summaryrefslogtreecommitdiffstats
path: root/libntp/systime.c
diff options
context:
space:
mode:
Diffstat (limited to 'libntp/systime.c')
-rw-r--r--libntp/systime.c521
1 files changed, 521 insertions, 0 deletions
diff --git a/libntp/systime.c b/libntp/systime.c
new file mode 100644
index 0000000..ac6aa98
--- /dev/null
+++ b/libntp/systime.c
@@ -0,0 +1,521 @@
+/*
+ * systime -- routines to fiddle a UNIX clock.
+ *
+ * ATTENTION: Get approval from Dave Mills on all changes to this file!
+ *
+ */
+#include "ntp_machine.h"
+#include "ntp_fp.h"
+#include "ntp_syslog.h"
+#include "ntp_unixtime.h"
+#include "ntp_stdlib.h"
+
+#ifdef SIM
+#include "ntpsim.h"
+#endif /*SIM */
+
+#ifdef HAVE_SYS_PARAM_H
+# include <sys/param.h>
+#endif
+#ifdef HAVE_UTMP_H
+# include <utmp.h>
+#endif /* HAVE_UTMP_H */
+#ifdef HAVE_UTMPX_H
+# include <utmpx.h>
+#endif /* HAVE_UTMPX_H */
+
+/*
+ * These routines (get_systime, step_systime, adj_systime) implement an
+ * interface between the system independent NTP clock and the Unix
+ * system clock in various architectures and operating systems.
+ *
+ * Time is a precious quantity in these routines and every effort is
+ * made to minimize errors by always rounding toward zero and amortizing
+ * adjustment residues. By default the adjustment quantum is 1 us for
+ * the usual Unix tickadj() system call, but this can be increased if
+ * necessary by a configuration command. For instance, when the
+ * adjtime() quantum is a clock tick for a 100-Hz clock, the quantum
+ * should be 10 ms.
+ */
+double sys_tick = 1e-6; /* tickadj() quantum (s) */
+double sys_residual = 0; /* adjustment residue (s) */
+
+#ifndef SIM
+
+/*
+ * get_systime - return system time in NTP timestamp format.
+ */
+void
+get_systime(
+ l_fp *now /* system time */
+ )
+{
+ double dtemp;
+
+#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
+ struct timespec ts; /* seconds and nanoseconds */
+
+ /*
+ * Convert Unix clock from seconds and nanoseconds to seconds.
+ */
+# ifdef HAVE_CLOCK_GETTIME
+ clock_gettime(CLOCK_REALTIME, &ts);
+# else
+ getclock(TIMEOFDAY, &ts);
+# endif
+ now->l_i = ts.tv_sec + JAN_1970;
+ dtemp = ts.tv_nsec / 1e9;
+
+#else /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
+ struct timeval tv; /* seconds and microseconds */
+
+ /*
+ * Convert Unix clock from seconds and microseconds to seconds.
+ */
+ GETTIMEOFDAY(&tv, NULL);
+ now->l_i = tv.tv_sec + JAN_1970;
+ dtemp = tv.tv_usec / 1e6;
+
+#endif /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
+
+ /*
+ * Renormalize to seconds past 1900 and fraction.
+ */
+ dtemp += sys_residual;
+ if (dtemp >= 1) {
+ dtemp -= 1;
+ now->l_i++;
+ } else if (dtemp < -1) {
+ dtemp += 1;
+ now->l_i--;
+ }
+ dtemp *= FRAC;
+ now->l_uf = (u_int32)dtemp;
+}
+
+
+/*
+ * adj_systime - adjust system time by the argument.
+ */
+#if !defined SYS_WINNT
+int /* 0 okay, 1 error */
+adj_systime(
+ double now /* adjustment (s) */
+ )
+{
+ struct timeval adjtv; /* new adjustment */
+ struct timeval oadjtv; /* residual adjustment */
+ double dtemp;
+ long ticks;
+ int isneg = 0;
+
+ /*
+ * Most Unix adjtime() implementations adjust the system clock
+ * in microsecond quanta, but some adjust in 10-ms quanta. We
+ * carefully round the adjustment to the nearest quantum, then
+ * adjust in quanta and keep the residue for later.
