summaryrefslogtreecommitdiffstats
path: root/lib/libkse/thread/thr_mutex.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libkse/thread/thr_mutex.c')
-rw-r--r--lib/libkse/thread/thr_mutex.c1862
1 files changed, 1862 insertions, 0 deletions
diff --git a/lib/libkse/thread/thr_mutex.c b/lib/libkse/thread/thr_mutex.c
new file mode 100644
index 0000000..228e650
--- /dev/null
+++ b/lib/libkse/thread/thr_mutex.c
@@ -0,0 +1,1862 @@
+/*
+ * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#include "namespace.h"
+#include <stdlib.h>
+#include <errno.h>
+#include <string.h>
+#include <sys/param.h>
+#include <sys/queue.h>
+#include <pthread.h>
+#include <pthread_np.h>
+#include "un-namespace.h"
+#include "thr_private.h"
+
+#if defined(_PTHREADS_INVARIANTS)
+#define MUTEX_INIT_LINK(m) do { \
+ (m)->m_qe.tqe_prev = NULL; \
+ (m)->m_qe.tqe_next = NULL; \
+} while (0)
+#define MUTEX_ASSERT_IS_OWNED(m) do { \
+ if ((m)->m_qe.tqe_prev == NULL) \
+ PANIC("mutex is not on list"); \
+} while (0)
+#define MUTEX_ASSERT_NOT_OWNED(m) do { \
+ if (((m)->m_qe.tqe_prev != NULL) || \
+ ((m)->m_qe.tqe_next != NULL)) \
+ PANIC("mutex is on list"); \
+} while (0)
+#define THR_ASSERT_NOT_IN_SYNCQ(thr) do { \
+ THR_ASSERT(((thr)->sflags & THR_FLAGS_IN_SYNCQ) == 0, \
+ "thread in syncq when it shouldn't be."); \
+} while (0);
+#else
+#define MUTEX_INIT_LINK(m)
+#define MUTEX_ASSERT_IS_OWNED(m)
+#define MUTEX_ASSERT_NOT_OWNED(m)
+#define THR_ASSERT_NOT_IN_SYNCQ(thr)
+#endif
+
+#define THR_IN_MUTEXQ(thr) (((thr)->sflags & THR_FLAGS_IN_SYNCQ) != 0)
+#define MUTEX_DESTROY(m) do { \
+ _lock_destroy(&(m)->m_lock); \
+ free(m); \
+} while (0)
+
+
+/*
+ * Prototypes
+ */
+static struct kse_mailbox *mutex_handoff(struct pthread *,
+ struct pthread_mutex *);
+static inline int mutex_self_trylock(pthread_mutex_t);
+static inline int mutex_self_lock(struct pthread *, pthread_mutex_t);
+static int mutex_unlock_common(pthread_mutex_t *, int);
+static void mutex_priority_adjust(struct pthread *, pthread_mutex_t);
+static void mutex_rescan_owned (struct pthread *, struct pthread *,
+ struct pthread_mutex *);
+static inline pthread_t mutex_queue_deq(pthread_mutex_t);
+static inline void mutex_queue_remove(pthread_mutex_t, pthread_t);
+static inline void mutex_queue_enq(pthread_mutex_t, pthread_t);
+static void mutex_lock_backout(void *arg);
+
+int __pthread_mutex_init(pthread_mutex_t *mutex,
+ const pthread_mutexattr_t *mutex_attr);
+int __pthread_mutex_trylock(pthread_mutex_t *mutex);
+int __pthread_mutex_lock(pthread_mutex_t *m);
+int __pthread_mutex_timedlock(pthread_mutex_t *m,
+ const struct timespec *abs_timeout);
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+
+static struct pthread_mutex_attr static_mutex_attr =
+ PTHREAD_MUTEXATTR_STATIC_INITIALIZER;
+static pthread_mutexattr_t static_mattr = &static_mutex_attr;
+
+/* Single underscore versions provided for libc internal usage: */
+__weak_reference(__pthread_mutex_init, pthread_mutex_init);
+__weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
+__weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock);
+__weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
+
+/* No difference between libc and application usage of these: */
+__weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
+__weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock);
+__weak_reference(_pthread_mutex_isowned_np, pthread_mutex_isowned_np);
+
+static int
+thr_mutex_init(pthread_mutex_t *mutex,
+ const pthread_mutexattr_t *mutex_attr, void *(calloc_cb)(size_t, size_t))
+{
+ struct pthread_mutex *pmutex;
+ enum pthread_mutextype type;
+ int protocol;
+ int ceiling;
+ int flags;
+ int ret = 0;
+
+ if (mutex == NULL)
+ ret = EINVAL;
+
+ /* Check if default mutex attributes: */
+ else if (mutex_attr == NULL || *mutex_attr == NULL) {
+ /* Default to a (error checking) POSIX mutex: */
+ type = PTHREAD_MUTEX_ERRORCHECK;
+ protocol = PTHREAD_PRIO_NONE;
+ ceiling = THR_MAX_PRIORITY;
+ flags = 0;
+ }
+
+ /* Check mutex type: */
+ else if (((*mutex_attr)->m_type < PTHREAD_MUTEX_ERRORCHECK) ||
+ ((*mutex_attr)->m_type >= PTHREAD_MUTEX_TYPE_MAX))
+ /* Return an invalid argument error: */
+ ret = EINVAL;
+
+ /* Check mutex protocol: */
+ else if (((*mutex_attr)->m_protocol < PTHREAD_PRIO_NONE) ||
+ ((*mutex_attr)->m_protocol > PTHREAD_MUTEX_RECURSIVE))
+ /* Return an invalid argument error: */
+ ret = EINVAL;
+
+ else {
+ /* Use the requested mutex type and protocol: */
+ type = (*mutex_attr)->m_type;
+ protocol = (*mutex_attr)->m_protocol;
+ ceiling = (*mutex_attr)->m_ceiling;
+ flags = (*mutex_attr)->m_flags;
+ }
+
+ /* Check no errors so far: */
+ if (ret == 0) {
+ if ((pmutex = (pthread_mutex_t)
+ calloc_cb(1, sizeof(struct pthread_mutex))) == NULL)
+ ret = ENOMEM;
+ else if (_lock_init(&pmutex->m_lock, LCK_ADAPTIVE,
+ _thr_lock_wait, _thr_lock_wakeup, calloc_cb) != 0) {
+ free(pmutex);
+ *mutex = NULL;
+ ret = ENOMEM;
+ } else {
+ /* Set the mutex flags: */
+ pmutex->m_flags = flags;
+
+ /* Process according to mutex type: */
+ switch (type) {
+ /* case PTHREAD_MUTEX_DEFAULT: */
+ case PTHREAD_MUTEX_ERRORCHECK:
+ case PTHREAD_MUTEX_NORMAL:
+ case PTHREAD_MUTEX_ADAPTIVE_NP:
+ /* Nothing to do here. */
+ break;
+
+ /* Single UNIX Spec 2 recursive mutex: */
+ case PTHREAD_MUTEX_RECURSIVE:
