summaryrefslogtreecommitdiffstats
path: root/stand/i386/boot2/boot1.S
diff options
context:
space:
mode:
Diffstat (limited to 'stand/i386/boot2/boot1.S')
-rw-r--r--stand/i386/boot2/boot1.S373
1 files changed, 373 insertions, 0 deletions
diff --git a/stand/i386/boot2/boot1.S b/stand/i386/boot2/boot1.S
new file mode 100644
index 0000000..984ab52
--- /dev/null
+++ b/stand/i386/boot2/boot1.S
@@ -0,0 +1,373 @@
+/*
+ * Copyright (c) 1998 Robert Nordier
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms are freely
+ * permitted provided that the above copyright notice and this
+ * paragraph and the following disclaimer are duplicated in all
+ * such forms.
+ *
+ * This software is provided "AS IS" and without any express or
+ * implied warranties, including, without limitation, the implied
+ * warranties of merchantability and fitness for a particular
+ * purpose.
+ *
+ * $FreeBSD$
+ */
+
+/* Memory Locations */
+ .set MEM_REL,0x700 # Relocation address
+ .set MEM_ARG,0x900 # Arguments
+ .set MEM_ORG,0x7c00 # Origin
+ .set MEM_BUF,0x8c00 # Load area
+ .set MEM_BTX,0x9000 # BTX start
+ .set MEM_JMP,0x9010 # BTX entry point
+ .set MEM_USR,0xa000 # Client start
+ .set BDA_BOOT,0x472 # Boot howto flag
+
+/* Partition Constants */
+ .set PRT_OFF,0x1be # Partition offset
+ .set PRT_NUM,0x4 # Partitions
+ .set PRT_BSD,0xa5 # Partition type
+
+/* Flag Bits */
+ .set FL_PACKET,0x80 # Packet mode
+
+/* Misc. Constants */
+ .set SIZ_PAG,0x1000 # Page size
+ .set SIZ_SEC,0x200 # Sector size
+
+ .set NSECT,0x10
+ .globl start
+ .globl xread
+ .code16
+
+start: jmp main # Start recognizably
+
+/*
+ * This is the start of a standard BIOS Parameter Block (BPB). Most bootable
+ * FAT disks have this at the start of their MBR. While normal BIOS's will
+ * work fine without this section, IBM's El Torito emulation "fixes" up the
+ * BPB by writing into the memory copy of the MBR. Rather than have data
+ * written into our xread routine, we'll define a BPB to work around it.
+ * The data marked with (T) indicates a field required for a ThinkPad to
+ * recognize the disk and (W) indicates fields written from IBM BIOS code.
+ * The use of the BPB is based on what OpenBSD and NetBSD implemented in
+ * their boot code but the required fields were determined by trial and error.
+ *
+ * Note: If additional space is needed in boot1, one solution would be to
+ * move the "prompt" message data (below) to replace the OEM ID.
+ */
+ .org 0x03, 0x00
+oemid: .space 0x08, 0x00 # OEM ID
+
+ .org 0x0b, 0x00
+bpb: .word 512 # sector size (T)
+ .byte 0 # sectors/clustor
+ .word 0 # reserved sectors
+ .byte 0 # number of FATs
+ .word 0 # root entries
+ .word 0 # small sectors
+ .byte 0 # media type (W)
+ .word 0 # sectors/fat
+ .word 18 # sectors per track (T)
+ .word 2 # number of heads (T)
+ .long 0 # hidden sectors (W)
+ .long 0 # large sectors
+
+ .org 0x24, 0x00
+ebpb: .byte 0 # BIOS physical drive number (W)
+
+ .org 0x25,0x90
+/*
+ * Trampoline used by boot2 to call read to read data from the disk via
+ * the BIOS. Call with:
+ *
+ * %cx:%ax - long - LBA to read in
+ * %es:(%bx) - caddr_t - buffer to read data into
+ * %dl - byte - drive to read from
+ * %dh - byte - num sectors to read
+ */
+
+xread: push %ss # Address
+ pop %ds # data
+/*
+ * Setup an EDD disk packet and pass it to read
+ */
+xread.1: # Starting
+ pushl $0x0 # absolute
+ push %cx # block
+ push %ax # number
+ push %es # Address of
+ push %bx # transfer buffer
+ xor %ax,%ax # Number of
+ movb %dh,%al # blocks to
+ push %ax # transfer
+ push $0x10 # Size of packet
+ mov %sp,%bp # Packet pointer
+ callw read # Read from disk
+ lea 0x10(%bp),%sp # Clear stack
+ lret # To far caller
+/*
+ * Load the rest of boot2 and BTX up, copy the parts to the right locations,
+ * and start it all up.
+ */
+
+/*
+ * Setup the segment registers to flat addressing (segment 0) and setup the
+ * stack to end just below the start of our code.
