diff options
Diffstat (limited to 'lib/libm/common_source/jn.c')
-rw-r--r-- | lib/libm/common_source/jn.c | 311 |
1 files changed, 311 insertions, 0 deletions
diff --git a/lib/libm/common_source/jn.c b/lib/libm/common_source/jn.c new file mode 100644 index 0000000..28d9687 --- /dev/null +++ b/lib/libm/common_source/jn.c @@ -0,0 +1,311 @@ +/*- + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef lint +static char sccsid[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93"; +#endif /* not lint */ + +/* + * 16 December 1992 + * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. + */ + +/* + * ==================================================== + * Copyright (C) 1992 by Sun Microsystems, Inc. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + * ******************* WARNING ******************** + * This is an alpha version of SunPro's FDLIBM (Freely + * Distributable Math Library) for IEEE double precision + * arithmetic. FDLIBM is a basic math library written + * in C that runs on machines that conform to IEEE + * Standard 754/854. This alpha version is distributed + * for testing purpose. Those who use this software + * should report any bugs to + * + * fdlibm-comments@sunpro.eng.sun.com + * + * -- K.C. Ng, Oct 12, 1992 + * ************************************************ + */ + +/* + * jn(int n, double x), yn(int n, double x) + * floating point Bessel's function of the 1st and 2nd kind + * of order n + * + * Special cases: + * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; + * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. + * Note 2. About jn(n,x), yn(n,x) + * For n=0, j0(x) is called, + * for n=1, j1(x) is called, + * for n<x, forward recursion us used starting + * from values of j0(x) and j1(x). + * for n>x, a continued fraction approximation to + * j(n,x)/j(n-1,x) is evaluated and then backward + * recursion is used starting from a supposed value + * for j(n,x). The resulting value of j(0,x) is + * compared with the actual value to correct the + * supposed value of j(n,x). + * + * yn(n,x) is similar in all respects, except + * that forward recursion is used for all + * values of n>1. + * + */ + +#include <math.h> +#include <float.h> +#include <errno.h> + +#if defined(vax) || defined(tahoe) +#define _IEEE 0 +#else +#define _IEEE 1 +#define infnan(x) (0.0) +#endif + +static double +invsqrtpi= 5.641895835477562869480794515607725858441e-0001, +two = 2.0, +zero = 0.0, +one = 1.0; + +double jn(n,x) + int n; double x; +{ + int i, sgn; + double a, b, temp; + double z, w; + + /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) + * Thus, J(-n,x) = J(n,-x) + */ + /* if J(n,NaN) is NaN */ + if (_IEEE && isnan(x)) return x+x; + if (n<0){ + n = -n; + x = -x; + } + if (n==0) return(j0(x)); + if (n==1) return(j1(x)); + sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */ + x = fabs(x); + if (x == 0 || !finite (x)) /* if x is 0 or inf */ + b = zero; + else if ((double) n <= x) { + /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ + if (_IEEE && x >= 8.148143905337944345e+090) { + /* x >= 2**302 */ + /* (x >> n**2) + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + switch(n&3) { + case 0: temp = cos(x)+sin(x); break; + case 1: temp = -cos(x)+sin(x); break; + case 2: temp = -cos(x)-sin(x); break; + case 3: temp = cos(x)-sin(x); break; + } + b = invsqrtpi*temp/sqrt(x); + } else { + a = j0(x); + b = j1(x); + for(i=1;i<n;i++){ + temp = b; + b = b*((double)(i+i)/x) - a; /* avoid underflow */ + a = temp; + } + } + } else { + if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */ + /* x is tiny, return the first Taylor expansion of J(n,x) + * J(n,x) = 1/n!*(x/2)^n - ... + */ + if (n > 33) /* underflow */ + b = zero; + else { + temp = x*0.5; b = temp; + for (a=one,i=2;i<=n;i++) { + a *= (double)i; /* a = n! */ + b *= temp; /* b = (x/2)^n */ + } + b = b/a; + } + } else { + /* use backward recurrence */ + /* x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h=2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quadruple + */ + /* determine k */ + double t,v; + double q0,q1,h,tmp; int k,m; + w = (n+n)/(double)x; h = 2.0/(double)x; + q0 = w; z = w+h; q1 = w*z - 1.0; k=1; + while (q1<1.0e9) { + k += 1; z += h; + tmp = z*q1 - q0; + q0 = q1; + q1 = tmp; + } + m = n+n; + for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); + a = t; + b = one; + /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * Hence, if n*(log(2n/x)) > ... + * single 8.8722839355e+01 + * double 7.09782712893383973096e+02 + * long double 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result will + * likely underflow to zero + */ + tmp = n; + v = two/x; + tmp = tmp*log(fabs(v*tmp)); + for (i=n-1;i>0;i--){ + temp = b; + b = ((i+i)/x)*b - a; + a = temp; + /* scale b to avoid spurious overflow */ +# if defined(vax) || defined(tahoe) +# define BMAX 1e13 +# else +# define BMAX 1e100 +# endif /* defined(vax) || defined(tahoe) */ + if (b > BMAX) { + a /= b; + t /= b; + b = one; + } + } + b = (t*j0(x)/b); + } + } + return ((sgn == 1) ? -b : b); +} +double yn(n,x) + int n; double x; +{ + int i, sign; + double a, b, temp; + + /* Y(n,NaN), Y(n, x < 0) is NaN */ + if (x <= 0 || (_IEEE && x != x)) + if (_IEEE && x < 0) return zero/zero; + else if (x < 0) return (infnan(EDOM)); + else if (_IEEE) return -one/zero; + else return(infnan(-ERANGE)); + else if (!finite(x)) return(0); + sign = 1; + if (n<0){ + n = -n; + sign = 1 - ((n&1)<<2); + } + if (n == 0) return(y0(x)); + if (n == 1) return(sign*y1(x)); + if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */ + /* (x >> n**2) + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + switch (n&3) { + case 0: temp = sin(x)-cos(x); break; + case 1: temp = -sin(x)-cos(x); break; + case 2: temp = -sin(x)+cos(x); break; + case 3: temp = sin(x)+cos(x); break; + } + b = invsqrtpi*temp/sqrt(x); + } else { + a = y0(x); + b = y1(x); + /* quit if b is -inf */ + for (i = 1; i < n && !finite(b); i++){ + temp = b; + b = ((double)(i+i)/x)*b - a; + a = temp; + } + } + if (!_IEEE && !finite(b)) + return (infnan(-sign * ERANGE)); + return ((sign > 0) ? b : -b); +} |