summaryrefslogtreecommitdiffstats
path: root/lib/libkvm/kvm_proc.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libkvm/kvm_proc.c')
-rw-r--r--lib/libkvm/kvm_proc.c966
1 files changed, 966 insertions, 0 deletions
diff --git a/lib/libkvm/kvm_proc.c b/lib/libkvm/kvm_proc.c
new file mode 100644
index 0000000..95b09d1
--- /dev/null
+++ b/lib/libkvm/kvm_proc.c
@@ -0,0 +1,966 @@
+/*-
+ * Copyright (c) 1989, 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software developed by the Computer Systems
+ * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
+ * BG 91-66 and contributed to Berkeley.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#if 0
+#if defined(LIBC_SCCS) && !defined(lint)
+static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
+#endif /* LIBC_SCCS and not lint */
+#endif
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/*
+ * Proc traversal interface for kvm. ps and w are (probably) the exclusive
+ * users of this code, so we've factored it out into a separate module.
+ * Thus, we keep this grunge out of the other kvm applications (i.e.,
+ * most other applications are interested only in open/close/read/nlist).
+ */
+
+#include <sys/param.h>
+#define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
+#include <sys/ucred.h>
+#include <sys/user.h>
+#include <sys/proc.h>
+#include <sys/exec.h>
+#include <sys/stat.h>
+#include <sys/ioctl.h>
+#include <sys/tty.h>
+#include <sys/file.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <nlist.h>
+#include <kvm.h>
+
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/swap_pager.h>
+
+#include <sys/sysctl.h>
+
+#include <limits.h>
+#include <memory.h>
+#include <paths.h>
+
+#include "kvm_private.h"
+
+#define KREAD(kd, addr, obj) \
+ (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
+
+/*
+ * Read proc's from memory file into buffer bp, which has space to hold
+ * at most maxcnt procs.
+ */
+static int
+kvm_proclist(kd, what, arg, p, bp, maxcnt)
+ kvm_t *kd;
+ int what, arg;
+ struct proc *p;
+ struct kinfo_proc *bp;
+ int maxcnt;
+{
+ int cnt = 0;
+ struct kinfo_proc kinfo_proc, *kp;
+ struct pgrp pgrp;
+ struct session sess;
+ struct tty tty;
+ struct vmspace vmspace;
+ struct procsig procsig;
+ struct pstats pstats;
+ struct ucred ucred;
+ struct thread mtd;
+ struct kse mke;
+ struct ksegrp mkg;
+ struct proc proc;
+ struct proc pproc;
+ struct timeval tv;
+
+ kp = &kinfo_proc;
+ kp->ki_structsize = sizeof(kinfo_proc);
+ for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
+ memset(kp, 0, sizeof *kp);
+ if (KREAD(kd, (u_long)p, &proc)) {
+ _kvm_err(kd, kd->program, "can't read proc at %x", p);
+ return (-1);
+ }
+ if (proc.p_state != PRS_ZOMBIE) {
+ if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
+ &mtd)) {
+ _kvm_err(kd, kd->program,
+ "can't read thread at %x",
+ TAILQ_FIRST(&proc.p_threads));
+ return (-1);
+ }
+ if (proc.p_flag & P_KSES == 0) {
+ if (KREAD(kd,
+ (u_long)TAILQ_FIRST(&proc.p_ksegrps),
+ &mkg)) {
+ _kvm_err(kd, kd->program,
+ "can't read ksegrp at %x",
+ TAILQ_FIRST(&proc.p_ksegrps));
+ return (-1);
+ }
+ if (KREAD(kd,
+ (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
+ _kvm_err(kd, kd->program,
+ "can't read kse at %x",
+ TAILQ_FIRST(&mkg.kg_kseq));
+ return (-1);
+ }
+ }
+ }
+ if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
+ kp->ki_ruid = ucred.cr_ruid;
+ kp->ki_svuid = ucred.cr_svuid;
+ kp->ki_rgid = ucred.cr_rgid;
+ kp->ki_svgid = ucred.cr_svgid;
+ kp->ki_ngroups = ucred.cr_ngroups;
+ bcopy(ucred.cr_groups, kp->ki_groups,
+ NGROUPS * sizeof(gid_t));
+ kp->ki_uid = ucred.cr_uid;
+ }
+
+ switch(what) {
+
+ case KERN_PROC_PID:
+ if (proc.p_pid != (pid_t)arg)
+ continue;
+ break;
+
+ case KERN_PROC_UID:
+ if (kp->ki_uid != (uid_t)arg)
+ continue;
+ break;
+
+ case KERN_PROC_RUID:
+ if (kp->ki_ruid != (uid_t)arg)
+ continue;
+ break;
+ }
+ /*
+ * We're going to add another proc to the set. If this
+ * will overflow the buffer, assume the reason is because
+ * nprocs (or the proc list) is corrupt and declare an error.