+ /* Reset the mutex count: */
+ pmutex->m_count = 0;
+ break;
+
+ /* Trap invalid mutex types: */
+ default:
+ /* Return an invalid argument error: */
+ ret = EINVAL;
+ break;
+ }
+ if (ret == 0) {
+ /* Initialise the rest of the mutex: */
+ TAILQ_INIT(&pmutex->m_queue);
+ pmutex->m_flags |= MUTEX_FLAGS_INITED;
+ pmutex->m_owner = NULL;
+ pmutex->m_type = type;
+ pmutex->m_protocol = protocol;
+ pmutex->m_refcount = 0;
+ if (protocol == PTHREAD_PRIO_PROTECT)
+ pmutex->m_prio = ceiling;
+ else
+ pmutex->m_prio = -1;
+ pmutex->m_saved_prio = 0;
+ MUTEX_INIT_LINK(pmutex);
+ *mutex = pmutex;
+ } else {
+ /* Free the mutex lock structure: */
+ MUTEX_DESTROY(pmutex);
+ *mutex = NULL;
+ }
+ }
+ }
+ /* Return the completion status: */
+ return (ret);
+}
+
+int
+__pthread_mutex_init(pthread_mutex_t *mutex,
+ const pthread_mutexattr_t *mutex_attr)
+{
+
+ return (thr_mutex_init(mutex, mutex_attr, calloc));
+}
+
+int
+_pthread_mutex_init(pthread_mutex_t *mutex,
+ const pthread_mutexattr_t *mutex_attr)
+{
+ struct pthread_mutex_attr mattr, *mattrp;
+
+ if ((mutex_attr == NULL) || (*mutex_attr == NULL))
+ return (__pthread_mutex_init(mutex, &static_mattr));
+ else {
+ mattr = **mutex_attr;
+ mattr.m_flags |= MUTEX_FLAGS_PRIVATE;
+ mattrp = &mattr;
+ return (__pthread_mutex_init(mutex, &mattrp));
+ }
+}
+
+/* This function is used internally by malloc. */
+int
+_pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+ static const struct pthread_mutex_attr attr = {
+ .m_type = PTHREAD_MUTEX_NORMAL,
+ .m_protocol = PTHREAD_PRIO_NONE,
+ .m_ceiling = 0,
+ .m_flags = 0
+ };
+ static const struct pthread_mutex_attr *pattr = &attr;
+
+ return (thr_mutex_init(mutex, (pthread_mutexattr_t *)&pattr,
+ calloc_cb));
+}
+
+void
+_thr_mutex_reinit(pthread_mutex_t *mutex)
+{
+ _lock_reinit(&(*mutex)->m_lock, LCK_ADAPTIVE,
+ _thr_lock_wait, _thr_lock_wakeup);
+ TAILQ_INIT(&(*mutex)->m_queue);
+ (*mutex)->m_owner = NULL;
+ (*mutex)->m_count = 0;
+ (*mutex)->m_refcount = 0;
+ (*mutex)->m_prio = 0;
+ (*mutex)->m_saved_prio = 0;
+}
+
+int
+_pthread_mutex_destroy(pthread_mutex_t *mutex)
+{
+ struct pthread *curthread = _get_curthread();
+ pthread_mutex_t m;
+ int ret = 0;
+
+ if (mutex == NULL || *mutex == NULL)
+ ret = EINVAL;
+ else {
+ /* Lock the mutex structure: */
+ THR_LOCK_ACQUIRE(curthread, &(*mutex)->m_lock);
+
+ /*
+ * Check to see if this mutex is in use:
+ */
+ if (((*mutex)->m_owner != NULL) ||
+ (!TAILQ_EMPTY(&(*mutex)->m_queue)) ||
+ ((*mutex)->m_refcount != 0)) {
+ ret = EBUSY;
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*mutex)->m_lock);
+ } else {
+ /*
+ * Save a pointer to the mutex so it can be free'd
+ * and set the caller's pointer to NULL:
+ */
+ m = *mutex;
+ *mutex = NULL;
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+
+ /*
+ * Free the memory allocated for the mutex
+ * structure:
+ */
+ MUTEX_ASSERT_NOT_OWNED(m);
+ MUTEX_DESTROY(m);
+ }
+ }
+
+ /* Return the completion status: */
+ return (ret);
+}
+
+static int
+init_static(struct pthread *thread, pthread_mutex_t *mutex)
+{
+ int ret;
+
+ THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
+
+ if (*mutex == NULL)
+ ret = _pthread_mutex_init(mutex, NULL);
+ else
+ ret = 0;
+
+ THR_LOCK_RELEASE(thread, &_mutex_static_lock);
+
+ return (ret);
+}
+
+static int
+init_static_private(struct pthread *thread, pthread_mutex_t *mutex)
+{
+ int ret;
+
+ THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
+
+ if (*mutex == NULL)
+ ret = _pthread_mutex_init(mutex, &static_mattr);
+ else
+ ret = 0;
+
+ THR_LOCK_RELEASE(thread, &_mutex_static_lock);
+
+ return (ret);
+}
+
+static int
+mutex_trylock_common(struct pthread *curthread, pthread_mutex_t *mutex)
+{
+ int private;
+ int ret = 0;
+
+ THR_ASSERT((mutex != NULL) && (*mutex != NULL),
+ "Uninitialized mutex in pthread_mutex_trylock_basic");
+
+ /* Lock the mutex structure: */
+ THR_LOCK_ACQUIRE(curthread, &(*mutex)->m_lock);
+ private = (*mutex)->m_flags & MUTEX_FLAGS_PRIVATE;
+
+ /*
+ * If the mutex was statically allocated, properly
+ * initialize the tail queue.
+ */
+ if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) {
+ TAILQ_INIT(&(*mutex)->m_queue);
+ MUTEX_INIT_LINK(*mutex);
+ (*mutex)->m_flags |= MUTEX_FLAGS_INITED;
+ }
+
+ /* Process according to mutex type: */
+ switch ((*mutex)->m_protocol) {
+ /* Default POSIX mutex: */
+ case PTHREAD_PRIO_NONE:
+ /* Check if this mutex is not locked: */
+ if ((*mutex)->m_owner == NULL) {
+ /* Lock the mutex for the running thread: */
+ (*mutex)->m_owner = curthread;
+
+ /* Add to the list of owned mutexes: */
+ MUTEX_ASSERT_NOT_OWNED(*mutex);
+ TAILQ_INSERT_TAIL(&curthread->mutexq,
+ (*mutex), m_qe);
+ } else if ((*mutex)->m_owner == curthread)
+ ret = mutex_self_trylock(*mutex);
+ else
+ /* Return a busy error: */
+ ret = EBUSY;
+ break;
+
+ /* POSIX priority inheritence mutex: */
+ case PTHREAD_PRIO_INHERIT:
+ /* Check if this mutex is not locked: */
+ if ((*mutex)->m_owner == NULL) {
+ /* Lock the mutex for the running thread: */
+ (*mutex)->m_owner = curthread;
+
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Track number of priority mutexes owned: */
+ curthread->priority_mutex_count++;
+
+ /*
+ * The mutex takes on the attributes of the
+ * running thread when there are no waiters.
