summaryrefslogtreecommitdiffstats
path: root/sys/amd64/isa/clock.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/amd64/isa/clock.c')
-rw-r--r--sys/amd64/isa/clock.c539
1 files changed, 539 insertions, 0 deletions
diff --git a/sys/amd64/isa/clock.c b/sys/amd64/isa/clock.c
new file mode 100644
index 0000000..e72d6a3
--- /dev/null
+++ b/sys/amd64/isa/clock.c
@@ -0,0 +1,539 @@
+/*-
+ * Copyright (c) 1990 The Regents of the University of California.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * William Jolitz and Don Ahn.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * from: @(#)clock.c 7.2 (Berkeley) 5/12/91
+ * $Id: clock.c,v 1.15 1994/08/18 05:09:21 davidg Exp $
+ */
+
+/*
+ * Primitive clock interrupt routines.
+ */
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/time.h>
+#include <sys/kernel.h>
+#include <machine/segments.h>
+#include <machine/frame.h>
+#include <i386/isa/icu.h>
+#include <i386/isa/isa.h>
+#include <i386/isa/rtc.h>
+#include <i386/isa/timerreg.h>
+#include <machine/cpu.h>
+
+/* X-tals being what they are, it's nice to be able to fudge this one... */
+/* Note, the name changed here from XTALSPEED to TIMER_FREQ rgrimes 4/26/93 */
+#ifndef TIMER_FREQ
+#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
+#endif
+#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
+
+static int beeping;
+int timer0_divisor = TIMER_DIV(100); /* XXX should be hz */
+u_int timer0_prescale;
+static char timer0_state = 0, timer2_state = 0;
+static char timer0_reprogram = 0;
+static void (*timer_func)() = hardclock;
+static void (*new_function)();
+static u_int new_rate;
+static u_int hardclock_divisor;
+
+#ifdef I586_CPU
+int pentium_mhz = 0;
+#endif
+
+void
+clkintr(frame)
+ struct clockframe frame;
+{
+#ifdef I586_CPU
+ /*
+ * This resets the CPU cycle counter to zero, to make our
+ * job easier in microtime(). Some fancy ifdefs could speed
+ * this up for Pentium-only kernels.
+ * We want this to be done as close as possible to the actual
+ * timer incrementing in hardclock(), because there is a window
+ * between the two where the value is no longer valid. Experimentation
+ * may reveal a good precompensation to apply in microtime().
+ */
+ if(pentium_mhz) {
+ __asm __volatile("movl $0x10,%%ecx\n"
+ "xorl %%eax,%%eax\n"
+ "movl %%eax,%%edx\n"
+ ".byte 0x0f, 0x30\n"
+ "#%0%1"
+ : "=m"(frame) /* no outputs */
+ : "b"(&frame) /* fake input */
+ : "ax", "cx", "dx");
+ }
+#endif
+ hardclock(&frame);
+}
+
+static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
+
+/*
+ * This routine receives statistical clock interrupts from the RTC.
+ * As explained above, these occur at 128 interrupts per second.
+ * When profiling, we receive interrupts at a rate of 1024 Hz.
+ *
+ * This does not actually add as much overhead as it sounds, because
+ * when the statistical clock is active, the hardclock driver no longer
+ * needs to keep (inaccurate) statistics on its own. This decouples
+ * statistics gathering from scheduling interrupts.
+ *
+ * The RTC chip requires that we read status register C (RTC_INTR)
+ * to acknowledge an interrupt, before it will generate the next one.
+ */
+void
+rtcintr(struct clockframe frame)
+{
+ u_char stat;
+ stat = rtcin(RTC_INTR);
+ if(stat & RTCIR_PERIOD) {
+ statclock(&frame);
+ }
+}
+
+#ifdef DEBUG
+void
+printrtc(void)
+{
+ outb(IO_RTC, RTC_STATUSA);
+ printf("RTC status A = %x", inb(IO_RTC+1));
+ outb(IO_RTC, RTC_STATUSB);
+ printf(", B = %x", inb(IO_RTC+1));
+ outb(IO_RTC, RTC_INTR);
+ printf(", C = %x\n", inb(IO_RTC+1));
+}
+#endif
+
+#if 0
+void
