summaryrefslogtreecommitdiffstats
path: root/share/doc/psd/21.ipc/5.t
diff options
context:
space:
mode:
Diffstat (limited to 'share/doc/psd/21.ipc/5.t')
-rw-r--r--share/doc/psd/21.ipc/5.t1667
1 files changed, 1667 insertions, 0 deletions
diff --git a/share/doc/psd/21.ipc/5.t b/share/doc/psd/21.ipc/5.t
new file mode 100644
index 0000000..fe6977e
--- /dev/null
+++ b/share/doc/psd/21.ipc/5.t
@@ -0,0 +1,1667 @@
+.\" Copyright (c) 1986, 1993
+.\" The Regents of the University of California. All rights reserved.
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\" notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\" notice, this list of conditions and the following disclaimer in the
+.\" documentation and/or other materials provided with the distribution.
+.\" 3. All advertising materials mentioning features or use of this software
+.\" must display the following acknowledgement:
+.\" This product includes software developed by the University of
+.\" California, Berkeley and its contributors.
+.\" 4. Neither the name of the University nor the names of its contributors
+.\" may be used to endorse or promote products derived from this software
+.\" without specific prior written permission.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+.\" SUCH DAMAGE.
+.\"
+.\" @(#)5.t 8.1 (Berkeley) 8/14/93
+.\"
+.\".ds RH "Advanced Topics
+.bp
+.nr H1 5
+.nr H2 0
+.LG
+.B
+.ce
+5. ADVANCED TOPICS
+.sp 2
+.R
+.NL
+.PP
+A number of facilities have yet to be discussed. For most users
+of the IPC the mechanisms already
+described will suffice in constructing distributed
+applications. However, others will find the need to utilize some
+of the features which we consider in this section.
+.NH 2
+Out of band data
+.PP
+The stream socket abstraction includes the notion of \*(lqout
+of band\*(rq data. Out of band data is a logically independent
+transmission channel associated with each pair of connected
+stream sockets. Out of band data is delivered to the user
+independently of normal data.
+The abstraction defines that the out of band data facilities
+must support the reliable delivery of at least one
+out of band message at a time. This message may contain at least one
+byte of data, and at least one message may be pending delivery
+to the user at any one time. For communications protocols which
+support only in-band signaling (i.e. the urgent data is
+delivered in sequence with the normal data), the system normally extracts
+the data from the normal data stream and stores it separately.
+This allows users to choose between receiving the urgent data
+in order and receiving it out of sequence without having to
+buffer all the intervening data. It is possible
+to ``peek'' (via MSG_PEEK) at out of band data.
+If the socket has a process group, a SIGURG signal is generated
+when the protocol is notified of its existence.
+A process can set the process group
+or process id to be informed by the SIGURG signal via the
+appropriate \fIfcntl\fP call, as described below for
+SIGIO.
+If multiple sockets may have out of band data awaiting
+delivery, a \fIselect\fP call for exceptional conditions
+may be used to determine those sockets with such data pending.
+Neither the signal nor the select indicate the actual arrival
+of the out-of-band data, but only notification that it is pending.
+.PP
+In addition to the information passed, a logical mark is placed in
+the data stream to indicate the point at which the out
+of band data was sent. The remote login and remote shell
+applications use this facility to propagate signals between
+client and server processes. When a signal
+flushs any pending output from the remote process(es), all
+data up to the mark in the data stream is discarded.
+.PP
+To send an out of band message the MSG_OOB flag is supplied to
+a \fIsend\fP or \fIsendto\fP calls,
+while to receive out of band data MSG_OOB should be indicated
+when performing a \fIrecvfrom\fP or \fIrecv\fP call.
+To find out if the read pointer is currently pointing at
+the mark in the data stream, the SIOCATMARK ioctl is provided:
+.DS
+ioctl(s, SIOCATMARK, &yes);
+.DE
+If \fIyes\fP is a 1 on return, the next read will return data
+after the mark. Otherwise (assuming out of band data has arrived),
+the next read will provide data sent by the client prior
+to transmission of the out of band signal. The routine used
+in the remote login process to flush output on receipt of an
+interrupt or quit signal is shown in Figure 5.
+It reads the normal data up to the mark (to discard it),
+then reads the out-of-band byte.
+.KF
+.DS
+#include <sys/ioctl.h>
+#include <sys/file.h>
+ ...
+oob()
+{
+ int out = FWRITE, mark;
+ char waste[BUFSIZ];
+
+ /* flush local terminal output */
+ ioctl(1, TIOCFLUSH, (char *)&out);
+ for (;;) {
+ if (ioctl(rem, SIOCATMARK, &mark) < 0) {
+ perror("ioctl");
+ break;
+ }
+ if (mark)
+ break;
+ (void) read(rem, waste, sizeof (waste));
+ }
+ if (recv(rem, &mark, 1, MSG_OOB) < 0) {
+ perror("recv");
+ ...
+ }
+ ...
+}
+.DE
+.ce
+Figure 5. Flushing terminal I/O on receipt of out of band data.
+.sp
+.KE
+.PP
+A process may also read or peek at the out-of-band data
+without first reading up to the mark.
+This is more difficult when the underlying protocol delivers
+the urgent data in-band with the normal data, and only sends
+notification of its presence ahead of time (e.g., the TCP protocol
+used to implement streams in the Internet domain).
+With such protocols, the out-of-band byte may not yet have arrived
+when a \fIrecv\fP is done with the MSG_OOB flag.
+In that case, the call will return an error of EWOULDBLOCK.
+Worse, there may be enough in-band data in the input buffer
+that normal flow control prevents the peer from sending the urgent data
+until the buffer is cleared.
+The process must then read enough of the queued data
+that the urgent data may be delivered.
+.PP
+Certain programs that use multiple bytes of urgent data and must
+handle multiple urgent signals (e.g., \fItelnet\fP\|(1C))
+need to retain the position of urgent data within the stream.
+This treatment is available as a socket-level option, SO_OOBINLINE;
+see \fIsetsockopt\fP\|(2) for usage.
+With this option, the position of urgent data (the \*(lqmark\*(rq)
+is retained, but the urgent data immediately follows the mark
+within the normal data stream returned without the MSG_OOB flag.
+Reception of multiple urgent indications causes the mark to move,
+but no out-of-band data are lost.
+.NH 2
+Non-Blocking Sockets
+.PP
+It is occasionally convenient to make use of sockets
+which do not block; that is, I/O requests which
+cannot complete immediately and
+would therefore cause the process to be suspended awaiting completion are
+not executed, and an error code is returned.
+Once a socket has been created via
+the \fIsocket\fP call, it may be marked as non-blocking
+by \fIfcntl\fP as follows:
+.DS
+#include <fcntl.h>
+ ...
+int s;
+ ...
+s = socket(AF_INET, SOCK_STREAM, 0);
+ ...
+if (fcntl(s, F_SETFL, FNDELAY) < 0)
+ perror("fcntl F_SETFL, FNDELAY");
+ exit(1);
+}
+ ...
+.DE
+.PP
+When performing non-blocking I/O on sockets, one must be
+careful to check for the error EWOULDBLOCK (stored in the
+global variable \fIerrno\fP), which occurs when
+an operation would normally block, but the socket it
+was performed on is marked as non-blocking.
+In particular, \fIaccept\fP, \fIconnect\fP, \fIsend\fP, \fIrecv\fP,
+\fIread\fP, and \fIwrite\fP can
+all return EWOULDBLOCK, and processes should be prepared
+to deal with such return codes.
+If an operation such as a \fIsend\fP cannot be done in its entirety,
+but partial writes are sensible (for example, when using a stream socket),
+the data that can be sent immediately will be processed,
+and the return value will indicate the amount actually sent.