+ */
+ dtemp = now + sys_residual;
+ if (dtemp < 0) {
+ isneg = 1;
+ dtemp = -dtemp;
+ }
+ adjtv.tv_sec = (long)dtemp;
+ dtemp -= adjtv.tv_sec;
+ ticks = (long)(dtemp / sys_tick + .5);
+ adjtv.tv_usec = (long)(ticks * sys_tick * 1e6);
+ dtemp -= adjtv.tv_usec / 1e6;
+ sys_residual = dtemp;
+
+ /*
+ * Convert to signed seconds and microseconds for the Unix
+ * adjtime() system call. Note we purposely lose the adjtime()
+ * leftover.
+ */
+ if (isneg) {
+ adjtv.tv_sec = -adjtv.tv_sec;
+ adjtv.tv_usec = -adjtv.tv_usec;
+ }
+ if (adjtime(&adjtv, &oadjtv) < 0) {
+ msyslog(LOG_ERR, "adj_systime: %m");
+ return (0);
+ }
+ return (1);
+}
+#endif
+
+
+/*
+ * step_systime - step the system clock.
+ */
+int
+step_systime(
+ double now
+ )
+{
+ struct timeval timetv, adjtv, oldtimetv;
+ int isneg = 0;
+ double dtemp;
+#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
+ struct timespec ts;
+#endif
+
+ dtemp = sys_residual + now;
+ if (dtemp < 0) {
+ isneg = 1;
+ dtemp = - dtemp;
+ adjtv.tv_sec = (int32)dtemp;
+ adjtv.tv_usec = (u_int32)((dtemp -
+ (double)adjtv.tv_sec) * 1e6 + .5);
+ } else {
+ adjtv.tv_sec = (int32)dtemp;
+ adjtv.tv_usec = (u_int32)((dtemp -
+ (double)adjtv.tv_sec) * 1e6 + .5);
+ }
+#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
+#ifdef HAVE_CLOCK_GETTIME
+ (void) clock_gettime(CLOCK_REALTIME, &ts);
+#else
+ (void) getclock(TIMEOFDAY, &ts);
+#endif
+ timetv.tv_sec = ts.tv_sec;
+ timetv.tv_usec = ts.tv_nsec / 1000;
+#else /* not HAVE_GETCLOCK */
+ (void) GETTIMEOFDAY(&timetv, (struct timezone *)0);
+#endif /* not HAVE_GETCLOCK */
+
+ oldtimetv = timetv;
+
+#ifdef DEBUG
+ if (debug)
+ printf("step_systime: step %.6f residual %.6f\n", now, sys_residual);
+#endif
+ if (isneg) {
+ timetv.tv_sec -= adjtv.tv_sec;
+ timetv.tv_usec -= adjtv.tv_usec;
+ if (timetv.tv_usec < 0) {
+ timetv.tv_sec--;
+ timetv.tv_usec += 1000000;
+ }
+ } else {
+ timetv.tv_sec += adjtv.tv_sec;
+ timetv.tv_usec += adjtv.tv_usec;
+ if (timetv.tv_usec >= 1000000) {
+ timetv.tv_sec++;
+ timetv.tv_usec -= 1000000;
+ }
+ }
+ if (ntp_set_tod(&timetv, NULL) != 0) {
+ msyslog(LOG_ERR, "step-systime: %m");
+ return (0);
+ }
+ sys_residual = 0;
+
+#ifdef NEED_HPUX_ADJTIME
+ /*
+ * CHECKME: is this correct when called by ntpdate?????
+ */
+ _clear_adjtime();
+#endif
+
+ /*
+ * FreeBSD, for example, has:
+ * struct utmp {
+ * char ut_line[UT_LINESIZE];
+ * char ut_name[UT_NAMESIZE];
+ * char ut_host[UT_HOSTSIZE];
+ * long ut_time;
+ * };
+ * and appends line="|", name="date", host="", time for the OLD
+ * and appends line="{", name="date", host="", time for the NEW
+ * to _PATH_WTMP .
+ *
+ * Some OSes have utmp, some have utmpx.
+ */
+
+ /*
+ * Write old and new time entries in utmp and wtmp if step
+ * adjustment is greater than one second.
+ *
+ * This might become even Uglier...