+timerintr(struct clockframe frame)
+{
+ timer_func(&frame);
+ switch (timer0_state) {
+ case 0:
+ break;
+ case 1:
+ if ((timer0_prescale+=timer0_divisor) >= hardclock_divisor) {
+ hardclock(&frame);
+ timer0_prescale = 0;
+ }
+ break;
+ case 2:
+ disable_intr();
+ outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
+ outb(TIMER_CNTR0, TIMER_DIV(new_rate)%256);
+ outb(TIMER_CNTR0, TIMER_DIV(new_rate)/256);
+ enable_intr();
+ timer0_divisor = TIMER_DIV(new_rate);
+ timer0_prescale = 0;
+ timer_func = new_function;
+ timer0_state = 1;
+ break;
+ case 3:
+ if ((timer0_prescale+=timer0_divisor) >= hardclock_divisor) {
+ hardclock(&frame);
+ disable_intr();
+ outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
+ outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
+ outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
+ enable_intr();
+ timer0_divisor = TIMER_DIV(hz);
+ timer0_prescale = 0;
+ timer_func = hardclock;;
+ timer0_state = 0;
+ }
+ break;
+ }
+}
+
+#endif
+
+int
+acquire_timer0(int rate, void (*function)() )
+{
+ if (timer0_state || !function)
+ return -1;
+
+ new_function = function;
+ new_rate = rate;
+ timer0_state = 2;
+ return 0;
+}
+
+
+int
+acquire_timer2(int mode)
+{
+ if (timer2_state)
+ return -1;
+ timer2_state = 1;
+ outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
+ return 0;
+}
+
+
+int
+release_timer0()
+{
+ if (!timer0_state)
+ return -1;
+ timer0_state = 3;
+ return 0;
+}
+
+
+int
+release_timer2()
+{
+ if (!timer2_state)
+ return -1;
+ timer2_state = 0;
+ outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
+ return 0;
+}
+
+
+static int
+getit()
+{
+ int high, low;
+
+ disable_intr();
+ /* select timer0 and latch counter value */
+ outb(TIMER_MODE, TIMER_SEL0);
+ low = inb(TIMER_CNTR0);
+ high = inb(TIMER_CNTR0);
+ enable_intr();
+ return ((high << 8) | low);
+}
+
+#ifdef I586_CPU
+static long long cycles_per_sec = 0;
+
+/*
+ * Figure out how fast the cyclecounter runs. This must be run with
+ * clock interrupts disabled, but with the timer/counter programmed
+ * and running.
+ */
+void
+calibrate_cyclecounter(void)
+{
+ volatile long edx, eax, lasteax, lastedx;
+
+ __asm __volatile(".byte 0x0f, 0x31" : "=a"(lasteax), "=d"(lastedx) : );
+ DELAY(1000000);
+ __asm __volatile(".byte 0x0f, 0x31" : "=a"(eax), "=d"(edx) : );
+
+ /*
+ * This assumes that you will never have a clock rate higher
+ * than 4GHz, probably a good assumption.
+ */
+ cycles_per_sec = (long long)edx + eax;
+ cycles_per_sec -= (long long)lastedx + lasteax;
+ pentium_mhz = ((long)cycles_per_sec + 500000) / 1000000; /* round up */
+}
+#endif
+
+/*
+ * Wait "n" microseconds.
+ * Relies on timer 1 counting down from (TIMER_FREQ / hz)
+ * Note: timer had better have been programmed before this is first used!
+ */
+void
+DELAY(int n)
+{
+ int counter_limit, prev_tick, tick, ticks_left, sec, usec;
+
+#ifdef DELAYDEBUG
+ int getit_calls = 1;
+ int n1;
+ static int state = 0;
+
+ if (state == 0) {
+ state = 1;
+ for (n1 = 1; n1 <= 10000000; n1 *= 10)
+ DELAY(n1);
+ state = 2;
+ }
+ if (state == 1)
+ printf("DELAY(%d)...", n);
+#endif
+ /*
+ * Read the counter first, so that the rest of the setup overhead is
+ * counted. Guess the initial overhead is 20 usec (on most systems it
+ * takes about 1.5 usec for each of the i/o's in getit(). The loop
+ * takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
+ * multiplications and divisions to scale the count take a while).
+ */
+ prev_tick = getit(0, 0);
+ n -= 20;
+ /*
+ * Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
+ * and without any avoidable overflows.