+ */
+ (*mutex)->m_prio = curthread->active_priority;
+ (*mutex)->m_saved_prio =
+ curthread->inherited_priority;
+ curthread->inherited_priority = (*mutex)->m_prio;
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Add to the list of owned mutexes: */
+ MUTEX_ASSERT_NOT_OWNED(*mutex);
+ TAILQ_INSERT_TAIL(&curthread->mutexq,
+ (*mutex), m_qe);
+ } else if ((*mutex)->m_owner == curthread)
+ ret = mutex_self_trylock(*mutex);
+ else
+ /* Return a busy error: */
+ ret = EBUSY;
+ break;
+
+ /* POSIX priority protection mutex: */
+ case PTHREAD_PRIO_PROTECT:
+ /* Check for a priority ceiling violation: */
+ if (curthread->active_priority > (*mutex)->m_prio)
+ ret = EINVAL;
+
+ /* Check if this mutex is not locked: */
+ else if ((*mutex)->m_owner == NULL) {
+ /* Lock the mutex for the running thread: */
+ (*mutex)->m_owner = curthread;
+
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Track number of priority mutexes owned: */
+ curthread->priority_mutex_count++;
+
+ /*
+ * The running thread inherits the ceiling
+ * priority of the mutex and executes at that
+ * priority.
+ */
+ curthread->active_priority = (*mutex)->m_prio;
+ (*mutex)->m_saved_prio =
+ curthread->inherited_priority;
+ curthread->inherited_priority =
+ (*mutex)->m_prio;
+ THR_SCHED_UNLOCK(curthread, curthread);
+ /* Add to the list of owned mutexes: */
+ MUTEX_ASSERT_NOT_OWNED(*mutex);
+ TAILQ_INSERT_TAIL(&curthread->mutexq,
+ (*mutex), m_qe);
+ } else if ((*mutex)->m_owner == curthread)
+ ret = mutex_self_trylock(*mutex);
+ else
+ /* Return a busy error: */
+ ret = EBUSY;
+ break;
+
+ /* Trap invalid mutex types: */
+ default:
+ /* Return an invalid argument error: */
+ ret = EINVAL;
+ break;
+ }
+
+ if (ret == 0 && private)
+ THR_CRITICAL_ENTER(curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*mutex)->m_lock);
+
+ /* Return the completion status: */
+ return (ret);
+}
+
+int
+__pthread_mutex_trylock(pthread_mutex_t *mutex)
+{
+ struct pthread *curthread = _get_curthread();
+ int ret = 0;
+
+ if (mutex == NULL)
+ ret = EINVAL;
+
+ /*
+ * If the mutex is statically initialized, perform the dynamic
+ * initialization:
+ */
+ else if ((*mutex != NULL) ||
+ ((ret = init_static(curthread, mutex)) == 0))
+ ret = mutex_trylock_common(curthread, mutex);
+
+ return (ret);
+}
+
+int
+_pthread_mutex_trylock(pthread_mutex_t *mutex)
+{
+ struct pthread *curthread = _get_curthread();
+ int ret = 0;
+
+ if (mutex == NULL)
+ ret = EINVAL;
+
+ /*
+ * If the mutex is statically initialized, perform the dynamic
+ * initialization marking the mutex private (delete safe):
+ */
+ else if ((*mutex != NULL) ||
+ ((ret = init_static_private(curthread, mutex)) == 0))
+ ret = mutex_trylock_common(curthread, mutex);
+
+ return (ret);
+}
+
+static int
+mutex_lock_common(struct pthread *curthread, pthread_mutex_t *m,
+ const struct timespec * abstime)
+{
+ int private;
+ int ret = 0;
+
+ THR_ASSERT((m != NULL) && (*m != NULL),
+ "Uninitialized mutex in pthread_mutex_trylock_basic");
+
+ if (abstime != NULL && (abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
+ abstime->tv_nsec >= 1000000000))
+ return (EINVAL);
+
+ /* Reset the interrupted flag: */
+ curthread->interrupted = 0;
+ curthread->timeout = 0;
+ curthread->wakeup_time.tv_sec = -1;
+
+ private = (*m)->m_flags & MUTEX_FLAGS_PRIVATE;
+
+ /*
+ * Enter a loop waiting to become the mutex owner. We need a
+ * loop in case the waiting thread is interrupted by a signal
+ * to execute a signal handler. It is not (currently) possible
+ * to remain in the waiting queue while running a handler.
+ * Instead, the thread is interrupted and backed out of the
+ * waiting queue prior to executing the signal handler.
+ */
+ do {
+ /* Lock the mutex structure: */
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+
+ /*
+ * If the mutex was statically allocated, properly
+ * initialize the tail queue.
+ */
+ if (((*m)->m_flags & MUTEX_FLAGS_INITED) == 0) {
+ TAILQ_INIT(&(*m)->m_queue);
+ (*m)->m_flags |= MUTEX_FLAGS_INITED;
+ MUTEX_INIT_LINK(*m);
+ }
+
+ /* Process according to mutex type: */
+ switch ((*m)->m_protocol) {
+ /* Default POSIX mutex: */
+ case PTHREAD_PRIO_NONE:
+ if ((*m)->m_owner == NULL) {
+ /* Lock the mutex for this thread: */
+ (*m)->m_owner = curthread;
+
+ /* Add to the list of owned mutexes: */
+ MUTEX_ASSERT_NOT_OWNED(*m);
+ TAILQ_INSERT_TAIL(&curthread->mutexq,
+ (*m), m_qe);
+ if (private)
+ THR_CRITICAL_ENTER(curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ } else if ((*m)->m_owner == curthread) {
+ ret = mutex_self_lock(curthread, *m);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ } else {
+ /*
+ * Join the queue of threads waiting to lock
+ * the mutex and save a pointer to the mutex.
+ */
+ mutex_queue_enq(*m, curthread);
+ curthread->data.mutex = *m;
+ curthread->sigbackout = mutex_lock_backout;
+ /*
+ * This thread is active and is in a critical
+ * region (holding the mutex lock); we should
+ * be able to safely set the state.
+ */
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Set the wakeup time: */
+ if (abstime) {
+ curthread->wakeup_time.tv_sec =
+ abstime->tv_sec;
+ curthread->wakeup_time.tv_nsec =
+ abstime->tv_nsec;
+ }
+
+ THR_SET_STATE(curthread, PS_MUTEX_WAIT);
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+
+ /* Schedule the next thread: */
+ _thr_sched_switch(curthread);
+
+ if (THR_IN_MUTEXQ(curthread)) {
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+ mutex_queue_remove(*m, curthread);
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ }
+ /*
+ * Only clear these after assuring the
+ * thread is dequeued.
+ */
+ curthread->data.mutex = NULL;
+ curthread->sigbackout = NULL;
+ }
+ break;
+
+ /* POSIX priority inheritence mutex: */
+ case PTHREAD_PRIO_INHERIT:
+ /* Check if this mutex is not locked: */
+ if ((*m)->m_owner == NULL) {
+ /* Lock the mutex for this thread: */
+ (*m)->m_owner = curthread;
+
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Track number of priority mutexes owned: */
+ curthread->priority_mutex_count++;
+
+ /*
+ * The mutex takes on attributes of the
+ * running thread when there are no waiters.
+ * Make sure the thread's scheduling lock is
+ * held while priorities are adjusted.
+ */
+ (*m)->m_prio = curthread->active_priority;
+ (*m)->m_saved_prio =
+ curthread->inherited_priority;
+ curthread->inherited_priority = (*m)->m_prio;
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Add to the list of owned mutexes: */
+ MUTEX_ASSERT_NOT_OWNED(*m);
+ TAILQ_INSERT_TAIL(&curthread->mutexq,
+ (*m), m_qe);
+ if (private)
+ THR_CRITICAL_ENTER(curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ } else if ((*m)->m_owner == curthread) {
+ ret = mutex_self_lock(curthread, *m);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ } else {
+ /*
+ * Join the queue of threads waiting to lock
+ * the mutex and save a pointer to the mutex.