+ */
+ if (oldtimetv.tv_sec != timetv.tv_sec)
+ {
+#ifdef HAVE_UTMP_H
+ struct utmp ut;
+#endif
+#ifdef HAVE_UTMPX_H
+ struct utmpx utx;
+#endif
+
+#ifdef HAVE_UTMP_H
+ memset((char *)&ut, 0, sizeof(ut));
+#endif
+#ifdef HAVE_UTMPX_H
+ memset((char *)&utx, 0, sizeof(utx));
+#endif
+
+ /* UTMP */
+
+#ifdef UPDATE_UTMP
+# ifdef HAVE_PUTUTLINE
+ ut.ut_type = OLD_TIME;
+ (void)strcpy(ut.ut_line, OTIME_MSG);
+ ut.ut_time = oldtimetv.tv_sec;
+ pututline(&ut);
+ setutent();
+ ut.ut_type = NEW_TIME;
+ (void)strcpy(ut.ut_line, NTIME_MSG);
+ ut.ut_time = timetv.tv_sec;
+ pututline(&ut);
+ endutent();
+# else /* not HAVE_PUTUTLINE */
+# endif /* not HAVE_PUTUTLINE */
+#endif /* UPDATE_UTMP */
+
+ /* UTMPX */
+
+#ifdef UPDATE_UTMPX
+# ifdef HAVE_PUTUTXLINE
+ utx.ut_type = OLD_TIME;
+ (void)strcpy(utx.ut_line, OTIME_MSG);
+ utx.ut_tv = oldtimetv;
+ pututxline(&utx);
+ setutxent();
+ utx.ut_type = NEW_TIME;
+ (void)strcpy(utx.ut_line, NTIME_MSG);
+ utx.ut_tv = timetv;
+ pututxline(&utx);
+ endutxent();
+# else /* not HAVE_PUTUTXLINE */
+# endif /* not HAVE_PUTUTXLINE */
+#endif /* UPDATE_UTMPX */
+
+ /* WTMP */
+
+#ifdef UPDATE_WTMP
+# ifdef HAVE_PUTUTLINE
+ utmpname(WTMP_FILE);
+ ut.ut_type = OLD_TIME;
+ (void)strcpy(ut.ut_line, OTIME_MSG);
+ ut.ut_time = oldtimetv.tv_sec;
+ pututline(&ut);
+ ut.ut_type = NEW_TIME;
+ (void)strcpy(ut.ut_line, NTIME_MSG);
+ ut.ut_time = timetv.tv_sec;
+ pututline(&ut);
+ endutent();
+# else /* not HAVE_PUTUTLINE */
+# endif /* not HAVE_PUTUTLINE */
+#endif /* UPDATE_WTMP */
+
+ /* WTMPX */
+
+#ifdef UPDATE_WTMPX
+# ifdef HAVE_PUTUTXLINE
+ utx.ut_type = OLD_TIME;
+ utx.ut_tv = oldtimetv;
+ (void)strcpy(utx.ut_line, OTIME_MSG);
+# ifdef HAVE_UPDWTMPX
+ updwtmpx(WTMPX_FILE, &utx);
+# else /* not HAVE_UPDWTMPX */
+# endif /* not HAVE_UPDWTMPX */
+# else /* not HAVE_PUTUTXLINE */
+# endif /* not HAVE_PUTUTXLINE */
+# ifdef HAVE_PUTUTXLINE
+ utx.ut_type = NEW_TIME;
+ utx.ut_tv = timetv;
+ (void)strcpy(utx.ut_line, NTIME_MSG);
+# ifdef HAVE_UPDWTMPX
+ updwtmpx(WTMPX_FILE, &utx);
+# else /* not HAVE_UPDWTMPX */
+# endif /* not HAVE_UPDWTMPX */
+# else /* not HAVE_PUTUTXLINE */
+# endif /* not HAVE_PUTUTXLINE */
+#endif /* UPDATE_WTMPX */
+
+ }
+ return (1);
+}
+
+#else /* SIM */
+/*
+ * Clock routines for the simulator - Harish Nair, with help
+ */
+/*
+ * get_systime - return the system time in NTP timestamp format
+ */
+void
+get_systime(
+ l_fp *now /* current system time in l_fp */ )
+{
+ /*
+ * To fool the code that determines the local clock precision,
+ * we advance the clock a minimum of 200 nanoseconds on every
+ * clock read. This is appropriate for a typical modern machine
+ * with nanosecond clocks. Note we make no attempt here to
+ * simulate reading error, since the error is so small. This may
+ * change when the need comes to implement picosecond clocks.
+ */
+ if (ntp_node.ntp_time == ntp_node.last_time)
+ ntp_node.ntp_time += 200e-9;
+ ntp_node.last_time = ntp_node.ntp_time;
+ DTOLFP(ntp_node.ntp_time, now);
+}
+
+
+/*
+ * adj_systime - advance or retard the system clock exactly like the
+ * real thng.