+ */
+ sec = n / 1000000;
+ usec = n - sec * 1000000;
+ ticks_left = sec * TIMER_FREQ
+ + usec * (TIMER_FREQ / 1000000)
+ + usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ + usec * (TIMER_FREQ % 1000) / 1000000;
+
+ while (ticks_left > 0) {
+ tick = getit(0, 0);
+#ifdef DELAYDEBUG
+ ++getit_calls;
+#endif
+ if (tick > prev_tick)
+ ticks_left -= prev_tick - (tick - timer0_divisor);
+ else
+ ticks_left -= prev_tick - tick;
+ prev_tick = tick;
+ }
+#ifdef DELAYDEBUG
+ if (state == 1)
+ printf(" %d calls to getit() at %d usec each\n",
+ getit_calls, (n + 5) / getit_calls);
+#endif
+}
+
+
+static void
+sysbeepstop()
+{
+ outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
+ release_timer2();
+ beeping = 0;
+}
+
+
+int
+sysbeep(int pitch, int period)
+{
+
+ if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
+ return -1;
+ disable_intr();
+ outb(TIMER_CNTR2, pitch);
+ outb(TIMER_CNTR2, (pitch>>8));
+ enable_intr();
+ if (!beeping) {
+ outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
+ beeping = period;
+ timeout(sysbeepstop, 0, period);
+ }
+ return 0;
+}
+
+
+void
+startrtclock()
+{
+ int s;
+
+ /* initialize 8253 clock */
+ outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
+
+ /* Correct rounding will buy us a better precision in timekeeping */
+ outb (IO_TIMER1, TIMER_DIV(hz)%256);
+ outb (IO_TIMER1, TIMER_DIV(hz)/256);
+ timer0_divisor = hardclock_divisor = TIMER_DIV(hz);
+
+ /* initialize brain-dead battery powered clock */
+ outb (IO_RTC, RTC_STATUSA);
+ outb (IO_RTC+1, rtc_statusa);
+ outb (IO_RTC, RTC_STATUSB);
+ outb (IO_RTC+1, RTCSB_24HR);
+
+ outb (IO_RTC, RTC_DIAG);
+ if (s = inb (IO_RTC+1))
+ printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
+}
+
+
+/* convert 2 digit BCD number */
+int
+bcd(int i)
+{
+ return ((i/16)*10 + (i%16));
+}
+
+
+/* convert years to seconds (from 1970) */
+unsigned long
+ytos(int y)
+{
+ int i;
+ unsigned long ret;
+
+ ret = 0;
+ for(i = 1970; i < y; i++) {
+ if (i % 4) ret += 365*24*60*60;
+ else ret += 366*24*60*60;
+ }
+ return ret;
+}
+
+
+/* convert months to seconds */
+unsigned long
+mtos(int m, int leap)
+{
+ int i;
+ unsigned long ret;
+
+ ret = 0;
+ for(i=1; i<m; i++) {
+ switch(i){
+ case 1: case 3: case 5: case 7: case 8: case 10: case 12:
+ ret += 31*24*60*60; break;
+ case 4: case 6: case 9: case 11:
+ ret += 30*24*60*60; break;
+ case 2:
+ if (leap) ret += 29*24*60*60;
+ else ret += 28*24*60*60;
+ }
+ }
+ return ret;
+}
+
+
+/*
+ * Initialize the time of day register, based on the time base which is, e.g.
+ * from a filesystem.
+ */
+void
+inittodr(time_t base)
+{
+ unsigned long sec;
+ int leap, day_week, t, yd;
+ int sa,s;
+
+ /* do we have a realtime clock present? (otherwise we loop below) */
+ sa = rtcin(RTC_STATUSA);
+ if (sa == 0xff || sa == 0) return;
+
+ /* ready for a read? */
+ while ((sa&RTCSA_TUP) == RTCSA_TUP)
+ sa = rtcin(RTC_STATUSA);
+
+ sec = bcd(rtcin(RTC_YEAR)) + 1900;
+ if (sec < 1970)
+ sec += 100;
+
+ leap = !(sec % 4); sec = ytos(sec); /* year */
+ yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
+ t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
+ day_week = rtcin(RTC_WDAY); /* day */
+ sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
+ sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
+ sec += bcd(rtcin(RTC_SEC)); /* seconds */
+ sec += tz.tz_minuteswest * 60;
+ time.tv_sec = sec;
+}
+
+
+#ifdef garbage
+/*
+ * Initialze the time of day register, based on the time base which is, e.g.
+ * from a filesystem.
+ */
+test_inittodr(time_t base)
+{
+
+ outb(IO_RTC,9); /* year */
+ printf("%d ",bcd(inb(IO_RTC+1)));
+ outb(IO_RTC,8); /* month */
+ printf("%d ",bcd(inb(IO_RTC+1)));
+ outb(IO_RTC,7); /* day */
+ printf("%d ",bcd(inb(IO_RTC+1)));
+ outb(IO_RTC,4); /* hour */
+ printf("%d ",bcd(inb(IO_RTC+1)));
+ outb(IO_RTC,2); /* minutes */
+ printf("%d ",bcd(inb(IO_RTC+1)));
+ outb(IO_RTC,0); /* seconds */
+ printf("%d\n",bcd(inb(IO_RTC+1)));
+
+ time.tv_sec = base;
+}
+#endif
+
+/*
+ * Wire clock interrupt in.
+ */
+void
+enablertclock()
+{
+ register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0, clkintr,
+ HWI_MASK | SWI_MASK, /* unit */ 0);
+ INTREN(IRQ0);
+ register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0, rtcintr,
+ SWI_CLOCK_MASK, /* unit */ 0);
+ INTREN(IRQ8);
+ outb(IO_RTC, RTC_STATUSB);
+ outb(IO_RTC+1, RTCSB_PINTR | RTCSB_24HR);
+}
+
+
+/*
+ * Delay for some number of milliseconds.
+ */
+void
+spinwait(int millisecs)
+{
+ DELAY(1000 * millisecs);
+}
+
+void
+cpu_initclocks()
+{
+ stathz = RTC_NOPROFRATE;
+ profhz = RTC_PROFRATE;
+ enablertclock();
+}
+
+void
+setstatclockrate(int newhz)
+{
+ if(newhz == RTC_PROFRATE) {
+ rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
+ } else {
+ rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
+ }
+ outb(IO_RTC, RTC_STATUSA);
+ outb(IO_RTC+1, rtc_statusa);
+}
OpenPOWER on IntegriCloud