diff options
Diffstat (limited to 'lib/libkvm/kvm_proc.c')
-rw-r--r-- | lib/libkvm/kvm_proc.c | 966 |
1 files changed, 966 insertions, 0 deletions
diff --git a/lib/libkvm/kvm_proc.c b/lib/libkvm/kvm_proc.c new file mode 100644 index 0000000..95b09d1 --- /dev/null +++ b/lib/libkvm/kvm_proc.c @@ -0,0 +1,966 @@ +/*- + * Copyright (c) 1989, 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software developed by the Computer Systems + * Engineering group at Lawrence Berkeley Laboratory under DARPA contract + * BG 91-66 and contributed to Berkeley. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#if 0 +#if defined(LIBC_SCCS) && !defined(lint) +static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; +#endif /* LIBC_SCCS and not lint */ +#endif + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +/* + * Proc traversal interface for kvm. ps and w are (probably) the exclusive + * users of this code, so we've factored it out into a separate module. + * Thus, we keep this grunge out of the other kvm applications (i.e., + * most other applications are interested only in open/close/read/nlist). + */ + +#include <sys/param.h> +#define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ +#include <sys/ucred.h> +#include <sys/user.h> +#include <sys/proc.h> +#include <sys/exec.h> +#include <sys/stat.h> +#include <sys/ioctl.h> +#include <sys/tty.h> +#include <sys/file.h> +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <nlist.h> +#include <kvm.h> + +#include <vm/vm.h> +#include <vm/vm_param.h> +#include <vm/swap_pager.h> + +#include <sys/sysctl.h> + +#include <limits.h> +#include <memory.h> +#include <paths.h> + +#include "kvm_private.h" + +#define KREAD(kd, addr, obj) \ + (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) + +/* + * Read proc's from memory file into buffer bp, which has space to hold + * at most maxcnt procs. + */ +static int +kvm_proclist(kd, what, arg, p, bp, maxcnt) + kvm_t *kd; + int what, arg; + struct proc *p; + struct kinfo_proc *bp; + int maxcnt; +{ + int cnt = 0; + struct kinfo_proc kinfo_proc, *kp; + struct pgrp pgrp; + struct session sess; + struct tty tty; + struct vmspace vmspace; + struct procsig procsig; + struct pstats pstats; + struct ucred ucred; + struct thread mtd; + struct kse mke; + struct ksegrp mkg; + struct proc proc; + struct proc pproc; + struct timeval tv; + + kp = &kinfo_proc; + kp->ki_structsize = sizeof(kinfo_proc); + for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { + memset(kp, 0, sizeof *kp); + if (KREAD(kd, (u_long)p, &proc)) { + _kvm_err(kd, kd->program, "can't read proc at %x", p); + return (-1); + } + if (proc.p_state != PRS_ZOMBIE) { + if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), + &mtd)) { + _kvm_err(kd, kd->program, + "can't read thread at %x", + TAILQ_FIRST(&proc.p_threads)); + return (-1); + } + if (proc.p_flag & P_KSES == 0) { + if (KREAD(kd, + (u_long)TAILQ_FIRST(&proc.p_ksegrps), + &mkg)) { + _kvm_err(kd, kd->program, + "can't read ksegrp at %x", + TAILQ_FIRST(&proc.p_ksegrps)); + return (-1); + } + if (KREAD(kd, + (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { + _kvm_err(kd, kd->program, + "can't read kse at %x", + TAILQ_FIRST(&mkg.kg_kseq)); + return (-1); + } + } + } + if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { + kp->ki_ruid = ucred.cr_ruid; + kp->ki_svuid = ucred.cr_svuid; + kp->ki_rgid = ucred.cr_rgid; + kp->ki_svgid = ucred.cr_svgid; + kp->ki_ngroups = ucred.cr_ngroups; + bcopy(ucred.cr_groups, kp->ki_groups, + NGROUPS * sizeof(gid_t)); + kp->ki_uid = ucred.cr_uid; + } + + switch(what) { + + case KERN_PROC_PID: + if (proc.p_pid != (pid_t)arg) + continue; + break; + + case KERN_PROC_UID: + if (kp->ki_uid != (uid_t)arg) + continue; + break; + + case KERN_PROC_RUID: + if (kp->ki_ruid != (uid_t)arg) + continue; + break; + } + /* + * We're