summaryrefslogtreecommitdiffstats
path: root/secure/lib/libcrypto/man/des.3
diff options
context:
space:
mode:
Diffstat (limited to 'secure/lib/libcrypto/man/des.3')
-rw-r--r--secure/lib/libcrypto/man/des.3519
1 files changed, 519 insertions, 0 deletions
diff --git a/secure/lib/libcrypto/man/des.3 b/secure/lib/libcrypto/man/des.3
new file mode 100644
index 0000000..20d9843
--- /dev/null
+++ b/secure/lib/libcrypto/man/des.3
@@ -0,0 +1,519 @@
+.\" Automatically generated by Pod::Man version 1.15
+.\" Thu May 9 13:19:08 2002
+.\"
+.\" Standard preamble:
+.\" ======================================================================
+.de Sh \" Subsection heading
+.br
+.if t .Sp
+.ne 5
+.PP
+\fB\\$1\fR
+.PP
+..
+.de Sp \" Vertical space (when we can't use .PP)
+.if t .sp .5v
+.if n .sp
+..
+.de Ip \" List item
+.br
+.ie \\n(.$>=3 .ne \\$3
+.el .ne 3
+.IP "\\$1" \\$2
+..
+.de Vb \" Begin verbatim text
+.ft CW
+.nf
+.ne \\$1
+..
+.de Ve \" End verbatim text
+.ft R
+
+.fi
+..
+.\" Set up some character translations and predefined strings. \*(-- will
+.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
+.\" double quote, and \*(R" will give a right double quote. | will give a
+.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
+.\" to do unbreakable dashes and therefore won't be available. \*(C` and
+.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
+.tr \(*W-|\(bv\*(Tr
+.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
+.ie n \{\
+. ds -- \(*W-
+. ds PI pi
+. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
+. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
+. ds L" ""
+. ds R" ""
+. ds C` ""
+. ds C' ""
+'br\}
+.el\{\
+. ds -- \|\(em\|
+. ds PI \(*p
+. ds L" ``
+. ds R" ''
+'br\}
+.\"
+.\" If the F register is turned on, we'll generate index entries on stderr
+.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
+.\" index entries marked with X<> in POD. Of course, you'll have to process
+.\" the output yourself in some meaningful fashion.
+.if \nF \{\
+. de IX
+. tm Index:\\$1\t\\n%\t"\\$2"
+..
+. nr % 0
+. rr F
+.\}
+.\"
+.\" For nroff, turn off justification. Always turn off hyphenation; it
+.\" makes way too many mistakes in technical documents.
+.hy 0
+.if n .na
+.\"
+.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
+.\" Fear. Run. Save yourself. No user-serviceable parts.
+.bd B 3
+. \" fudge factors for nroff and troff
+.if n \{\
+. ds #H 0
+. ds #V .8m
+. ds #F .3m
+. ds #[ \f1
+. ds #] \fP
+.\}
+.if t \{\
+. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
+. ds #V .6m
+. ds #F 0
+. ds #[ \&
+. ds #] \&
+.\}
+. \" simple accents for nroff and troff
+.if n \{\
+. ds ' \&
+. ds ` \&
+. ds ^ \&
+. ds , \&
+. ds ~ ~
+. ds /
+.\}
+.if t \{\
+. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
+. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
+. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
+. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
+. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
+. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
+.\}
+. \" troff and (daisy-wheel) nroff accents
+.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
+.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
+.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
+.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
+.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
+.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
+.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
+.ds ae a\h'-(\w'a'u*4/10)'e
+.ds Ae A\h'-(\w'A'u*4/10)'E
+. \" corrections for vroff
+.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
+.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
+. \" for low resolution devices (crt and lpr)
+.if \n(.H>23 .if \n(.V>19 \
+\{\
+. ds : e
+. ds 8 ss
+. ds o a
+. ds d- d\h'-1'\(ga
+. ds D- D\h'-1'\(hy
+. ds th \o'bp'
+. ds Th \o'LP'
+. ds ae ae
