summaryrefslogtreecommitdiffstats
path: root/lib/msun/src/math_private.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/msun/src/math_private.h')
-rw-r--r--lib/msun/src/math_private.h432
1 files changed, 432 insertions, 0 deletions
diff --git a/lib/msun/src/math_private.h b/lib/msun/src/math_private.h
new file mode 100644
index 0000000..79280e3
--- /dev/null
+++ b/lib/msun/src/math_private.h
@@ -0,0 +1,432 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * from: @(#)fdlibm.h 5.1 93/09/24
+ * $FreeBSD$
+ */
+
+#ifndef _MATH_PRIVATE_H_
+#define _MATH_PRIVATE_H_
+
+#include <sys/types.h>
+#include <machine/endian.h>
+
+/*
+ * The original fdlibm code used statements like:
+ * n0 = ((*(int*)&one)>>29)^1; * index of high word *
+ * ix0 = *(n0+(int*)&x); * high word of x *
+ * ix1 = *((1-n0)+(int*)&x); * low word of x *
+ * to dig two 32 bit words out of the 64 bit IEEE floating point
+ * value. That is non-ANSI, and, moreover, the gcc instruction
+ * scheduler gets it wrong. We instead use the following macros.
+ * Unlike the original code, we determine the endianness at compile
+ * time, not at run time; I don't see much benefit to selecting
+ * endianness at run time.
+ */
+
+/*
+ * A union which permits us to convert between a double and two 32 bit
+ * ints.
+ */
+
+#ifdef __arm__
+#if defined(__VFP_FP__)
+#define IEEE_WORD_ORDER BYTE_ORDER
+#else
+#define IEEE_WORD_ORDER BIG_ENDIAN
+#endif
+#else /* __arm__ */
+#define IEEE_WORD_ORDER BYTE_ORDER
+#endif
+
+#if IEEE_WORD_ORDER == BIG_ENDIAN
+
+typedef union
+{
+ double value;
+ struct
+ {
+ u_int32_t msw;
+ u_int32_t lsw;
+ } parts;
+ struct
+ {
+ u_int64_t w;
+ } xparts;
+} ieee_double_shape_type;
+
+#endif
+
+#if IEEE_WORD_ORDER == LITTLE_ENDIAN
+
+typedef union
+{
+ double value;
+ struct
+ {
+ u_int32_t lsw;
+ u_int32_t msw;
+ } parts;
+ struct
+ {
+ u_int64_t w;
+ } xparts;
+} ieee_double_shape_type;
+
+#endif
+
+/* Get two 32 bit ints from a double. */
+
+#define EXTRACT_WORDS(ix0,ix1,d) \
+do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix0) = ew_u.parts.msw; \
+ (ix1) = ew_u.parts.lsw; \
+} while (0)
+
+/* Get a 64-bit int from a double. */
+#define EXTRACT_WORD64(ix,d) \
+do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix) = ew_u.xparts.w; \
+} while (0)
+
+/* Get the more significant 32 bit int from a double. */
+
+#define GET_HIGH_WORD(i,d) \
+do { \
+ ieee_double_shape_type gh_u; \
+ gh_u.value = (d); \
+ (i) = gh_u.parts.msw; \
+} while (0)
+
+/* Get the less significant 32 bit int from a double. */
+
+#define GET_LOW_WORD(i,d) \
+do { \
+ ieee_double_shape_type gl_u; \
+ gl_u.value = (d); \
+ (i) = gl_u.parts.lsw; \
+} while (0)
+
+/* Set a double from two 32 bit ints. */
+
+#define INSERT_WORDS(d,ix0,ix1) \
+do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.parts.msw = (ix0); \
+ iw_u.parts.lsw = (ix1); \
+ (d) = iw_u.value; \
+} while (0)
+
+/* Set a double from a 64-bit int. */
+#define INSERT_WORD64(d,ix) \
+do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.xparts.w = (ix); \
+ (d) = iw_u.value; \
+} while (0)
+
+/* Set the more significant 32 bits of a double from an int. */
+
+#define SET_HIGH_WORD(d,v) \
+do { \
+ ieee_double_shape_type sh_u; \
+ sh_u.value = (d); \
+ sh_u.parts.msw = (v); \
+ (d) = sh_u.value; \
+} while (0)
+
+/* Set the less significant 32 bits of a double from an int. */
+
+#define SET_LOW_WORD(d,v) \
+do { \
+ ieee_double_shape_type sl_u; \
+ sl_u.value = (d); \
+ sl_u.parts.lsw = (v); \
+ (d) = sl_u.value; \
+} while (0)
+
+/*
+ * A union which permits us to convert between a float and a 32 bit
+ * int.