+ */
+ mutex_queue_enq(*m, curthread);
+ curthread->data.mutex = *m;
+ curthread->sigbackout = mutex_lock_backout;
+
+ /*
+ * This thread is active and is in a critical
+ * region (holding the mutex lock); we should
+ * be able to safely set the state.
+ */
+ if (curthread->active_priority > (*m)->m_prio)
+ /* Adjust priorities: */
+ mutex_priority_adjust(curthread, *m);
+
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Set the wakeup time: */
+ if (abstime) {
+ curthread->wakeup_time.tv_sec =
+ abstime->tv_sec;
+ curthread->wakeup_time.tv_nsec =
+ abstime->tv_nsec;
+ }
+ THR_SET_STATE(curthread, PS_MUTEX_WAIT);
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+
+ /* Schedule the next thread: */
+ _thr_sched_switch(curthread);
+
+ if (THR_IN_MUTEXQ(curthread)) {
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+ mutex_queue_remove(*m, curthread);
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ }
+ /*
+ * Only clear these after assuring the
+ * thread is dequeued.
+ */
+ curthread->data.mutex = NULL;
+ curthread->sigbackout = NULL;
+ }
+ break;
+
+ /* POSIX priority protection mutex: */
+ case PTHREAD_PRIO_PROTECT:
+ /* Check for a priority ceiling violation: */
+ if (curthread->active_priority > (*m)->m_prio) {
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ ret = EINVAL;
+ }
+ /* Check if this mutex is not locked: */
+ else if ((*m)->m_owner == NULL) {
+ /*
+ * Lock the mutex for the running
+ * thread:
+ */
+ (*m)->m_owner = curthread;
+
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Track number of priority mutexes owned: */
+ curthread->priority_mutex_count++;
+
+ /*
+ * The running thread inherits the ceiling
+ * priority of the mutex and executes at that
+ * priority. Make sure the thread's
+ * scheduling lock is held while priorities
+ * are adjusted.
+ */
+ curthread->active_priority = (*m)->m_prio;
+ (*m)->m_saved_prio =
+ curthread->inherited_priority;
+ curthread->inherited_priority = (*m)->m_prio;
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Add to the list of owned mutexes: */
+ MUTEX_ASSERT_NOT_OWNED(*m);
+ TAILQ_INSERT_TAIL(&curthread->mutexq,
+ (*m), m_qe);
+ if (private)
+ THR_CRITICAL_ENTER(curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ } else if ((*m)->m_owner == curthread) {
+ ret = mutex_self_lock(curthread, *m);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ } else {
+ /*
+ * Join the queue of threads waiting to lock
+ * the mutex and save a pointer to the mutex.
+ */
+ mutex_queue_enq(*m, curthread);
+ curthread->data.mutex = *m;
+ curthread->sigbackout = mutex_lock_backout;
+
+ /* Clear any previous error: */
+ curthread->error = 0;
+
+ /*
+ * This thread is active and is in a critical
+ * region (holding the mutex lock); we should
+ * be able to safely set the state.
+ */
+
+ THR_SCHED_LOCK(curthread, curthread);
+ /* Set the wakeup time: */
+ if (abstime) {
+ curthread->wakeup_time.tv_sec =
+ abstime->tv_sec;
+ curthread->wakeup_time.tv_nsec =
+ abstime->tv_nsec;
+ }
+ THR_SET_STATE(curthread, PS_MUTEX_WAIT);
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+
+ /* Schedule the next thread: */
+ _thr_sched_switch(curthread);
+
+ if (THR_IN_MUTEXQ(curthread)) {
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+ mutex_queue_remove(*m, curthread);
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ }
+ /*
+ * Only clear these after assuring the
+ * thread is dequeued.
+ */
+ curthread->data.mutex = NULL;
+ curthread->sigbackout = NULL;
+
+ /*
+ * The threads priority may have changed while
+ * waiting for the mutex causing a ceiling
+ * violation.
+ */
+ ret = curthread->error;
+ curthread->error = 0;
+ }
+ break;
+
+ /* Trap invalid mutex types: */
+ default:
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+
+ /* Return an invalid argument error: */
+ ret = EINVAL;
+ break;
+ }
+
+ } while (((*m)->m_owner != curthread) && (ret == 0) &&
+ (curthread->interrupted == 0) && (curthread->timeout == 0));
+
+ if (ret == 0 && (*m)->m_owner != curthread && curthread->timeout)
+ ret = ETIMEDOUT;
+
+ /*
+ * Check to see if this thread was interrupted and
+ * is still in the mutex queue of waiting threads:
+ */
+ if (curthread->interrupted != 0) {
+ /* Remove this thread from the mutex queue. */
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+ if (THR_IN_SYNCQ(curthread))
+ mutex_queue_remove(*m, curthread);
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+
+ /* Check for asynchronous cancellation. */
+ if (curthread->continuation != NULL)
+ curthread->continuation((void *) curthread);
+ }
+
+ /* Return the completion status: */
+ return (ret);
+}
+
+int
+__pthread_mutex_lock(pthread_mutex_t *m)
+{
+ struct pthread *curthread;
+ int ret = 0;
+
+ if (_thr_initial == NULL)
+ _libpthread_init(NULL);
+
+ curthread = _get_curthread();
+ if (m == NULL)
+ ret = EINVAL;
+
+ /*
+ * If the mutex is statically initialized, perform the dynamic
+ * initialization:
+ */
+ else if ((*m != NULL) || ((ret = init_static(curthread, m)) == 0))
+ ret = mutex_lock_common(curthread, m, NULL);
+
+ return (ret);
+}
+
+__strong_reference(__pthread_mutex_lock, _thr_mutex_lock);
+
+int
+_pthread_mutex_lock(pthread_mutex_t *m)
+{
+ struct pthread *curthread;
+ int ret = 0;
+
+ if (_thr_initial == NULL)
+ _libpthread_init(NULL);
+ curthread = _get_curthread();
+
+ if (m == NULL)
+ ret = EINVAL;
+
+ /*
+ * If the mutex is statically initialized, perform the dynamic
+ * initialization marking it private (delete safe):
+ */
+ else if ((*m != NULL) ||
+ ((ret = init_static_private(curthread, m)) == 0))
+ ret = mutex_lock_common(curthread, m, NULL);
+
+ return (ret);
+}
+
+int
+__pthread_mutex_timedlock(pthread_mutex_t *m,
+ const struct timespec *abs_timeout)
+{
+ struct pthread *curthread;
+ int ret = 0;
+
+ if (_thr_initial == NULL)
+ _libpthread_init(NULL);
+
+ curthread = _get_curthread();
+ if (m == NULL)