+ */
+ if (cnt >= maxcnt) {
+ _kvm_err(kd, kd->program, "nprocs corrupt");
+ return (-1);
+ }
+ /*
+ * gather kinfo_proc
+ */
+ kp->ki_paddr = p;
+ kp->ki_addr = proc.p_uarea;
+ /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
+ kp->ki_args = proc.p_args;
+ kp->ki_tracep = proc.p_tracep;
+ kp->ki_textvp = proc.p_textvp;
+ kp->ki_fd = proc.p_fd;
+ kp->ki_vmspace = proc.p_vmspace;
+ if (proc.p_procsig != NULL) {
+ if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
+ _kvm_err(kd, kd->program,
+ "can't read procsig at %x", proc.p_procsig);
+ return (-1);
+ }
+ kp->ki_sigignore = procsig.ps_sigignore;
+ kp->ki_sigcatch = procsig.ps_sigcatch;
+ }
+ if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
+ if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
+ _kvm_err(kd, kd->program,
+ "can't read stats at %x", proc.p_stats);
+ return (-1);
+ }
+ kp->ki_start = pstats.p_start;
+ kp->ki_rusage = pstats.p_ru;
+ kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
+ pstats.p_cru.ru_stime.tv_sec;
+ kp->ki_childtime.tv_usec =
+ pstats.p_cru.ru_utime.tv_usec +
+ pstats.p_cru.ru_stime.tv_usec;
+ }
+ if (proc.p_oppid)
+ kp->ki_ppid = proc.p_oppid;
+ else if (proc.p_pptr) {
+ if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
+ _kvm_err(kd, kd->program,
+ "can't read pproc at %x", proc.p_pptr);
+ return (-1);
+ }
+ kp->ki_ppid = pproc.p_pid;
+ } else
+ kp->ki_ppid = 0;
+ if (proc.p_pgrp == NULL)
+ goto nopgrp;
+ if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
+ _kvm_err(kd, kd->program, "can't read pgrp at %x",
+ proc.p_pgrp);
+ return (-1);
+ }
+ kp->ki_pgid = pgrp.pg_id;
+ kp->ki_jobc = pgrp.pg_jobc;
+ if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
+ _kvm_err(kd, kd->program, "can't read session at %x",
+ pgrp.pg_session);
+ return (-1);
+ }
+ kp->ki_sid = sess.s_sid;
+ (void)memcpy(kp->ki_login, sess.s_login,
+ sizeof(kp->ki_login));
+ kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
+ if (sess.s_leader == p)
+ kp->ki_kiflag |= KI_SLEADER;
+ if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
+ if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
+ _kvm_err(kd, kd->program,
+ "can't read tty at %x", sess.s_ttyp);
+ return (-1);
+ }
+ kp->ki_tdev = tty.t_dev;
+ if (tty.t_pgrp != NULL) {
+ if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
+ _kvm_err(kd, kd->program,
+ "can't read tpgrp at %x",
+ tty.t_pgrp);
+ return (-1);
+ }
+ kp->ki_tpgid = pgrp.pg_id;
+ } else
+ kp->ki_tpgid = -1;
+ if (tty.t_session != NULL) {
+ if (KREAD(kd, (u_long)tty.t_session, &sess)) {
+ _kvm_err(kd, kd->program,
+ "can't read session at %x",
+ tty.t_session);
+ return (-1);
+ }
+ kp->ki_tsid = sess.s_sid;
+ }
+ } else {
+nopgrp:
+ kp->ki_tdev = NODEV;
+ }
+ if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
+ (void)kvm_read(kd, (u_long)mtd.td_wmesg,
+ kp->ki_wmesg, WMESGLEN);
+
+#ifdef sparc