+.NH 2
+Interrupt driven socket I/O
+.PP
+The SIGIO signal allows a process to be notified
+via a signal when a socket (or more generally, a file
+descriptor) has data waiting to be read. Use of
+the SIGIO facility requires three steps: First,
+the process must set up a SIGIO signal handler
+by use of the \fIsignal\fP or \fIsigvec\fP calls. Second,
+it must set the process id or process group id which is to receive
+notification of pending input to its own process id,
+or the process group id of its process group (note that
+the default process group of a socket is group zero).
+This is accomplished by use of an \fIfcntl\fP call.
+Third, it must enable asynchronous notification of pending I/O requests
+with another \fIfcntl\fP call. Sample code to
+allow a given process to receive information on
+pending I/O requests as they occur for a socket \fIs\fP
+is given in Figure 6. With the addition of a handler for SIGURG,
+this code can also be used to prepare for receipt of SIGURG signals.
+.KF
+.DS
+#include <fcntl.h>
+ ...
+int io_handler();
+ ...
+signal(SIGIO, io_handler);
+
+/* Set the process receiving SIGIO/SIGURG signals to us */
+
+if (fcntl(s, F_SETOWN, getpid()) < 0) {
+ perror("fcntl F_SETOWN");
+ exit(1);
+}
+
+/* Allow receipt of asynchronous I/O signals */
+
+if (fcntl(s, F_SETFL, FASYNC) < 0) {
+ perror("fcntl F_SETFL, FASYNC");
+ exit(1);
+}
+.DE
+.ce
+Figure 6. Use of asynchronous notification of I/O requests.
+.sp
+.KE
+.NH 2
+Signals and process groups
+.PP
+Due to the existence of the SIGURG and SIGIO signals each socket has an
+associated process number, just as is done for terminals.
+This value is initialized to zero,
+but may be redefined at a later time with the F_SETOWN
+\fIfcntl\fP, such as was done in the code above for SIGIO.
+To set the socket's process id for signals, positive arguments
+should be given to the \fIfcntl\fP call. To set the socket's
+process group for signals, negative arguments should be
+passed to \fIfcntl\fP. Note that the process number indicates
+either the associated process id or the associated process
+group; it is impossible to specify both at the same time.
+A similar \fIfcntl\fP, F_GETOWN, is available for determining the
+current process number of a socket.
+.PP
+Another signal which is useful when constructing server processes
+is SIGCHLD. This signal is delivered to a process when any
+child processes have changed state. Normally servers use
+the signal to \*(lqreap\*(rq child processes that have exited
+without explicitly awaiting their termination
+or periodic polling for exit status.
+For example, the remote login server loop shown in Figure 2
+may be augmented as shown in Figure 7.
+.KF
+.DS
+int reaper();
+ ...
+signal(SIGCHLD, reaper);
+listen(f, 5);
+for (;;) {
+ int g, len = sizeof (from);
+
+ g = accept(f, (struct sockaddr *)&from, &len,);
+ if (g < 0) {
+ if (errno != EINTR)
+ syslog(LOG_ERR, "rlogind: accept: %m");
+ continue;
+ }
+ ...
+}
+ ...
+#include <wait.h>
+reaper()
+{
+ union wait status;
+
+ while (wait3(&status, WNOHANG, 0) > 0)
+ ;
+}
+.DE
+.sp
+.ce
+Figure 7. Use of the SIGCHLD signal.
+.sp
+.KE
+.PP
+If the parent server process fails to reap its children,
+a large number of \*(lqzombie\*(rq processes may be created.
+.NH 2
+Pseudo terminals
+.PP
+Many programs will not function properly without a terminal
+for standard input and output. Since sockets do not provide
+the semantics of terminals,
+it is often necessary to have a process communicating over
+the network do so through a \fIpseudo-terminal\fP. A pseudo-
+terminal is actually a pair of devices, master and slave,
+which allow a process to serve as an active agent in communication
+between processes and users. Data written on the slave side
+of a pseudo-terminal is supplied as input to a process reading
+from the master side, while data written on the master side are
+processed as terminal input for the slave.
+In this way, the process manipulating
+the master side of the pseudo-terminal has control over the
+information read and written on the slave side
+as if it were manipulating the keyboard and reading the screen
+on a real terminal.
+The purpose of this abstraction is to
+preserve terminal semantics over a network connection\(em
+that is, the slave side appears as a normal terminal to
+any process reading from or writing to it.
+.PP
+For example, the remote
+login server uses pseudo-terminals for remote login sessions.
+A user logging in to a machine across the network is provided
+a shell with a slave pseudo-terminal as standard input, output,
+and error. The server process then handles the communication
+between the programs invoked by the remote shell and the user's
+local client process.
+When a user sends a character that generates an interrupt
+on the remote machine that flushes terminal output,
+the pseudo-terminal generates a control message for the server process.
+The server then sends an out of band message
+to the client process to signal a flush of data at the real terminal
+and on the intervening data buffered in the network.
+.PP
+Under 4.4BSD, the name of the slave side of a pseudo-terminal is of the form
+\fI/dev/ttyxy\fP, where \fIx\fP is a single letter
+starting at `p' and continuing to `t'.
+\fIy\fP is a hexadecimal digit (i.e., a single
+character in the range 0 through 9 or `a' through `f').
+The master side of a pseudo-terminal is \fI/dev/ptyxy\fP,
+where \fIx\fP and \fIy\fP correspond to the
+slave side of the pseudo-terminal.
+.PP
+In general, the method of obtaining a pair of master and
+slave pseudo-terminals is to
+find a pseudo-terminal which
+is not currently in use.
+The master half of a pseudo-terminal is a single-open device;
+thus, each master may be opened in turn until an open succeeds.
+The slave side of the pseudo-terminal is then opened,
+and is set to the proper terminal modes if necessary.
+The process then \fIfork\fPs; the child closes
+the master side of the pseudo-terminal, and \fIexec\fPs the
+appropriate program. Meanwhile, the parent closes the
+slave side of the pseudo-terminal and begins reading and
+writing from the master side. Sample code making use of
+pseudo-terminals is given in Figure 8; this code assumes
+that a connection on a socket \fIs\fP exists, connected
+to a peer who wants a service of some kind, and that the
+process has disassociated itself from any previous controlling terminal.
+.KF
+.DS
+gotpty = 0;
+for (c = 'p'; !gotpty && c <= 's'; c++) {
+ line = "/dev/ptyXX";
+ line[sizeof("/dev/pty")-1] = c;
+ line[sizeof("/dev/ptyp")-1] = '0';
+ if (stat(line, &statbuf) < 0)
+ break;
+ for (i = 0; i < 16; i++) {
+ line[sizeof("/dev/ptyp")-1] = "0123456789abcdef"[i];
+ master = open(line, O_RDWR);
+ if (master > 0) {
+ gotpty = 1;
+ break;
+ }
+ }
+}
+if (!gotpty) {
+ syslog(LOG_ERR, "All network ports in use");
+ exit(1);
+}
+
+line[sizeof("/dev/")-1] = 't';
+slave = open(line, O_RDWR); /* \fIslave\fP is now slave side */
+if (slave < 0) {
+ syslog(LOG_ERR, "Cannot open slave pty %s", line);
+ exit(1);
+}
+
+ioctl(slave, TIOCGETP, &b); /* Set slave tty modes */
+b.sg_flags = CRMOD|XTABS|ANYP;
+ioctl(slave, TIOCSETP, &b);
+
+i = fork();
+if (i < 0) {
+ syslog(LOG_ERR, "fork: %m");
+ exit(1);
+} else if (i) { /* Parent */
+ close(slave);
+ ...