+ ret = EINVAL;
+
+ /*
+ * If the mutex is statically initialized, perform the dynamic
+ * initialization:
+ */
+ else if ((*m != NULL) || ((ret = init_static(curthread, m)) == 0))
+ ret = mutex_lock_common(curthread, m, abs_timeout);
+
+ return (ret);
+}
+
+int
+_pthread_mutex_timedlock(pthread_mutex_t *m,
+ const struct timespec *abs_timeout)
+{
+ struct pthread *curthread;
+ int ret = 0;
+
+ if (_thr_initial == NULL)
+ _libpthread_init(NULL);
+ curthread = _get_curthread();
+
+ if (m == NULL)
+ ret = EINVAL;
+
+ /*
+ * If the mutex is statically initialized, perform the dynamic
+ * initialization marking it private (delete safe):
+ */
+ else if ((*m != NULL) ||
+ ((ret = init_static_private(curthread, m)) == 0))
+ ret = mutex_lock_common(curthread, m, abs_timeout);
+
+ return (ret);
+}
+
+int
+_pthread_mutex_unlock(pthread_mutex_t *m)
+{
+ return (mutex_unlock_common(m, /* add reference */ 0));
+}
+
+__strong_reference(_pthread_mutex_unlock, _thr_mutex_unlock);
+
+int
+_mutex_cv_unlock(pthread_mutex_t *m)
+{
+ return (mutex_unlock_common(m, /* add reference */ 1));
+}
+
+int
+_mutex_cv_lock(pthread_mutex_t *m)
+{
+ struct pthread *curthread;
+ int ret;
+
+ curthread = _get_curthread();
+ if ((ret = _pthread_mutex_lock(m)) == 0) {
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+ (*m)->m_refcount--;
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+ }
+ return (ret);
+}
+
+static inline int
+mutex_self_trylock(pthread_mutex_t m)
+{
+ int ret = 0;
+
+ switch (m->m_type) {
+ /* case PTHREAD_MUTEX_DEFAULT: */
+ case PTHREAD_MUTEX_ERRORCHECK:
+ case PTHREAD_MUTEX_NORMAL:
+ case PTHREAD_MUTEX_ADAPTIVE_NP:
+ ret = EBUSY;
+ break;
+
+ case PTHREAD_MUTEX_RECURSIVE:
+ /* Increment the lock count: */
+ m->m_count++;
+ break;
+
+ default:
+ /* Trap invalid mutex types; */
+ ret = EINVAL;
+ }
+
+ return (ret);
+}
+
+static inline int
+mutex_self_lock(struct pthread *curthread, pthread_mutex_t m)
+{
+ int ret = 0;
+
+ /*
+ * Don't allow evil recursive mutexes for private use
+ * in libc and libpthread.
+ */
+ if (m->m_flags & MUTEX_FLAGS_PRIVATE)
+ PANIC("Recurse on a private mutex.");
+
+ switch (m->m_type) {
+ /* case PTHREAD_MUTEX_DEFAULT: */
+ case PTHREAD_MUTEX_ERRORCHECK:
+ case PTHREAD_MUTEX_ADAPTIVE_NP:
+ /*
+ * POSIX specifies that mutexes should return EDEADLK if a
+ * recursive lock is detected.
+ */
+ ret = EDEADLK;
+ break;
+
+ case PTHREAD_MUTEX_NORMAL:
+ /*
+ * What SS2 define as a 'normal' mutex. Intentionally
+ * deadlock on attempts to get a lock you already own.
+ */
+
+ THR_SCHED_LOCK(curthread, curthread);
+ THR_SET_STATE(curthread, PS_DEADLOCK);
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+
+ /* Schedule the next thread: */
+ _thr_sched_switch(curthread);
+ break;
+
+ case PTHREAD_MUTEX_RECURSIVE:
+ /* Increment the lock count: */
+ m->m_count++;
+ break;
+
+ default:
+ /* Trap invalid mutex types; */
+ ret = EINVAL;
+ }
+
+ return (ret);
+}
+
+static int
+mutex_unlock_common(pthread_mutex_t *m, int add_reference)
+{
+ struct pthread *curthread = _get_curthread();
+ struct kse_mailbox *kmbx = NULL;
+ int ret = 0;
+
+ if (m == NULL || *m == NULL)
+ ret = EINVAL;
+ else {
+ /* Lock the mutex structure: */
+ THR_LOCK_ACQUIRE(curthread, &(*m)->m_lock);
+
+ /* Process according to mutex type: */
+ switch ((*m)->m_protocol) {
+ /* Default POSIX mutex: */
+ case PTHREAD_PRIO_NONE:
+ /*
+ * Check if the running thread is not the owner of the
+ * mutex:
+ */
+ if ((*m)->m_owner != curthread)
+ ret = EPERM;
+ else if (((*m)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
+ ((*m)->m_count > 0))
+ /* Decrement the count: */
+ (*m)->m_count--;
+ else {
+ /*
+ * Clear the count in case this is a recursive
+ * mutex.
+ */
+ (*m)->m_count = 0;
+
+ /* Remove the mutex from the threads queue. */
+ MUTEX_ASSERT_IS_OWNED(*m);
+ TAILQ_REMOVE(&(*m)->m_owner->mutexq,
+ (*m), m_qe);
+ MUTEX_INIT_LINK(*m);
+
+ /*
+ * Hand off the mutex to the next waiting
+ * thread:
+ */
+ kmbx = mutex_handoff(curthread, *m);
+ }
+ break;
+
+ /* POSIX priority inheritence mutex: */
+ case PTHREAD_PRIO_INHERIT:
+ /*
+ * Check if the running thread is not the owner of the
+ * mutex:
+ */
+ if ((*m)->m_owner != curthread)
+ ret = EPERM;
+ else if (((*m)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
+ ((*m)->m_count > 0))
+ /* Decrement the count: */
+ (*m)->m_count--;
+ else {
+ /*
+ * Clear the count in case this is recursive
+ * mutex.
+ */
+ (*m)->m_count = 0;
+
+ /*
+ * Restore the threads inherited priority and
+ * recompute the active priority (being careful
+ * not to override changes in the threads base
+ * priority subsequent to locking the mutex).
+ */
+ THR_SCHED_LOCK(curthread, curthread);
+ curthread->inherited_priority =
+ (*m)->m_saved_prio;
+ curthread->active_priority =
+ MAX(curthread->inherited_priority,
+ curthread->base_priority);
+
+ /*
+ * This thread now owns one less priority mutex.
+ */
+ curthread->priority_mutex_count--;
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Remove the mutex from the threads queue. */
+ MUTEX_ASSERT_IS_OWNED(*m);
+ TAILQ_REMOVE(&(*m)->m_owner->mutexq,
+ (*m), m_qe);
+ MUTEX_INIT_LINK(*m);
+
+ /*
+ * Hand off the mutex to the next waiting
+ * thread:
+ */
+ kmbx = mutex_handoff(curthread, *m);
+ }
+ break;
+
+ /* POSIX priority ceiling mutex: */
+ case PTHREAD_PRIO_PROTECT:
+ /*
+ * Check if the running thread is not the owner of the
+ * mutex:
+ */
+ if ((*m)->m_owner != curthread)
+ ret = EPERM;
+ else if (((*m)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
+ ((*m)->m_count > 0))
+ /* Decrement the count: */
+ (*m)->m_count--;
+ else {
+ /*
+ * Clear the count in case this is a recursive
+ * mutex.
+ */
+ (*m)->m_count = 0;
+
+ /*
+ * Restore the threads inherited priority and
+ * recompute the active priority (being careful
+ * not to override changes in the threads base
+ * priority subsequent to locking the mutex).