+ */
+
+typedef union
+{
+ float value;
+ /* FIXME: Assumes 32 bit int. */
+ unsigned int word;
+} ieee_float_shape_type;
+
+/* Get a 32 bit int from a float. */
+
+#define GET_FLOAT_WORD(i,d) \
+do { \
+ ieee_float_shape_type gf_u; \
+ gf_u.value = (d); \
+ (i) = gf_u.word; \
+} while (0)
+
+/* Set a float from a 32 bit int. */
+
+#define SET_FLOAT_WORD(d,i) \
+do { \
+ ieee_float_shape_type sf_u; \
+ sf_u.word = (i); \
+ (d) = sf_u.value; \
+} while (0)
+
+/* Get expsign as a 16 bit int from a long double. */
+
+#define GET_LDBL_EXPSIGN(i,d) \
+do { \
+ union IEEEl2bits ge_u; \
+ ge_u.e = (d); \
+ (i) = ge_u.xbits.expsign; \
+} while (0)
+
+/* Set expsign of a long double from a 16 bit int. */
+
+#define SET_LDBL_EXPSIGN(d,v) \
+do { \
+ union IEEEl2bits se_u; \
+ se_u.e = (d); \
+ se_u.xbits.expsign = (v); \
+ (d) = se_u.e; \
+} while (0)
+
+#ifdef FLT_EVAL_METHOD
+/*
+ * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
+ */
+#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
+#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
+#else
+#define STRICT_ASSIGN(type, lval, rval) do { \
+ volatile type __lval; \
+ \
+ if (sizeof(type) >= sizeof(double)) \
+ (lval) = (rval); \
+ else { \
+ __lval = (rval); \
+ (lval) = __lval; \
+ } \
+} while (0)
+#endif
+#endif
+
+/*
+ * Common routine to process the arguments to nan(), nanf(), and nanl().
+ */
+void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
+
+#ifdef _COMPLEX_H
+
+/*
+ * C99 specifies that complex numbers have the same representation as
+ * an array of two elements, where the first element is the real part
+ * and the second element is the imaginary part.
+ */
+typedef union {
+ float complex f;
+ float a[2];
+} float_complex;
+typedef union {
+ double complex f;
+ double a[2];
+} double_complex;
+typedef union {
+ long double complex f;
+ long double a[2];
+} long_double_complex;
+#define REALPART(z) ((z).a[0])
+#define IMAGPART(z) ((z).a[1])
+
+/*
+ * Inline functions that can be used to construct complex values.
+ *
+ * The C99 standard intends x+I*y to be used for this, but x+I*y is
+ * currently unusable in general since gcc introduces many overflow,
+ * underflow, sign and efficiency bugs by rewriting I*y as
+ * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
+ * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
+ * to -0.0+I*0.0.
+ */
+static __inline float complex
+cpackf(float x, float y)
+{
+ float_complex z;
+
+ REALPART(z) = x;
+ IMAGPART(z) = y;
+ return (z.f);
+}
+
+static __inline double complex
+cpack(double x, double y)
+{
+ double_complex z;
+
+ REALPART(z) = x;
+ IMAGPART(z) = y;
+ return (z.f);
+}
+
+static __inline long double complex
+cpackl(long double x, long double y)
+{
+ long_double_complex z;
+
+ REALPART(z) = x;
+ IMAGPART(z) = y;
+ return (z.f);
+}
+#endif /* _COMPLEX_H */
+
+#ifdef __GNUCLIKE_ASM
+
+/* Asm versions of some functions. */
+
+#ifdef __amd64__
+static __inline int
+irint(double x)
+{
+ int n;
+
+ asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
+ return (n);
+}
+#define HAVE_EFFICIENT_IRINT
+#endif
+
+#ifdef __i386__
+static __inline int
+irint(double x)
+{
+ int n;
+
+ asm("fistl %0" : "=m" (n) : "t" (x));
+ return (n);
+}
+#define HAVE_EFFICIENT_IRINT
+#endif
+
+#endif /* __GNUCLIKE_ASM */
+
+/*
+ * ieee style elementary functions
+ *
+ * We rename functions here to improve other sources' diffability
+ * against fdlibm.
