diff options
Diffstat (limited to 'lib/msun/src/s_cbrtf.c')
-rw-r--r-- | lib/msun/src/s_cbrtf.c | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/lib/msun/src/s_cbrtf.c b/lib/msun/src/s_cbrtf.c new file mode 100644 index 0000000..454f974 --- /dev/null +++ b/lib/msun/src/s_cbrtf.c @@ -0,0 +1,73 @@ +/* s_cbrtf.c -- float version of s_cbrt.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Debugged and optimized by Bruce D. Evans. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include "math.h" +#include "math_private.h" + +/* cbrtf(x) + * Return cube root of x + */ +static const unsigned + B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */ + B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ + +float +cbrtf(float x) +{ + double r,T; + float t; + int32_t hx; + u_int32_t sign; + u_int32_t high; + + GET_FLOAT_WORD(hx,x); + sign=hx&0x80000000; /* sign= sign(x) */ + hx ^=sign; + if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */ + + /* rough cbrt to 5 bits */ + if(hx<0x00800000) { /* zero or subnormal? */ + if(hx==0) + return(x); /* cbrt(+-0) is itself */ + SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */ + t*=x; + GET_FLOAT_WORD(high,t); + SET_FLOAT_WORD(t,sign|((high&0x7fffffff)/3+B2)); + } else + SET_FLOAT_WORD(t,sign|(hx/3+B1)); + + /* + * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In + * double precision so that its terms can be arranged for efficiency + * without causing overflow or underflow. + */ + T=t; + r=T*T*T; + T=T*((double)x+x+r)/(x+r+r); + + /* + * Second step Newton iteration to 47 bits. In double precision for + * efficiency and accuracy. + */ + r=T*T*T; + T=T*((double)x+x+r)/(x+r+r); + + /* rounding to 24 bits is perfect in round-to-nearest mode */ + return(T); +} |