+ */
+int /* always succeeds */
+adj_systime(
+ double now /* time adjustment (s) */
+ )
+{
+ struct timeval adjtv; /* new adjustment */
+ double dtemp;
+ long ticks;
+ int isneg = 0;
+
+ /*
+ * Most Unix adjtime() implementations adjust the system clock
+ * in microsecond quanta, but some adjust in 10-ms quanta. We
+ * carefully round the adjustment to the nearest quantum, then
+ * adjust in quanta and keep the residue for later.
+ */
+ dtemp = now + sys_residual;
+ if (dtemp < 0) {
+ isneg = 1;
+ dtemp = -dtemp;
+ }
+ adjtv.tv_sec = (long)dtemp;
+ dtemp -= adjtv.tv_sec;
+ ticks = (long)(dtemp / sys_tick + .5);
+ adjtv.tv_usec = (long)(ticks * sys_tick * 1e6);
+ dtemp -= adjtv.tv_usec / 1e6;
+ sys_residual = dtemp;
+
+ /*
+ * Convert to signed seconds and microseconds for the Unix
+ * adjtime() system call. Note we purposely lose the adjtime()
+ * leftover.
+ */
+ if (isneg) {
+ adjtv.tv_sec = -adjtv.tv_sec;
+ adjtv.tv_usec = -adjtv.tv_usec;
+ sys_residual = -sys_residual;
+ }
+
+ /*
+ * We went to all the trouble just to be sure the emulation is
+ * precise. We now return to our regularly scheduled concert.
+ */
+ ntp_node.clk_time -= adjtv.tv_sec + adjtv.tv_usec / 1e6;
+ return (1);
+}
+
+
+/*
+ * step_systime - step the system clock. We are religious here.
+ */
+int /* always succeeds */
+step_systime(
+ double now /* step adjustment (s) */
+ )
+{
+ ntp_node.adj = now;
+ return (1);
+}
+
+/*
+ * node_clock - update the clocks
+ */
+int /* always succeeds */
+node_clock(
+ Node *n, /* global node pointer */
+ double t /* node time */
+ )
+{
+ double dtemp;
+
+ /*
+ * Advance client clock (ntp_time). Advance server clock
+ * (clk_time) adjusted for systematic and random frequency
+ * errors. The random error is a random walk computed as the
+ * integral of samples from a Gaussian distribution.
+ */
+ dtemp = t - n->ntp_time;
+ n->time = t;
+ n->ntp_time += dtemp;
+ n->ferr += gauss(0, dtemp * n->fnse);
+ n->clk_time += dtemp * (1 + n->ferr);
+
+ /*
+ * Perform the adjtime() function. If the adjustment completed
+ * in the previous interval, amortize the entire amount; if not,
+ * carry the leftover to the next interval.
+ */
+ dtemp *= n->slew;
+ if (dtemp < fabs(n->adj)) {
+ if (n->adj < 0) {
+ n->adj += dtemp;
+ n->ntp_time -= dtemp;
+ } else {
+ n->adj -= dtemp;
+ n->ntp_time += dtemp;
+ }
+ } else {
+ n->ntp_time += n->adj;
+ n->adj = 0;
+ }
+ return (0);
+}
+
+
+/*
+ * gauss() - returns samples from a gaussion distribution
+ */
+double /* Gaussian sample */
+gauss(
+ double m, /* sample mean */
+ double s /* sample standard deviation (sigma) */
+ )
+{
+ double q1, q2;
+
+ /*
+ * Roll a sample from a Gaussian distribution with mean m and
+ * standard deviation s. For m = 0, s = 1, mean(y) = 0,
+ * std(y) = 1.
+ */
+ if (s == 0)
+ return (m);
+ while ((q1 = drand48()) == 0);
+ q2 = drand48();
+ return (m + s * sqrt(-2. * log(q1)) * cos(2. * PI * q2));
+}
+
+
+/*
+ * poisson() - returns samples from a network delay distribution
+ */
+double /* delay sample (s) */
+poisson(
+ double m, /* fixed propagation delay (s) */
+ double s /* exponential parameter (mu) */
+ )
+{
+ double q1;
+
+ /*
+ * Roll a sample from a composite distribution with propagation
+ * delay m and exponential distribution time with parameter s.
+ * For m = 0, s = 1, mean(y) = std(y) = 1.
+ */
+ if (s == 0)
+ return (m);
+ while ((q1 = drand48()) == 0);
+ return (m - s * log(q1 * s));
+}
+#endif /* SIM */
OpenPOWER on IntegriCloud