+. ds Ae AE
+.\}
+.rm #[ #] #H #V #F C
+.\" ======================================================================
+.\"
+.IX Title "DES 1"
+.TH DES 1 "perl v5.6.1" "2001-02-18" "User Contributed Perl Documentation"
+.UC
+.SH "NAME"
+des_random_key, des_set_key, des_key_sched, des_set_key_checked,
+des_set_key_unchecked, des_set_odd_parity, des_is_weak_key,
+des_ecb_encrypt, des_ecb2_encrypt, des_ecb3_encrypt, des_ncbc_encrypt,
+des_cfb_encrypt, des_ofb_encrypt, des_pcbc_encrypt, des_cfb64_encrypt,
+des_ofb64_encrypt, des_xcbc_encrypt, des_ede2_cbc_encrypt,
+des_ede2_cfb64_encrypt, des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt,
+des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt, des_ede3_ofb64_encrypt,
+des_read_password, des_read_2passwords, des_read_pw_string,
+des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys,
+des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
+.SH "SYNOPSIS"
+.IX Header "SYNOPSIS"
+.Vb 1
+\& #include <openssl/des.h>
+.Ve
+.Vb 1
+\& void des_random_key(des_cblock *ret);
+.Ve
+.Vb 6
+\& int des_set_key(const_des_cblock *key, des_key_schedule schedule);
+\& int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
+\& int des_set_key_checked(const_des_cblock *key,
+\& des_key_schedule schedule);
+\& void des_set_key_unchecked(const_des_cblock *key,
+\& des_key_schedule schedule);
+.Ve
+.Vb 2
+\& void des_set_odd_parity(des_cblock *key);
+\& int des_is_weak_key(const_des_cblock *key);
+.Ve
+.Vb 7
+\& void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
+\& des_key_schedule ks, int enc);
+\& void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
+\& des_key_schedule ks1, des_key_schedule ks2, int enc);
+\& void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
+\& des_key_schedule ks1, des_key_schedule ks2,
+\& des_key_schedule ks3, int enc);
+.Ve
+.Vb 18
+\& void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
+\& long length, des_key_schedule schedule, des_cblock *ivec,
+\& int enc);
+\& void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
+\& int numbits, long length, des_key_schedule schedule,
+\& des_cblock *ivec, int enc);
+\& void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
+\& int numbits, long length, des_key_schedule schedule,
+\& des_cblock *ivec);
+\& void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
+\& long length, des_key_schedule schedule, des_cblock *ivec,
+\& int enc);
+\& void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+\& long length, des_key_schedule schedule, des_cblock *ivec,
+\& int *num, int enc);
+\& void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+\& long length, des_key_schedule schedule, des_cblock *ivec,
+\& int *num);
+.Ve
+.Vb 3
+\& void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
+\& long length, des_key_schedule schedule, des_cblock *ivec,
+\& const_des_cblock *inw, const_des_cblock *outw, int enc);
+.Ve
+.Vb 9
+\& void des_ede2_cbc_encrypt(const unsigned char *input,
+\& unsigned char *output, long length, des_key_schedule ks1,
+\& des_key_schedule ks2, des_cblock *ivec, int enc);
+\& void des_ede2_cfb64_encrypt(const unsigned char *in,
+\& unsigned char *out, long length, des_key_schedule ks1,
+\& des_key_schedule ks2, des_cblock *ivec, int *num, int enc);
+\& void des_ede2_ofb64_encrypt(const unsigned char *in,
+\& unsigned char *out, long length, des_key_schedule ks1,
+\& des_key_schedule ks2, des_cblock *ivec, int *num);
+.Ve
+.Vb 15
+\& void des_ede3_cbc_encrypt(const unsigned char *input,
+\& unsigned char *output, long length, des_key_schedule ks1,
+\& des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
+\& int enc);
+\& void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
+\& long length, des_key_schedule ks1, des_key_schedule ks2,
+\& des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
+\& int enc);