+} else { /* Child */
+ (void) close(s);
+ (void) close(master);
+ dup2(slave, 0);
+ dup2(slave, 1);
+ dup2(slave, 2);
+ if (slave > 2)
+ (void) close(slave);
+ ...
+}
+.DE
+.ce
+Figure 8. Creation and use of a pseudo terminal
+.sp
+.KE
+.NH 2
+Selecting specific protocols
+.PP
+If the third argument to the \fIsocket\fP call is 0,
+\fIsocket\fP will select a default protocol to use with
+the returned socket of the type requested.
+The default protocol is usually correct, and alternate choices are not
+usually available.
+However, when using ``raw'' sockets to communicate directly with
+lower-level protocols or hardware interfaces,
+the protocol argument may be important for setting up demultiplexing.
+For example, raw sockets in the Internet family may be used to implement
+a new protocol above IP, and the socket will receive packets
+only for the protocol specified.
+To obtain a particular protocol one determines the protocol number
+as defined within the communication domain. For the Internet
+domain one may use one of the library routines
+discussed in section 3, such as \fIgetprotobyname\fP:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netinet/in.h>
+#include <netdb.h>
+ ...
+pp = getprotobyname("newtcp");
+s = socket(AF_INET, SOCK_STREAM, pp->p_proto);
+.DE
+This would result in a socket \fIs\fP using a stream
+based connection, but with protocol type of ``newtcp''
+instead of the default ``tcp.''
+.PP
+In the NS domain, the available socket protocols are defined in
+<\fInetns/ns.h\fP>. To create a raw socket for Xerox Error Protocol
+messages, one might use:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netns/ns.h>
+ ...
+s = socket(AF_NS, SOCK_RAW, NSPROTO_ERROR);
+.DE
+.NH 2
+Address binding
+.PP
+As was mentioned in section 2,
+binding addresses to sockets in the Internet and NS domains can be
+fairly complex. As a brief reminder, these associations
+are composed of local and foreign
+addresses, and local and foreign ports. Port numbers are
+allocated out of separate spaces, one for each system and one
+for each domain on that system.
+Through the \fIbind\fP system call, a
+process may specify half of an association, the
+<local address, local port> part, while the
+\fIconnect\fP
+and \fIaccept\fP
+primitives are used to complete a socket's association by
+specifying the <foreign address, foreign port> part.
+Since the association is created in two steps the association
+uniqueness requirement indicated previously could be violated unless
+care is taken. Further, it is unrealistic to expect user
+programs to always know proper values to use for the local address
+and local port since a host may reside on multiple networks and
+the set of allocated port numbers is not directly accessible
+to a user.
+.PP
+To simplify local address binding in the Internet domain the notion of a
+\*(lqwildcard\*(rq address has been provided. When an address
+is specified as INADDR_ANY (a manifest constant defined in
+<netinet/in.h>), the system interprets the address as
+\*(lqany valid address\*(rq. For example, to bind a specific
+port number to a socket, but leave the local address unspecified,
+the following code might be used:
+.DS
+#include <sys/types.h>
+#include <netinet/in.h>
+ ...
+struct sockaddr_in sin;
+ ...
+s = socket(AF_INET, SOCK_STREAM, 0);
+sin.sin_family = AF_INET;
+sin.sin_addr.s_addr = htonl(INADDR_ANY);
+sin.sin_port = htons(MYPORT);
+bind(s, (struct sockaddr *) &sin, sizeof (sin));
+.DE
+Sockets with wildcarded local addresses may receive messages
+directed to the specified port number, and sent to any
+of the possible addresses assigned to a host. For example,
+if a host has addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as
+above, the process will be
+able to accept connection requests which are addressed to
+128.32.0.4 or 10.0.0.78.
+If a server process wished to only allow hosts on a
+given network connect to it, it would bind
+the address of the host on the appropriate network.
+.PP
+In a similar fashion, a local port may be left unspecified
+(specified as zero), in which case the system will select an
+appropriate port number for it. This shortcut will work
+both in the Internet and NS domains. For example, to
+bind a specific local address to a socket, but to leave the
+local port number unspecified:
+.DS
+hp = gethostbyname(hostname);
+if (hp == NULL) {
+ ...
+}
+bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length);
+sin.sin_port = htons(0);
+bind(s, (struct sockaddr *) &sin, sizeof (sin));
+.DE
+The system selects the local port number based on two criteria.
+The first is that on 4BSD systems,
+Internet ports below IPPORT_RESERVED (1024) (for the Xerox domain,
+0 through 3000) are reserved
+for privileged users (i.e., the super user);
+Internet ports above IPPORT_USERRESERVED (50000) are reserved
+for non-privileged servers. The second is
+that the port number is not currently bound to some other
+socket. In order to find a free Internet port number in the privileged
+range the \fIrresvport\fP library routine may be used as follows
+to return a stream socket in with a privileged port number:
+.DS
+int lport = IPPORT_RESERVED \- 1;
+int s;
+\&...
+s = rresvport(&lport);
+if (s < 0) {
+ if (errno == EAGAIN)
+ fprintf(stderr, "socket: all ports in use\en");
+ else
+ perror("rresvport: socket");
+ ...
+}
+.DE
+The restriction on allocating ports was done to allow processes
+executing in a \*(lqsecure\*(rq environment to perform authentication
+based on the originating address and port number. For example,
+the \fIrlogin\fP(1) command allows users to log in across a network
+without being asked for a password, if two conditions hold:
+First, the name of the system the user
+is logging in from is in the file
+\fI/etc/hosts.equiv\fP on the system he is logging
+in to (or the system name and the user name are in
+the user's \fI.rhosts\fP file in the user's home
+directory), and second, that the user's rlogin
+process is coming from a privileged port on the machine from which he is
+logging. The port number and network address of the
+machine from which the user is logging in can be determined either
+by the \fIfrom\fP result of the \fIaccept\fP call, or
+from the \fIgetpeername\fP call.
+.PP
+In certain cases the algorithm used by the system in selecting
+port numbers is unsuitable for an application. This is because
+associations are created in a two step process. For example,
+the Internet file transfer protocol, FTP, specifies that data
+connections must always originate from the same local port. However,
+duplicate associations are avoided by connecting to different foreign
+ports. In this situation the system would disallow binding the
+same local address and port number to a socket if a previous data
+connection's socket still existed. To override the default port
+selection algorithm, an option call must be performed prior
+to address binding:
+.DS
+ ...
+int on = 1;
+ ...
+setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
+bind(s, (struct sockaddr *) &sin, sizeof (sin));
+.DE
+With the above call, local addresses may be bound which
+are already in use. This does not violate the uniqueness
+requirement as the system still checks at connect time to
+be sure any other sockets with the same local address and
+port do not have the same foreign address and port.
+If the association already exists, the error EADDRINUSE is returned.
+A related socket option, SO_REUSEPORT, which allows completely
+duplicate bindings, is described in the IP multicasting section.
+.NH 2
+Socket Options
+.PP
+It is possible to set and get a number of options on sockets
+via the \fIsetsockopt\fP and \fIgetsockopt\fP system calls.
+These options include such things as marking a socket for
+broadcasting, not to route, to linger on close, etc.
+In addition, there are protocol-specific options for IP and TCP,
+as described in
+.IR ip (4),
+.IR tcp (4),
+and in the section on multicasting below.
+.PP
+The general forms of the calls are:
+.DS
+setsockopt(s, level, optname, optval, optlen);
+.DE
+and
+.DS
+getsockopt(s, level, optname, optval, optlen);
+.DE
+.PP
+The parameters to the calls are as follows: \fIs\fP
+is the socket on which the option is to be applied.