+ */
+main: cld # String ops inc
+ xor %cx,%cx # Zero
+ mov %cx,%es # Address
+ mov %cx,%ds # data
+ mov %cx,%ss # Set up
+ mov $start,%sp # stack
+/*
+ * Relocate ourself to MEM_REL. Since %cx == 0, the inc %ch sets
+ * %cx == 0x100. Note that boot1 does not use this relocated copy
+ * of itself while loading boot2; however, BTX reclaims the memory
+ * used by boot1 during its initialization. As a result, boot2 uses
+ * xread from the relocated copy.
+ */
+ mov %sp,%si # Source
+ mov $MEM_REL,%di # Destination
+ incb %ch # Word count
+ rep # Copy
+ movsw # code
+/*
+ * If we are on a hard drive, then load the MBR and look for the first
+ * FreeBSD slice. We use the fake partition entry below that points to
+ * the MBR when we call nread. The first pass looks for the first active
+ * FreeBSD slice. The second pass looks for the first non-active FreeBSD
+ * slice if the first one fails.
+ */
+ mov $part4,%si # Partition
+ cmpb $0x80,%dl # Hard drive?
+ jb main.4 # No
+ movb $0x1,%dh # Block count
+ callw nread # Read MBR
+ mov $0x1,%cx # Two passes
+main.1: mov $MEM_BUF+PRT_OFF,%si # Partition table
+ movb $0x1,%dh # Partition
+main.2: cmpb $PRT_BSD,0x4(%si) # Our partition type?
+ jne main.3 # No
+ jcxz main.5 # If second pass
+ testb $0x80,(%si) # Active?
+ jnz main.5 # Yes
+main.3: add $0x10,%si # Next entry
+ incb %dh # Partition
+ cmpb $0x1+PRT_NUM,%dh # In table?
+ jb main.2 # Yes
+ dec %cx # Do two
+ jcxz main.1 # passes
+/*
+ * If we get here, we didn't find any FreeBSD slices at all, so print an
+ * error message and die.
+ */
+ mov $msg_part,%si # Message
+ jmp error # Error
+/*
+ * Floppies use partition 0 of drive 0.
+ */
+main.4: xor %dx,%dx # Partition:drive
+/*
+ * Ok, we have a slice and drive in %dx now, so use that to locate and load
+ * boot2. %si references the start of the slice we are looking for, so go
+ * ahead and load up the first 16 sectors (boot1 + boot2) from that. When
+ * we read it in, we conveniently use 0x8c00 as our transfer buffer. Thus,
+ * boot1 ends up at 0x8c00, and boot2 starts at 0x8c00 + 0x200 = 0x8e00.
+ * The first part of boot2 is the disklabel, which is 0x200 bytes long.
+ * The second part is BTX, which is thus loaded into 0x9000, which is where
+ * it also runs from. The boot2.bin binary starts right after the end of
+ * BTX, so we have to figure out where the start of it is and then move the
+ * binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000, but
+ * when we use btxld to create boot2, we use an entry point of 0x2000. That
+ * entry point is relative to MEM_USR; thus boot2.bin starts at 0xc000.
+ */
+main.5: mov %dx,MEM_ARG # Save args
+ movb $NSECT,%dh # Sector count
+ callw nread # Read disk
+ mov $MEM_BTX,%bx # BTX
+ mov 0xa(%bx),%si # Get BTX length and set
+ add %bx,%si # %si to start of boot2.bin
+ mov $MEM_USR+SIZ_PAG*2,%di # Client page 2
+ mov $MEM_BTX+(NSECT-1)*SIZ_SEC,%cx # Byte
+ sub %si,%cx # count
+ rep # Relocate
+ movsb # client
+
+/*
+ * Enable A20 so we can access memory above 1 meg.
+ * Use the zero-valued %cx as a timeout for embedded hardware which do not
+ * have a keyboard controller.
+ */
+seta20: cli # Disable interrupts
+seta20.1: dec %cx # Timeout?
+ jz seta20.3 # Yes
+ inb $0x64,%al # Get status
+ testb $0x2,%al # Busy?
+ jnz seta20.1 # Yes
+ movb $0xd1,%al # Command: Write
+ outb %al,$0x64 # output port
+seta20.2: inb $0x64,%al # Get status
+ testb $0x2,%al # Busy?
+ jnz seta20.2 # Yes
+ movb $0xdf,%al # Enable
+ outb %al,$0x60 # A20
+seta20.3: sti # Enable interrupts
+
+ jmp start+MEM_JMP-MEM_ORG # Start BTX
+
+
+/*
+ * Trampoline used to call read from within boot1.
+ */
+nread: mov $MEM_BUF,%bx # Transfer buffer
+ mov 0x8(%si),%ax # Get
+ mov 0xa(%si),%cx # LBA
+ push %cs # Read from
+ callw xread.1 # disk
+ jnc return # If success, return
+ mov $msg_read,%si # Otherwise, set the error
+ # message and fall through to
+ # the error routine
+/*
+ * Print out the error message pointed to by %ds:(%si) followed
+ * by a prompt, wait for a keypress, and then reboot the machine.
+ */
+error: callw putstr # Display message
+ mov $prompt,%si # Display
+ callw putstr # prompt
+ xorb %ah,%ah # BIOS: Get
+ int $0x16 # keypress
+ movw $0x1234, BDA_BOOT # Do a warm boot
+ ljmp $0xf000,$0xfff0 # reboot the machine
+/*
+ * Display a null-terminated string using the BIOS output.