+\& void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+\& long length, des_key_schedule ks1, des_key_schedule ks2,
+\& des_key_schedule ks3, des_cblock *ivec, int *num, int enc);
+\& void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+\& long length, des_key_schedule ks1,
+\& des_key_schedule ks2, des_key_schedule ks3,
+\& des_cblock *ivec, int *num);
+.Ve
+.Vb 5
+\& int des_read_password(des_cblock *key, const char *prompt, int verify);
+\& int des_read_2passwords(des_cblock *key1, des_cblock *key2,
+\& const char *prompt, int verify);
+\& int des_read_pw_string(char *buf, int length, const char *prompt,
+\& int verify);
+.Ve
+.Vb 8
+\& DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
+\& long length, des_key_schedule schedule,
+\& const_des_cblock *ivec);
+\& DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
+\& long length, int out_count, des_cblock *seed);
+\& void des_string_to_key(const char *str, des_cblock *key);
+\& void des_string_to_2keys(const char *str, des_cblock *key1,
+\& des_cblock *key2);
+.Ve
+.Vb 3
+\& char *des_fcrypt(const char *buf, const char *salt, char *ret);
+\& char *des_crypt(const char *buf, const char *salt);
+\& char *crypt(const char *buf, const char *salt);
+.Ve
+.Vb 4
+\& int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
+\& des_cblock *iv);
+\& int des_enc_write(int fd, const void *buf, int len,
+\& des_key_schedule sched, des_cblock *iv);
+.Ve
+.SH "DESCRIPTION"
+.IX Header "DESCRIPTION"
+This library contains a fast implementation of the \s-1DES\s0 encryption
+algorithm.
+.PP
+There are two phases to the use of \s-1DES\s0 encryption. The first is the
+generation of a \fIdes_key_schedule\fR from a key, the second is the
+actual encryption. A \s-1DES\s0 key is of type \fIdes_cblock\fR. This type is
+consists of 8 bytes with odd parity. The least significant bit in
+each byte is the parity bit. The key schedule is an expanded form of
+the key; it is used to speed the encryption process.
+.PP
+\&\fIdes_random_key()\fR generates a random key. The \s-1PRNG\s0 must be seeded
+prior to using this function (see rand(3); for backward
+compatibility the function \fIdes_random_seed()\fR is available as well).
+If the \s-1PRNG\s0 could not generate a secure key, 0 is returned. In
+earlier versions of the library, \fIdes_random_key()\fR did not generate
+secure keys.
+.PP
+Before a \s-1DES\s0 key can be used, it must be converted into the
+architecture dependent \fIdes_key_schedule\fR via the
+\&\fIdes_set_key_checked()\fR or \fIdes_set_key_unchecked()\fR function.
+.PP
+\&\fIdes_set_key_checked()\fR will check that the key passed is of odd parity
+and is not a week or semi-weak key. If the parity is wrong, then \-1
+is returned. If the key is a weak key, then \-2 is returned. If an
+error is returned, the key schedule is not generated.
+.PP
+\&\fIdes_set_key()\fR (called \fIdes_key_sched()\fR in the \s-1MIT\s0 library) works like
+\&\fIdes_set_key_checked()\fR if the \fIdes_check_key\fR flag is non-zero,
+otherwise like \fIdes_set_key_unchecked()\fR. These functions are available
+for compatibility; it is recommended to use a function that does not
+depend on a global variable.
+.PP
+\&\fIdes_set_odd_parity()\fR (called \fIdes_fixup_key_parity()\fR in the \s-1MIT\s0
+library) sets the parity of the passed \fIkey\fR to odd.
+.PP
+\&\fIdes_is_weak_key()\fR returns 1 is the passed key is a weak key, 0 if it
+is ok. The probability that a randomly generated key is weak is
+1/2^52, so it is not really worth checking for them.
+.PP
+The following routines mostly operate on an input and output stream of
+\&\fIdes_cblock\fRs.
+.PP
+\&\fIdes_ecb_encrypt()\fR is the basic \s-1DES\s0 encryption routine that encrypts or
+decrypts a single 8\-byte \fIdes_cblock\fR in \fIelectronic code book\fR
+(\s-1ECB\s0) mode. It always transforms the input data, pointed to by
+\&\fIinput\fR, into the output data, pointed to by the \fIoutput\fR argument.
