summaryrefslogtreecommitdiffstats
path: root/lib/libc
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libc')
-rw-r--r--lib/libc/stdlib/malloc.c6256
1 files changed, 6256 insertions, 0 deletions
diff --git a/lib/libc/stdlib/malloc.c b/lib/libc/stdlib/malloc.c
new file mode 100644
index 0000000..7ef59e4
--- /dev/null
+++ b/lib/libc/stdlib/malloc.c
@@ -0,0 +1,6256 @@
+/*-
+ * Copyright (C) 2006-2010 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Thread-specific caching is used if there are multiple threads, which
+ * reduces the amount of locking.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 KiB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ * |========================================|
+ * | Category | Subcategory | Size |
+ * |========================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |------------------+----------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 96 |
+ * | | | 112 |
+ * | | | 128 |
+ * | |------------------+----------|
+ * | | Cacheline-spaced | 192 |
+ * | | | 256 |
+ * | | | 320 |
+ * | | | 384 |
+ * | | | 448 |
+ * | | | 512 |
+ * | |------------------+----------|
+ * | | Sub-page | 760 |
+ * | | | 1024 |
+ * | | | 1280 |
+ * | | | ... |
+ * | | | 3328 |
+ * | | | 3584 |
+ * | | | 3840 |
+ * |========================================|
+ * | Medium | 4 KiB |
+ * | | 6 KiB |
+ * | | 8 KiB |
+ * | | ... |
+ * | | 28 KiB |
+ * | | 30 KiB |
+ * | | 32 KiB |
+ * |========================================|
+ * | Large | 36 KiB |
+ * | | 40 KiB |
+ * | | 44 KiB |
+ * | | ... |
+ * | | 1012 KiB |
+ * | | 1016 KiB |
+ * | | 1020 KiB |
+ * |========================================|
+ * | Huge | 1 MiB |
+ * | | 2 MiB |
+ * | | 3 MiB |
+ * | | ... |
+ * |========================================|
+ *
+ * Different mechanisms are used accoding to category:
+ *
+ * Small/medium : Each size class is segregated into its own set of runs.
+ * Each run maintains a bitmap of which regions are
+ * free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+/* #define MALLOC_PRODUCTION */
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* MALLOC_STATS enables statistics calculation. */
+# define MALLOC_STATS
+#endif
+
+/*
+ * MALLOC_TINY enables support for tiny objects, which are smaller than one
+ * quantum.
+ */
+#define MALLOC_TINY
+
+/*
+ * MALLOC_TCACHE enables a thread-specific caching layer for small and medium
+ * objects. This makes it possible to allocate/deallocate objects without any
+ * locking when the cache is in the steady state.
+ */
+#define MALLOC_TCACHE
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS). In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+#define MALLOC_DSS
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+# define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#include <sys/mman.h>
+#include <sys/param.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#include <sys/uio.h>
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/cpufunc.h>
+#include <machine/param.h>
+#include <machine/vmparam.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <link.h>
+#include <pthread.h>
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <stdlib.h>
+#include <string.h>
+#include <strings.h>
+#include <unistd.h>
+
+#include "un-namespace.h"
+
+#include "libc_private.h"
+
+#define RB_COMPACT
+#include "rb.h"
+#if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS))
+#include "qr.h"
+#include "ql.h"
+#endif
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/*
+ * Minimum alignment of allocations is 2^LG_QUANTUM bytes.
+ */
+#ifdef __i386__
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+# ifdef __clang__
+# define TLS_MODEL /* clang does not support tls_model yet */
+# else
+# define TLS_MODEL __attribute__((tls_model("initial-exec")))
+# endif
+#endif
+#ifdef __ia64__
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 3
+# define TLS_MODEL /* default */
+#endif
+#ifdef __alpha__
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 3
+# define TLS_MODEL __attribute__((tls_model("initial-exec")))
+#endif
+#ifdef __amd64__
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+# ifdef __clang__
+# define TLS_MODEL /* clang does not support tls_model yet */
+# else
+# define TLS_MODEL __attribute__((tls_model("initial-exec")))
+# endif
+#endif
+#ifdef __arm__
+# define LG_QUANTUM 3
+# define LG_SIZEOF_PTR 2
+# define NO_TLS
+#endif
+#ifdef __mips__
+# define LG_QUANTUM 3
+# define LG_SIZEOF_PTR 2
+# define NO_TLS
+#endif
+#ifdef __powerpc64__
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 3
+# define TLS_MODEL /* default */
+#elif defined(__powerpc__)
+# define LG_QUANTUM 4
+# define LG_SIZEOF_PTR 2
+# define TLS_MODEL /* default */
+#endif
+#ifdef __s390x__
+# define LG_QUANTUM 4
+#endif
+
+#define QUANTUM ((size_t)(1U << LG_QUANTUM))
+#define QUANTUM_MASK (QUANTUM - 1)
+
+#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
+
+/* sizeof(int) == (1U << LG_SIZEOF_INT). */
+#ifndef LG_SIZEOF_INT
+# define LG_SIZEOF_INT 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_TCACHE requires TLS. */
+# ifdef MALLOC_TCACHE
+# undef MALLOC_TCACHE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define LG_CHUNK_DEFAULT 22
+
+/*
+ * The minimum ratio of active:dirty pages per arena is computed as:
+ *
+ * (nactive >> opt_lg_dirty_mult) >= ndirty
+ *
+ * So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
+ * times as many active pages as dirty pages.
+ */
+#define LG_DIRTY_MULT_DEFAULT 5
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing.
+ * In addition, this controls the spacing of cacheline-spaced size classes.
+ */
+#define LG_CACHELINE 6
+#define CACHELINE ((size_t)(1U << LG_CACHELINE))
+#define CACHELINE_MASK (CACHELINE - 1)
+
+/*
+ * Subpages are an artificially designated partitioning of pages. Their only
+ * purpose is to support subpage-spaced size classes.
+ *
+ * There must be at least 4 subpages per page, due to the way size classes are
+ * handled.
+ */
+#define LG_SUBPAGE 8
+#define SUBPAGE ((size_t)(1U << LG_SUBPAGE))
+#define SUBPAGE_MASK (SUBPAGE - 1)
+
+#ifdef MALLOC_TINY
+ /* Smallest size class to support. */
+# define LG_TINY_MIN 1
+#endif
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define LG_QSPACE_MAX_DEFAULT 7
+
+/*
+ * Maximum size class that is a multiple of the cacheline, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define LG_CSPACE_MAX_DEFAULT 9
+
+/*
+ * Maximum medium size class. This must not be more than 1/4 of a chunk
+ * (LG_MEDIUM_MAX_DEFAULT <= LG_CHUNK_DEFAULT - 2).
+ */
+#define LG_MEDIUM_MAX_DEFAULT 15
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
+#define RUN_MAX_SMALL \
+ (arena_maxclass <= (1U << (CHUNK_MAP_LG_PG_RANGE + PAGE_SHIFT)) \
+ ? arena_maxclass : (1U << (CHUNK_MAP_LG_PG_RANGE + \
+ PAGE_SHIFT)))
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define LG_SPIN_LIMIT 11
+
+#ifdef MALLOC_TCACHE
+ /*
+ * Default number of cache slots for each bin in the thread cache (0:
+ * disabled).
+ */
+# define LG_TCACHE_NSLOTS_DEFAULT 7
+ /*
+ * (1U << opt_lg_tcache_gc_sweep) is the approximate number of
+ * allocation events between full GC sweeps (-1: disabled). Integer
+ * rounding may cause the actual number to be slightly higher, since GC is
+ * performed incrementally.
