev_config_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
- ASSERT(spa_config_held(spa, RW_WRITER) ||
- dsl_pool_sync_context(spa_get_dsl(spa)));
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_CONFIG, RW_READER)));
+
+ ASSERT(list_link_active(&vd->vdev_config_dirty_node));
+ list_remove(&spa->spa_config_dirty_list, vd);
+}
+
+/*
+ * Mark a top-level vdev's state as dirty, so that the next pass of
+ * spa_sync() can convert this into vdev_config_dirty(). We distinguish
+ * the state changes from larger config changes because they require
+ * much less locking, and are often needed for administrative actions.
+ */
+void
+vdev_state_dirty(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * The state list is protected by the SCL_STATE lock. The caller
+ * must either hold SCL_STATE as writer, or must be the sync thread
+ * (which holds SCL_STATE as reader). There's only one sync thread,
+ * so this is sufficient to ensure mutual exclusion.
+ */
+ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_STATE, RW_READER)));
- ASSERT(list_link_active(&vd->vdev_dirty_node));
- list_remove(&spa->spa_dirty_list, vd);
+ if (!list_link_active(&vd->vdev_state_dirty_node))
+ list_insert_head(&spa->spa_state_dirty_list, vd);
}
void
+vdev_state_clean(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_STATE, RW_READER)));
+
+ ASSERT(list_link_active(&vd->vdev_state_dirty_node));
+ list_remove(&spa->spa_state_dirty_list, vd);
+}
+
+/*
+ * Propagate vdev state up from children to parent.
+ */
+void
vdev_propagate_state(vdev_t *vd)
{
vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
@@ -1799,28 +2222,45 @@ vdev_propagate_state(vdev_t *vd)
int c;
vdev_t *child;
- for (c = 0; c < vd->vdev_children; c++) {
- child = vd->vdev_child[c];
- if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
- faulted++;
- else if (child->vdev_state == VDEV_STATE_DEGRADED)
- degraded++;
-
- if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
- corrupted++;
- }
+ if (vd->vdev_children > 0) {
+ for (c = 0; c < vd->vdev_children; c++) {
+ child = vd->vdev_child[c];
+
+ if (!vdev_readable(child) ||
+ (!vdev_writeable(child) && (spa_mode & FWRITE))) {
+ /*
+ * Root special: if there is a top-level log
+ * device, treat the root vdev as if it were
+ * degraded.
+ */
+ if (child->vdev_islog && vd == rvd)
+ degraded++;
+ else
+ faulted++;
+ } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
+ degraded++;
+ }
- vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
+ if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
+ corrupted++;
+ }
- /*
- * Root special: if there is a toplevel vdev that cannot be
- * opened due to corrupted metadata, then propagate the root
- * vdev's aux state as 'corrupt' rather than 'insufficient
- * replicas'.
- */
- if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN)
- vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
+ vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
+
+ /*
+ * Root special: if there is a top-level vdev that cannot be
+ * opened due to corrupted metadata, then propagate the root
+ * vdev's aux state as 'corrupt' rather than 'insufficient
+ * replicas'.
+ */
+ if (corrupted && vd == rvd &&
+ rvd->vdev_state == VDEV_STATE_CANT_OPEN)
+ vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ }
+
+ if (vd->vdev_parent)
+ vdev_propagate_state(vd->vdev_parent);
}
/*
@@ -1835,6 +2275,7 @@ void
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
{
uint64_t save_state;
+ spa_t *spa = vd->vdev_spa;
if (state == vd->vdev_state) {
vd->vdev_stat.vs_aux = aux;
@@ -1857,14 +2298,36 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_close(vd);
- if (state == VDEV_STATE_CANT_OPEN) {
+ if (vd->vdev_removed &&
+ state == VDEV_STATE_CANT_OPEN &&
+ (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
+ /*
+ * If the previous state is set to VDEV_STATE_REMOVED, then this
+ * device was previously marked removed and someone attempted to
+ * reopen it. If this failed due to a nonexistent device, then
+ * keep the device in the REMOVED state. We also let this be if
+ * it is one of our special test online cases, which is only
+ * attempting to online the device and shouldn't generate an FMA
+ * fault.
+ */
+ vd->vdev_state = VDEV_STATE_REMOVED;
+ vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
+ } else if (state == VDEV_STATE_REMOVED) {
+ /*
+ * Indicate to the ZFS DE that this device has been removed, and
+ * any recent errors should be ignored.
+ */
+ zfs_post_remove(spa, vd);
+ vd->vdev_removed = B_TRUE;
+ } else if (state == VDEV_STATE_CANT_OPEN) {
/*
* If we fail to open a vdev during an import, we mark it as
* "not available", which signifies that it was never there to
* begin with. Failure to open such a device is not considered
* an error.
*/
- if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
+ if (spa->spa_load_state == SPA_LOAD_IMPORT &&
+ !spa->spa_import_faulted &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_not_present = 1;
@@ -1874,9 +2337,18 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
* that this is part of a vdev_reopen(). In this case, we don't
* want to post the ereport if the device was already in the
* CANT_OPEN state beforehand.
+ *
+ * If the 'checkremove' flag is set, then this is an attempt to
+ * online the device in response to an insertion event. If we
+ * hit this case, then we have detected an insertion event for a
+ * faulted or offline device that wasn't in the removed state.
+ * In this scenario, we don't post an ereport because we are
+ * about to replace the device, or attempt an online with
+ * vdev_forcefault, which will generate the fault for us.
*/
- if (vd->vdev_prevstate != state && !vd->vdev_not_present &&
- vd != vd->vdev_spa->spa_root_vdev) {
+ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
+ !vd->vdev_not_present && !vd->vdev_checkremove &&
+ vd != spa->spa_root_vdev) {
const char *class;
switch (aux) {
@@ -1898,18 +2370,54 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
case VDEV_AUX_BAD_LABEL:
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
break;
+ case VDEV_AUX_IO_FAILURE:
+ class = FM_EREPORT_ZFS_IO_FAILURE;
+ break;
default:
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
}
- zfs_ereport_post(class, vd->vdev_spa,
- vd, NULL, save_state, 0);
+ zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
}
+
+ /* Erase any notion of persistent removed state */
+ vd->vdev_removed = B_FALSE;
+ } else {
+ vd->vdev_removed = B_FALSE;
}
- if (isopen)
- return;
+ if (!isopen)
+ vdev_propagate_state(vd);
+}
- if (vd->vdev_parent != NULL)
- vdev_propagate_state(vd->vdev_parent);
+/*
+ * Check the vdev configuration to ensure that it's capable of supporting
+ * a root pool. Currently, we do not support RAID-Z or partial configuration.
+ * In addition, only a single top-level vdev is allowed and none of the leaves
+ * can be wholedisks.
+ */
+boolean_t
+vdev_is_bootable(vdev_t *vd)
+{
+ int c;
+
+ if (!vd->vdev_ops->vdev_op_leaf) {
+ char *vdev_type = vd->vdev_ops->vdev_op_type;
+
+ if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
+ vd->vdev_children > 1) {
+ return (B_FALSE);
+ } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
+ strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
+ return (B_FALSE);
+ }
+ } else if (vd->vdev_wholedisk == 1) {
+ return (B_FALSE);
+ }
+
+ for (c = 0; c < vd->vdev_children; c++) {
+ if (!vdev_is_bootable(vd->vdev_child[c]))
+ return (B_FALSE);
+ }
+ return (B_TRUE);
}
OpenPOWER on IntegriCloud