+ (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
+ (char *)&kp->ki_rssize,
+ sizeof(kp->ki_rssize));
+ (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
+ (char *)&kp->ki_tsize,
+ 3 * sizeof(kp->ki_rssize)); /* XXX */
+#else
+ (void)kvm_read(kd, (u_long)proc.p_vmspace,
+ (char *)&vmspace, sizeof(vmspace));
+ kp->ki_size = vmspace.vm_map.size;
+ kp->ki_rssize = vmspace.vm_swrss; /* XXX */
+ kp->ki_swrss = vmspace.vm_swrss;
+ kp->ki_tsize = vmspace.vm_tsize;
+ kp->ki_dsize = vmspace.vm_dsize;
+ kp->ki_ssize = vmspace.vm_ssize;
+#endif
+
+ switch (what) {
+
+ case KERN_PROC_PGRP:
+ if (kp->ki_pgid != (pid_t)arg)
+ continue;
+ break;
+
+ case KERN_PROC_TTY:
+ if ((proc.p_flag & P_CONTROLT) == 0 ||
+ kp->ki_tdev != (dev_t)arg)
+ continue;
+ break;
+ }
+ if (proc.p_comm[0] != 0) {
+ strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
+ kp->ki_comm[MAXCOMLEN] = 0;
+ }
+ if ((proc.p_state != PRS_ZOMBIE) &&
+ (mtd.td_blocked != 0)) {
+ kp->ki_kiflag |= KI_LOCKBLOCK;
+ if (mtd.td_lockname)
+ (void)kvm_read(kd,
+ (u_long)mtd.td_lockname,
+ kp->ki_lockname, LOCKNAMELEN);
+ kp->ki_lockname[LOCKNAMELEN] = 0;
+ }
+ bintime2timeval(&proc.p_runtime, &tv);
+ kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
+ kp->ki_pid = proc.p_pid;
+ kp->ki_siglist = proc.p_siglist;
+ kp->ki_sigmask = proc.p_sigmask;
+ kp->ki_xstat = proc.p_xstat;
+ kp->ki_acflag = proc.p_acflag;
+ kp->ki_lock = proc.p_lock;
+ if (proc.p_state != PRS_ZOMBIE) {
+ kp->ki_swtime = proc.p_swtime;
+ kp->ki_flag = proc.p_flag;
+ kp->ki_sflag = proc.p_sflag;
+ kp->ki_traceflag = proc.p_traceflag;
+ if (proc.p_state == PRS_NORMAL) {
+ if (TD_ON_RUNQ(&mtd) ||
+ TD_CAN_RUN(&mtd) ||
+ TD_IS_RUNNING(&mtd)) {
+ kp->ki_stat = SRUN;
+ } else if (mtd.td_state ==
+ TDS_INHIBITED) {
+ if (P_SHOULDSTOP(&proc)) {
+ kp->ki_stat = SSTOP;
+ } else if (
+ TD_IS_SLEEPING(&mtd)) {
+ kp->ki_stat = SSLEEP;
+ } else if (TD_ON_LOCK(&mtd)) {
+ kp->ki_stat = SLOCK;
+ } else {
+ kp->ki_stat = SWAIT;
+ }
+ }
+ } else {
+ kp->ki_stat = SIDL;
+ }
+ /* Stuff from the thread */
+ kp->ki_pri.pri_level = mtd.td_priority;
+ kp->ki_pri.pri_native = mtd.td_base_pri;
+ kp->ki_lastcpu = mtd.td_lastcpu;
+ kp->ki_wchan = mtd.td_wchan;
+
+ if (!(proc.p_flag & P_KSES)) {
+ /* stuff from the ksegrp */
+ kp->ki_slptime = mkg.kg_slptime;
+ kp->ki_pri.pri_class = mkg.kg_pri_class;
+ kp->ki_pri.pri_user = mkg.kg_user_pri;
+ kp->ki_nice = mkg.kg_nice;
+ kp->ki_estcpu = mkg.kg_estcpu;
+
+ /* Stuff from the kse */
+ kp->ki_pctcpu = mke.ke_pctcpu;
+ kp->ki_rqindex = mke.ke_rqindex;
+ kp->ki_oncpu = mke.ke_oncpu;
+ } else {
+ kp->ki_oncpu = -1;
+ kp->ki_lastcpu = -1;
+ kp->ki_tdflags = -1;
+ /* All the rest are 0 for now */
+ }
+ } else {
+ kp->ki_stat = SZOMB;
+ }
+ bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
+ ++bp;
+ ++cnt;
+ }
+ return (cnt);
+}
+
+/*
+ * Build proc info array by reading in proc list from a crash dump.