+ */
+#define __ieee754_sqrt sqrt
+#define __ieee754_acos acos
+#define __ieee754_acosh acosh
+#define __ieee754_log log
+#define __ieee754_log2 log2
+#define __ieee754_atanh atanh
+#define __ieee754_asin asin
+#define __ieee754_atan2 atan2
+#define __ieee754_exp exp
+#define __ieee754_cosh cosh
+#define __ieee754_fmod fmod
+#define __ieee754_pow pow
+#define __ieee754_lgamma lgamma
+#define __ieee754_gamma gamma
+#define __ieee754_lgamma_r lgamma_r
+#define __ieee754_gamma_r gamma_r
+#define __ieee754_log10 log10
+#define __ieee754_sinh sinh
+#define __ieee754_hypot hypot
+#define __ieee754_j0 j0
+#define __ieee754_j1 j1
+#define __ieee754_y0 y0
+#define __ieee754_y1 y1
+#define __ieee754_jn jn
+#define __ieee754_yn yn
+#define __ieee754_remainder remainder
+#define __ieee754_scalb scalb
+#define __ieee754_sqrtf sqrtf
+#define __ieee754_acosf acosf
+#define __ieee754_acoshf acoshf
+#define __ieee754_logf logf
+#define __ieee754_atanhf atanhf
+#define __ieee754_asinf asinf
+#define __ieee754_atan2f atan2f
+#define __ieee754_expf expf
+#define __ieee754_coshf coshf
+#define __ieee754_fmodf fmodf
+#define __ieee754_powf powf
+#define __ieee754_lgammaf lgammaf
+#define __ieee754_gammaf gammaf
+#define __ieee754_lgammaf_r lgammaf_r
+#define __ieee754_gammaf_r gammaf_r
+#define __ieee754_log10f log10f
+#define __ieee754_log2f log2f
+#define __ieee754_sinhf sinhf
+#define __ieee754_hypotf hypotf
+#define __ieee754_j0f j0f
+#define __ieee754_j1f j1f
+#define __ieee754_y0f y0f
+#define __ieee754_y1f y1f
+#define __ieee754_jnf jnf
+#define __ieee754_ynf ynf
+#define __ieee754_remainderf remainderf
+#define __ieee754_scalbf scalbf
+
+/* fdlibm kernel function */
+int __kernel_rem_pio2(double*,double*,int,int,int);
+
+/* double precision kernel functions */
+#ifdef INLINE_REM_PIO2
+__inline
+#endif
+int __ieee754_rem_pio2(double,double*);
+double __kernel_sin(double,double,int);
+double __kernel_cos(double,double);
+double __kernel_tan(double,double,int);
+double __ldexp_exp(double,int);
+#ifdef _COMPLEX_H
+double complex __ldexp_cexp(double complex,int);
+#endif
+
+/* float precision kernel functions */
+#ifdef INLINE_REM_PIO2F
+__inline
+#endif
+int __ieee754_rem_pio2f(float,double*);
+#ifdef INLINE_KERNEL_SINDF
+__inline
+#endif
+float __kernel_sindf(double);
+#ifdef INLINE_KERNEL_COSDF
+__inline
+#endif
+float __kernel_cosdf(double);
+#ifdef INLINE_KERNEL_TANDF
+__inline
+#endif
+float __kernel_tandf(double,int);
+float __ldexp_expf(float,int);
+#ifdef _COMPLEX_H
+float complex __ldexp_cexpf(float complex,int);
+#endif
+
+/* long double precision kernel functions */
+long double __kernel_sinl(long double, long double, int);
+long double __kernel_cosl(long double, long double);
+long double __kernel_tanl(long double, long double, int);
+
+#endif /* !_MATH_PRIVATE_H_ */
OpenPOWER on IntegriCloud