+\fILevel\fP specifies the protocol layer on which the
+option is to be applied; in most cases this is
+the ``socket level'', indicated by the symbolic constant
+SOL_SOCKET, defined in \fI<sys/socket.h>.\fP
+The actual option is specified in \fIoptname\fP, and is
+a symbolic constant also defined in \fI<sys/socket.h>\fP.
+\fIOptval\fP and \fIOptlen\fP point to the value of the
+option (in most cases, whether the option is to be turned
+on or off), and the length of the value of the option,
+respectively.
+For \fIgetsockopt\fP, \fIoptlen\fP is
+a value-result parameter, initially set to the size of
+the storage area pointed to by \fIoptval\fP, and modified
+upon return to indicate the actual amount of storage used.
+.PP
+An example should help clarify things. It is sometimes
+useful to determine the type (e.g., stream, datagram, etc.)
+of an existing socket; programs
+under \fIinetd\fP (described below) may need to perform this
+task. This can be accomplished as follows via the
+SO_TYPE socket option and the \fIgetsockopt\fP call:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+
+int type, size;
+
+size = sizeof (int);
+
+if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) {
+ ...
+}
+.DE
+After the \fIgetsockopt\fP call, \fItype\fP will be set
+to the value of the socket type, as defined in
+\fI<sys/socket.h>\fP. If, for example, the socket were
+a datagram socket, \fItype\fP would have the value
+corresponding to SOCK_DGRAM.
+.NH 2
+Broadcasting and determining network configuration
+.PP
+By using a datagram socket, it is possible to send broadcast
+packets on many networks supported by the system.
+The network itself must support broadcast; the system
+provides no simulation of broadcast in software.
+Broadcast messages can place a high load on a network since they force
+every host on the network to service them. Consequently,
+the ability to send broadcast packets has been limited
+to sockets which are explicitly marked as allowing broadcasting.
+Broadcast is typically used for one of two reasons:
+it is desired to find a resource on a local network without prior
+knowledge of its address,
+or important functions such as routing require that information
+be sent to all accessible neighbors.
+.PP
+Multicasting is an alternative to broadcasting.
+Setting up IP multicast sockets is described in the next section.
+.PP
+To send a broadcast message, a datagram socket
+should be created:
+.DS
+s = socket(AF_INET, SOCK_DGRAM, 0);
+.DE
+or
+.DS
+s = socket(AF_NS, SOCK_DGRAM, 0);
+.DE
+The socket is marked as allowing broadcasting,
+.DS
+int on = 1;
+
+setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));
+.DE
+and at least a port number should be bound to the socket:
+.DS
+sin.sin_family = AF_INET;
+sin.sin_addr.s_addr = htonl(INADDR_ANY);
+sin.sin_port = htons(MYPORT);
+bind(s, (struct sockaddr *) &sin, sizeof (sin));
+.DE
+or, for the NS domain,
+.DS
+sns.sns_family = AF_NS;
+netnum = htonl(net);
+sns.sns_addr.x_net = *(union ns_net *) &netnum; /* insert net number */
+sns.sns_addr.x_port = htons(MYPORT);
+bind(s, (struct sockaddr *) &sns, sizeof (sns));
+.DE
+The destination address of the message to be broadcast
+depends on the network(s) on which the message is to be broadcast.
+The Internet domain supports a shorthand notation for broadcast
+on the local network, the address INADDR_BROADCAST (defined in
+<\fInetinet/in.h\fP>.
+To determine the list of addresses for all reachable neighbors
+requires knowledge of the networks to which the host is connected.
+Since this information should
+be obtained in a host-independent fashion and may be impossible
+to derive, 4.4BSD provides a method of
+retrieving this information from the system data structures.
+The SIOCGIFCONF \fIioctl\fP call returns the interface
+configuration of a host in the form of a
+single \fIifconf\fP structure; this structure contains
+a ``data area'' which is made up of an array of
+of \fIifreq\fP structures, one for each network interface
+to which the host is connected.
+These structures are defined in
+\fI<net/if.h>\fP as follows:
+.DS
+.if t .ta .5i 1.0i 1.5i 3.5i
+.if n .ta .7i 1.4i 2.1i 3.4i
+struct ifconf {
+ int ifc_len; /* size of associated buffer */
+ union {
+ caddr_t ifcu_buf;
+ struct ifreq *ifcu_req;
+ } ifc_ifcu;
+};
+
+#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
+#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
+
+#define IFNAMSIZ 16
+
+struct ifreq {
+ char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
+ union {
+ struct sockaddr ifru_addr;
+ struct sockaddr ifru_dstaddr;
+ struct sockaddr ifru_broadaddr;
+ short ifru_flags;
+ caddr_t ifru_data;
+ } ifr_ifru;
+};
+
+.if t .ta \w' #define'u +\w' ifr_broadaddr'u +\w' ifr_ifru.ifru_broadaddr'u
+#define ifr_addr ifr_ifru.ifru_addr /* address */
+#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
+#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
+#define ifr_flags ifr_ifru.ifru_flags /* flags */
+#define ifr_data ifr_ifru.ifru_data /* for use by interface */
+.DE
+The actual call which obtains the
+interface configuration is
+.DS
+struct ifconf ifc;
+char buf[BUFSIZ];
+
+ifc.ifc_len = sizeof (buf);
+ifc.ifc_buf = buf;
+if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) {
+ ...
+}
+.DE
+After this call \fIbuf\fP will contain one \fIifreq\fP structure for
+each network to which the host is connected, and
+\fIifc.ifc_len\fP will have been modified to reflect the number
+of bytes used by the \fIifreq\fP structures.
+.PP
+For each structure
+there exists a set of ``interface flags'' which tell
+whether the network corresponding to that interface is
+up or down, point to point or broadcast, etc. The
+SIOCGIFFLAGS \fIioctl\fP retrieves these
+flags for an interface specified by an \fIifreq\fP
+structure as follows:
+.DS
+struct ifreq *ifr;
+
+ifr = ifc.ifc_req;
+
+for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {
+ /*
+ * We must be careful that we don't use an interface
+ * devoted to an address family other than those intended;
+ * if we were interested in NS interfaces, the
+ * AF_INET would be AF_NS.
+ */
+ if (ifr->ifr_addr.sa_family != AF_INET)
+ continue;
+ if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {
+ ...
+ }
+ /*
+ * Skip boring cases.
+ */
+ if ((ifr->ifr_flags & IFF_UP) == 0 ||
+ (ifr->ifr_flags & IFF_LOOPBACK) ||
+ (ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTTOPOINT)) == 0)
+ continue;
+.DE
+.PP
+Once the flags have been obtained, the broadcast address
+must be obtained. In the case of broadcast networks this is
+done via the SIOCGIFBRDADDR \fIioctl\fP, while for point-to-point networks
+the address of the destination host is obtained with SIOCGIFDSTADDR.
+.DS
+struct sockaddr dst;
+
+if (ifr->ifr_flags & IFF_POINTTOPOINT) {
+ if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {
+ ...
+ }
+ bcopy((char *) ifr->ifr_dstaddr, (char *) &dst, sizeof (ifr->ifr_dstaddr));
+} else if (ifr->ifr_flags & IFF_BROADCAST) {
+ if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
+ ...
+ }
+ bcopy((char *) ifr->ifr_broadaddr, (char *) &dst, sizeof (ifr->ifr_broadaddr));
+}
+.DE
+.PP
+After the appropriate \fIioctl\fP's have obtained the broadcast
+or destination address (now in \fIdst\fP), the \fIsendto\fP call may be
+used:
+.DS
+ sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));
+}
+.DE
+In the above loop one \fIsendto\fP occurs for every
+interface to which the host is connected that supports the notion of
+broadcast or point-to-point addressing.
