summaryrefslogtreecommitdiffstats
path: root/lib/libcrypt/crypt-sha256.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libcrypt/crypt-sha256.c')
-rw-r--r--lib/libcrypt/crypt-sha256.c477
1 files changed, 477 insertions, 0 deletions
diff --git a/lib/libcrypt/crypt-sha256.c b/lib/libcrypt/crypt-sha256.c
new file mode 100644
index 0000000..d9e4ea6
--- /dev/null
+++ b/lib/libcrypt/crypt-sha256.c
@@ -0,0 +1,477 @@
+/*
+ * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/* Based on:
+ * SHA256-based Unix crypt implementation. Released into the Public Domain by
+ * Ulrich Drepper <drepper@redhat.com>. */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/endian.h>
+#include <sys/param.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <sha256.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "crypt.h"
+
+/* Define our magic string to mark salt for SHA256 "encryption" replacement. */
+static const char sha256_salt_prefix[] = "$5$";
+
+/* Prefix for optional rounds specification. */
+static const char sha256_rounds_prefix[] = "rounds=";
+
+/* Maximum salt string length. */
+#define SALT_LEN_MAX 16
+/* Default number of rounds if not explicitly specified. */
+#define ROUNDS_DEFAULT 5000
+/* Minimum number of rounds. */
+#define ROUNDS_MIN 1000
+/* Maximum number of rounds. */
+#define ROUNDS_MAX 999999999
+
+static char *
+sha256_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
+{
+ u_long srounds;
+ int n;
+ uint8_t alt_result[32], temp_result[32];
+ SHA256_CTX ctx, alt_ctx;
+ size_t salt_len, key_len, cnt, rounds;
+ char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
+ const char *num;
+ bool rounds_custom;
+
+ copied_key = NULL;
+ copied_salt = NULL;
+
+ /* Default number of rounds. */
+ rounds = ROUNDS_DEFAULT;
+ rounds_custom = false;
+
+ /* Find beginning of salt string. The prefix should normally always
+ * be present. Just in case it is not. */
+ if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
+ /* Skip salt prefix. */
+ salt += sizeof(sha256_salt_prefix) - 1;
+
+ if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
+ == 0) {
+ num = salt + sizeof(sha256_rounds_prefix) - 1;
+ srounds = strtoul(num, &endp, 10);
+
+ if (*endp == '$') {
+ salt = endp + 1;
+ rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
+ rounds_custom = true;
+ }
+ }
+
+ salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
+ key_len = strlen(key);
+
+ /* Prepare for the real work. */
+ SHA256_Init(&ctx);
+
+ /* Add the key string. */
+ SHA256_Update(&ctx, key, key_len);
+
+ /* The last part is the salt string. This must be at most 8
+ * characters and it ends at the first `$' character (for
+ * compatibility with existing implementations). */
+ SHA256_Update(&ctx, salt, salt_len);
+
+ /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
+ * final result will be added to the first context. */
+ SHA256_Init(&alt_ctx);
+
+ /* Add key. */
+ SHA256_Update(&alt_ctx, key, key_len);
+
+ /* Add salt. */
+ SHA256_Update(&alt_ctx, salt, salt_len);
+
+ /* Add key again. */
+ SHA256_Update(&alt_ctx, key, key_len);
+
+ /* Now get result of this (32 bytes) and add it to the other context. */
+ SHA256_Final(alt_result, &alt_ctx);
+
+ /* Add for any character in the key one byte of the alternate sum. */
+ for (cnt = key_len; cnt > 32; cnt -= 32)
+ SHA256_Update(&ctx, alt_result, 32);
+ SHA256_Update(&ctx, alt_result, cnt);
+
+ /* Take the binary representation of the length of the key and for
+ * every 1 add the alternate sum, for every 0 the key. */
+ for (cnt = key_len; cnt > 0; cnt >>= 1)
+ if ((cnt & 1) != 0)
+ SHA256_Update(&ctx, alt_result, 32);
+ else
+ SHA256_Update(&ctx, key, key_len);
+
+ /* Create intermediate result. */
+ SHA256_Final(alt_result, &ctx);
+
+ /* Start computation of P byte sequence. */
+ SHA256_Init(&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < key_len; ++cnt)
+ SHA256_Update(&alt_ctx, key, key_len);
+
+ /* Finish the digest. */
+ SHA256_Final(temp_result, &alt_ctx);
+
+ /* Create byte sequence P. */
+ cp = p_bytes = alloca(key_len);
+ for (cnt = key_len; cnt >= 32; cnt -= 32) {
