summaryrefslogtreecommitdiffstats
path: root/libntp/systime.c
diff options
context:
space:
mode:
Diffstat (limited to 'libntp/systime.c')
-rw-r--r--libntp/systime.c278
1 files changed, 58 insertions, 220 deletions
diff --git a/libntp/systime.c b/libntp/systime.c
index 4539b5f..0dbf389 100644
--- a/libntp/systime.c
+++ b/libntp/systime.c
@@ -12,10 +12,6 @@
#include "ntp_random.h"
#include "ntpd.h" /* for sys_precision */
-#ifdef SIM
-# include "ntpsim.h"
-#endif /*SIM */
-
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
@@ -26,24 +22,33 @@
# include <utmpx.h>
#endif /* HAVE_UTMPX_H */
+
+#define FUZZ 500e-6 /* fuzz pivot */
+
/*
* These routines (get_systime, step_systime, adj_systime) implement an
* interface between the system independent NTP clock and the Unix
- * system clock in various architectures and operating systems.
+ * system clock in various architectures and operating systems. Time is
+ * a precious quantity in these routines and every effort is made to
+ * minimize errors by unbiased rounding and amortizing adjustment
+ * residues.
+ *
+ * In order to improve the apparent resolution, provide unbiased
+ * rounding and insure that the readings cannot be predicted, the low-
+ * order unused portion of the time below the resolution limit is filled
+ * with an unbiased random fuzz.
*
- * Time is a precious quantity in these routines and every effort is
- * made to minimize errors by always rounding toward zero and amortizing
- * adjustment residues. By default the adjustment quantum is 1 us for
- * the usual Unix tickadj() system call, but this can be increased if
- * necessary by the tick configuration command. For instance, when the
- * adjtime() quantum is a clock tick for a 100-Hz clock, the quantum
- * should be 10 ms.
+ * The sys_tick variable secifies the system clock tick interval in
+ * seconds. For systems that can interpolate between timer interrupts,
+ * the resolution is presumed much less than the time to read the system
+ * clock, which is the value of sys_tick after the precision has been
+ * determined. For those systems that cannot interpolate between timer
+ * interrupts, sys_tick will be much larger in the order of 10 ms, so the
+ * fuzz should be that value. For Sunses the tick is not interpolated, but
+ * the system clock is derived from a 2-MHz oscillator, so the resolution
+ * is 500 ns and sys_tick is 500 ns.
*/
-#if defined RELIANTUNIX_CLOCK || defined SCO5_CLOCK
-double sys_tick = 10e-3; /* 10 ms tickadj() */
-#else
-double sys_tick = 1e-6; /* 1 us tickadj() */
-#endif
+double sys_tick = 0; /* precision (time to read the clock) */
double sys_residual = 0; /* adjustment residue (s) */
#ifndef SIM
@@ -56,59 +61,61 @@ get_systime(
l_fp *now /* system time */
)
{
- double dtemp;
+ double dtemp;
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
struct timespec ts; /* seconds and nanoseconds */
/*
- * Convert Unix clock from seconds and nanoseconds to seconds.
- * The bottom is only two bits down, so no need for fuzz.
- * Some systems don't have that level of precision, however...
+ * Convert Unix timespec from seconds and nanoseconds to NTP
+ * seconds and fraction.
*/
# ifdef HAVE_CLOCK_GETTIME
clock_gettime(CLOCK_REALTIME, &ts);
# else
getclock(TIMEOFDAY, &ts);
# endif
- now->l_i = ts.tv_sec + JAN_1970;
- dtemp = ts.tv_nsec / 1e9;
+ now->l_i = (int32)ts.tv_sec + JAN_1970;
+ dtemp = 0;
+ if (sys_tick > FUZZ)
+ dtemp = ntp_random() * 2. / FRAC * sys_tick * 1e9;
+ else if (sys_tick > 0)
+ dtemp = ntp_random() * 2. / FRAC;
+ dtemp = (ts.tv_nsec + dtemp) * 1e-9;
+ if (dtemp >= 1.) {
+ dtemp -= 1.;
+ now->l_i++;
+ } else if (dtemp < 0) {
+ dtemp += 1.;
+ now->l_i--;
+ }
+ now->l_uf = (u_int32)(dtemp * FRAC);
#else /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
struct timeval tv; /* seconds and microseconds */
/*
- * Convert Unix clock from seconds and microseconds to seconds.
- * Add in unbiased random fuzz beneath the microsecond.
+ * Convert Unix timeval from seconds and microseconds to NTP
+ * seconds and fraction.
*/
GETTIMEOFDAY(&tv, NULL);
now->l_i = tv.tv_sec + JAN_1970;
- dtemp = tv.tv_usec / 1e6;
-
-#endif /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
-
- /*
- * ntp_random() produces 31 bits (always nonnegative).
- * This bit is done only after the precision has been
- * determined.
- */
- if (sys_precision != 0)
- dtemp += (ntp_random() / FRAC - .5) / (1 <<
- -sys_precision);
-
- /*
- * Renormalize to seconds past 1900 and fraction.