+If a process only wished to send broadcast
+messages on a given network, code similar to that outlined above
+would be used, but the loop would need to find the
+correct destination address.
+.PP
+Received broadcast messages contain the senders address
+and port, as datagram sockets are bound before
+a message is allowed to go out.
+.NH 2
+IP Multicasting
+.PP
+IP multicasting is the transmission of an IP datagram to a "host
+group", a set of zero or more hosts identified by a single IP
+destination address. A multicast datagram is delivered to all
+members of its destination host group with the same "best-efforts"
+reliability as regular unicast IP datagrams, i.e., the datagram is
+not guaranteed to arrive intact at all members of the destination
+group or in the same order relative to other datagrams.
+.PP
+The membership of a host group is dynamic; that is, hosts may join
+and leave groups at any time. There is no restriction on the
+location or number of members in a host group. A host may be a
+member of more than one group at a time. A host need not be a member
+of a group to send datagrams to it.
+.PP
+A host group may be permanent or transient. A permanent group has a
+well-known, administratively assigned IP address. It is the address,
+not the membership of the group, that is permanent; at any time a
+permanent group may have any number of members, even zero. Those IP
+multicast addresses that are not reserved for permanent groups are
+available for dynamic assignment to transient groups which exist only
+as long as they have members.
+.PP
+In general, a host cannot assume that datagrams sent to any host
+group address will reach only the intended hosts, or that datagrams
+received as a member of a transient host group are intended for the
+recipient. Misdelivery must be detected at a level above IP, using
+higher-level identifiers or authentication tokens. Information
+transmitted to a host group address should be encrypted or governed
+by administrative routing controls if the sender is concerned about
+unwanted listeners.
+.PP
+IP multicasting is currently supported only on AF_INET sockets of type
+SOCK_DGRAM and SOCK_RAW, and only on subnetworks for which the interface
+driver has been modified to support multicasting.
+.PP
+The next subsections describe how to send and receive multicast datagrams.
+.NH 3
+Sending IP Multicast Datagrams
+.PP
+To send a multicast datagram, specify an IP multicast address in the range
+224.0.0.0 to 239.255.255.255 as the destination address
+in a
+.IR sendto (2)
+call.
+.PP
+The definitions required for the multicast-related socket options are
+found in \fI<netinet/in.h>\fP.
+All IP addresses are passed in network byte-order.
+.PP
+By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1,
+which prevents them from being forwarded beyond a single subnetwork. A new
+socket option allows the TTL for subsequent multicast datagrams to be set to
+any value from 0 to 255, in order to control the scope of the multicasts:
+.DS
+u_char ttl;
+setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));
+.DE
+Multicast datagrams with a TTL of 0 will not be transmitted on any subnet,
+but may be delivered locally if the sending host belongs to the destination
+group and if multicast loopback has not been disabled on the sending socket
+(see below). Multicast datagrams with TTL greater than one may be delivered
+to more than one subnet if there are one or more multicast routers attached
+to the first-hop subnet. To provide meaningful scope control, the multicast
+routers support the notion of TTL "thresholds", which prevent datagrams with
+less than a certain TTL from traversing certain subnets. The thresholds
+enforce the following convention:
+.TS
+center;
+l | l
+l | n.
+_
+Scope Initial TTL
+=
+restricted to the same host 0
+restricted to the same subnet 1
+restricted to the same site 32
+restricted to the same region 64
+restricted to the same continent 128
+unrestricted 255
+_
+.TE
+"Sites" and "regions" are not strictly defined, and sites may be further
+subdivided into smaller administrative units, as a local matter.
+.PP
+An application may choose an initial TTL other than the ones listed above.
+For example, an application might perform an "expanding-ring search" for a
+network resource by sending a multicast query, first with a TTL of 0, and
+then with larger and larger TTLs, until a reply is received, perhaps using
+the TTL sequence 0, 1, 2, 4, 8, 16, 32.
+.PP
+The multicast router
+.IR mrouted (8),
+refuses to forward any
+multicast datagram with a destination address between 224.0.0.0 and
+224.0.0.255, inclusive, regardless of its TTL. This range of addresses is
+reserved for the use of routing protocols and other low-level topology
+discovery or maintenance protocols, such as gateway discovery and group
+membership reporting.
+.PP
+The address 224.0.0.0 is
+guaranteed not to be assigned to any group, and 224.0.0.1 is assigned
+to the permanent group of all IP hosts (including gateways). This is
+used to address all multicast hosts on the directly connected
+network. There is no multicast address (or any other IP address) for
+all hosts on the total Internet. The addresses of other well-known,
+permanent groups are published in the "Assigned Numbers" RFC,
+which is available from the InterNIC.
+.PP
+Each multicast transmission is sent from a single network interface, even if
+the host has more than one multicast-capable interface. (If the host is
+also serving as a multicast router,
+a multicast may be \fIforwarded\fP to interfaces
+other than originating interface, provided that the TTL is greater than 1.)
+The default interface to be used for multicasting is the primary network
+interface on the system.
+A socket option
+is available to override the default for subsequent transmissions from a
+given socket:
+.DS
+struct in_addr addr;
+setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr));
+.DE
+where "addr" is the local IP address of the desired outgoing interface.
+An address of INADDR_ANY may be used to revert to the default interface.
+The local IP address of an interface can be obtained via the SIOCGIFCONF
+ioctl. To determine if an interface supports multicasting, fetch the
+interface flags via the SIOCGIFFLAGS ioctl and see if the IFF_MULTICAST
+flag is set. (Normal applications should not need to use this option; it
+is intended primarily for multicast routers and other system services
+specifically concerned with internet topology.)
+The SIOCGIFCONF and SIOCGIFFLAGS ioctls are described in the previous section.
+.PP
+If a multicast datagram is sent to a group to which the sending host itself
+belongs (on the outgoing interface), a copy of the datagram is, by default,
+looped back by the IP layer for local delivery. Another socket option gives
+the sender explicit control over whether or not subsequent datagrams are
+looped back:
+.DS
+u_char loop;
+setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop));
+.DE
+where \f2loop\f1 is set to 0 to disable loopback,
+and set to 1 to enable loopback.
+This option
+improves performance for applications that may have no more than one
+instance on a single host (such as a router demon), by eliminating
+the overhead of receiving their own transmissions. It should generally not
+be used by applications for which there may be more than one instance on a
+single host (such as a conferencing program) or for which the sender does
+not belong to the destination group (such as a time querying program).
+.PP
+A multicast datagram sent with an initial TTL greater than 1 may be delivered
+to the sending host on a different interface from that on which it was sent,
+if the host belongs to the destination group on that other interface. The
+loopback control option has no effect on such delivery.
+.NH 3
+Receiving IP Multicast Datagrams
+.PP
+Before a host can receive IP multicast datagrams, it must become a member
+of one or more IP multicast groups. A process can ask the host to join
+a multicast group by using the following socket option:
+.DS
+struct ip_mreq mreq;
+setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq))
+.DE
+where "mreq" is the following structure:
+.DS
+struct ip_mreq {
+ struct in_addr imr_multiaddr; /* \fImulticast group to join\fP */
+ struct in_addr imr_interface; /* \fIinterface to join on\fP */
+}
+.DE
+Every membership is associated with a single interface, and it is possible
+to join the same group on more than one interface. "imr_interface" should
+be INADDR_ANY to choose the default multicast interface, or one of the
+host's local addresses to choose a particular (multicast-capable) interface.
+Up to IP_MAX_MEMBERSHIPS (currently 20) memberships may be added on a
+single socket.