+ * Return number of procs read. maxcnt is the max we will read.
+ */
+static int
+kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
+ kvm_t *kd;
+ int what, arg;
+ u_long a_allproc;
+ u_long a_zombproc;
+ int maxcnt;
+{
+ struct kinfo_proc *bp = kd->procbase;
+ int acnt, zcnt;
+ struct proc *p;
+
+ if (KREAD(kd, a_allproc, &p)) {
+ _kvm_err(kd, kd->program, "cannot read allproc");
+ return (-1);
+ }
+ acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
+ if (acnt < 0)
+ return (acnt);
+
+ if (KREAD(kd, a_zombproc, &p)) {
+ _kvm_err(kd, kd->program, "cannot read zombproc");
+ return (-1);
+ }
+ zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
+ if (zcnt < 0)
+ zcnt = 0;
+
+ return (acnt + zcnt);
+}
+
+struct kinfo_proc *
+kvm_getprocs(kd, op, arg, cnt)
+ kvm_t *kd;
+ int op, arg;
+ int *cnt;
+{
+ int mib[4], st, nprocs;
+ size_t size;
+
+ if (kd->procbase != 0) {
+ free((void *)kd->procbase);
+ /*
+ * Clear this pointer in case this call fails. Otherwise,
+ * kvm_close() will free it again.
+ */
+ kd->procbase = 0;
+ }
+ if (ISALIVE(kd)) {
+ size = 0;
+ mib[0] = CTL_KERN;
+ mib[1] = KERN_PROC;
+ mib[2] = op;
+ mib[3] = arg;
+ st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
+ if (st == -1) {
+ _kvm_syserr(kd, kd->program, "kvm_getprocs");
+ return (0);
+ }
+ /*
+ * We can't continue with a size of 0 because we pass
+ * it to realloc() (via _kvm_realloc()), and passing 0
+ * to realloc() results in undefined behavior.
+ */
+ if (size == 0) {
+ /*
+ * XXX: We should probably return an invalid,
+ * but non-NULL, pointer here so any client
+ * program trying to dereference it will
+ * crash. However, _kvm_freeprocs() calls
+ * free() on kd->procbase if it isn't NULL,
+ * and free()'ing a junk pointer isn't good.
+ * Then again, _kvm_freeprocs() isn't used
+ * anywhere . . .
+ */
+ kd->procbase = _kvm_malloc(kd, 1);
+ goto liveout;
+ }
+ do {
+ size += size / 10;
+ kd->procbase = (struct kinfo_proc *)
+ _kvm_realloc(kd, kd->procbase, size);
+ if (kd->procbase == 0)
+ return (0);
+ st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
+ kd->procbase, &size, NULL, 0);
+ } while (st == -1 && errno == ENOMEM);
+ if (st == -1) {
+ _kvm_syserr(kd, kd->program, "kvm_getprocs");
+ return (0);
+ }
+ /*
+ * We have to check the size again because sysctl()
+ * may "round up" oldlenp if oldp is NULL; hence it
+ * might've told us that there was data to get when
+ * there really isn't any.