+ */
+# define LG_TCACHE_GC_SWEEP_DEFAULT 13
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+typedef struct {
+ spinlock_t lock;
+} malloc_mutex_t;
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+/* Used to avoid initialization races. */
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+#ifdef MALLOC_TCACHE
+typedef struct tcache_bin_stats_s tcache_bin_stats_t;
+struct tcache_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+};
+#endif
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+#ifdef MALLOC_TCACHE
+ /* Number of tcache fills from this bin. */
+ uint64_t nfills;
+
+ /* Number of tcache flushes to this bin. */
+ uint64_t nflushes;
+#endif
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ size_t highruns;
+
+ /* Current number of runs in this bin. */
+ size_t curruns;
+};
+
+typedef struct malloc_large_stats_s malloc_large_stats_t;
+struct malloc_large_stats_s {
+ /*
+ * Number of allocation requests that corresponded to this size class.
+ */
+ uint64_t nrequests;
+
+ /* High-water mark for this size class. */
+ size_t highruns;
+
+ /* Current number of runs of this size class. */
+ size_t curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /*
+ * Total number of purge sweeps, total number of madvise calls made,
+ * and total pages purged in order to keep dirty unused memory under
+ * control.
+ */
+ uint64_t npurge;
+ uint64_t nmadvise;
+ uint64_t purged;
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_medium;
+ uint64_t nmalloc_medium;
+ uint64_t ndalloc_medium;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+ /*
+ * One element for each possible size class, including sizes that
+ * overlap with bin size classes. This is necessary because ipalloc()
+ * sometimes has to use such large objects in order to assure proper
+ * alignment.
+ */
+ malloc_large_stats_t *lstats;
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+ /* Number of chunks that were allocated. */
+ uint64_t nchunks;
+
+ /* High-water mark for number of chunks allocated. */
+ size_t highchunks;
+
+ /*
+ * Current number of chunks allocated. This value isn't maintained for
+ * any other purpose, so keep track of it in order to be able to set
+ * highchunks.
+ */
+ size_t curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+#ifdef MALLOC_DSS
+ /* Linkage for the size/address-ordered tree. */
+ rb_node(extent_node_t) link_szad;
+#endif
+
+ /* Linkage for the address-ordered tree. */
+ rb_node(extent_node_t) link_ad;
+
+ /* Pointer to the extent that this tree node is responsible for. */
+ void *addr;
+
+ /* Total region size. */
+ size_t size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Linkage for run trees. There are two disjoint uses:
+ *
+ * 1) arena_t's runs_avail tree.
+ * 2) arena_run_t conceptually uses this linkage for in-use non-full
+ * runs, rather than directly embedding linkage.
+ */
+ rb_node(arena_chunk_map_t) link;
+
+ /*
+ * Run address (or size) and various flags are stored together. The bit
+ * layout looks like (assuming 32-bit system):
+ *
+ * ???????? ???????? ????cccc ccccdzla
+ *
+ * ? : Unallocated: Run address for first/last pages, unset for internal
+ * pages.
+ * Small/medium: Don't care.
+ * Large: Run size for first page, unset for trailing pages.
+ * - : Unused.
+ * c : refcount (could overflow for PAGE_SIZE >= 128 KiB)
+ * d : dirty?
+ * z : zeroed?
+ * l : large?
+ * a : allocated?
+ *
+ * Following are example bit patterns for the three types of runs.
+ *
+ * p : run page offset
+ * s : run size
+ * x : don't care
+ * - : 0
+ * [dzla] : bit set
+ *
+ * Unallocated:
+ * ssssssss ssssssss ssss---- --------
+ * xxxxxxxx xxxxxxxx xxxx---- ----d---
+ * ssssssss ssssssss ssss---- -----z--
+ *
+ * Small/medium:
+ * pppppppp ppppcccc cccccccc cccc---a
+ * pppppppp ppppcccc cccccccc cccc---a
+ * pppppppp ppppcccc cccccccc cccc---a
+ *
+ * Large:
+ * ssssssss ssssssss ssss---- ------la
+ * -------- -------- -------- ------la
+ * -------- -------- -------- ------la
+ */
+ size_t bits;
+#define CHUNK_MAP_PG_MASK ((size_t)0xfff00000U)
+#define CHUNK_MAP_PG_SHIFT 20
+#define CHUNK_MAP_LG_PG_RANGE 12
+
+#define CHUNK_MAP_RC_MASK ((size_t)0xffff0U)
+#define CHUNK_MAP_RC_ONE ((size_t)0x00010U)
+
+#define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU)
+#define CHUNK_MAP_DIRTY ((size_t)0x8U)
+#define CHUNK_MAP_ZEROED ((size_t)0x4U)
+#define CHUNK_MAP_LARGE ((size_t)0x2U)
+#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
+#define CHUNK_MAP_KEY (CHUNK_MAP_DIRTY | CHUNK_MAP_ALLOCATED)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunks_dirty tree. */
+ rb_node(arena_chunk_t) link_dirty;
+
+ /*
+ * True if the chunk is currently in the chunks_dirty tree, due to
+ * having at some point contained one or more dirty pages. Removal
+ * from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
+ */
+ bool dirtied;
+
+ /* Number of dirty pages. */
+ size_t ndirty;
+
+ /* Map of pages within chunk that keeps track of free/large/small. */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+#ifdef MALLOC_TCACHE
+typedef struct tcache_s tcache_t;
+#endif
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+ pthread_mutex_t lock;
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+# ifdef MALLOC_TCACHE
+ /*
+ * List of tcaches for extant threads associated with this arena.
+ * Stats from these are merged incrementally, and at exit.
+ */
+ ql_head(tcache_t) tcache_ql;
+# endif
+#endif
+
+ /* Tree of dirty-page-containing chunks this arena manages. */
+ arena_chunk_tree_t chunks_dirty;
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. The spare is left in the arena's chunk trees
+ * until it is deleted.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+ /* Number of pages in active runs. */
+ size_t nactive;
+
+ /*
+ * Current count of pages within unused runs that are potentially
+ * dirty, and for which madvise(... MADV_FREE) has not been called. By
+ * tracking this, we can institute a limit on how much dirty unused
+ * memory is mapped for each arena.
+ */
+ size_t ndirty;
+
+ /*
+ * Size/address-ordered tree of this arena's available runs. This tree
+ * is used for first-best-fit run allocation.
+ */
+ arena_avail_tree_t runs_avail;
+
+ /*
+ * bins is used to store trees of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4 KiB page size, and default
+ * MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+--------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+--------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * : :
+ * 8 | 96 |
+ * 9 | 112 |
+ * 10 | 128 |
+ * --------+--------+
+ * 11 | 192 |
+ * 12 | 256 |
+ * 13 | 320 |
+ * 14 | 384 |
+ * 15 | 448 |
+ * 16 | 512 |
+ * --------+--------+
+ * 17 | 768 |
+ * 18 | 1024 |
+ * 19 | 1280 |
+ * : :
+ * 27 | 3328 |
+ * 28 | 3584 |
+ * 29 | 3840 |
+ * --------+--------+
+ * 30 | 4 KiB |
+ * 31 | 6 KiB |
+ * 33 | 8 KiB |
+ * : :
+ * 43 | 28 KiB |
+ * 44 | 30 KiB |
+ * 45 | 32 KiB |
+ * --------+--------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Thread cache data structures.