+ */
+ THR_SCHED_LOCK(curthread, curthread);
+ curthread->inherited_priority =
+ (*m)->m_saved_prio;
+ curthread->active_priority =
+ MAX(curthread->inherited_priority,
+ curthread->base_priority);
+
+ /*
+ * This thread now owns one less priority mutex.
+ */
+ curthread->priority_mutex_count--;
+ THR_SCHED_UNLOCK(curthread, curthread);
+
+ /* Remove the mutex from the threads queue. */
+ MUTEX_ASSERT_IS_OWNED(*m);
+ TAILQ_REMOVE(&(*m)->m_owner->mutexq,
+ (*m), m_qe);
+ MUTEX_INIT_LINK(*m);
+
+ /*
+ * Hand off the mutex to the next waiting
+ * thread:
+ */
+ kmbx = mutex_handoff(curthread, *m);
+ }
+ break;
+
+ /* Trap invalid mutex types: */
+ default:
+ /* Return an invalid argument error: */
+ ret = EINVAL;
+ break;
+ }
+
+ if ((ret == 0) && (add_reference != 0))
+ /* Increment the reference count: */
+ (*m)->m_refcount++;
+
+ /* Leave the critical region if this is a private mutex. */
+ if ((ret == 0) && ((*m)->m_flags & MUTEX_FLAGS_PRIVATE))
+ THR_CRITICAL_LEAVE(curthread);
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &(*m)->m_lock);
+
+ if (kmbx != NULL)
+ kse_wakeup(kmbx);
+ }
+
+ /* Return the completion status: */
+ return (ret);
+}
+
+
+/*
+ * This function is called when a change in base priority occurs for
+ * a thread that is holding or waiting for a priority protection or
+ * inheritence mutex. A change in a threads base priority can effect
+ * changes to active priorities of other threads and to the ordering
+ * of mutex locking by waiting threads.
+ *
+ * This must be called without the target thread's scheduling lock held.
+ */
+void
+_mutex_notify_priochange(struct pthread *curthread, struct pthread *pthread,
+ int propagate_prio)
+{
+ struct pthread_mutex *m;
+
+ /* Adjust the priorites of any owned priority mutexes: */
+ if (pthread->priority_mutex_count > 0) {
+ /*
+ * Rescan the mutexes owned by this thread and correct
+ * their priorities to account for this threads change
+ * in priority. This has the side effect of changing
+ * the threads active priority.
+ *
+ * Be sure to lock the first mutex in the list of owned
+ * mutexes. This acts as a barrier against another
+ * simultaneous call to change the threads priority
+ * and from the owning thread releasing the mutex.
+ */
+ m = TAILQ_FIRST(&pthread->mutexq);
+ if (m != NULL) {
+ THR_LOCK_ACQUIRE(curthread, &m->m_lock);
+ /*
+ * Make sure the thread still owns the lock.
+ */
+ if (m == TAILQ_FIRST(&pthread->mutexq))
+ mutex_rescan_owned(curthread, pthread,
+ /* rescan all owned */ NULL);
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+ }
+ }
+
+ /*
+ * If this thread is waiting on a priority inheritence mutex,
+ * check for priority adjustments. A change in priority can
+ * also cause a ceiling violation(*) for a thread waiting on
+ * a priority protection mutex; we don't perform the check here
+ * as it is done in pthread_mutex_unlock.
+ *
+ * (*) It should be noted that a priority change to a thread
+ * _after_ taking and owning a priority ceiling mutex
+ * does not affect ownership of that mutex; the ceiling
+ * priority is only checked before mutex ownership occurs.
+ */
+ if (propagate_prio != 0) {
+ /*
+ * Lock the thread's scheduling queue. This is a bit
+ * convoluted; the "in synchronization queue flag" can
+ * only be cleared with both the thread's scheduling and
+ * mutex locks held. The thread's pointer to the wanted
+ * mutex is guaranteed to be valid during this time.
+ */
+ THR_SCHED_LOCK(curthread, pthread);
+
+ if (((pthread->sflags & THR_FLAGS_IN_SYNCQ) == 0) ||
+ ((m = pthread->data.mutex) == NULL))
+ THR_SCHED_UNLOCK(curthread, pthread);
+ else {
+ /*
+ * This thread is currently waiting on a mutex; unlock
+ * the scheduling queue lock and lock the mutex. We
+ * can't hold both at the same time because the locking
+ * order could cause a deadlock.
+ */
+ THR_SCHED_UNLOCK(curthread, pthread);
+ THR_LOCK_ACQUIRE(curthread, &m->m_lock);
+
+ /*
+ * Check to make sure this thread is still in the
+ * same state (the lock above can yield the CPU to
+ * another thread or the thread may be running on
+ * another CPU).
+ */
+ if (((pthread->sflags & THR_FLAGS_IN_SYNCQ) != 0) &&
+ (pthread->data.mutex == m)) {
+ /*
+ * Remove and reinsert this thread into
+ * the list of waiting threads to preserve
+ * decreasing priority order.
+ */
+ mutex_queue_remove(m, pthread);
+ mutex_queue_enq(m, pthread);
+
+ if (m->m_protocol == PTHREAD_PRIO_INHERIT)
+ /* Adjust priorities: */
+ mutex_priority_adjust(curthread, m);
+ }
+
+ /* Unlock the mutex structure: */
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+ }
+ }
+}
+
+/*
+ * Called when a new thread is added to the mutex waiting queue or
+ * when a threads priority changes that is already in the mutex
+ * waiting queue.
+ *
+ * This must be called with the mutex locked by the current thread.
+ */
+static void
+mutex_priority_adjust(struct pthread *curthread, pthread_mutex_t mutex)
+{
+ pthread_mutex_t m = mutex;
+ struct pthread *pthread_next, *pthread = mutex->m_owner;
+ int done, temp_prio;
+
+ /*
+ * Calculate the mutex priority as the maximum of the highest
+ * active priority of any waiting threads and the owning threads
+ * active priority(*).
+ *
+ * (*) Because the owning threads current active priority may
+ * reflect priority inherited from this mutex (and the mutex
+ * priority may have changed) we must recalculate the active
+ * priority based on the threads saved inherited priority
+ * and its base priority.
+ */
+ pthread_next = TAILQ_FIRST(&m->m_queue); /* should never be NULL */
+ temp_prio = MAX(pthread_next->active_priority,
+ MAX(m->m_saved_prio, pthread->base_priority));
+
+ /* See if this mutex really needs adjusting: */
+ if (temp_prio == m->m_prio)
+ /* No need to propagate the priority: */
+ return;
+
+ /* Set new priority of the mutex: */
+ m->m_prio = temp_prio;
+
+ /*
+ * Don't unlock the mutex passed in as an argument. It is
+ * expected to be locked and unlocked by the caller.
+ */
+ done = 1;
+ do {
+ /*
+ * Save the threads priority before rescanning the
+ * owned mutexes:
+ */
+ temp_prio = pthread->active_priority;
+
+ /*
+ * Fix the priorities for all mutexes held by the owning
+ * thread since taking this mutex. This also has a
+ * potential side-effect of changing the threads priority.
+ *
+ * At this point the mutex is locked by the current thread.
+ * The owning thread can't release the mutex until it is
+ * unlocked, so we should be able to safely walk its list
+ * of owned mutexes.
+ */
+ mutex_rescan_owned(curthread, pthread, m);
+
+ /*
+ * If this isn't the first time through the loop,
+ * the current mutex needs to be unlocked.