+ */
+ if (size > 0 &&
+ kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
+ _kvm_err(kd, kd->program,
+ "kinfo_proc size mismatch (expected %d, got %d)",
+ sizeof(struct kinfo_proc),
+ kd->procbase->ki_structsize);
+ return (0);
+ }
+liveout:
+ nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
+ } else {
+ struct nlist nl[4], *p;
+
+ nl[0].n_name = "_nprocs";
+ nl[1].n_name = "_allproc";
+ nl[2].n_name = "_zombproc";
+ nl[3].n_name = 0;
+
+ if (kvm_nlist(kd, nl) != 0) {
+ for (p = nl; p->n_type != 0; ++p)
+ ;
+ _kvm_err(kd, kd->program,
+ "%s: no such symbol", p->n_name);
+ return (0);
+ }
+ if (KREAD(kd, nl[0].n_value, &nprocs)) {
+ _kvm_err(kd, kd->program, "can't read nprocs");
+ return (0);
+ }
+ size = nprocs * sizeof(struct kinfo_proc);
+ kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
+ if (kd->procbase == 0)
+ return (0);
+
+ nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
+ nl[2].n_value, nprocs);
+#ifdef notdef
+ size = nprocs * sizeof(struct kinfo_proc);
+ (void)realloc(kd->procbase, size);
+#endif
+ }
+ *cnt = nprocs;
+ return (kd->procbase);
+}
+
+void
+_kvm_freeprocs(kd)
+ kvm_t *kd;
+{
+ if (kd->procbase) {
+ free(kd->procbase);
+ kd->procbase = 0;
+ }
+}
+
+void *
+_kvm_realloc(kd, p, n)
+ kvm_t *kd;
+ void *p;
+ size_t n;
+{
+ void *np = (void *)realloc(p, n);
+
+ if (np == 0) {
+ free(p);
+ _kvm_err(kd, kd->program, "out of memory");
+ }
+ return (np);
+}
+
+#ifndef MAX
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#endif
+
+/*
+ * Read in an argument vector from the user address space of process kp.
+ * addr if the user-space base address of narg null-terminated contiguous
+ * strings. This is used to read in both the command arguments and
+ * environment strings. Read at most maxcnt characters of strings.
+ */
+static char **
+kvm_argv(kd, kp, addr, narg, maxcnt)
+ kvm_t *kd;
+ struct kinfo_proc *kp;
+ u_long addr;
+ int narg;
+ int maxcnt;
+{
+ char *np, *cp, *ep, *ap;
+ u_long oaddr = -1;
+ int len, cc;
+ char **argv;
+
+ /*
+ * Check that there aren't an unreasonable number of agruments,
+ * and that the address is in user space.
+ */
+ if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
+ return (0);
+
+ /*
+ * kd->argv : work space for fetching the strings from the target
+ * process's space, and is converted for returning to caller
+ */
+ if (kd->argv == 0) {
+ /*
+ * Try to avoid reallocs.
+ */
+ kd->argc = MAX(narg + 1, 32);
+ kd->argv = (char **)_kvm_malloc(kd, kd->argc *
+ sizeof(*kd->argv));
+ if (kd->argv == 0)
+ return (0);
+ } else if (narg + 1 > kd->argc) {
+ kd->argc = MAX(2 * kd->argc, narg + 1);
+ kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
+ sizeof(*kd->argv));
+ if (kd->argv == 0)
+ return (0);
+ }
+ /*
+ * kd->argspc : returned to user, this is where the kd->argv
+ * arrays are left pointing to the collected strings.
+ */
+ if (kd->argspc == 0) {
+ kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
+ if (kd->argspc == 0)
+ return (0);
+ kd->arglen = PAGE_SIZE;
+ }
+ /*
+ * kd->argbuf : used to pull in pages from the target process.
+ * the strings are copied out of here.
+ */
+ if (kd->argbuf == 0) {
+ kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
+ if (kd->argbuf == 0)
+ return (0);
+ }
+
+ /* Pull in the target process'es argv vector */
+ cc = sizeof(char *) * narg;
+ if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
+ return (0);
+ /*
+ * ap : saved start address of string we're working on in kd->argspc
+ * np : pointer to next place to write in kd->argspc
+ * len: length of data in kd->argspc
+ * argv: pointer to the argv vector that we are hunting around the
+ * target process space for, and converting to addresses in
+ * our address space (kd->argspc).
+ */
+ ap = np = kd->argspc;
+ argv = kd->argv;
+ len = 0;
+ /*
+ * Loop over pages, filling in the argument vector.
+ * Note that the argv strings could be pointing *anywhere* in
+ * the user address space and are no longer contiguous.
+ * Note that *argv is modified when we are going to fetch a string
+ * that crosses a page boundary. We copy the next part of the string
+ * into to "np" and eventually convert the pointer.