+ */
+putstr.0: mov $0x7,%bx # Page:attribute
+ movb $0xe,%ah # BIOS: Display
+ int $0x10 # character
+putstr: lodsb # Get char
+ testb %al,%al # End of string?
+ jne putstr.0 # No
+
+/*
+ * Overused return code. ereturn is used to return an error from the
+ * read function. Since we assume putstr succeeds, we (ab)use the
+ * same code when we return from putstr.
+ */
+ereturn: movb $0x1,%ah # Invalid
+ stc # argument
+return: retw # To caller
+/*
+ * Reads sectors from the disk. If EDD is enabled, then check if it is
+ * installed and use it if it is. If it is not installed or not enabled, then
+ * fall back to using CHS. Since we use a LBA, if we are using CHS, we have to
+ * fetch the drive parameters from the BIOS and divide it out ourselves.
+ * Call with:
+ *
+ * %dl - byte - drive number
+ * stack - 10 bytes - EDD Packet
+ */
+read: testb $FL_PACKET,%cs:MEM_REL+flags-start # LBA support enabled?
+ jz read.1 # No, use CHS
+ cmpb $0x80,%dl # Hard drive?
+ jb read.1 # No, use CHS
+ mov $0x55aa,%bx # Magic
+ push %dx # Save
+ movb $0x41,%ah # BIOS: Check
+ int $0x13 # extensions present
+ pop %dx # Restore
+ jc read.1 # If error, use CHS
+ cmp $0xaa55,%bx # Magic?
+ jne read.1 # No, so use CHS
+ testb $0x1,%cl # Packet interface?
+ jz read.1 # No, so use CHS
+ mov %bp,%si # Disk packet
+ movb $0x42,%ah # BIOS: Extended
+ int $0x13 # read
+ retw # To caller
+read.1: push %dx # Save
+ movb $0x8,%ah # BIOS: Get drive
+ int $0x13 # parameters
+ movb %dh,%ch # Max head number
+ pop %dx # Restore
+ jc return # If error
+ andb $0x3f,%cl # Sectors per track
+ jz ereturn # If zero
+ cli # Disable interrupts
+ mov 0x8(%bp),%eax # Get LBA
+ push %dx # Save
+ movzbl %cl,%ebx # Divide by
+ xor %edx,%edx # sectors
+ div %ebx # per track
+ movb %ch,%bl # Max head number
+ movb %dl,%ch # Sector number
+ inc %bx # Divide by
+ xorb %dl,%dl # number
+ div %ebx # of heads
+ movb %dl,%bh # Head number
+ pop %dx # Restore
+ cmpl $0x3ff,%eax # Cylinder number supportable?
+ sti # Enable interrupts
+ ja ereturn # No, return an error
+ xchgb %al,%ah # Set up cylinder
+ rorb $0x2,%al # number
+ orb %ch,%al # Merge
+ inc %ax # sector
+ xchg %ax,%cx # number
+ movb %bh,%dh # Head number
+ subb %ah,%al # Sectors this track
+ mov 0x2(%bp),%ah # Blocks to read
+ cmpb %ah,%al # To read
+ jb read.2 # this
+#ifdef TRACK_AT_A_TIME
+ movb %ah,%al # track
+#else
+ movb $1,%al # one sector
+#endif
+read.2: mov $0x5,%di # Try count
+read.3: les 0x4(%bp),%bx # Transfer buffer
+ push %ax # Save
+ movb $0x2,%ah # BIOS: Read
+ int $0x13 # from disk
+ pop %bx # Restore
+ jnc read.4 # If success
+ dec %di # Retry?
+ jz read.6 # No
+ xorb %ah,%ah # BIOS: Reset
+ int $0x13 # disk system
+ xchg %bx,%ax # Block count
+ jmp read.3 # Continue
+read.4: movzbw %bl,%ax # Sectors read
+ add %ax,0x8(%bp) # Adjust
+ jnc read.5 # LBA,
+ incw 0xa(%bp) # transfer
+read.5: shlb %bl # buffer
+ add %bl,0x5(%bp) # pointer,
+ sub %al,0x2(%bp) # block count
+ ja read.1 # If not done
+read.6: retw # To caller
+
+/* Messages */
+
+msg_read: .asciz "Read"
+msg_part: .asciz "Boot"
+
+prompt: .asciz " error\r\n"
+
+flags: .byte FLAGS # Flags
+
+ .org PRT_OFF,0x90
+
+/* Partition table */
+
+ .fill 0x30,0x1,0x0
+part4: .byte 0x80, 0x00, 0x01, 0x00
+ .byte 0xa5, 0xfe, 0xff, 0xff
+ .byte 0x00, 0x00, 0x00, 0x00
+ .byte 0x50, 0xc3, 0x00, 0x00 # 50000 sectors long, bleh
+
+ .word 0xaa55 # Magic number
OpenPOWER on IntegriCloud