+ */
+ if (done == 0)
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+
+ /* Assume we're done unless told otherwise: */
+ done = 1;
+
+ /*
+ * If the thread is currently waiting on a mutex, check
+ * to see if the threads new priority has affected the
+ * priority of the mutex.
+ */
+ if ((temp_prio != pthread->active_priority) &&
+ ((pthread->sflags & THR_FLAGS_IN_SYNCQ) != 0) &&
+ ((m = pthread->data.mutex) != NULL) &&
+ (m->m_protocol == PTHREAD_PRIO_INHERIT)) {
+ /* Lock the mutex structure: */
+ THR_LOCK_ACQUIRE(curthread, &m->m_lock);
+
+ /*
+ * Make sure the thread is still waiting on the
+ * mutex:
+ */
+ if (((pthread->sflags & THR_FLAGS_IN_SYNCQ) != 0) &&
+ (m == pthread->data.mutex)) {
+ /*
+ * The priority for this thread has changed.
+ * Remove and reinsert this thread into the
+ * list of waiting threads to preserve
+ * decreasing priority order.
+ */
+ mutex_queue_remove(m, pthread);
+ mutex_queue_enq(m, pthread);
+
+ /*
+ * Grab the waiting thread with highest
+ * priority:
+ */
+ pthread_next = TAILQ_FIRST(&m->m_queue);
+
+ /*
+ * Calculate the mutex priority as the maximum
+ * of the highest active priority of any
+ * waiting threads and the owning threads
+ * active priority.
+ */
+ temp_prio = MAX(pthread_next->active_priority,
+ MAX(m->m_saved_prio,
+ m->m_owner->base_priority));
+
+ if (temp_prio != m->m_prio) {
+ /*
+ * The priority needs to be propagated
+ * to the mutex this thread is waiting
+ * on and up to the owner of that mutex.
+ */
+ m->m_prio = temp_prio;
+ pthread = m->m_owner;
+
+ /* We're not done yet: */
+ done = 0;
+ }
+ }
+ /* Only release the mutex if we're done: */
+ if (done != 0)
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+ }
+ } while (done == 0);
+}
+
+static void
+mutex_rescan_owned(struct pthread *curthread, struct pthread *pthread,
+ struct pthread_mutex *mutex)
+{
+ struct pthread_mutex *m;
+ struct pthread *pthread_next;
+ int active_prio, inherited_prio;
+
+ /*
+ * Start walking the mutexes the thread has taken since
+ * taking this mutex.
+ */
+ if (mutex == NULL) {
+ /*
+ * A null mutex means start at the beginning of the owned
+ * mutex list.
+ */
+ m = TAILQ_FIRST(&pthread->mutexq);
+
+ /* There is no inherited priority yet. */
+ inherited_prio = 0;
+ } else {
+ /*
+ * The caller wants to start after a specific mutex. It
+ * is assumed that this mutex is a priority inheritence
+ * mutex and that its priority has been correctly
+ * calculated.
+ */
+ m = TAILQ_NEXT(mutex, m_qe);
+
+ /* Start inheriting priority from the specified mutex. */
+ inherited_prio = mutex->m_prio;
+ }
+ active_prio = MAX(inherited_prio, pthread->base_priority);
+
+ for (; m != NULL; m = TAILQ_NEXT(m, m_qe)) {
+ /*
+ * We only want to deal with priority inheritence
+ * mutexes. This might be optimized by only placing
+ * priority inheritence mutexes into the owned mutex
+ * list, but it may prove to be useful having all
+ * owned mutexes in this list. Consider a thread
+ * exiting while holding mutexes...
+ */
+ if (m->m_protocol == PTHREAD_PRIO_INHERIT) {
+ /*
+ * Fix the owners saved (inherited) priority to
+ * reflect the priority of the previous mutex.
+ */
+ m->m_saved_prio = inherited_prio;
+
+ if ((pthread_next = TAILQ_FIRST(&m->m_queue)) != NULL)
+ /* Recalculate the priority of the mutex: */
+ m->m_prio = MAX(active_prio,
+ pthread_next->active_priority);
+ else
+ m->m_prio = active_prio;
+
+ /* Recalculate new inherited and active priorities: */
+ inherited_prio = m->m_prio;
+ active_prio = MAX(m->m_prio, pthread->base_priority);
+ }
+ }
+
+ /*
+ * Fix the threads inherited priority and recalculate its
+ * active priority.
+ */
+ pthread->inherited_priority = inherited_prio;
+ active_prio = MAX(inherited_prio, pthread->base_priority);
+
+ if (active_prio != pthread->active_priority) {
+ /* Lock the thread's scheduling queue: */
+ THR_SCHED_LOCK(curthread, pthread);
+
+ if ((pthread->flags & THR_FLAGS_IN_RUNQ) == 0) {
+ /*
+ * This thread is not in a run queue. Just set
+ * its active priority.
+ */
+ pthread->active_priority = active_prio;
+ }
+ else {
+ /*
+ * This thread is in a run queue. Remove it from
+ * the queue before changing its priority:
+ */
+ THR_RUNQ_REMOVE(pthread);
+
+ /*
+ * POSIX states that if the priority is being
+ * lowered, the thread must be inserted at the
+ * head of the queue for its priority if it owns
+ * any priority protection or inheritence mutexes.
+ */
+ if ((active_prio < pthread->active_priority) &&
+ (pthread->priority_mutex_count > 0)) {
+ /* Set the new active priority. */
+ pthread->active_priority = active_prio;
+
+ THR_RUNQ_INSERT_HEAD(pthread);
+ } else {
+ /* Set the new active priority. */
+ pthread->active_priority = active_prio;
+
+ THR_RUNQ_INSERT_TAIL(pthread);
+ }
+ }
+ THR_SCHED_UNLOCK(curthread, pthread);
+ }
+}
+
+void
+_mutex_unlock_private(pthread_t pthread)
+{
+ struct pthread_mutex *m, *m_next;
+
+ for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) {
+ m_next = TAILQ_NEXT(m, m_qe);
+ if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
+ _pthread_mutex_unlock(&m);
+ }
+}
+
+/*
+ * This is called by the current thread when it wants to back out of a
+ * mutex_lock in order to run a signal handler.
+ */
+static void
+mutex_lock_backout(void *arg)
+{
+ struct pthread *curthread = (struct pthread *)arg;
+ struct pthread_mutex *m;
+
+ if ((curthread->sflags & THR_FLAGS_IN_SYNCQ) != 0) {
+ /*
+ * Any other thread may clear the "in sync queue flag",
+ * but only the current thread can clear the pointer
+ * to the mutex. So if the flag is set, we can
+ * guarantee that the pointer to the mutex is valid.
+ * The only problem may be if the mutex is destroyed
+ * out from under us, but that should be considered
+ * an application bug.
+ */
+ m = curthread->data.mutex;
+
+ /* Lock the mutex structure: */
+ THR_LOCK_ACQUIRE(curthread, &m->m_lock);
+
+
+ /*
+ * Check to make sure this thread doesn't already own
+ * the mutex. Since mutexes are unlocked with direct
+ * handoffs, it is possible the previous owner gave it
+ * to us after we checked the sync queue flag and before
+ * we locked the mutex structure.