+ */
+ while (argv < kd->argv + narg && *argv != 0) {
+
+ /* get the address that the current argv string is on */
+ addr = (u_long)*argv & ~(PAGE_SIZE - 1);
+
+ /* is it the same page as the last one? */
+ if (addr != oaddr) {
+ if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
+ PAGE_SIZE)
+ return (0);
+ oaddr = addr;
+ }
+
+ /* offset within the page... kd->argbuf */
+ addr = (u_long)*argv & (PAGE_SIZE - 1);
+
+ /* cp = start of string, cc = count of chars in this chunk */
+ cp = kd->argbuf + addr;
+ cc = PAGE_SIZE - addr;
+
+ /* dont get more than asked for by user process */
+ if (maxcnt > 0 && cc > maxcnt - len)
+ cc = maxcnt - len;
+
+ /* pointer to end of string if we found it in this page */
+ ep = memchr(cp, '\0', cc);
+ if (ep != 0)
+ cc = ep - cp + 1;
+ /*
+ * at this point, cc is the count of the chars that we are
+ * going to retrieve this time. we may or may not have found
+ * the end of it. (ep points to the null if the end is known)
+ */
+
+ /* will we exceed the malloc/realloced buffer? */
+ if (len + cc > kd->arglen) {
+ int off;
+ char **pp;
+ char *op = kd->argspc;
+
+ kd->arglen *= 2;
+ kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
+ kd->arglen);
+ if (kd->argspc == 0)
+ return (0);
+ /*
+ * Adjust argv pointers in case realloc moved
+ * the string space.
+ */
+ off = kd->argspc - op;
+ for (pp = kd->argv; pp < argv; pp++)
+ *pp += off;
+ ap += off;
+ np += off;
+ }
+ /* np = where to put the next part of the string in kd->argspc*/
+ /* np is kinda redundant.. could use "kd->argspc + len" */
+ memcpy(np, cp, cc);
+ np += cc; /* inc counters */
+ len += cc;
+
+ /*
+ * if end of string found, set the *argv pointer to the
+ * saved beginning of string, and advance. argv points to
+ * somewhere in kd->argv.. This is initially relative
+ * to the target process, but when we close it off, we set
+ * it to point in our address space.
+ */
+ if (ep != 0) {
+ *argv++ = ap;
+ ap = np;
+ } else {
+ /* update the address relative to the target process */
+ *argv += cc;
+ }
+
+ if (maxcnt > 0 && len >= maxcnt) {
+ /*
+ * We're stopping prematurely. Terminate the
+ * current string.
+ */
+ if (ep == 0) {
+ *np = '\0';
+ *argv++ = ap;
+ }
+ break;
+ }
+ }
+ /* Make sure argv is terminated. */
+ *argv = 0;
+ return (kd->argv);
+}
+
+static void
+ps_str_a(p, addr, n)
+ struct ps_strings *p;
+ u_long *addr;
+ int *n;
+{
+ *addr = (u_long)p->ps_argvstr;
+ *n = p->ps_nargvstr;
+}
+
+static void
+ps_str_e(p, addr, n)
+ struct ps_strings *p;
+ u_long *addr;
+ int *n;
+{
+ *addr = (u_long)p->ps_envstr;
+ *n = p->ps_nenvstr;
+}
+
+/*
+ * Determine if the proc indicated by p is still active.
+ * This test is not 100% foolproof in theory, but chances of
+ * being wrong are very low.
+ */
+static int
+proc_verify(curkp)
+ struct kinfo_proc *curkp;
+{
+ struct kinfo_proc newkp;
+ int mib[4];
+ size_t len;
+
+ mib[0] = CTL_KERN;
+ mib[1] = KERN_PROC;
+ mib[2] = KERN_PROC_PID;
+ mib[3] = curkp->ki_pid;
+ len = sizeof(newkp);
+ if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
+ return (0);
+ return (curkp->ki_pid == newkp.ki_pid &&
+ (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
+}
+
+static char **
+kvm_doargv(kd, kp, nchr, info)
+ kvm_t *kd;
+ struct kinfo_proc *kp;
+ int nchr;
+ void (*info)(struct ps_strings *, u_long *, int *);
+{
+ char **ap;
+ u_long addr;
+ int cnt;
+ static struct ps_strings arginfo;
+ static u_long ps_strings;
+ size_t len;
+
+ if (ps_strings == NULL) {
+ len = sizeof(ps_strings);
+ if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
+ 0) == -1)
+ ps_strings = PS_STRINGS;
+ }
+
+ /*
+ * Pointers are stored at the top of the user stack.