+.PP
+To drop a membership, use:
+.DS
+struct ip_mreq mreq;
+setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq));
+.DE
+where "mreq" contains the same values as used to add the membership. The
+memberships associated with a socket are also dropped when the socket is
+closed or the process holding the socket is killed. However, more than
+one socket may claim a membership in a particular group, and the host
+will remain a member of that group until the last claim is dropped.
+.PP
+The memberships associated with a socket do not necessarily determine which
+datagrams are received on that socket. Incoming multicast packets are
+accepted by the kernel IP layer if any socket has claimed a membership in the
+destination group of the datagram; however, delivery of a multicast datagram
+to a particular socket is based on the destination port (or protocol type, for
+raw sockets), just as with unicast datagrams.
+To receive multicast datagrams
+sent to a particular port, it is necessary to bind to that local port,
+leaving the local address unspecified (i.e., INADDR_ANY).
+To receive multicast datagrams
+sent to a particular group and port, bind to the local port, with
+the local address set to the multicast group address.
+Once bound to a multicast address, the socket cannot be used for sending data.
+.PP
+More than one process may bind to the same SOCK_DGRAM UDP port
+or the same multicast group and port if the
+.I bind
+call is preceded by:
+.DS
+int on = 1;
+setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on));
+.DE
+All processes sharing the port must enable this option.
+Every incoming multicast or broadcast UDP datagram destined to
+the shared port is delivered to all sockets bound to the port.
+For backwards compatibility reasons, this does not apply to incoming
+unicast datagrams. Unicast
+datagrams are never delivered to more than one socket, regardless of
+how many sockets are bound to the datagram's destination port.
+.PP
+A final multicast-related extension is independent of IP: two new ioctls,
+SIOCADDMULTI and SIOCDELMULTI, are available to add or delete link-level
+(e.g., Ethernet) multicast addresses accepted by a particular interface.
+The address to be added or deleted is passed as a sockaddr structure of
+family AF_UNSPEC, within the standard ifreq structure.
+.PP
+These ioctls are
+for the use of protocols other than IP, and require superuser privileges.
+A link-level multicast address added via SIOCADDMULTI is not automatically
+deleted when the socket used to add it goes away; it must be explicitly
+deleted. It is inadvisable to delete a link-level address that may be
+in use by IP.
+.NH 3
+Sample Multicast Program
+.PP
+The following program sends or receives multicast packets.
+If invoked with one argument, it sends a packet containing the current
+time to an arbitrarily-chosen multicast group and UDP port.
+If invoked with no arguments, it receives and prints these packets.
+Start it as a sender on just one host and as a receiver on all the other hosts.
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netinet/in.h>
+#include <arpa/inet.h>
+#include <time.h>
+#include <stdio.h>
+
+#define EXAMPLE_PORT 60123
+#define EXAMPLE_GROUP "224.0.0.250"
+
+main(argc)
+ int argc;
+{
+ struct sockaddr_in addr;
+ int addrlen, fd, cnt;
+ struct ip_mreq mreq;
+ char message[50];
+
+ fd = socket(AF_INET, SOCK_DGRAM, 0);
+ if (fd < 0) {
+ perror("socket");
+ exit(1);
+ }
+
+ bzero(&addr, sizeof(addr));
+ addr.sin_family = AF_INET;
+ addr.sin_addr.s_addr = htonl(INADDR_ANY);
+ addr.sin_port = htons(EXAMPLE_PORT);
+ addrlen = sizeof(addr);
+
+ if (argc > 1) { /* Send */
+ addr.sin_addr.s_addr = inet_addr(EXAMPLE_GROUP);
+ while (1) {
+ time_t t = time(0);
+ sprintf(message, "time is %-24.24s", ctime(&t));
+ cnt = sendto(fd, message, sizeof(message), 0,
+ (struct sockaddr *)&addr, addrlen);
+ if (cnt < 0) {
+ perror("sendto");
+ exit(1);
+ }
+ sleep(5);
+ }
+ } else { /* Receive */
+ if (bind(fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
+ perror("bind");
+ exit(1);
+ }
+
+ mreq.imr_multiaddr.s_addr = inet_addr(EXAMPLE_GROUP);
+ mreq.imr_interface.s_addr = htonl(INADDR_ANY);
+ if (setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
+ &mreq, sizeof(mreq)) < 0) {
+ perror("setsockopt mreq");
+ exit(1);
+ }
+
+ while (1) {
+ cnt = recvfrom(fd, message, sizeof(message), 0,
+ (struct sockaddr *)&addr, &addrlen);
+ if (cnt <= 0) {
+ if (cnt == 0) {
+ break;
+ }
+ perror("recvfrom");
+ exit(1);
+ }
+ printf("%s: message = \e"%s\e"\en",
+ inet_ntoa(addr.sin_addr), message);
+ }
+ }
+}
+.DE
+.\"----------------------------------------------------------------------
+.NH 2
+NS Packet Sequences
+.PP
+The semantics of NS connections demand that
+the user both be able to look inside the network header associated
+with any incoming packet and be able to specify what should go
+in certain fields of an outgoing packet.
+Using different calls to \fIsetsockopt\fP, it is possible
+to indicate whether prototype headers will be associated by
+the user with each outgoing packet (SO_HEADERS_ON_OUTPUT),
+to indicate whether the headers received by the system should be
+delivered to the user (SO_HEADERS_ON_INPUT), or to indicate
+default information that should be associated with all
+outgoing packets on a given socket (SO_DEFAULT_HEADERS).
+.PP
+The contents of a SPP header (minus the IDP header) are:
+.DS
+.if t .ta \w" #define"u +\w" u_short"u +2.0i
+struct sphdr {
+ u_char sp_cc; /* connection control */
+#define SP_SP 0x80 /* system packet */
+#define SP_SA 0x40 /* send acknowledgement */
+#define SP_OB 0x20 /* attention (out of band data) */
+#define SP_EM 0x10 /* end of message */
+ u_char sp_dt; /* datastream type */
+ u_short sp_sid; /* source connection identifier */
+ u_short sp_did; /* destination connection identifier */
+ u_short sp_seq; /* sequence number */
+ u_short sp_ack; /* acknowledge number */
+ u_short sp_alo; /* allocation number */
+};
+.DE
+Here, the items of interest are the \fIdatastream type\fP and
+the \fIconnection control\fP fields. The semantics of the
+datastream type are defined by the application(s) in question;
+the value of this field is, by default, zero, but it can be
+used to indicate things such as Xerox's Bulk Data Transfer
+Protocol (in which case it is set to one). The connection control
+field is a mask of the flags defined just below it. The user may
+set or clear the end-of-message bit to indicate
+that a given message is the last of a given substream type,
+or may set/clear the attention bit as an alternate way to
+indicate that a packet should be sent out-of-band.
+As an example, to associate prototype headers with outgoing
+SPP packets, consider:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netns/ns.h>
+#include <netns/sp.h>
+ ...
+struct sockaddr_ns sns, to;
+int s, on = 1;
+struct databuf {
+ struct sphdr proto_spp; /* prototype header */
+ char buf[534]; /* max. possible data by Xerox std. */
+} buf;
+ ...
+s = socket(AF_NS, SOCK_SEQPACKET, 0);
+ ...
+bind(s, (struct sockaddr *) &sns, sizeof (sns));
+setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &on, sizeof(on));
+ ...
+buf.proto_spp.sp_dt = 1; /* bulk data */
+buf.proto_spp.sp_cc = SP_EM; /* end-of-message */
+strcpy(buf.buf, "hello world\en");
+sendto(s, (char *) &buf, sizeof(struct sphdr) + strlen("hello world\en"),
+ (struct sockaddr *) &to, sizeof(to));
+ ...
