summaryrefslogtreecommitdiffstats
path: root/lib/msun/src/s_expm1.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/msun/src/s_expm1.c')
-rw-r--r--lib/msun/src/s_expm1.c228
1 files changed, 228 insertions, 0 deletions
diff --git a/lib/msun/src/s_expm1.c b/lib/msun/src/s_expm1.c
new file mode 100644
index 0000000..70a1e05
--- /dev/null
+++ b/lib/msun/src/s_expm1.c
@@ -0,0 +1,228 @@
+/* @(#)s_expm1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#ifndef lint
+static char rcsid[] = "$Id: s_expm1.c,v 1.6 1994/08/18 23:06:39 jtc Exp $";
+#endif
+
+/* expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+ *
+ * Here a correction term c will be computed to compensate
+ * the error in r when rounded to a floating-point number.
+ *
+ * 2. Approximating expm1(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Since
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ * we define R1(r*r) by
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ * That is,
+ * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ * We use a special Reme algorithm on [0,0.347] to generate
+ * a polynomial of degree 5 in r*r to approximate R1. The
+ * maximum error of this polynomial approximation is bounded
+ * by 2**-61. In other words,
+ * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ * where Q1 = -1.6666666666666567384E-2,
+ * Q2 = 3.9682539681370365873E-4,
+ * Q3 = -9.9206344733435987357E-6,
+ * Q4 = 2.5051361420808517002E-7,
+ * Q5 = -6.2843505682382617102E-9;
+ * (where z=r*r, and the values of Q1 to Q5 are listed below)
+ * with error bounded by
+ * | 5 | -61
+ * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+ * | |
+ *
+ * expm1(r) = exp(r)-1 is then computed by the following
+ * specific way which minimize the accumulation rounding error:
+ * 2 3
+ * r r [ 3 - (R1 + R1*r/2) ]
+ * expm1(r) = r + --- + --- * [--------------------]
+ * 2 2 [ 6 - r*(3 - R1*r/2) ]
+ *
+ * To compensate the error in the argument reduction, we use
+ * expm1(r+c) = expm1(r) + c + expm1(r)*c
+ * ~ expm1(r) + c + r*c
+ * Thus c+r*c will be added in as the correction terms for
+ * expm1(r+c). Now rearrange the term to avoid optimization
+ * screw up:
+ * ( 2 2 )
+ * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+ * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+ * ( )
+ *
+ * = r - E
+ * 3. Scale back to obtain expm1(x):
+ * From step 1, we have
+ * expm1(x) = either 2^k*[expm1(r)+1] - 1
+ * = or 2^k*[expm1(r) + (1-2^-k)]
+ * 4. Implementation notes:
+ * (A). To save one multiplication, we scale the coefficient Qi
+ * to Qi*2^i, and replace z by (x^2)/2.
+ * (B). To achieve maximum accuracy, we compute expm1(x) by
+ * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ * (ii) if k=0, return r-E
+ * (iii) if k=-1, return 0.5*(r-E)-0.5
+ * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ * else return 1.0+2.0*(r-E);
+ * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ * (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ * expm1(INF) is INF, expm1(NaN) is NaN;
+ * expm1(-INF) is -1, and
+ * for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one = 1.0,
+huge = 1.0e+300,
+tiny = 1.0e-300,
+o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
+ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
+ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
+ /* scaled coefficients related to expm1 */
+Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+
+#ifdef __STDC__
+ double expm1(double x)
+#else
+ double expm1(x)
+ double x;
+#endif
+{
+ double y,hi,lo,c,t,e,hxs,hfx,r1;
+ int32_t k,xsb;
+ u_int32_t hx;
+
+ GET_HIGH_WORD(hx,x);
+ xsb = hx&0x80000000; /* sign bit of x */
+ if(xsb==0) y=x; else y= -x; /* y = |x| */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out huge and non-finite argument */
+ if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
+ if(hx >= 0x40862E42) { /* if |x|>=709.78... */
+ if(hx>=0x7ff00000) {
+ u_int32_t low;
+ GET_LOW_WORD(low,x);
+ if(((hx&0xfffff)|low)!=0)
+ return x+x; /* NaN */
+ else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+ }
+ if(x > o_threshold) return huge*huge; /* overflow */
+ }
+ if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
+ if(x+tiny<0.0) /* raise inexact */
+ return tiny-one; /* return -1 */
+ }
+ }
+
+ /* argument reduction */
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ if(xsb==0)
+ {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
+ else
+ {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
+ } else {
+ k = invln2*x+((xsb==0)?0.5:-0.5);
+ t = k;
+ hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi - lo;
+ c = (hi-x)-lo;
+ }
+ else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
+ t = huge+x; /* return x with inexact flags when x!=0 */
+ return x - (t-(huge+x));
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ hfx = 0.5*x;
+ hxs = x*hfx;
+ r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+ t = 3.0-r1*hfx;
+ e = hxs*((r1-t)/(6.0 - x*t));
+ if(k==0) return x - (x*e-hxs); /* c is 0 */
+ else {
+ e = (x*(e-c)-c);
+ e -= hxs;
+ if(k== -1) return 0.5*(x-e)-0.5;
+ if(k==1)
+ if(x < -0.25) return -2.0*(e-(x+0.5));
+ else return one+2.0*(x-e);
+ if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
+ u_int32_t high;
+ y = one-(e-x);
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ return y-one;
+ }
+ t = one;
+ if(k<20) {
+ u_int32_t high;
+ SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
+ y = t-(e-x);
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ } else {
+ u_int32_t high;
+ SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
+ y = x-(e+t);
+ y += one;
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ }
+ }
+ return y;
+}
OpenPOWER on IntegriCloud