+ */
+
+#ifdef MALLOC_TCACHE
+typedef struct tcache_bin_s tcache_bin_t;
+struct tcache_bin_s {
+# ifdef MALLOC_STATS
+ tcache_bin_stats_t tstats;
+# endif
+ unsigned low_water; /* Min # cached since last GC. */
+ unsigned high_water; /* Max # cached since last GC. */
+ unsigned ncached; /* # of cached objects. */
+ void *slots[1]; /* Dynamically sized. */
+};
+
+struct tcache_s {
+# ifdef MALLOC_STATS
+ ql_elm(tcache_t) link; /* Used for aggregating stats. */
+# endif
+ arena_t *arena; /* This thread's arena. */
+ unsigned ev_cnt; /* Event count since incremental GC. */
+ unsigned next_gc_bin; /* Next bin to GC. */
+ tcache_bin_t *tbins[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned ncpus;
+
+/* Various bin-related settings. */
+#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
+# define ntbins ((unsigned)(LG_QUANTUM - LG_TINY_MIN))
+#else
+# define ntbins 0
+#endif
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned ncbins; /* Number of cacheline-spaced bins. */
+static unsigned nsbins; /* Number of subpage-spaced bins. */
+static unsigned nmbins; /* Number of medium bins. */
+static unsigned nbins;
+static unsigned mbin0; /* mbin offset (nbins - nmbins). */
+#ifdef MALLOC_TINY
+# define tspace_max ((size_t)(QUANTUM >> 1))
+#endif
+#define qspace_min QUANTUM
+static size_t qspace_max;
+static size_t cspace_min;
+static size_t cspace_max;
+static size_t sspace_min;
+static size_t sspace_max;
+#define small_maxclass sspace_max
+#define medium_min PAGE_SIZE
+static size_t medium_max;
+#define bin_maxclass medium_max
+
+/*
+ * Soft limit on the number of medium size classes. Spacing between medium
+ * size classes never exceeds pagesize, which can force more than NBINS_MAX
+ * medium size classes.
+ */
+#define NMBINS_MAX 16
+/* Spacing between medium size classes. */
+static size_t lg_mspace;
+static size_t mspace_mask;
+
+static uint8_t const *small_size2bin;
+/*
+ * const_small_size2bin is a static constant lookup table that in the common
+ * case can be used as-is for small_size2bin. For dynamically linked programs,
+ * this avoids a page of memory overhead per process.
+ */
+#define S2B_1(i) i,
+#define S2B_2(i) S2B_1(i) S2B_1(i)
+#define S2B_4(i) S2B_2(i) S2B_2(i)
+#define S2B_8(i) S2B_4(i) S2B_4(i)
+#define S2B_16(i) S2B_8(i) S2B_8(i)
+#define S2B_32(i) S2B_16(i) S2B_16(i)
+#define S2B_64(i) S2B_32(i) S2B_32(i)
+#define S2B_128(i) S2B_64(i) S2B_64(i)
+#define S2B_256(i) S2B_128(i) S2B_128(i)
+static const uint8_t const_small_size2bin[PAGE_SIZE - 255] = {
+ S2B_1(0xffU) /* 0 */
+#if (LG_QUANTUM == 4)
+/* 64-bit system ************************/
+# ifdef MALLOC_TINY
+ S2B_2(0) /* 2 */
+ S2B_2(1) /* 4 */
+ S2B_4(2) /* 8 */
+ S2B_8(3) /* 16 */
+# define S2B_QMIN 3
+# else
+ S2B_16(0) /* 16 */
+# define S2B_QMIN 0
+# endif
+ S2B_16(S2B_QMIN + 1) /* 32 */
+ S2B_16(S2B_QMIN + 2) /* 48 */
+ S2B_16(S2B_QMIN + 3) /* 64 */
+ S2B_16(S2B_QMIN + 4) /* 80 */
+ S2B_16(S2B_QMIN + 5) /* 96 */
+ S2B_16(S2B_QMIN + 6) /* 112 */
+ S2B_16(S2B_QMIN + 7) /* 128 */
+# define S2B_CMIN (S2B_QMIN + 8)
+#else
+/* 32-bit system ************************/
+# ifdef MALLOC_TINY
+ S2B_2(0) /* 2 */
+ S2B_2(1) /* 4 */
+ S2B_4(2) /* 8 */
+# define S2B_QMIN 2
+# else
+ S2B_8(0) /* 8 */
+# define S2B_QMIN 0
+# endif
+ S2B_8(S2B_QMIN + 1) /* 16 */
+ S2B_8(S2B_QMIN + 2) /* 24 */
+ S2B_8(S2B_QMIN + 3) /* 32 */
+ S2B_8(S2B_QMIN + 4) /* 40 */
+ S2B_8(S2B_QMIN + 5) /* 48 */
+ S2B_8(S2B_QMIN + 6) /* 56 */
+ S2B_8(S2B_QMIN + 7) /* 64 */
+ S2B_8(S2B_QMIN + 8) /* 72 */
+ S2B_8(S2B_QMIN + 9) /* 80 */
+ S2B_8(S2B_QMIN + 10) /* 88 */
+ S2B_8(S2B_QMIN + 11) /* 96 */
+ S2B_8(S2B_QMIN + 12) /* 104 */
+ S2B_8(S2B_QMIN + 13) /* 112 */
+ S2B_8(S2B_QMIN + 14) /* 120 */
+ S2B_8(S2B_QMIN + 15) /* 128 */
+# define S2B_CMIN (S2B_QMIN + 16)
+#endif
+/****************************************/
+ S2B_64(S2B_CMIN + 0) /* 192 */
+ S2B_64(S2B_CMIN + 1) /* 256 */
+ S2B_64(S2B_CMIN + 2) /* 320 */
+ S2B_64(S2B_CMIN + 3) /* 384 */
+ S2B_64(S2B_CMIN + 4) /* 448 */
+ S2B_64(S2B_CMIN + 5) /* 512 */
+# define S2B_SMIN (S2B_CMIN + 6)
+ S2B_256(S2B_SMIN + 0) /* 768 */
+ S2B_256(S2B_SMIN + 1) /* 1024 */
+ S2B_256(S2B_SMIN + 2) /* 1280 */
+ S2B_256(S2B_SMIN + 3) /* 1536 */
+ S2B_256(S2B_SMIN + 4) /* 1792 */
+ S2B_256(S2B_SMIN + 5) /* 2048 */
+ S2B_256(S2B_SMIN + 6) /* 2304 */
+ S2B_256(S2B_SMIN + 7) /* 2560 */
+ S2B_256(S2B_SMIN + 8) /* 2816 */
+ S2B_256(S2B_SMIN + 9) /* 3072 */
+ S2B_256(S2B_SMIN + 10) /* 3328 */
+ S2B_256(S2B_SMIN + 11) /* 3584 */
+ S2B_256(S2B_SMIN + 12) /* 3840 */
+#if (PAGE_SHIFT == 13)
+ S2B_256(S2B_SMIN + 13) /* 4096 */
+ S2B_256(S2B_SMIN + 14) /* 4352 */
+ S2B_256(S2B_SMIN + 15) /* 4608 */
+ S2B_256(S2B_SMIN + 16) /* 4864 */
+ S2B_256(S2B_SMIN + 17) /* 5120 */
+ S2B_256(S2B_SMIN + 18) /* 5376 */
+ S2B_256(S2B_SMIN + 19) /* 5632 */
+ S2B_256(S2B_SMIN + 20) /* 5888 */
+ S2B_256(S2B_SMIN + 21) /* 6144 */
+ S2B_256(S2B_SMIN + 22) /* 6400 */
+ S2B_256(S2B_SMIN + 23) /* 6656 */
+ S2B_256(S2B_SMIN + 24) /* 6912 */
+ S2B_256(S2B_SMIN + 25) /* 7168 */
+ S2B_256(S2B_SMIN + 26) /* 7424 */
+ S2B_256(S2B_SMIN + 27) /* 7680 */
+ S2B_256(S2B_SMIN + 28) /* 7936 */
+#endif
+};
+#undef S2B_1
+#undef S2B_2
+#undef S2B_4
+#undef S2B_8
+#undef S2B_16
+#undef S2B_32
+#undef S2B_64
+#undef S2B_128
+#undef S2B_256
+#undef S2B_QMIN
+#undef S2B_CMIN
+#undef S2B_SMIN
+
+/* Various chunk-related settings. */
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static size_t chunk_npages;
+static size_t arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls. This avoids malloc races among threads, though it
+ * does not protect against races with threads that call sbrk() directly.