going to add another proc to the set. If this + * will overflow the buffer, assume the reason is because + * nprocs (or the proc list) is corrupt and declare an error. + */ + if (cnt >= maxcnt) { + _kvm_err(kd, kd->program, "nprocs corrupt"); + return (-1); + } + /* + * gather kinfo_proc + */ + kp->ki_paddr = p; + kp->ki_addr = proc.p_uarea; + /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ + kp->ki_args = proc.p_args; + kp->ki_tracep = proc.p_tracep; + kp->ki_textvp = proc.p_textvp; + kp->ki_fd = proc.p_fd; + kp->ki_vmspace = proc.p_vmspace; + if (proc.p_procsig != NULL) { + if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { + _kvm_err(kd, kd->program, + "can't read procsig at %x", proc.p_procsig); + return (-1); + } + kp->ki_sigignore = procsig.ps_sigignore; + kp->ki_sigcatch = procsig.ps_sigcatch; + } + if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { + if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { + _kvm_err(kd, kd->program, + "can't read stats at %x", proc.p_stats); + return (-1); + } + kp->ki_start = pstats.p_start; + kp->ki_rusage = pstats.p_ru; + kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + + pstats.p_cru.ru_stime.tv_sec; + kp->ki_childtime.tv_usec = + pstats.p_cru.ru_utime.tv_usec + + pstats.p_cru.ru_stime.tv_usec; + } + if (proc.p_oppid) + kp->ki_ppid = proc.p_oppid; + else if (proc.p_pptr) { + if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { + _kvm_err(kd, kd->program, + "can't read pproc at %x", proc.p_pptr); + return (-1); + } + kp->ki_ppid = pproc.p_pid; + } else + kp->ki_ppid = 0; + if (proc.p_pgrp == NULL) + goto nopgrp; + if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { + _kvm_err(kd, kd->program, "can't read pgrp at %x", + proc.p_pgrp); + return (-1); + } + kp->ki_pgid = pgrp.pg_id; + kp->ki_jobc = pgrp.pg_jobc; + if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { + _kvm_err(kd, kd->program, "can't read session at %x", + pgrp.pg_session); + return (-1); + } + kp->ki_sid = sess.s_sid; + (void)memcpy(kp->ki_login, sess.s_login, + sizeof(kp->ki_login)); + kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; + if (sess.s_leader == p) + kp->ki_kiflag |= KI_SLEADER; + if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { + if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { + _kvm_err(kd, kd->program, + "can't read tty at %x", sess.s_ttyp); + return (-1); + } + kp->ki_tdev = tty.t_dev; + if (tty.t_pgrp != NULL) { + if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { + _kvm_err(kd, kd->program, + "can't read tpgrp at %x", + tty.t_pgrp); + return (-1); + } + kp->ki_tpgid = pgrp.pg_id; + } else + kp->ki_tpgid = -1; + if (tty.t_session != NULL) { + if (KREAD(kd, (u_long)tty.t_session, &sess)) { + _kvm_err(kd, kd->program, + "can't read session at %x", + tty.t_session); + return (-1); + } + kp->ki_tsid = sess.s_sid; + } + } else { +nopgrp: + kp->ki_tdev = NODEV; + } + if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) + (void)kvm_read(kd, (u_long)mtd.td_wmesg, + kp->ki_wmesg, WMESGLEN); + +#ifdef sparc + (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, + (char *)&kp->ki_rssize, + sizeof(kp->ki_rssize)); + (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, + (char *)&kp->ki_tsize, + 3 * sizeof(kp->ki_rssize)); /* XXX */ +#else + (void)kvm_read(kd, (u_long)proc.p_vmspace, + (char *)&vmspace, sizeof(vmspace)); + kp->ki_size = vmspace.vm_map.size; + kp->ki_rssize = vmspace.vm_swrss; /* XXX */ + kp->ki_swrss = vmspace.vm_swrss; + kp->ki_tsize = vmspace.vm_tsize; + kp->ki_dsize = vmspace.vm_dsize; + kp->ki_ssize = vmspace.vm_ssize; +#endif + + switch (what) { + + case KERN_PROC_PGRP: + if (kp->ki_pgid != (pid_t)arg) + continue; + break; + + case KERN_PROC_TTY: + if ((proc.p_flag & P_CONTROLT) == 0 || + kp->ki_tdev != (dev_t)arg) + continue; + break; + } + if (proc.p_comm[0] != 0) { + strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); + kp->ki_comm[MAXCOMLEN] = 0; + } + if ((proc.p_state != PRS_ZOMBIE) && + (mtd.td_blocked != 0)) { + kp->ki_kiflag |= KI_LOCKBLOCK; + if (mtd.td_lockname) + (void)kvm_read(kd, + (u_long)mtd.td_lockname, + kp->ki_lockname, LOCKNAMELEN); + kp->ki_lockname[LOCKNAMELEN] = 0; + } + bintime2timeval(&proc.p_runtime, &tv); + kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; + kp->ki_pid = proc.p_pid; + kp->ki_siglist = proc.p_siglist; + kp->ki_sigmask = proc.p_sigmask; + kp->ki_xstat = proc.p_xstat; + kp->ki_acflag = proc.p_acflag; + kp->ki_lock = proc.p_lock; + if (proc.p_state != PRS_ZOMBIE) { + kp->ki_swtime = proc.p_swtime; + kp->ki_flag = proc.p_flag; + kp->ki_sflag = proc.p_sflag; + kp->ki_traceflag = proc.p_traceflag; + if (proc.p_state == PRS_NORMAL) { + if (TD_ON_RUNQ(&mtd) || + TD_CAN_RUN(&mtd) || + TD_IS_RUNNING(&mtd)) { + kp->ki_stat = SRUN; + } else if (mtd.td_state == + TDS_INHIBITED) { + if (P_SHOULDSTOP(&proc)) { + kp->ki_stat = SSTOP; + } else if ( + TD_IS_SLEEPING(&mtd)) { + kp->ki_stat = SSLEEP; + } else if (TD_ON_LOCK(&mtd)) { + kp->ki_stat = SLOCK; + } else { + kp->ki_stat = SWAIT; + } + } + } else { + kp->ki_stat = SIDL; + } + /* Stuff from the thread */ + kp->ki_pri.pri_level = mtd.td_priority; + kp->ki_pri.pri_native = mtd.td_base_pri; + kp->ki_lastcpu = mtd.td_lastcpu; + kp->ki_wchan = mtd.td_wchan; + + if (!(proc.p_flag & P_KSES)) { + /* stuff from the ksegrp */ + kp->ki_slptime = mkg.kg_slptime; + kp->ki_pri.pri_class = mkg.kg_pri_class; + kp->ki_pri.pri_user = mkg.kg_user_pri; + kp->ki_nice = mkg.kg_nice; + kp->ki_estcpu = mkg.kg_estcpu; + + /* Stuff from the kse */ + kp->ki_pctcpu = mke.ke_pctcpu; + kp->ki_rqindex = mke.ke_rqindex; + kp->ki_oncpu = mke.ke_oncpu; + } else { + kp->ki_oncpu = -1; + kp->ki_lastcpu = -1; + kp->ki_tdflags = -1; + /* All the rest are 0 for now */ + } + } else { + kp->ki_stat = SZOMB; + } + bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); + ++bp; + ++cnt; + } + return (cnt); +} + +/* + * Build proc info array by reading in proc list from a crash dump. + * Return number of procs read. maxcnt is the max we will read. + */ +static int +kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) + kvm_t *kd; + int what, arg; + u_long a_allproc; + u_long a_zombproc; + int maxcnt; +{ + struct kinfo_proc *bp = kd->procbase; + int acnt, zcnt; + struct proc *p; + + if (KREAD(kd, a_allproc, &p)) { + _kvm_err(kd, kd->program, "cannot read allproc"); + return (-1); + } + acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); + if (acnt < 0) + return (acnt); + + if (KREAD(kd, a_zombproc, &p)) { + _kvm_err(kd, kd->program, "cannot read zombproc"); + return (-1); + } + zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); + if (zcnt < 0) + zcnt = 0; + + return (acnt + zcnt); +} + +struct kinfo_proc * +kvm_getprocs(kd, op, arg, cnt) + kvm_t *kd; + int op, arg; + int *cnt; +{ + int mib[4], st, nprocs; + size_t size; + + if (kd->procbase != 0) { + free((void *)kd->procbase); + /* + * Clear this pointer in case this call fails. Otherwise, + * kvm_close() will free it again. + */ + kd->procbase = 0; + } + if (ISALIVE(kd)) { + size = 0; + mib[0] = CTL_KERN; + mib[1] = KERN_PROC; + mib[2] = op; + mib[3] = arg; + st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); + if (st == -1) { + _kvm_syserr(kd, kd->program, "kvm_getprocs"); + return (0); + } + /* + * We can't continue with a size of 0 because we pass + * it to realloc() (via _kvm_realloc()), and passing 0 + * to realloc() results in undefined behavior. + */ + if (size == 0) { + /* + * XXX: We should probably return an invalid, + * but non-NULL, pointer here so any client + * program trying to dereference it will + * crash. However, _kvm_freeprocs() calls + * free() on kd->procbase if it isn't NULL, + * and free()'ing a junk pointer isn't good. + * Then again, _kvm_freeprocs() isn't used + * anywhere . . . + */ + kd->procbase = _kvm_malloc(kd, 1); + goto liveout; + } + do { + size += size / 10; + kd->procbase = (struct kinfo_proc *) + _kvm_realloc(kd, kd->procbase, size); + if (kd->procbase == 0) + return (0); + st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, + kd->procbase, &size, NULL, 0); + } while (st == -1 && errno == ENOMEM); + if (st == -1) { + _kvm_syserr(kd, kd->program, "kvm_getprocs"); + return (0); + } + /* + * We have to check the size again because sysctl() + * may "round up" oldlenp if oldp is NULL; hence it + * might've told us that there was data to get when + * there really isn't any. + */ + if (size > 0 && + kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { + _kvm_err(kd, kd->program, + "kinfo_proc size mismatch (expected %d, got %d)", + sizeof(struct kinfo_proc), + kd->procbase->ki_structsize); + return (0); + } +liveout: + nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; + } else { + struct nlist nl[4], *p; + + nl[0].n_name = "_nprocs"; + nl[1].n_name = "_allproc"; + nl[2].n_name = "_zombproc"; + nl[3].n_name = 0; + + if (kvm_nlist(kd, nl) != 0) { + for (p = nl; p->n_type != 0; ++p) + ; + _kvm_err(kd, kd->program, + "%s: no such symbol", p->n_name); + return (0); + } + if (KREAD(kd, nl[0].n_value, &nprocs)) { + _kvm_err(kd, kd->program, "can't read nprocs"); + return (0); + } + size = nprocs * sizeof(struct kinfo_proc); + kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); + if (kd->procbase == 0) + return (0); + + nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, + nl[2].n_value, nprocs); +#ifdef notdef + size = nprocs * sizeof(struct kinfo_proc); + (void)realloc(kd->procbase, size); +#endif + } + *cnt = nprocs; + return (kd->procbase); +} + +void +_kvm_freeprocs(kd) + kvm_t *kd; +{ + if (kd->procbase) { + free(kd->procbase); + kd->procbase = 0; + } +} + +void * +_kvm_realloc(kd, p, n) + kvm_t *kd; + void *p; + size_t n; +{ + void *np = (void *)realloc(p, n); + + if (np == 0) { + free(p); + _kvm_err(kd, kd->program, "out of memory"); + } + return (np); +} + +#ifndef MAX +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#endif + +/* + * Read in an argument vector from the user address space of process kp. + * addr if the user-space base address of narg null-terminated contiguous + * strings. This is used to read in both the command arguments and + * environment strings. Read at most maxcnt characters of strings. + */ +static char ** +kvm_argv(kd, kp, addr, narg, maxcnt) + kvm_t *kd; + struct kinfo_proc *kp; + u_long addr; + int narg; + int maxcnt; +{ + char *np, *cp, *ep, *ap; + u_long oaddr = -1; + int len, cc; + char **argv; + + /* + * Check that there aren't an unreasonable number of agruments, + * and that the address is in user space. + */ + if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) + return (0); + + /* + * kd->argv : work space for fetching the strings from the target + * process's space, and is converted for returning to caller + */ + if (kd->argv == 0) { + /* + * Try to avoid reallocs. + */ + kd->argc = MAX(narg + 1, 32); + kd->argv = (char **)_kvm_malloc(kd, kd->argc * + sizeof(*kd->argv)); + if (kd->argv == 0) + return (0); + } else if (narg + 1 > kd->argc) { + kd->argc = MAX(2 * kd->argc, narg + 1); + kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * + sizeof(*kd->argv)); + if (kd->argv == 0) + return (0); + } + /* + * kd->argspc : returned to user, this is where the kd->argv + * arrays are left pointing to the collected strings. + */ + if (kd->argspc == 0) { + kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); + if (kd->argspc == 0) + return (0); + kd->arglen = PAGE_SIZE; + } + /* + * kd->argbuf : used to pull in