+ memcpy(cp, temp_result, 32);
+ cp += 32;
+ }
+ memcpy(cp, temp_result, cnt);
+
+ /* Start computation of S byte sequence. */
+ SHA256_Init(&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
+ SHA256_Update(&alt_ctx, salt, salt_len);
+
+ /* Finish the digest. */
+ SHA256_Final(temp_result, &alt_ctx);
+
+ /* Create byte sequence S. */
+ cp = s_bytes = alloca(salt_len);
+ for (cnt = salt_len; cnt >= 32; cnt -= 32) {
+ memcpy(cp, temp_result, 32);
+ cp += 32;
+ }
+ memcpy(cp, temp_result, cnt);
+
+ /* Repeatedly run the collected hash value through SHA256 to burn CPU
+ * cycles. */
+ for (cnt = 0; cnt < rounds; ++cnt) {
+ /* New context. */
+ SHA256_Init(&ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ SHA256_Update(&ctx, p_bytes, key_len);
+ else
+ SHA256_Update(&ctx, alt_result, 32);
+
+ /* Add salt for numbers not divisible by 3. */
+ if (cnt % 3 != 0)
+ SHA256_Update(&ctx, s_bytes, salt_len);
+
+ /* Add key for numbers not divisible by 7. */
+ if (cnt % 7 != 0)
+ SHA256_Update(&ctx, p_bytes, key_len);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ SHA256_Update(&ctx, alt_result, 32);
+ else
+ SHA256_Update(&ctx, p_bytes, key_len);
+
+ /* Create intermediate result. */
+ SHA256_Final(alt_result, &ctx);
+ }
+
+ /* Now we can construct the result string. It consists of three
+ * parts. */
+ cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
+ buflen -= sizeof(sha256_salt_prefix) - 1;
+
+ if (rounds_custom) {
+ n = snprintf(cp, MAX(0, buflen), "%s%zu$",
+ sha256_rounds_prefix, rounds);
+
+ cp += n;
+ buflen -= n;
+ }
+
+ cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
+ buflen -= MIN((size_t)MAX(0, buflen), salt_len);
+
+ if (buflen > 0) {
+ *cp++ = '$';
+ --buflen;
+ }
+
+ b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp);
+ b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp);
+ b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp);
+ if (buflen <= 0) {
+ errno = ERANGE;
+ buffer = NULL;
+ }
+ else
+ *cp = '\0'; /* Terminate the string. */
+
+ /* Clear the buffer for the intermediate result so that people
+ * attaching to processes or reading core dumps cannot get any
+ * information. We do it in this way to clear correct_words[] inside
+ * the SHA256 implementation as well. */
+ SHA256_Init(&ctx);
+ SHA256_Final(alt_result, &ctx);
+ memset(temp_result, '\0', sizeof(temp_result));
+ memset(p_bytes, '\0', key_len);
+ memset(s_bytes, '\0', salt_len);
+ memset(&ctx, '\0', sizeof(ctx));
+ memset(&alt_ctx, '\0', sizeof(alt_ctx));
+ if (copied_key != NULL)
+ memset(copied_key, '\0', key_len);
+ if (copied_salt != NULL)
+ memset(copied_salt, '\0', salt_len);
+
+ return buffer;
+}
+
+/* This entry point is equivalent to crypt(3). */
+char *
+sha256_crypt(const char *key, const char *salt)
+{
+ /* We don't want to have an arbitrary limit in the size of the
+ * password. We can compute an upper bound for the size of the
+ * result in advance and so we can prepare the buffer we pass to
+ * `sha256_crypt_r'. */
+ static char *buffer;
+ static int buflen;
+ int needed;
+ char *new_buffer;
+
+ needed = (sizeof(sha256_salt_prefix) - 1
+ + sizeof(sha256_rounds_prefix) + 9 + 1
+ + strlen(salt) + 1 + 43 + 1);
+
+ if (buflen < needed) {
+ new_buffer = (char *)realloc(buffer, needed);
+
+ if (new_buffer == NULL)
+ return NULL;
+
+ buffer = new_buffer;
+ buflen = needed;
+ }
+
+ return sha256_crypt_r(key, salt, buffer, buflen);
+}
+
+#ifdef TEST
+
+static const struct {
+ const char *input;
+ const char result[32];
+} tests[] =
+{
+ /* Test vectors from FIPS 180-2: appendix B.1. */
+ {
+ "abc",
+ "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
+ "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
+ },
+ /* Test vectors from FIPS 180-2: appendix B.2. */
+ {
+ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
+ "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
+ "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
+ },
+ /* Test vectors from the NESSIE project. */
+ {
+ "",
+ "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