+ */
+static malloc_mutex_t dss_mtx;
+/* Base address of the DSS. */
+static void *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void *dss_max;
+
+/*
+ * Trees of chunks that were previously allocated (trees differ only in node
+ * ordering). These are used when allocating chunks, in an attempt to re-use
+ * address space. Depending on function, different tree orderings are needed,
+ * which is why there are two trees with the same contents.
+ */
+static extent_tree_t dss_chunks_szad;
+static extent_tree_t dss_chunks_ad;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+#endif
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t *base_nodes;
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+#ifndef NO_TLS
+static unsigned next_arena;
+#endif
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of _pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+static __thread arena_t *arenas_map TLS_MODEL;
+#endif
+
+#ifdef MALLOC_TCACHE
+/* Map of thread-specific caches. */
+static __thread tcache_t *tcache_tls TLS_MODEL;
+
+/*
+ * Number of cache slots for each bin in the thread cache, or 0 if tcache is
+ * disabled.
+ */
+size_t tcache_nslots;
+
+/* Number of tcache allocation/deallocation events between incremental GCs. */
+unsigned tcache_gc_incr;
+#endif
+
+/*
+ * Used by chunk_alloc_mmap() to decide whether to attempt the fast path and
+ * potentially avoid some system calls. We can get away without TLS here,
+ * since the state of mmap_unaligned only affects performance, rather than
+ * correct function.
+ */
+#ifndef NO_TLS
+static __thread bool mmap_unaligned TLS_MODEL;
+#else
+static bool mmap_unaligned;
+#endif
+
+#ifdef MALLOC_STATS
+static malloc_mutex_t chunks_mtx;
+/* Chunk statistics. */
+static chunk_stats_t stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+static bool opt_junk = true;
+#else
+static bool opt_abort = false;
+static bool opt_junk = false;
+#endif
+#ifdef MALLOC_TCACHE
+static size_t opt_lg_tcache_nslots = LG_TCACHE_NSLOTS_DEFAULT;
+static ssize_t opt_lg_tcache_gc_sweep = LG_TCACHE_GC_SWEEP_DEFAULT;
+#endif
+#ifdef MALLOC_DSS
+static bool opt_dss = true;
+static bool opt_mmap = true;
+#endif
+static ssize_t opt_lg_dirty_mult = LG_DIRTY_MULT_DEFAULT;
+static bool opt_stats_print = false;
+static size_t opt_lg_qspace_max = LG_QSPACE_MAX_DEFAULT;
+static size_t opt_lg_cspace_max = LG_CSPACE_MAX_DEFAULT;
+static size_t opt_lg_medium_max = LG_MEDIUM_MAX_DEFAULT;
+static size_t opt_lg_chunk = LG_CHUNK_DEFAULT;
+static bool opt_utrace = false;
+static bool opt_sysv = false;
+static bool opt_xmalloc = false;
+static bool opt_zero = false;
+static int opt_narenas_lshift = 0;
+
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ utrace(&ut, sizeof(ut)); \
+ }
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static void malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(pthread_mutex_t *lock);
+#ifdef MALLOC_TINY
+static size_t pow2_ceil(size_t x);
+#endif
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+static void malloc_printf(const char *format, ...);
+#endif
+static char *umax2s(uintmax_t x, unsigned base, char *s);
+#ifdef MALLOC_DSS
+static bool base_pages_alloc_dss(size_t minsize);
+#endif
+static bool base_pages_alloc_mmap(size_t minsize);
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void base_node_dealloc(extent_node_t *node);
+static void *pages_map(void *addr, size_t size);
+static void pages_unmap(void *addr, size_t size);
+#ifdef MALLOC_DSS
+static void *chunk_alloc_dss(size_t size, bool *zero);
+static void *chunk_recycle_dss(size_t size, bool *zero);
+#endif
+static void *chunk_alloc_mmap_slow(size_t size, bool unaligned);
+static void *chunk_alloc_mmap(size_t size);
+static void *chunk_alloc(size_t size, bool *zero);
+#ifdef MALLOC_DSS
+static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
+static bool chunk_dealloc_dss(void *chunk, size_t size);
+#endif
+static void chunk_dealloc_mmap(void *chunk, size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool large, bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
+ bool zero);
+static void arena_purge(arena_t *arena);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize);
+static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_TCACHE
+static void tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin,
+ size_t binind);
+static void *tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin,
+ size_t binind);
+#endif
+static void *arena_malloc_medium(arena_t *arena, size_t size, bool zero);
+static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static bool arena_is_large(const void *ptr);
+static size_t arena_salloc(const void *ptr);
+static void
+arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ arena_bin_t *bin);
+#ifdef MALLOC_STATS
+static void arena_stats_print(arena_t *arena);
+#endif
+static void stats_print_atexit(void);
+#ifdef MALLOC_TCACHE
+static void tcache_bin_flush(tcache_bin_t *tbin, size_t binind,
+ unsigned rem);
+#endif
+static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr);
+#ifdef MALLOC_TCACHE
+static void arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, arena_chunk_map_t *mapelm, tcache_t *tcache);
+#endif
+static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool arena_new(arena_t *arena, unsigned ind);
+static arena_t *arenas_extend(unsigned ind);
+#ifdef MALLOC_TCACHE
+static tcache_bin_t *tcache_bin_create(arena_t *arena);
+static void tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin,
+ unsigned binind);
+# ifdef MALLOC_STATS
+static void tcache_stats_merge(tcache_t *tcache, arena_t *arena);
+# endif
+static tcache_t *tcache_create(arena_t *arena);
+static void tcache_destroy(tcache_t *tcache);
+#endif
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t alignment, size_t size);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void malloc_stats_print(void);
+#ifdef MALLOC_DEBUG
+static void small_size2bin_validate(void);
+#endif
+static bool small_size2bin_init(void);
+static bool small_size2bin_init_hard(void);
+static unsigned malloc_ncpus(void);
+static bool malloc_init_hard(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+
+ if (_write(STDERR_FILENO, p1, strlen(p1)) < 0
+ || _write(STDERR_FILENO, p2, strlen(p2)) < 0
+ || _write(STDERR_FILENO, p3, strlen(p3)) < 0
+ || _write(STDERR_FILENO, p4, strlen(p4)) < 0)
+ return;
+}
+
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries. umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited to
+ * MALLOC_STATS code.
+ */
+#define UMAX2S_BUFSIZE 65
+static char *
+umax2s(uintmax_t x, unsigned base, char *s)
+{
+ unsigned i;
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ switch (base) {
+ case 10:
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+ break;
+ case 16:
+ do {
+ i--;
+ s[i] = "0123456789abcdef"[x & 0xf];
+ x >>= 4;
+ } while (x > 0);
+ break;
+ default:
+ do {
+ i--;
+ s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
+ x /= base;
+ } while (x > 0);
+ }
+
+ return (&s[i]);
+}
+
+/*
+ * Define a custom assert() in order to reduce the chances of deadlock during
+ * assertion failure.