+ */
+ if (kp->ki_stat == SZOMB ||
+ kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
+ sizeof(arginfo)) != sizeof(arginfo))
+ return (0);
+
+ (*info)(&arginfo, &addr, &cnt);
+ if (cnt == 0)
+ return (0);
+ ap = kvm_argv(kd, kp, addr, cnt, nchr);
+ /*
+ * For live kernels, make sure this process didn't go away.
+ */
+ if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
+ ap = 0;
+ return (ap);
+}
+
+/*
+ * Get the command args. This code is now machine independent.
+ */
+char **
+kvm_getargv(kd, kp, nchr)
+ kvm_t *kd;
+ const struct kinfo_proc *kp;
+ int nchr;
+{
+ int oid[4];
+ int i;
+ size_t bufsz;
+ static unsigned long buflen;
+ static char *buf, *p;
+ static char **bufp;
+ static int argc;
+
+ if (!ISALIVE(kd)) {
+ _kvm_err(kd, kd->program,
+ "cannot read user space from dead kernel");
+ return (0);
+ }
+
+ if (!buflen) {
+ bufsz = sizeof(buflen);
+ i = sysctlbyname("kern.ps_arg_cache_limit",
+ &buflen, &bufsz, NULL, 0);
+ if (i == -1) {
+ buflen = 0;
+ } else {
+ buf = malloc(buflen);
+ if (buf == NULL)
+ buflen = 0;
+ argc = 32;
+ bufp = malloc(sizeof(char *) * argc);
+ }
+ }
+ if (buf != NULL) {
+ oid[0] = CTL_KERN;
+ oid[1] = KERN_PROC;
+ oid[2] = KERN_PROC_ARGS;
+ oid[3] = kp->ki_pid;
+ bufsz = buflen;
+ i = sysctl(oid, 4, buf, &bufsz, 0, 0);
+ if (i == 0 && bufsz > 0) {
+ i = 0;
+ p = buf;
+ do {
+ bufp[i++] = p;
+ p += strlen(p) + 1;
+ if (i >= argc) {
+ argc += argc;
+ bufp = realloc(bufp,
+ sizeof(char *) * argc);
+ }
+ } while (p < buf + bufsz);
+ bufp[i++] = 0;
+ return (bufp);
+ }
+ }
+ if (kp->ki_flag & P_SYSTEM)
+ return (NULL);
+ return (kvm_doargv(kd, kp, nchr, ps_str_a));
+}
+
+char **
+kvm_getenvv(kd, kp, nchr)
+ kvm_t *kd;
+ const struct kinfo_proc *kp;
+ int nchr;
+{
+ return (kvm_doargv(kd, kp, nchr, ps_str_e));
+}
+
+/*
+ * Read from user space. The user context is given by p.
+ */
+ssize_t
+kvm_uread(kd, kp, uva, buf, len)
+ kvm_t *kd;
+ struct kinfo_proc *kp;
+ u_long uva;
+ char *buf;
+ size_t len;
+{
+ char *cp;
+ char procfile[MAXPATHLEN];
+ ssize_t amount;
+ int fd;
+
+ if (!ISALIVE(kd)) {
+ _kvm_err(kd, kd->program,
+ "cannot read user space from dead kernel");
+ return (0);
+ }
+
+ sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
+ fd = open(procfile, O_RDONLY, 0);
+ if (fd < 0) {
+ _kvm_err(kd, kd->program, "cannot open %s", procfile);
+ close(fd);
+ return (0);
+ }
+
+ cp = buf;
+ while (len > 0) {
+ errno = 0;
+ if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
+ _kvm_err(kd, kd->program, "invalid address (%x) in %s",
+ uva, procfile);
+ break;
+ }
+ amount = read(fd, cp, len);
+ if (amount < 0) {
+ _kvm_syserr(kd, kd->program, "error reading %s",
+ procfile);
+ break;
+ }
+ if (amount == 0) {
+ _kvm_err(kd, kd->program, "EOF reading %s", procfile);
+ break;
+ }
+ cp += amount;
+ uva += amount;
+ len -= amount;
+ }
+
+ close(fd);
+ return ((ssize_t)(cp - buf));
+}
OpenPOWER on IntegriCloud