+.DE
+Note that one must be careful when writing headers; if the prototype
+header is not written with the data with which it is to be associated,
+the kernel will treat the first few bytes of the data as the
+header, with unpredictable results.
+To turn off the above association, and to indicate that packet
+headers received by the system should be passed up to the user,
+one might use:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netns/ns.h>
+#include <netns/sp.h>
+ ...
+struct sockaddr sns;
+int s, on = 1, off = 0;
+ ...
+s = socket(AF_NS, SOCK_SEQPACKET, 0);
+ ...
+bind(s, (struct sockaddr *) &sns, sizeof (sns));
+setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &off, sizeof(off));
+setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_INPUT, &on, sizeof(on));
+ ...
+.DE
+.PP
+Output is handled somewhat differently in the IDP world.
+The header of an IDP-level packet looks like:
+.DS
+.if t .ta \w'struct 'u +\w" struct ns_addr"u +2.0i
+struct idp {
+ u_short idp_sum; /* Checksum */
+ u_short idp_len; /* Length, in bytes, including header */
+ u_char idp_tc; /* Transport Control (i.e., hop count) */
+ u_char idp_pt; /* Packet Type (i.e., level 2 protocol) */
+ struct ns_addr idp_dna; /* Destination Network Address */
+ struct ns_addr idp_sna; /* Source Network Address */
+};
+.DE
+The primary field of interest in an IDP header is the \fIpacket type\fP
+field. The standard values for this field are (as defined
+in <\fInetns/ns.h\fP>):
+.DS
+.if t .ta \w" #define"u +\w" NSPROTO_ERROR"u +1.0i
+#define NSPROTO_RI 1 /* Routing Information */
+#define NSPROTO_ECHO 2 /* Echo Protocol */
+#define NSPROTO_ERROR 3 /* Error Protocol */
+#define NSPROTO_PE 4 /* Packet Exchange */
+#define NSPROTO_SPP 5 /* Sequenced Packet */
+.DE
+For SPP connections, the contents of this field are
+automatically set to NSPROTO_SPP; for IDP packets,
+this value defaults to zero, which means ``unknown''.
+.PP
+Setting the value of that field with SO_DEFAULT_HEADERS is
+easy:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netns/ns.h>
+#include <netns/idp.h>
+ ...
+struct sockaddr sns;
+struct idp proto_idp; /* prototype header */
+int s, on = 1;
+ ...
+s = socket(AF_NS, SOCK_DGRAM, 0);
+ ...
+bind(s, (struct sockaddr *) &sns, sizeof (sns));
+proto_idp.idp_pt = NSPROTO_PE; /* packet exchange */
+setsockopt(s, NSPROTO_IDP, SO_DEFAULT_HEADERS, (char *) &proto_idp,
+ sizeof(proto_idp));
+ ...
+.DE
+.PP
+Using SO_HEADERS_ON_OUTPUT is somewhat more difficult. When
+SO_HEADERS_ON_OUTPUT is turned on for an IDP socket, the socket
+becomes (for all intents and purposes) a raw socket. In this
+case, all the fields of the prototype header (except the
+length and checksum fields, which are computed by the kernel)
+must be filled in correctly in order for the socket to send and
+receive data in a sensible manner. To be more specific, the
+source address must be set to that of the host sending the
+data; the destination address must be set to that of the
+host for whom the data is intended; the packet type must be
+set to whatever value is desired; and the hopcount must be
+set to some reasonable value (almost always zero). It should
+also be noted that simply sending data using \fIwrite\fP
+will not work unless a \fIconnect\fP or \fIsendto\fP call
+is used, in spite of the fact that it is the destination
+address in the prototype header that is used, not the one
+given in either of those calls. For almost
+all IDP applications , using SO_DEFAULT_HEADERS is easier and
+more desirable than writing headers.
+.NH 2
+Three-way Handshake
+.PP
+The semantics of SPP connections indicates that a three-way
+handshake, involving changes in the datastream type, should \(em
+but is not absolutely required to \(em take place before a SPP
+connection is closed. Almost all SPP connections are
+``well-behaved'' in this manner; when communicating with
+any process, it is best to assume that the three-way handshake
+is required unless it is known for certain that it is not
+required. In a three-way close, the closing process
+indicates that it wishes to close the connection by sending
+a zero-length packet with end-of-message set and with
+datastream type 254. The other side of the connection
+indicates that it is OK to close by sending a zero-length
+packet with end-of-message set and datastream type 255. Finally,
+the closing process replies with a zero-length packet with
+substream type 255; at this point, the connection is considered
+closed. The following code fragments are simplified examples
+of how one might handle this three-way handshake at the user
+level; in the future, support for this type of close will
+probably be provided as part of the C library or as part of
+the kernel. The first code fragment below illustrates how a process
+might handle three-way handshake if it sees that the process it
+is communicating with wants to close the connection:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netns/ns.h>
+#include <netns/sp.h>
+ ...
+#ifndef SPPSST_END
+#define SPPSST_END 254
+#define SPPSST_ENDREPLY 255
+#endif
+struct sphdr proto_sp;
+int s;
+ ...
+read(s, buf, BUFSIZE);
+if (((struct sphdr *)buf)->sp_dt == SPPSST_END) {
+ /*
+ * SPPSST_END indicates that the other side wants to
+ * close.
+ */
+ proto_sp.sp_dt = SPPSST_ENDREPLY;
+ proto_sp.sp_cc = SP_EM;
+ setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,
+ sizeof(proto_sp));
+ write(s, buf, 0);
+ /*
+ * Write a zero-length packet with datastream type = SPPSST_ENDREPLY
+ * to indicate that the close is OK with us. The packet that we
+ * don't see (because we don't look for it) is another packet
+ * from the other side of the connection, with SPPSST_ENDREPLY
+ * on it it, too. Once that packet is sent, the connection is
+ * considered closed; note that we really ought to retransmit
+ * the close for some time if we do not get a reply.
+ */
+ close(s);
+}
+ ...
+.DE
+To indicate to another process that we would like to close the
+connection, the following code would suffice:
+.DS
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <netns/ns.h>
+#include <netns/sp.h>
+ ...
+#ifndef SPPSST_END
+#define SPPSST_END 254
+#define SPPSST_ENDREPLY 255
+#endif
+struct sphdr proto_sp;
+int s;
+ ...
+proto_sp.sp_dt = SPPSST_END;
+proto_sp.sp_cc = SP_EM;
+setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,
+ sizeof(proto_sp));
+write(s, buf, 0); /* send the end request */
+proto_sp.sp_dt = SPPSST_ENDREPLY;
+setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,
+ sizeof(proto_sp));
+/*
+ * We assume (perhaps unwisely)
+ * that the other side will send the
+ * ENDREPLY, so we'll just send our final ENDREPLY
+ * as if we'd seen theirs already.
+ */
+write(s, buf, 0);
+close(s);
+ ...
+.DE
+.NH 2
+Packet Exchange
+.PP
+The Xerox standard protocols include a protocol that is both
+reliable and datagram-oriented. This protocol is known as
+Packet Exchange (PEX or PE) and, like SPP, is layered on top
+of IDP. PEX is important for a number of things: Courier
+remote procedure calls may be expedited through the use
+of PEX, and many Xerox servers are located by doing a PEX
+``BroadcastForServers'' operation. Although there is no
+implementation of PEX in the kernel,
+it may be simulated at the user level with some clever coding
+and the use of one peculiar \fIgetsockopt\fP. A PEX packet
+looks like:
+.DS
+.if t .ta \w'struct 'u +\w" struct idp"u +2.0i
+/*
+ * The packet-exchange header shown here is not defined
+ * as part of any of the system include files.