+If the \fIencrypt\fR argument is non-zero (\s-1DES_ENCRYPT\s0), the \fIinput\fR
+(cleartext) is encrypted in to the \fIoutput\fR (ciphertext) using the
+key_schedule specified by the \fIschedule\fR argument, previously set via
+\&\fIdes_set_key\fR. If \fIencrypt\fR is zero (\s-1DES_DECRYPT\s0), the \fIinput\fR (now
+ciphertext) is decrypted into the \fIoutput\fR (now cleartext). Input
+and output may overlap. \fIdes_ecb_encrypt()\fR does not return a value.
+.PP
+\&\fIdes_ecb3_encrypt()\fR encrypts/decrypts the \fIinput\fR block by using
+three-key Triple-DES encryption in \s-1ECB\s0 mode. This involves encrypting
+the input with \fIks1\fR, decrypting with the key schedule \fIks2\fR, and
+then encrypting with \fIks3\fR. This routine greatly reduces the chances
+of brute force breaking of \s-1DES\s0 and has the advantage of if \fIks1\fR,
+\&\fIks2\fR and \fIks3\fR are the same, it is equivalent to just encryption
+using \s-1ECB\s0 mode and \fIks1\fR as the key.
+.PP
+The macro \fIdes_ecb2_encrypt()\fR is provided to perform two-key Triple-DES
+encryption by using \fIks1\fR for the final encryption.
+.PP
+\&\fIdes_ncbc_encrypt()\fR encrypts/decrypts using the \fIcipher-block-chaining\fR
+(\s-1CBC\s0) mode of \s-1DES\s0. If the \fIencrypt\fR argument is non-zero, the
+routine cipher-block-chain encrypts the cleartext data pointed to by
+the \fIinput\fR argument into the ciphertext pointed to by the \fIoutput\fR
+argument, using the key schedule provided by the \fIschedule\fR argument,
+and initialization vector provided by the \fIivec\fR argument. If the
+\&\fIlength\fR argument is not an integral multiple of eight bytes, the
+last block is copied to a temporary area and zero filled. The output
+is always an integral multiple of eight bytes.
+.PP
+\&\fIdes_xcbc_encrypt()\fR is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES\s0. It uses \fIinw\fR and
+\&\fIoutw\fR to 'whiten' the encryption. \fIinw\fR and \fIoutw\fR are secret
+(unlike the iv) and are as such, part of the key. So the key is sort
+of 24 bytes. This is much better than \s-1CBC\s0 \s-1DES\s0.
+.PP
+\&\fIdes_ede3_cbc_encrypt()\fR implements outer triple \s-1CBC\s0 \s-1DES\s0 encryption with
+three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is
+really an \f(CW\*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'\fR. This mode is used by \s-1SSL\s0.
+.PP
+The \fIdes_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
+reusing \fIks1\fR for the final encryption. \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
+This form of Triple-DES is used by the \s-1RSAREF\s0 library.
+.PP
+\&\fIdes_pcbc_encrypt()\fR encrypt/decrypts using the propagating cipher block
+chaining mode used by Kerberos v4. Its parameters are the same as
+\&\fIdes_ncbc_encrypt()\fR.
+.PP
+\&\fIdes_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode. This
+method takes an array of characters as input and outputs and array of
+characters. It does not require any padding to 8 character groups.
+Note: the \fIivec\fR variable is changed and the new changed value needs to
+be passed to the next call to this function. Since this function runs
+a complete \s-1DES\s0 \s-1ECB\s0 encryption per \fInumbits\fR, this function is only
+suggested for use when sending small numbers of characters.
+.PP
+\&\fIdes_cfb64_encrypt()\fR
+implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback. Why is this
+useful you ask? Because this routine will allow you to encrypt an
+arbitrary number of bytes, no 8 byte padding. Each call to this
+routine will encrypt the input bytes to output and then update ivec
+and num. num contains 'how far' we are though ivec. If this does
+not make much sense, read more about cfb mode of \s-1DES\s0 :\-).