- */
- dtemp += sys_residual;
- if (dtemp >= 1) {
- dtemp -= 1;
+ dtemp = 0;
+ if (sys_tick > FUZZ)
+ dtemp = ntp_random() * 2. / FRAC * sys_tick * 1e6;
+ else if (sys_tick > 0)
+ dtemp = ntp_random() * 2. / FRAC;
+ dtemp = (tv.tv_usec + dtemp) * 1e-6;
+ if (dtemp >= 1.) {
+ dtemp -= 1.;
now->l_i++;
} else if (dtemp < 0) {
- dtemp += 1;
+ dtemp += 1.;
now->l_i--;
}
- dtemp *= FRAC;
- now->l_uf = (u_int32)dtemp;
+ now->l_uf = (u_int32)(dtemp * FRAC);
+
+#endif /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
}
@@ -363,180 +370,11 @@ step_systime(
/*
* Clock routines for the simulator - Harish Nair, with help
*/
-/*
- * get_systime - return the system time in NTP timestamp format
- */
-void
-get_systime(
- l_fp *now /* current system time in l_fp */ )
-{
- /*
- * To fool the code that determines the local clock precision,
- * we advance the clock a minimum of 200 nanoseconds on every
- * clock read. This is appropriate for a typical modern machine
- * with nanosecond clocks. Note we make no attempt here to
- * simulate reading error, since the error is so small. This may
- * change when the need comes to implement picosecond clocks.
- */
- if (ntp_node.ntp_time == ntp_node.last_time)
- ntp_node.ntp_time += 200e-9;
- ntp_node.last_time = ntp_node.ntp_time;
- DTOLFP(ntp_node.ntp_time, now);
-}
-
-
-/*
- * adj_systime - advance or retard the system clock exactly like the
- * real thng.
- */
-int /* always succeeds */
-adj_systime(
- double now /* time adjustment (s) */
- )
-{
- struct timeval adjtv; /* new adjustment */
- double dtemp;
- long ticks;
- int isneg = 0;
-
- /*
- * Most Unix adjtime() implementations adjust the system clock
- * in microsecond quanta, but some adjust in 10-ms quanta. We
- * carefully round the adjustment to the nearest quantum, then
- * adjust in quanta and keep the residue for later.
- */
- dtemp = now + sys_residual;
- if (dtemp < 0) {
- isneg = 1;
- dtemp = -dtemp;
- }
- adjtv.tv_sec = (long)dtemp;
- dtemp -= adjtv.tv_sec;
- ticks = (long)(dtemp / sys_tick + .5);
- adjtv.tv_usec = (long)(ticks * sys_tick * 1e6);
- dtemp -= adjtv.tv_usec / 1e6;
- sys_residual = dtemp;
-
- /*
- * Convert to signed seconds and microseconds for the Unix
- * adjtime() system call. Note we purposely lose the adjtime()
- * leftover.
- */
- if (isneg) {
- adjtv.tv_sec = -adjtv.tv_sec;
- adjtv.tv_usec = -adjtv.tv_usec;
- sys_residual = -sys_residual;
- }
- ntp_node.adj = now;
- return (1);
-}
-
-
-/*
- * step_systime - step the system clock. We are religious here.
- */
-int /* always succeeds */
-step_systime(
- double now /* step adjustment (s) */
- )
-{
-#ifdef DEBUG
- if (debug)
- printf("step_systime: time %.6f adj %.6f\n",
- ntp_node.ntp_time, now);
-#endif
- ntp_node.ntp_time += now;
- return (1);
-}
-
-/*
- * node_clock - update the clocks
- */
-int /* always succeeds */
-node_clock(
- Node *n, /* global node pointer */
- double t /* node time */
- )
-{
- double dtemp;
-
- /*
- * Advance client clock (ntp_time). Advance server clock
- * (clk_time) adjusted for systematic and random frequency
- * errors. The random error is a random walk computed as the
- * integral of samples from a Gaussian distribution.
- */
- dtemp = t - n->ntp_time;
- n->time = t;
- n->ntp_time += dtemp;
- n->ferr += gauss(0, dtemp * n->fnse);
- n->clk_time += dtemp * (1 + n->ferr);
-
- /*
- * Perform the adjtime() function. If the adjustment completed
- * in the previous interval, amortize the entire amount; if not,
- * carry the leftover to the next interval.
- */
- dtemp *= n->slew;
- if (dtemp < fabs(n->adj)) {
- if (n->adj < 0) {
- n->adj += dtemp;
- n->ntp_time -= dtemp;
- } else {
- n->adj -= dtemp;
- n->ntp_time += dtemp;
- }
- } else {
- n->ntp_time += n->adj;
- n->adj = 0;
- }
- return (0);
-}
-
-
-/*
- * gauss() - returns samples from a gaussion distribution
- */
-double /* Gaussian sample */
-gauss(
- double m, /* sample mean */
- double s /* sample standard deviation (sigma) */
- )
-{
- double q1, q2;
- /*
- * Roll a sample from a Gaussian distribution with mean m and
- * standard deviation s. For m = 0, s = 1, mean(y) = 0,
- * std(y) = 1.
- */
- if (s == 0)
- return (m);
- while ((q1 = drand48()) == 0);
- q2 = drand48();
- return (m + s * sqrt(-2. * log(q1)) * cos(2. * PI * q2));
-}
-
-/*
- * poisson() - returns samples from a network delay distribution
+/* SK:
+ * The code that used to be here has been moved to ntpsim.c,
+ * where, IMHO, it rightfully belonged.
*/
-double /* delay sample (s) */
-poisson(
- double m, /* fixed propagation delay (s) */
- double s /* exponential parameter (mu) */
- )
-{
- double q1;
- /*
- * Roll a sample from a composite distribution with propagation
- * delay m and exponential distribution time with parameter s.
- * For m = 0, s = 1, mean(y) = std(y) = 1.
- */
- if (s == 0)
- return (m);
- while ((q1 = drand48()) == 0);
- return (m - s * log(q1 * s));
-}
-#endif /* SIM */
+#endif
OpenPOWER on IntegriCloud