+ */
+#ifdef MALLOC_DEBUG
+# define assert(e) do { \
+ if (!(e)) { \
+ char line_buf[UMAX2S_BUFSIZE]; \
+ _malloc_message(_getprogname(), ": (malloc) ", \
+ __FILE__, ":"); \
+ _malloc_message(umax2s(__LINE__, 10, line_buf), \
+ ": Failed assertion: ", "\"", #e); \
+ _malloc_message("\"\n", "", "", ""); \
+ abort(); \
+ } \
+} while (0)
+#else
+#define assert(e)
+#endif
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+}
+#endif
+
+/******************************************************************************/
+/*
+ * Begin mutex. We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static void
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+ static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+ mutex->lock = lock;
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ _SPINLOCK(&mutex->lock);
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ _SPINUNLOCK(&mutex->lock);
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+ _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+
+ return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline void
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded) {
+ if (_pthread_mutex_trylock(lock) != 0) {
+ /* Exponentially back off if there are multiple CPUs. */
+ if (ncpus > 1) {
+ unsigned i;
+ volatile unsigned j;
+
+ for (i = 1; i <= LG_SPIN_LIMIT; i++) {
+ for (j = 0; j < (1U << i); j++) {
+ CPU_SPINWAIT;
+ }
+
+ if (_pthread_mutex_trylock(lock) == 0)
+ return;
+ }
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ _pthread_mutex_lock(lock);
+ }
+ }
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded)
+ _pthread_mutex_unlock(lock);
+}
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
+
+/* Return the smallest subpage multiple that is >= s. */
+#define SUBPAGE_CEILING(s) \
+ (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
+
+/* Return the smallest medium size class that is >= s. */
+#define MEDIUM_CEILING(s) \
+ (((s) + mspace_mask) & ~mspace_mask)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + PAGE_MASK) & ~PAGE_MASK)
+
+#ifdef MALLOC_TINY
+/* Compute the smallest power of 2 that is >= x. */
+static size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+#endif
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+ /*
+ * Do special DSS allocation here, since base allocations don't need to
+ * be chunk-aligned.
+ */
+ malloc_mutex_lock(&dss_mtx);
+ if (dss_prev != (void *)-1) {
+ intptr_t incr;
+ size_t csize = CHUNK_CEILING(minsize);
+
+ do {
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS. Don't worry about
+ * dss_max not being chunk-aligned though.
+ */
+ incr = (intptr_t)chunksize
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+ assert(incr >= 0);
+ if ((size_t)incr < minsize)
+ incr += csize;
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev + incr);
+ base_pages = dss_prev;
+ base_next_addr = base_pages;
+ base_past_addr = dss_max;
+#ifdef MALLOC_STATS
+ base_mapped += incr;
+#endif
+ malloc_mutex_unlock(&dss_mtx);
+ return (false);
+ }
+ } while (dss_prev != (void *)-1);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (true);
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+ size_t csize;
+
+ assert(minsize != 0);
+ csize = PAGE_CEILING(minsize);
+ base_pages = pages_map(NULL, csize);
+ if (base_pages == NULL)
+ return (true);
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+ base_mapped += csize;
+#endif
+
+ return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+ if (opt_mmap && minsize != 0)
+#endif
+ {
+ if (base_pages_alloc_mmap(minsize) == false)
+ return (false);
+ }
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (base_pages_alloc_dss(minsize) == false)
+ return (false);
+ }
+
+#endif
+
+ return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ malloc_mutex_unlock(&base_mtx);
+ return (NULL);
+ }
+ }
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+ malloc_mutex_unlock(&base_mtx);
+
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+ if (ret != NULL)
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+ extent_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_nodes != NULL) {
+ ret = base_nodes;
+ base_nodes = *(extent_node_t **)ret;
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ *(extent_node_t **)node = base_nodes;
+ base_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+#ifdef MALLOC_DSS
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+ int ret;
+ size_t a_size = a->size;
+ size_t b_size = b->size;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ ret = (a_addr > b_addr) - (a_addr < b_addr);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_gen(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
+ link_szad, extent_szad_comp)
+#endif
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_gen(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+ extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+static void *
+pages_map(void *addr, size_t size)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ -1, 0);
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else if (addr != NULL && ret != addr) {
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+
+#ifdef MALLOC_DSS
+static void *
+chunk_alloc_dss(size_t size, bool *zero)
+{
+ void *ret;
+
+ ret = chunk_recycle_dss(size, zero);
+ if (ret != NULL)
+ return (ret);
+
+ /*
+ * sbrk() uses a signed increment argument, so take care not to
+ * interpret a huge allocation request as a negative increment.
+ */
+ if ((intptr_t)size < 0)
+ return (NULL);
+
+ malloc_mutex_lock(&dss_mtx);
+ if (dss_prev != (void *)-1) {
+ intptr_t incr;
+
+ /*
+ * The loop is necessary to recover from races with other
+ * threads that are using the DSS for something other than
+ * malloc.
+ */
+ do {
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS.
+ */
+ incr = (intptr_t)size
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
+ if (incr == (intptr_t)size)
+ ret = dss_max;
+ else {
+ ret = (void *)((intptr_t)dss_max + incr);
+ incr += size;
+ }
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev + incr);
+ malloc_mutex_unlock(&dss_mtx);
+ *zero = true;
+ return (ret);
+ }
+ } while (dss_prev != (void *)-1);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (NULL);
+}
+
+static void *
+chunk_recycle_dss(size_t size, bool *zero)
+{
+ extent_node_t *node, key;
+
+ key.addr = NULL;
+ key.size = size;
+ malloc_mutex_lock(&dss_mtx);
+ node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
+ if (node != NULL) {
+ void *ret = node->addr;
+
+ /* Remove node from the tree. */
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ if (node->size == size) {
+ extent_tree_ad_remove(&dss_chunks_ad, node);
+ base_node_dealloc(node);
+ } else {
+ /*
+ * Insert the remainder of node's address range as a
+ * smaller chunk. Its position within dss_chunks_ad
+ * does not change.
+ */
+ assert(node->size > size);
+ node->addr = (void *)((uintptr_t)node->addr + size);
+ node->size -= size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ if (*zero)
+ memset(ret, 0, size);
+ return (ret);
+ }
+ malloc_mutex_unlock(&dss_mtx);
+
+ return (NULL);
+}
+#endif
+
+static void *
+chunk_alloc_mmap_slow(size_t size, bool unaligned)
+{
+ void *ret;
+ size_t offset;
+
+ /* Beware size_t wrap-around. */
+ if (size + chunksize <= size)
+ return (NULL);
+
+ ret = pages_map(NULL, size + chunksize);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Clean up unneeded leading/trailing space. */
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Note that mmap() returned an unaligned mapping. */
+ unaligned = true;
+
+ /* Leading space. */
+ pages_unmap(ret, chunksize - offset);
+
+ ret = (void *)((uintptr_t)ret +
+ (chunksize - offset));
+
+ /* Trailing space. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ offset);
+ } else {
+ /* Trailing space only. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ chunksize);
+ }
+
+ /*
+ * If mmap() returned an aligned mapping, reset mmap_unaligned so that
+ * the next chunk_alloc_mmap() execution tries the fast allocation
+ * method.
+ */
+ if (unaligned == false)
+ mmap_unaligned = false;
+
+ return (ret);
+}
+
+static void *
+chunk_alloc_mmap(size_t size)
+{
+ void *ret;
+
+ /*
+ * Ideally, there would be a way to specify alignment to mmap() (like
+ * NetBSD has), but in the absence of such a feature, we have to work
+ * hard to efficiently create aligned mappings. The reliable, but
+ * slow method is to create a mapping that is over-sized, then trim the
+ * excess. However, that always results in at least one call to
+ * pages_unmap().