+.PP
+\&\fIdes_ede3_cfb64_encrypt()\fR and \fIdes_ede2_cfb64_encrypt()\fR is the same as
+\&\fIdes_cfb64_encrypt()\fR except that Triple-DES is used.
+.PP
+\&\fIdes_ofb_encrypt()\fR encrypts using output feedback mode. This method
+takes an array of characters as input and outputs and array of
+characters. It does not require any padding to 8 character groups.
+Note: the \fIivec\fR variable is changed and the new changed value needs to
+be passed to the next call to this function. Since this function runs
+a complete \s-1DES\s0 \s-1ECB\s0 encryption per numbits, this function is only
+suggested for use when sending small numbers of characters.
+.PP
+\&\fIdes_ofb64_encrypt()\fR is the same as \fIdes_cfb64_encrypt()\fR using Output
+Feed Back mode.
+.PP
+\&\fIdes_ede3_ofb64_encrypt()\fR and \fIdes_ede2_ofb64_encrypt()\fR is the same as
+\&\fIdes_ofb64_encrypt()\fR, using Triple-DES.
+.PP
+The following functions are included in the \s-1DES\s0 library for
+compatibility with the \s-1MIT\s0 Kerberos library. \fIdes_read_pw_string()\fR
+is also available under the name \fIEVP_read_pw_string()\fR.
+.PP
+\&\fIdes_read_pw_string()\fR writes the string specified by \fIprompt\fR to
+standard output, turns echo off and reads in input string from the
+terminal. The string is returned in \fIbuf\fR, which must have space for
+at least \fIlength\fR bytes. If \fIverify\fR is set, the user is asked for
+the password twice and unless the two copies match, an error is
+returned. A return code of \-1 indicates a system error, 1 failure due
+to use interaction, and 0 is success.
+.PP
+\&\fIdes_read_password()\fR does the same and converts the password to a \s-1DES\s0
+key by calling \fIdes_string_to_key()\fR; \fIdes_read_2password()\fR operates in
+the same way as \fIdes_read_password()\fR except that it generates two keys
+by using the \fIdes_string_to_2key()\fR function. \fIdes_string_to_key()\fR is
+available for backward compatibility with the \s-1MIT\s0 library. New
+applications should use a cryptographic hash function. The same
+applies for \fIdes_string_to_2key()\fR.
+.PP
+\&\fIdes_cbc_cksum()\fR produces an 8 byte checksum based on the input stream
+(via \s-1CBC\s0 encryption). The last 4 bytes of the checksum are returned
+and the complete 8 bytes are placed in \fIoutput\fR. This function is
+used by Kerberos v4. Other applications should use
+EVP_DigestInit(3) etc. instead.
+.PP
+\&\fIdes_quad_cksum()\fR is a Kerberos v4 function. It returns a 4 byte
+checksum from the input bytes. The algorithm can be iterated over the
+input, depending on \fIout_count\fR, 1, 2, 3 or 4 times. If \fIoutput\fR is
+non-NULL, the 8 bytes generated by each pass are written into
+\&\fIoutput\fR.
+.PP
+The following are DES-based transformations:
+.PP
+\&\fIdes_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function. This
+version takes only a small amount of space relative to other fast
+\&\fIcrypt()\fR implementations. This is different to the normal crypt in
+that the third parameter is the buffer that the return value is
+written into. It needs to be at least 14 bytes long. This function
+is thread safe, unlike the normal crypt.
+.PP
+\&\fIdes_crypt()\fR is a faster replacement for the normal system \fIcrypt()\fR.
+This function calls \fIdes_fcrypt()\fR with a static array passed as the
+third parameter. This emulates the normal non-thread safe semantics
+of \fIcrypt\fR\|(3).
+.PP
+\&\fIdes_enc_write()\fR writes \fIlen\fR bytes to file descriptor \fIfd\fR from
+buffer \fIbuf\fR. The data is encrypted via \fIpcbc_encrypt\fR (default)
+using \fIsched\fR for the key and \fIiv\fR as a starting vector. The actual
+data send down \fIfd\fR consists of 4 bytes (in network byte order)
+containing the length of the following encrypted data. The encrypted
+data then follows, padded with random data out to a multiple of 8
+bytes.