pages from the target process. + * the strings are copied out of here. + */ + if (kd->argbuf == 0) { + kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); + if (kd->argbuf == 0) + return (0); + } + + /* Pull in the target process'es argv vector */ + cc = sizeof(char *) * narg; + if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) + return (0); + /* + * ap : saved start address of string we're working on in kd->argspc + * np : pointer to next place to write in kd->argspc + * len: length of data in kd->argspc + * argv: pointer to the argv vector that we are hunting around the + * target process space for, and converting to addresses in + * our address space (kd->argspc). + */ + ap = np = kd->argspc; + argv = kd->argv; + len = 0; + /* + * Loop over pages, filling in the argument vector. + * Note that the argv strings could be pointing *anywhere* in + * the user address space and are no longer contiguous. + * Note that *argv is modified when we are going to fetch a string + * that crosses a page boundary. We copy the next part of the string + * into to "np" and eventually convert the pointer. + */ + while (argv < kd->argv + narg && *argv != 0) { + + /* get the address that the current argv string is on */ + addr = (u_long)*argv & ~(PAGE_SIZE - 1); + + /* is it the same page as the last one? */ + if (addr != oaddr) { + if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != + PAGE_SIZE) + return (0); + oaddr = addr; + } + + /* offset within the page... kd->argbuf */ + addr = (u_long)*argv & (PAGE_SIZE - 1); + + /* cp = start of string, cc = count of chars in this chunk */ + cp = kd->argbuf + addr; + cc = PAGE_SIZE - addr; + + /* dont get more than asked for by user process */ + if (maxcnt > 0 && cc > maxcnt - len) + cc = maxcnt - len; + + /* pointer to end of string if we found it in this page */ + ep = memchr(cp, '\0', cc); + if (ep != 0) + cc = ep - cp + 1; + /* + * at this point, cc is the count of the chars that we are + * going to retrieve this time. we may or may not have found + * the end of it. (ep points to the null if the end is known) + */ + + /* will we exceed the malloc/realloced buffer? */ + if (len + cc > kd->arglen) { + int off; + char **pp; + char *op = kd->argspc; + + kd->arglen *= 2; + kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, + kd->arglen); + if (kd->argspc == 0) + return (0); + /* + * Adjust argv pointers in case realloc moved + * the string space. + */ + off = kd->argspc - op; + for (pp = kd->argv; pp < argv; pp++) + *pp += off; + ap += off; + np += off; + } + /* np = where to put the next part of the string in kd->argspc*/ + /* np is kinda redundant.. could use "kd->argspc + len" */ + memcpy(np, cp, cc); + np += cc; /* inc counters */ + len += cc; + + /* + * if end of string found, set the *argv pointer to the + * saved beginning of string, and advance. argv points to + * somewhere in kd->argv.. This is initially relative + * to the target process, but when we close it off, we set + * it to point in our address space. + */ + if (ep != 0) { + *argv++ = ap; + ap = np; + } else { + /* update the address relative to the target process */ + *argv += cc; + } + + if (maxcnt > 0 && len >= maxcnt) { + /* + * We're stopping prematurely. Terminate the + * current string. + */ + if (ep == 0) { + *np = '\0'; + *argv++ = ap; + } + break; + } + } + /* Make sure argv is terminated. */ + *argv = 0; + return (kd->argv); +} + +static void +ps_str_a(p, addr, n) + struct ps_strings *p; + u_long *addr; + int *n; +{ + *addr = (u_long)p->ps_argvstr; + *n = p->ps_nargvstr; +} + +static void +ps_str_e(p, addr, n) + struct ps_strings *p; + u_long *addr; + int *n; +{ + *addr = (u_long)p->ps_envstr; + *n = p->ps_nenvstr; +} + +/* + * Determine if the proc indicated by p is still active. + * This test is not 100% foolproof in theory, but