+ */
+struct pex {
+ struct idp p_idp; /* idp header */
+ u_short ph_id[2]; /* unique transaction ID for pex */
+ u_short ph_client; /* client type field for pex */
+};
+.DE
+The \fIph_id\fP field is used to hold a ``unique id'' that
+is used in duplicate suppression; the \fIph_client\fP
+field indicates the PEX client type (similar to the packet
+type field in the IDP header). PEX reliability stems from the
+fact that it is an idempotent (``I send a packet to you, you
+send a packet to me'') protocol. Processes on each side of
+the connection may use the unique id to determine if they have
+seen a given packet before (the unique id field differs on each
+packet sent) so that duplicates may be detected, and to indicate
+which message a given packet is in response to. If a packet with
+a given unique id is sent and no response is received in a given
+amount of time, the packet is retransmitted until it is decided
+that no response will ever be received. To simulate PEX, one
+must be able to generate unique ids -- something that is hard to
+do at the user level with any real guarantee that the id is really
+unique. Therefore, a means (via \fIgetsockopt\fP) has been provided
+for getting unique ids from the kernel. The following code fragment
+indicates how to get a unique id:
+.DS
+long uniqueid;
+int s, idsize = sizeof(uniqueid);
+ ...
+s = socket(AF_NS, SOCK_DGRAM, 0);
+ ...
+/* get id from the kernel -- only on IDP sockets */
+getsockopt(s, NSPROTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize);
+ ...
+.DE
+The retransmission and duplicate suppression code required to
+simulate PEX fully is left as an exercise for the reader.
+.NH 2
+Inetd
+.PP
+One of the daemons provided with 4.4BSD is \fIinetd\fP, the
+so called ``internet super-server.''
+Having one daemon listen for requests for many daemons
+instead of having each daemon listen for its own requests
+reduces the number of idle daemons and simplies their implementation.
+.I Inetd
+handles
+two types of services: standard and TCPMUX.
+A standard service has a well-known port assigned to it and
+is listed in
+.I /etc/services
+(see \f2services\f1(5));
+it may be a service that implements an official Internet standard or is a
+BSD-specific service.
+TCPMUX services are nonstandard and do not have a
+well-known port assigned to them.
+They are invoked from
+.I inetd
+when a program connects to the "tcpmux" well-known port and specifies
+the service name.
+This is useful for adding locally-developed servers.
+.PP
+\fIInetd\fP is invoked at boot
+time, and determines from the file \fI/etc/inetd.conf\fP the
+servers for which it is to listen. Once this information has been
+read and a pristine environment created, \fIinetd\fP proceeds
+to create one socket for each service it is to listen for,
+binding the appropriate port number to each socket.
+.PP
+\fIInetd\fP then performs a \fIselect\fP on all these
+sockets for read availability, waiting for somebody wishing
+a connection to the service corresponding to
+that socket. \fIInetd\fP then performs an \fIaccept\fP on
+the socket in question, \fIfork\fPs, \fIdup\fPs the new
+socket to file descriptors 0 and 1 (stdin and
+stdout), closes other open file
+descriptors, and \fIexec\fPs the appropriate server.
+.PP
+Servers making use of \fIinetd\fP are considerably simplified,
+as \fIinetd\fP takes care of the majority of the IPC work
+required in establishing a connection. The server invoked
+by \fIinetd\fP expects the socket connected to its client
+on file descriptors 0 and 1, and may immediately perform
+any operations such as \fIread\fP, \fIwrite\fP, \fIsend\fP,
+or \fIrecv\fP. Indeed, servers may use
+buffered I/O as provided by the ``stdio'' conventions, as
+long as as they remember to use \fIfflush\fP when appropriate.
+.PP
+One call which may be of interest to individuals writing
+servers under \fIinetd\fP is the \fIgetpeername\fP call,
+which returns the address of the peer (process) connected
+on the other end of the socket. For example, to log the
+Internet address in ``dot notation'' (e.g., ``128.32.0.4'')
+of a client connected to a server under
+\fIinetd\fP, the following code might be used:
+.DS
+struct sockaddr_in name;
+int namelen = sizeof (name);
+ ...
+if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {
+ syslog(LOG_ERR, "getpeername: %m");
+ exit(1);
+} else
+ syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));
+ ...
+.DE
+While the \fIgetpeername\fP call is especially useful when
+writing programs to run with \fIinetd\fP, it can be used
+under other circumstances. Be warned, however, that \fIgetpeername\fP will
+fail on UNIX domain sockets.
+.PP
+Standard TCP
+services are assigned unique well-known port numbers in the range of
+0 to 1023 by the
+Internet Assigned Numbers Authority (IANA@ISI.EDU).
+The limited number of ports in this range are
+assigned to official Internet protocols.
+The TCPMUX service allows you to add
+locally-developed protocols without needing an official TCP port assignment.
+The TCPMUX protocol described in RFC-1078 is simple:
+.QP
+``A TCP client connects to a foreign host on TCP port 1. It sends the
+service name followed by a carriage-return line-feed <CRLF>.
+The service name is never case sensitive.
+The server replies with a
+single character indicating positive ("+") or negative ("\-")
+acknowledgment, immediately followed by an optional message of
+explanation, terminated with a <CRLF>. If the reply was positive,
+the selected protocol begins; otherwise the connection is closed.''
+.LP
+In 4.4BSD, the TCPMUX service is built into
+.IR inetd ,
+that is,
+.IR inetd
+listens on TCP port 1 for requests for TCPMUX services listed
+in \f2inetd.conf\f1.
+.IR inetd (8)
+describes the format of TCPMUX entries for \f2inetd.conf\f1.
+.PP
+The following is an example TCPMUX server and its \f2inetd.conf\f1 entry.
+More sophisticated servers may want to do additional processing
+before returning the positive or negative acknowledgement.
+.DS
+#include <sys/types.h>
+#include <stdio.h>
+
+main()
+{
+ time_t t;
+
+ printf("+Go\er\en");
+ fflush(stdout);
+ time(&t);
+ printf("%d = %s", t, ctime(&t));
+ fflush(stdout);
+}
+.DE
+The \f2inetd.conf\f1 entry is:
+.DS
+tcpmux/current_time stream tcp nowait nobody /d/curtime curtime
+.DE
+Here's the portion of the client code that handles the TCPMUX handshake:
+.DS
+char line[BUFSIZ];
+FILE *fp;
+ ...
+
+/* Use stdio for reading data from the server */
+fp = fdopen(sock, "r");
+if (fp == NULL) {
+ fprintf(stderr, "Can't create file pointer\en");
+ exit(1);
+}
+
+/* Send service request */
+sprintf(line, "%s\er\en", "current_time");
+if (write(sock, line, strlen(line)) < 0) {
+ perror("write");
+ exit(1);
+}
+
+/* Get ACK/NAK response from the server */
+if (fgets(line, sizeof(line), fp) == NULL) {
+ if (feof(fp)) {
+ die();
+ } else {
+ fprintf(stderr, "Error reading response\en");
+ exit(1);
+ }
+}
+
+/* Delete <CR> */
+if ((lp = index(line, '\r')) != NULL) {
+ *lp = '\0';
+}
+
+switch (line[0]) {
+ case '+':
+ printf("Got ACK: %s\en", &line[1]);
+ break;
+ case '-':
+ printf("Got NAK: %s\en", &line[1]);
+ exit(0);
+ default:
+ printf("Got unknown response: %s\en", line);
+ exit(1);
+}
+
+/* Get rest of data from the server */
+while ((fgets(line, sizeof(line), fp)) != NULL) {
+ fputs(line, stdout);
+}
+.DE
OpenPOWER on IntegriCloud