+.PP
+\&\fIdes_enc_read()\fR is used to read \fIlen\fR bytes from file descriptor
+\&\fIfd\fR into buffer \fIbuf\fR. The data being read from \fIfd\fR is assumed to
+have come from \fIdes_enc_write()\fR and is decrypted using \fIsched\fR for
+the key schedule and \fIiv\fR for the initial vector.
+.PP
+\&\fBWarning:\fR The data format used by \fIdes_enc_write()\fR and \fIdes_enc_read()\fR
+has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0
+bytes, \fIdes_enc_write()\fR will split the data into several chunks that
+are all encrypted using the same \s-1IV\s0. So don't use these functions
+unless you are sure you know what you do (in which case you might not
+want to use them anyway). They cannot handle non-blocking sockets.
+\&\fIdes_enc_read()\fR uses an internal state and thus cannot be used on
+multiple files.
+.PP
+\&\fIdes_rw_mode\fR is used to specify the encryption mode to use with
+\&\fIdes_enc_read()\fR and \fIdes_end_write()\fR. If set to \fI\s-1DES_PCBC_MODE\s0\fR (the
+default), des_pcbc_encrypt is used. If set to \fI\s-1DES_CBC_MODE\s0\fR
+des_cbc_encrypt is used.
+.SH "NOTES"
+.IX Header "NOTES"
+Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is
+not suitable for most applications; see des_modes(7).
+.PP
+The evp(3) library provides higher-level encryption functions.
+.SH "BUGS"
+.IX Header "BUGS"
+\&\fIdes_3cbc_encrypt()\fR is flawed and must not be used in applications.
+.PP
+\&\fIdes_cbc_encrypt()\fR does not modify \fBivec\fR; use \fIdes_ncbc_encrypt()\fR
+instead.
+.PP
+\&\fIdes_cfb_encrypt()\fR and \fIdes_ofb_encrypt()\fR operates on input of 8 bits.
+What this means is that if you set numbits to 12, and length to 2, the
+first 12 bits will come from the 1st input byte and the low half of
+the second input byte. The second 12 bits will have the low 8 bits
+taken from the 3rd input byte and the top 4 bits taken from the 4th
+input byte. The same holds for output. This function has been
+implemented this way because most people will be using a multiple of 8
+and because once you get into pulling bytes input bytes apart things
+get ugly!
+.PP
+\&\fIdes_read_pw_string()\fR is the most machine/OS dependent function and
+normally generates the most problems when porting this code.
+.SH "CONFORMING TO"
+.IX Header "CONFORMING TO"
+\&\s-1ANSI\s0 X3.106
+.PP
+The \fBdes\fR library was written to be source code compatible with
+the \s-1MIT\s0 Kerberos library.
+.SH "SEE ALSO"
+.IX Header "SEE ALSO"
+\&\fIcrypt\fR\|(3), des_modes(7), evp(3), rand(3)
+.SH "HISTORY"
+.IX Header "HISTORY"
+\&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
+\&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
+\&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR, \fIdes_read_password()\fR and
+\&\fIdes_string_to_key()\fR are available in the \s-1MIT\s0 Kerberos library;
+\&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
+are available in newer versions of that library.
+.PP
+\&\fIdes_set_key_checked()\fR and \fIdes_set_key_unchecked()\fR were added in
+OpenSSL 0.9.5.
+.PP
+\&\fIdes_generate_random_block()\fR, \fIdes_init_random_number_generator()\fR,
+\&\fIdes_new_random_key()\fR, \fIdes_set_random_generator_seed()\fR and
+\&\fIdes_set_sequence_number()\fR and \fIdes_rand_data()\fR are used in newer
+versions of Kerberos but are not implemented here.
+.PP
+\&\fIdes_random_key()\fR generated cryptographically weak random data in
+SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
+\&\s-1MIT\s0 library.
+.SH "AUTHOR"
+.IX Header "AUTHOR"
+Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
+(http://www.openssl.org).
OpenPOWER on IntegriCloud