+ "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
+ },
+ {
+ "a",
+ "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
+ "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
+ },
+ {
+ "message digest",
+ "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
+ "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
+ },
+ {
+ "abcdefghijklmnopqrstuvwxyz",
+ "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
+ "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
+ },
+ {
+ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
+ "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
+ "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
+ },
+ {
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
+ "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
+ "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
+ },
+ {
+ "123456789012345678901234567890123456789012345678901234567890"
+ "12345678901234567890",
+ "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
+ "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
+ }
+};
+
+#define ntests (sizeof (tests) / sizeof (tests[0]))
+
+static const struct {
+ const char *salt;
+ const char *input;
+ const char *expected;
+} tests2[] =
+{
+ {
+ "$5$saltstring", "Hello world!",
+ "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
+ },
+ {
+ "$5$rounds=10000$saltstringsaltstring", "Hello world!",
+ "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
+ "opqey6IcA"
+ },
+ {
+ "$5$rounds=5000$toolongsaltstring", "This is just a test",
+ "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
+ "mGRcvxa5"
+ },
+ {
+ "$5$rounds=1400$anotherlongsaltstring",
+ "a very much longer text to encrypt. This one even stretches over more"
+ "than one line.",
+ "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
+ "oP84Bnq1"
+ },
+ {
+ "$5$rounds=77777$short",
+ "we have a short salt string but not a short password",
+ "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
+ },
+ {
+ "$5$rounds=123456$asaltof16chars..", "a short string",
+ "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
+ "cZKmF/wJvD"
+ },
+ {
+ "$5$rounds=10$roundstoolow", "the minimum number is still observed",
+ "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
+ "2bIC"
+ },
+};
+
+#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
+
+int
+main(void)
+{
+ SHA256_CTX ctx;
+ uint8_t sum[32];
+ int result = 0;
+ int i, cnt;
+
+ for (cnt = 0; cnt < (int)ntests; ++cnt) {
+ SHA256_Init(&ctx);
+ SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
+ SHA256_Final(sum, &ctx);
+ if (memcmp(tests[cnt].result, sum, 32) != 0) {
+ for (i = 0; i < 32; i++)
+ printf("%02X", tests[cnt].result[i]);
+ printf("\n");
+ for (i = 0; i < 32; i++)
+ printf("%02X", sum[i]);
+ printf("\n");
+ printf("test %d run %d failed\n", cnt, 1);
+ result = 1;
+ }
+
+ SHA256_Init(&ctx);
+ for (i = 0; tests[cnt].input[i] != '\0'; ++i)
+ SHA256_Update(&ctx, &tests[cnt].input[i], 1);
+ SHA256_Final(sum, &ctx);
+ if (memcmp(tests[cnt].result, sum, 32) != 0) {
+ for (i = 0; i < 32; i++)
+ printf("%02X", tests[cnt].result[i]);
+ printf("\n");
+ for (i = 0; i < 32; i++)
+ printf("%02X", sum[i]);
+ printf("\n");
+ printf("test %d run %d failed\n", cnt, 2);
+ result = 1;
+ }
+ }
+
+ /* Test vector from FIPS 180-2: appendix B.3. */
+ char buf[1000];
+
+ memset(buf, 'a', sizeof(buf));
+ SHA256_Init(&ctx);
+ for (i = 0; i < 1000; ++i)
+ SHA256_Update(&ctx, buf, sizeof(buf));
+ SHA256_Final(sum, &ctx);
+ static const char expected[32] =
+ "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
+ "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
+
+ if (memcmp(expected, sum, 32) != 0) {
+ printf("test %d failed\n", cnt);
+ result = 1;
+ }
+
+ for (cnt = 0; cnt < ntests2; ++cnt) {
+ char *cp = sha256_crypt(tests2[cnt].input, tests2[cnt].salt);
+
+ if (strcmp(cp, tests2[cnt].expected) != 0) {
+ printf("test %d: expected \"%s\", got \"%s\"\n",
+ cnt, tests2[cnt].expected, cp);
+ result = 1;
+ }
+ }
+
+ if (result == 0)
+ puts("all tests OK");
+
+ return result;
+}
+
+#endif /* TEST */
OpenPOWER on IntegriCloud