+ *
+ * A more optimistic approach is to try mapping precisely the right
+ * amount, then try to append another mapping if alignment is off. In
+ * practice, this works out well as long as the application is not
+ * interleaving mappings via direct mmap() calls. If we do run into a
+ * situation where there is an interleaved mapping and we are unable to
+ * extend an unaligned mapping, our best option is to switch to the
+ * slow method until mmap() returns another aligned mapping. This will
+ * tend to leave a gap in the memory map that is too small to cause
+ * later problems for the optimistic method.
+ *
+ * Another possible confounding factor is address space layout
+ * randomization (ASLR), which causes mmap(2) to disregard the
+ * requested address. mmap_unaligned tracks whether the previous
+ * chunk_alloc_mmap() execution received any unaligned or relocated
+ * mappings, and if so, the current execution will immediately fall
+ * back to the slow method. However, we keep track of whether the fast
+ * method would have succeeded, and if so, we make a note to try the
+ * fast method next time.
+ */
+
+ if (mmap_unaligned == false) {
+ size_t offset;
+
+ ret = pages_map(NULL, size);
+ if (ret == NULL)
+ return (NULL);
+
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ mmap_unaligned = true;
+ /* Try to extend chunk boundary. */
+ if (pages_map((void *)((uintptr_t)ret + size),
+ chunksize - offset) == NULL) {
+ /*
+ * Extension failed. Clean up, then revert to
+ * the reliable-but-expensive method.
+ */
+ pages_unmap(ret, size);
+ ret = chunk_alloc_mmap_slow(size, true);
+ } else {
+ /* Clean up unneeded leading space. */
+ pages_unmap(ret, chunksize - offset);
+ ret = (void *)((uintptr_t)ret + (chunksize -
+ offset));
+ }
+ }
+ } else
+ ret = chunk_alloc_mmap_slow(size, false);
+
+ return (ret);
+}
+
+/*
+ * If the caller specifies (*zero == false), it is still possible to receive
+ * zeroed memory, in which case *zero is toggled to true. arena_chunk_alloc()
+ * takes advantage of this to avoid demanding zeroed chunks, but taking
+ * advantage of them if they are returned.
+ */
+static void *
+chunk_alloc(size_t size, bool *zero)
+{
+ void *ret;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_DSS
+ if (opt_mmap)
+#endif
+ {
+ ret = chunk_alloc_mmap(size);
+ if (ret != NULL) {
+ *zero = true;
+ goto RETURN;
+ }
+ }
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ ret = chunk_alloc_dss(size, zero);
+ if (ret != NULL)
+ goto RETURN;
+ }
+#endif
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+ if (ret != NULL) {
+ malloc_mutex_lock(&chunks_mtx);
+ stats_chunks.nchunks += (size / chunksize);
+ stats_chunks.curchunks += (size / chunksize);
+ if (stats_chunks.curchunks > stats_chunks.highchunks)
+ stats_chunks.highchunks = stats_chunks.curchunks;
+ malloc_mutex_unlock(&chunks_mtx);
+ }
+#endif
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+#ifdef MALLOC_DSS
+static extent_node_t *
+chunk_dealloc_dss_record(void *chunk, size_t size)
+{
+ extent_node_t *node, *prev, key;
+
+ key.addr = (void *)((uintptr_t)chunk + size);
+ node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
+ /* Try to coalesce forward. */
+ if (node != NULL && node->addr == key.addr) {
+ /*
+ * Coalesce chunk with the following address range. This does
+ * not change the position within dss_chunks_ad, so only
+ * remove/insert from/into dss_chunks_szad.
+ */
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ node->addr = chunk;
+ node->size += size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ } else {
+ /*
+ * Coalescing forward failed, so insert a new node. Drop
+ * dss_mtx during node allocation, since it is possible that a
+ * new base chunk will be allocated.
+ */
+ malloc_mutex_unlock(&dss_mtx);
+ node = base_node_alloc();
+ malloc_mutex_lock(&dss_mtx);
+ if (node == NULL)
+ return (NULL);
+ node->addr = chunk;
+ node->size = size;
+ extent_tree_ad_insert(&dss_chunks_ad, node);
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+ }
+
+ /* Try to coalesce backward. */
+ prev = extent_tree_ad_prev(&dss_chunks_ad, node);
+ if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+ chunk) {
+ /*
+ * Coalesce chunk with the previous address range. This does
+ * not change the position within dss_chunks_ad, so only
+ * remove/insert node from/into dss_chunks_szad.
+ */
+ extent_tree_szad_remove(&dss_chunks_szad, prev);
+ extent_tree_ad_remove(&dss_chunks_ad, prev);
+
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ node->addr = prev->addr;
+ node->size += prev->size;
+ extent_tree_szad_insert(&dss_chunks_szad, node);
+
+ base_node_dealloc(prev);
+ }
+
+ return (node);
+}
+
+static bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+ bool ret;
+
+ malloc_mutex_lock(&dss_mtx);
+ if ((uintptr_t)chunk >= (uintptr_t)dss_base
+ && (uintptr_t)chunk < (uintptr_t)dss_max) {
+ extent_node_t *node;
+
+ /* Try to coalesce with other unused chunks. */
+ node = chunk_dealloc_dss_record(chunk, size);
+ if (node != NULL) {
+ chunk = node->addr;
+ size = node->size;
+ }
+
+ /* Get the current end of the DSS. */
+ dss_max = sbrk(0);
+
+ /*
+ * Try to shrink the DSS if this chunk is at the end of the
+ * DSS. The sbrk() call here is subject to a race condition
+ * with threads that use brk(2) or sbrk(2) directly, but the
+ * alternative would be to leak memory for the sake of poorly
+ * designed multi-threaded programs.
+ */
+ if ((void *)((uintptr_t)chunk + size) == dss_max
+ && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
+ /* Success. */
+ dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
+
+ if (node != NULL) {
+ extent_tree_szad_remove(&dss_chunks_szad, node);
+ extent_tree_ad_remove(&dss_chunks_ad, node);
+ base_node_dealloc(node);
+ }
+ } else
+ madvise(chunk, size, MADV_FREE);
+
+ ret = false;
+ goto RETURN;
+ }
+
+ ret = true;
+RETURN:
+ malloc_mutex_unlock(&dss_mtx);
+ return (ret);
+}
+#endif
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+ pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+ malloc_mutex_lock(&chunks_mtx);
+ stats_chunks.curchunks -= (size / chunksize);
+ malloc_mutex_unlock(&chunks_mtx);
+#endif
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (chunk_dealloc_dss(chunk, size) == false)
+ return;
+ }
+
+ if (opt_mmap)
+#endif
+ chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (__isthreaded == false) {
+ /* Avoid the overhead of TLS for single-threaded operation. */
+ return (arenas[0]);
+ }
+
+ ret = arenas_map;
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ assert(ret != NULL);
+ }
+#else
+ if (__isthreaded && narenas > 1) {
+ unsigned long ind;
+
+ /*
+ * Hash _pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient _pthread_self() values. Without specific
+ * knowledge of how _pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) _pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(__isthreaded);
+
+ if (narenas > 1) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+ } else
+ ret = arenas[0];
+
+ arenas_map = ret;
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+ uintptr_t a_chunk = (uintptr_t)a;
+ uintptr_t b_chunk = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_gen(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+ arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ uintptr_t a_mapelm = (uintptr_t)a;
+ uintptr_t b_mapelm = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_gen(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
+ link, arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ int ret;
+ size_t a_size = a->bits & ~PAGE_MASK;
+ size_t b_size = b->bits & ~PAGE_MASK;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_mapelm, b_mapelm;
+
+ if ((a->bits & CHUNK_MAP_KEY) != CHUNK_MAP_KEY)
+ a_mapelm = (uintptr_t)a;
+ else {
+ /*
+ * Treat keys as though they are lower than anything
+ * else.