chances of + * being wrong are very low. + */ +static int +proc_verify(curkp) + struct kinfo_proc *curkp; +{ + struct kinfo_proc newkp; + int mib[4]; + size_t len; + + mib[0] = CTL_KERN; + mib[1] = KERN_PROC; + mib[2] = KERN_PROC_PID; + mib[3] = curkp->ki_pid; + len = sizeof(newkp); + if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) + return (0); + return (curkp->ki_pid == newkp.ki_pid && + (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); +} + +static char ** +kvm_doargv(kd, kp, nchr, info) + kvm_t *kd; + struct kinfo_proc *kp; + int nchr; + void (*info)(struct ps_strings *, u_long *, int *); +{ + char **ap; + u_long addr; + int cnt; + static struct ps_strings arginfo; + static u_long ps_strings; + size_t len; + + if (ps_strings == NULL) { + len = sizeof(ps_strings); + if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, + 0) == -1) + ps_strings = PS_STRINGS; + } + + /* + * Pointers are stored at the top of the user stack. + */ + if (kp->ki_stat == SZOMB || + kvm_uread(kd, kp, ps_strings, (char *)&arginfo, + sizeof(arginfo)) != sizeof(arginfo)) + return (0); + + (*info)(&arginfo, &addr, &cnt); + if (cnt == 0) + return (0); + ap = kvm_argv(kd, kp, addr, cnt, nchr); + /* + * For live kernels, make sure this process didn't go away. + */ + if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) + ap = 0; + return (ap); +} + +/* + * Get the command args. This code is now machine independent. + */ +char ** +kvm_getargv(kd, kp, nchr) + kvm_t *kd; + const struct kinfo_proc *kp; + int nchr; +{ + int oid[4]; + int i; + size_t bufsz; + static unsigned long buflen; + static char *buf, *p; + static char **bufp; + static int argc; + + if (!ISALIVE(kd)) { + _kvm_err(kd, kd->program, + "cannot read user space from dead kernel"); + return (0); + } + + if (!buflen) { + bufsz = sizeof(buflen); + i = sysctlbyname("kern.ps_arg_cache_limit", + &buflen, &bufsz, NULL, 0); + if (i == -1) { + buflen = 0; + } else { + buf = malloc(buflen); + if (buf == NULL) + buflen = 0; + argc = 32; + bufp = malloc(sizeof(char *) * argc); + } + } + if (buf != NULL) { + oid[0] = CTL_KERN; + oid[1] = KERN_PROC; + oid[2] = KERN_PROC_ARGS; + oid[3] = kp->ki_pid; + bufsz = buflen; + i = sysctl(oid, 4, buf, &bufsz, 0, 0); + if (i == 0 && bufsz > 0) { + i = 0; + p = buf; + do { + bufp[i++] = p; + p += strlen(p) + 1; + if (i >= argc) { + argc += argc; + bufp = realloc(bufp, + sizeof(char *) * argc); + } + } while (p < buf + bufsz); + bufp[i++] = 0; + return (bufp); + } + } + if (kp->ki_flag & P_SYSTEM) + return (NULL); + return (kvm_doargv(kd, kp, nchr, ps_str_a)); +} + +char ** +kvm_getenvv(kd, kp, nchr) + kvm_t *kd; + const struct kinfo_proc *kp; + int nchr; +{ + return (kvm_doargv(kd, kp, nchr, ps_str_e)); +} + +/* + * Read from user space. The user context is given by p. + */ +ssize_t +kvm_uread(kd, kp, uva, buf, len) + kvm_t *kd; + struct kinfo_proc *kp; + u_long uva; + char *buf; + size_t len; +{ + char *cp; + char procfile[MAXPATHLEN]; + ssize_t amount; + int fd; + + if (!ISALIVE(kd)) { + _kvm_err(kd, kd->program, + "cannot read user space from dead kernel"); + return (0); + } + + sprintf(procfile, "/proc/%d/mem", kp->ki_pid); + fd = open(procfile, O_RDONLY, 0); + if (fd < 0) { + _kvm_err(kd, kd->program, "cannot open %s", procfile); + close(fd); + return (0); + } + + cp = buf; + while (len > 0) { + errno = 0; + if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { + _kvm_err(kd, kd->program, "invalid address (%x) in %s", + uva, procfile); + break; + } + amount = read(fd, cp, len); + if (amount < 0) { + _kvm_syserr(kd, kd->program, "error reading %s", + procfile); + break; + } + if (amount == 0) { + _kvm_err(kd, kd->program, "EOF reading %s", procfile); + break; + } + cp += amount; + uva += amount; + len -= amount; + } + + close(fd); + return ((ssize_t)(cp - buf)); +} |