+ */
+ if (m->m_owner == curthread) {
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+ mutex_unlock_common(&m, /* add_reference */ 0);
+ } else {
+ /*
+ * Remove ourselves from the mutex queue and
+ * clear the pointer to the mutex. We may no
+ * longer be in the mutex queue, but the removal
+ * function will DTRT.
+ */
+ mutex_queue_remove(m, curthread);
+ curthread->data.mutex = NULL;
+ THR_LOCK_RELEASE(curthread, &m->m_lock);
+ }
+ }
+ /* No need to call this again. */
+ curthread->sigbackout = NULL;
+}
+
+/*
+ * Dequeue a waiting thread from the head of a mutex queue in descending
+ * priority order.
+ *
+ * In order to properly dequeue a thread from the mutex queue and
+ * make it runnable without the possibility of errant wakeups, it
+ * is necessary to lock the thread's scheduling queue while also
+ * holding the mutex lock.
+ */
+static struct kse_mailbox *
+mutex_handoff(struct pthread *curthread, struct pthread_mutex *mutex)
+{
+ struct kse_mailbox *kmbx = NULL;
+ struct pthread *pthread;
+
+ /* Keep dequeueing until we find a valid thread: */
+ mutex->m_owner = NULL;
+ pthread = TAILQ_FIRST(&mutex->m_queue);
+ while (pthread != NULL) {
+ /* Take the thread's scheduling lock: */
+ THR_SCHED_LOCK(curthread, pthread);
+
+ /* Remove the thread from the mutex queue: */
+ TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
+ pthread->sflags &= ~THR_FLAGS_IN_SYNCQ;
+
+ /*
+ * Only exit the loop if the thread hasn't been
+ * cancelled.
+ */
+ switch (mutex->m_protocol) {
+ case PTHREAD_PRIO_NONE:
+ /*
+ * Assign the new owner and add the mutex to the
+ * thread's list of owned mutexes.
+ */
+ mutex->m_owner = pthread;
+ TAILQ_INSERT_TAIL(&pthread->mutexq, mutex, m_qe);
+ break;
+
+ case PTHREAD_PRIO_INHERIT:
+ /*
+ * Assign the new owner and add the mutex to the
+ * thread's list of owned mutexes.
+ */
+ mutex->m_owner = pthread;
+ TAILQ_INSERT_TAIL(&pthread->mutexq, mutex, m_qe);
+
+ /* Track number of priority mutexes owned: */
+ pthread->priority_mutex_count++;
+
+ /*
+ * Set the priority of the mutex. Since our waiting
+ * threads are in descending priority order, the
+ * priority of the mutex becomes the active priority
+ * of the thread we just dequeued.
+ */
+ mutex->m_prio = pthread->active_priority;
+
+ /* Save the owning threads inherited priority: */
+ mutex->m_saved_prio = pthread->inherited_priority;
+
+ /*
+ * The owning threads inherited priority now becomes
+ * his active priority (the priority of the mutex).
+ */
+ pthread->inherited_priority = mutex->m_prio;
+ break;
+
+ case PTHREAD_PRIO_PROTECT:
+ if (pthread->active_priority > mutex->m_prio) {
+ /*
+ * Either the mutex ceiling priority has
+ * been lowered and/or this threads priority
+ * has been raised subsequent to the thread
+ * being queued on the waiting list.
+ */
+ pthread->error = EINVAL;
+ }
+ else {
+ /*
+ * Assign the new owner and add the mutex
+ * to the thread's list of owned mutexes.
+ */
+ mutex->m_owner = pthread;
+ TAILQ_INSERT_TAIL(&pthread->mutexq,
+ mutex, m_qe);
+
+ /* Track number of priority mutexes owned: */
+ pthread->priority_mutex_count++;
+
+ /*
+ * Save the owning threads inherited
+ * priority:
+ */
+ mutex->m_saved_prio =
+ pthread->inherited_priority;
+
+ /*
+ * The owning thread inherits the ceiling
+ * priority of the mutex and executes at
+ * that priority:
+ */
+ pthread->inherited_priority = mutex->m_prio;
+ pthread->active_priority = mutex->m_prio;
+
+ }
+ break;
+ }
+
+ /* Make the thread runnable and unlock the scheduling queue: */
+ kmbx = _thr_setrunnable_unlocked(pthread);
+
+ /* Add a preemption point. */
+ if ((curthread->kseg == pthread->kseg) &&
+ (pthread->active_priority > curthread->active_priority))
+ curthread->critical_yield = 1;
+
+ if (mutex->m_owner == pthread) {
+ /* We're done; a valid owner was found. */
+ if (mutex->m_flags & MUTEX_FLAGS_PRIVATE)
+ THR_CRITICAL_ENTER(pthread);
+ THR_SCHED_UNLOCK(curthread, pthread);
+ break;
+ }
+ THR_SCHED_UNLOCK(curthread, pthread);
+ /* Get the next thread from the waiting queue: */
+ pthread = TAILQ_NEXT(pthread, sqe);
+ }
+
+ if ((pthread == NULL) && (mutex->m_protocol == PTHREAD_PRIO_INHERIT))
+ /* This mutex has no priority: */
+ mutex->m_prio = 0;
+ return (kmbx);
+}
+
+/*
+ * Dequeue a waiting thread from the head of a mutex queue in descending
+ * priority order.
+ */
+static inline pthread_t
+mutex_queue_deq(struct pthread_mutex *mutex)
+{
+ pthread_t pthread;
+
+ while ((pthread = TAILQ_FIRST(&mutex->m_queue)) != NULL) {
+ TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
+ pthread->sflags &= ~THR_FLAGS_IN_SYNCQ;
+
+ /*
+ * Only exit the loop if the thread hasn't been
+ * cancelled.
+ */
+ if (pthread->interrupted == 0)
+ break;
+ }
+
+ return (pthread);
+}
+
+/*
+ * Remove a waiting thread from a mutex queue in descending priority order.
+ */
+static inline void
+mutex_queue_remove(pthread_mutex_t mutex, pthread_t pthread)
+{
+ if ((pthread->sflags & THR_FLAGS_IN_SYNCQ) != 0) {
+ TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
+ pthread->sflags &= ~THR_FLAGS_IN_SYNCQ;
+ }
+}
+
+/*
+ * Enqueue a waiting thread to a queue in descending priority order.
+ */
+static inline void
+mutex_queue_enq(pthread_mutex_t mutex, pthread_t pthread)
+{
+ pthread_t tid = TAILQ_LAST(&mutex->m_queue, mutex_head);
+
+ THR_ASSERT_NOT_IN_SYNCQ(pthread);
+ /*
+ * For the common case of all threads having equal priority,
+ * we perform a quick check against the priority of the thread
+ * at the tail of the queue.
+ */
+ if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
+ TAILQ_INSERT_TAIL(&mutex->m_queue, pthread, sqe);
+ else {
+ tid = TAILQ_FIRST(&mutex->m_queue);
+ while (pthread->active_priority <= tid->active_priority)
+ tid = TAILQ_NEXT(tid, sqe);
+ TAILQ_INSERT_BEFORE(tid, pthread, sqe);
+ }
+ pthread->sflags |= THR_FLAGS_IN_SYNCQ;
+}
+
+int
+_pthread_mutex_isowned_np(pthread_mutex_t *mutex)
+{
+ struct pthread *curthread = _get_curthread();
+
+ return ((*mutex)->m_owner == curthread);
+}
+
OpenPOWER on IntegriCloud