+ */
+ a_mapelm = 0;
+ }
+ b_mapelm = (uintptr_t)b;
+
+ ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_gen(__unused static, arena_avail_tree_, arena_avail_tree_t,
+ arena_chunk_map_t, link, arena_avail_comp)
+
+static inline void
+arena_run_rc_incr(arena_run_t *run, arena_bin_t *bin, const void *ptr)
+{
+ arena_chunk_t *chunk;
+ arena_t *arena;
+ size_t pagebeg, pageend, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
+ pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) -
+ (uintptr_t)chunk) >> PAGE_SHIFT;
+
+ for (i = pagebeg; i <= pageend; i++) {
+ size_t mapbits = chunk->map[i].bits;
+
+ if (mapbits & CHUNK_MAP_DIRTY) {
+ assert((mapbits & CHUNK_MAP_RC_MASK) == 0);
+ chunk->ndirty--;
+ arena->ndirty--;
+ mapbits ^= CHUNK_MAP_DIRTY;
+ }
+ assert((mapbits & CHUNK_MAP_RC_MASK) != CHUNK_MAP_RC_MASK);
+ mapbits += CHUNK_MAP_RC_ONE;
+ chunk->map[i].bits = mapbits;
+ }
+}
+
+static inline void
+arena_run_rc_decr(arena_run_t *run, arena_bin_t *bin, const void *ptr)
+{
+ arena_chunk_t *chunk;
+ arena_t *arena;
+ size_t pagebeg, pageend, mapbits, i;
+ bool dirtier = false;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
+ pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) -
+ (uintptr_t)chunk) >> PAGE_SHIFT;
+
+ /* First page. */
+ mapbits = chunk->map[pagebeg].bits;
+ mapbits -= CHUNK_MAP_RC_ONE;
+ if ((mapbits & CHUNK_MAP_RC_MASK) == 0) {
+ dirtier = true;
+ assert((mapbits & CHUNK_MAP_DIRTY) == 0);
+ mapbits |= CHUNK_MAP_DIRTY;
+ chunk->ndirty++;
+ arena->ndirty++;
+ }
+ chunk->map[pagebeg].bits = mapbits;
+
+ if (pageend - pagebeg >= 1) {
+ /*
+ * Interior pages are completely consumed by the object being
+ * deallocated, which means that the pages can be
+ * unconditionally marked dirty.
+ */
+ for (i = pagebeg + 1; i < pageend; i++) {
+ mapbits = chunk->map[i].bits;
+ mapbits -= CHUNK_MAP_RC_ONE;
+ assert((mapbits & CHUNK_MAP_RC_MASK) == 0);
+ dirtier = true;
+ assert((mapbits & CHUNK_MAP_DIRTY) == 0);
+ mapbits |= CHUNK_MAP_DIRTY;
+ chunk->ndirty++;
+ arena->ndirty++;
+ chunk->map[i].bits = mapbits;
+ }
+
+ /* Last page. */
+ mapbits = chunk->map[pageend].bits;
+ mapbits -= CHUNK_MAP_RC_ONE;
+ if ((mapbits & CHUNK_MAP_RC_MASK) == 0) {
+ dirtier = true;
+ assert((mapbits & CHUNK_MAP_DIRTY) == 0);
+ mapbits |= CHUNK_MAP_DIRTY;
+ chunk->ndirty++;
+ arena->ndirty++;
+ }
+ chunk->map[pageend].bits = mapbits;
+ }
+
+ if (dirtier) {
+ if (chunk->dirtied == false) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ chunk->dirtied = true;
+ }
+
+ /* Enforce opt_lg_dirty_mult. */
+ if (opt_lg_dirty_mult >= 0 && (arena->nactive >>
+ opt_lg_dirty_mult) < arena->ndirty)
+ arena_purge(arena);
+ }
+}
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (LG_SIZEOF_INT + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ arena_run_rc_incr(run, bin, ret);
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (LG_SIZEOF_INT + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ arena_run_rc_incr(run, bin, ret);
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ assert(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ unsigned shift, diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+
+ /* Rescale (factor powers of 2 out of the numerator and denominator). */
+ shift = ffs(size) - 1;
+ diff >>= shift;
+ size >>= shift;
+
+ if (size == 1) {
+ /* The divisor was a power of 2. */
+ regind = diff;
+ } else {
+ /*
+ * To divide by a number D that is not a power of two we
+ * multiply by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * size_invs[D - 3]) >> SIZE_INV_SHIFT
+ *
+ * We can omit the first three elements, because we never
+ * divide by 0, and 1 and 2 are both powers of two, which are
+ * handled above.
+ */
+#define SIZE_INV_SHIFT 21
+#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
+ static const unsigned size_invs[] = {
+ SIZE_INV(3),
+ SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
+ SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
+ SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
+ SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
+ SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
+ SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
+ SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
+ };
+
+ if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2))
+ regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT;
+ else
+ regind = diff / size;
+#undef SIZE_INV
+#undef SIZE_INV_SHIFT
+ }
+ assert(diff == regind * size);
+ assert(regind < bin->nregs);
+
+ elm = regind >> (LG_SIZEOF_INT + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (LG_SIZEOF_INT + 3));
+ assert((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+
+ arena_run_rc_decr(run, bin, ptr);
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ old_ndirty = chunk->ndirty;
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> PAGE_SHIFT);
+ total_pages = (chunk->map[run_ind].bits & ~PAGE_MASK) >>
+ PAGE_SHIFT;
+ need_pages = (size >> PAGE_SHIFT);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+ arena->nactive += need_pages;
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ chunk->map[run_ind+need_pages].bits = (rem_pages <<
+ PAGE_SHIFT) | (chunk->map[run_ind+need_pages].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+ PAGE_SHIFT) | (chunk->map[run_ind+total_pages-1].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[run_ind+need_pages]);
+ }
+
+ for (i = 0; i < need_pages; i++) {
+ /* Zero if necessary. */
+ if (zero) {
+ if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+ == 0) {
+ memset((void *)((uintptr_t)chunk + ((run_ind
+ + i) << PAGE_SHIFT)), 0, PAGE_SIZE);
+ /* CHUNK_MAP_ZEROED is cleared below. */
+ }
+ }
+
+ /* Update dirty page accounting. */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+ chunk->ndirty--;
+ arena->ndirty--;
+ /* CHUNK_MAP_DIRTY is cleared below. */
+ }
+
+ /* Initialize the chunk map. */
+ if (large) {
+ chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+ } else {
+ chunk->map[run_ind + i].bits = (i << CHUNK_MAP_PG_SHIFT)
+ | CHUNK_MAP_ALLOCATED;
+ }
+ }
+
+ if (large) {
+ /*
+ * Set the run size only in the first element for large runs.
+ * This is primarily a debugging aid, since the lack of size
+ * info for trailing pages only matters if the application
+ * tries to operate on an interior pointer.
+ */
+ chunk->map[run_ind].bits |= size;
+ } else {
+ /*
+ * Initialize the first page's refcount to 1, so that the run
+ * header is protected from dirty page purging.
+ */
+ chunk->map[run_ind].bits += CHUNK_MAP_RC_ONE;
+ }
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i;
+
+ if (arena->spare != NULL) {
+ chunk = arena->spare;
+ arena->spare = NULL;
+ } else {
+ bool zero;
+ size_t zeroed;
+
+ zero = false;
+ chunk = (arena_chunk_t *)chunk_alloc(chunksize, &zero);
+ if (chunk == NULL)
+ return (NULL);
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+ chunk->dirtied = false;
+
+ /*
+ * Claim that no pages are in use, since the header is merely
+ * overhead.
+ */
+ chunk->ndirty = 0;
+
+ /*
+ * Initialize the map to contain one maximal free untouched run.
+ * Mark the pages as zeroed iff chunk_alloc() returned a zeroed
+ * chunk.
+ */
+ zeroed = zero ? CHUNK_MAP_ZEROED : 0;
+ for (i = 0; i < arena_chunk_header_npages; i++)
+ chunk->map[i].bits = 0;
+ chunk->map[i].bits = arena_maxclass | zeroed;
+ for (i++; i < chunk_npages-1; i++)
+ chunk->map[i].bits = zeroed;
+ chunk->map[chunk_npages-1].bits = arena_maxclass | zeroed;
+ }
+
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ if (arena->spare != NULL) {
+ if (arena->spare->dirtied) {
+ arena_chunk_tree_dirty_remove(
+ &chunk->arena->chunks_dirty, arena->spare);
+ arena->ndirty -= arena->spare->ndirty;
+ }
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+
+ /*
+ * Remove run from runs_avail, regardless of whether this chunk
+ * will be cached, so that the arena does not use it. Dirty page
+ * flushing only uses the chunks_dirty tree, so leaving this chunk in
+ * the chunks_* trees is sufficient for that purpose.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
+{
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_chunk_map_t *mapelm, key;
+
+ assert(size <= arena_maxclass);
+ assert((size & PAGE_MASK) == 0);
+
+ /* Search the arena's chunks for the lowest best fit. */
+ key.bits = size | CHUNK_MAP_KEY;
+ mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+ if (mapelm != NULL) {
+ arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
+ size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
+ / sizeof(arena_chunk_map_t);
+
+ run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+ << PAGE_SHIFT));
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate the run.
+ */
+ chunk = arena_chunk_alloc(arena);
+ if (chunk == NULL)
+ return (NULL);
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ PAGE_SHIFT));
+ /* Update page map. */
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+}
+
+#ifdef MALLOC_DEBUG
+static arena_chunk_t *
+chunks_dirty_iter_cb(arena_chunk_tree_t *tree, arena_chunk_t *chunk, void *arg)
+{
+ size_t *ndirty = (size_t *)arg;
+
+ assert(chunk->dirtied);
+ *ndirty += chunk->ndirty;
+ return (NULL);
+}
+#endif
+
+static void
+arena_purge(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i, npages;
+#ifdef MALLOC_DEBUG
+ size_t ndirty = 0;
+
+ arena_chunk_tree_dirty_iter(&arena->chunks_dirty, NULL,
+ chunks_dirty_iter_cb, (void *)&ndirty);
+ assert(ndirty == arena->ndirty);
+#endif
+ assert((arena->nactive >> opt_lg_dirty_mult) < arena->ndirty);
+
+#ifdef MALLOC_STATS
+ arena->stats.npurge++;
+#endif
+
+ /*
+ * Iterate downward through chunks until enough dirty memory has been
+ * purged. Terminate as soon as possible in order to minimize the
+ * number of system calls, even if a chunk has only been partially
+ * purged.
+ */
+
+ while ((arena->nactive >> (opt_lg_dirty_mult + 1)) < arena->ndirty) {
+ chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+ assert(chunk != NULL);
+
+ for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+ assert(i >= arena_chunk_header_npages);
+ if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+ chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+ /* Find adjacent dirty run(s). */
+ for (npages = 1; i > arena_chunk_header_npages
+ && (chunk->map[i - 1].bits &
+ CHUNK_MAP_DIRTY); npages++) {
+ i--;
+ chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
+ }
+ chunk->ndirty -= npages;
+ arena->ndirty -= npages;
+
+ madvise((void *)((uintptr_t)chunk + (i <<
+ PAGE_SHIFT)), (npages << PAGE_SHIFT),
+ MADV_FREE);
+#ifdef MALLOC_STATS
+ arena->stats.nmadvise++;
+ arena->stats.purged += npages;
+#endif
+ if ((arena->nactive >> (opt_lg_dirty_mult + 1))
+ >= arena->ndirty)
+ break;
+ }
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+ chunk);
+ chunk->dirtied = false;
+ }
+ }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+ arena_chunk_t *chunk;
+ size_t size, run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+ >> PAGE_SHIFT);
+ assert(run_ind >= arena_chunk_header_npages);
+ assert(run_ind < chunk_npages);
+ if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+ size = chunk->map[run_ind].bits & ~PAGE_MASK;
+ else
+ size = run->bin->run_size;
+ run_pages = (size >> PAGE_SHIFT);
+ arena->nactive -= run_pages;
+
+ /* Mark pages as unallocated in the chunk map. */
+ if (dirty) {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ /*
+ * When (dirty == true), *all* pages within the run
+ * need to have their dirty bits set, because only
+ * small runs can create a mixture of clean/dirty
+ * pages, but such runs are passed to this function
+ * with (dirty == false).
+ */
+ assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+ == 0);
+ chunk->ndirty++;
+ arena->ndirty++;
+ chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+ }
+ } else {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED);
+ }
+ }
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & CHUNK_MAP_FLAGS_MASK);
+
+ /* Try to coalesce forward. */
+ if (run_ind + run_pages < chunk_npages &&
+ (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+ size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+ ~PAGE_MASK;
+
+ /*
+ * Remove successor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind+run_pages]);
+
+ size += nrun_size;
+ run_pages = size >> PAGE_SHIFT;
+
+ assert((chunk->map[run_ind+run_pages-1].bits & ~PAGE_MASK)
+ == nrun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ }
+
+ /* Try to coalesce backward. */
+ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+ CHUNK_MAP_ALLOCATED) == 0) {
+ size_t prun_size = chunk->map[run_ind-1].bits & ~PAGE_MASK;
+
+ run_ind -= prun_size >> PAGE_SHIFT;
+
+ /*
+ * Remove predecessor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind]);
+
+ size += prun_size;
+ run_pages = size >> PAGE_SHIFT;
+
+ assert((chunk->map[run_ind].bits & ~PAGE_MASK) == prun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits &
+ CHUNK_MAP_FLAGS_MASK);
+ }
+
+ /* Insert into runs_avail, now that coalescing is complete. */
+ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /*
+ * Deallocate chunk if it is now completely unused. The bit
+ * manipulation checks whether the first run is unallocated and extends
+ * to the end of the chunk.
+ */
+ if ((chunk->map[arena_chunk_header_npages].bits & (~PAGE_MASK |
+ CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+ arena_chunk_dealloc(arena, chunk);
+
+ /*
+ * It is okay to do dirty page processing even if the chunk was
+ * deallocated above, since in that case it is the spare. Waiting
+ * until after possible chunk deallocation to do dirty processing
+ * allows for an old spare to be fully deallocated, thus decreasing the
+ * chances of spuriously crossing the dirty page purging threshold.
+ */
+ if (dirty) {
+ if (chunk->dirtied == false) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ chunk->dirtied = true;
+ }
+
+ /* Enforce opt_lg_dirty_mult. */
+ if (opt_lg_dirty_mult >= 0 && (arena->nactive >>
+ opt_lg_dirty_mult) < arena->ndirty)
+ arena_purge(arena);
+ }
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
+ size_t head_npages = (oldsize - newsize) >> PAGE_SHIFT;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * leading run as separately allocated.
+ */
+ assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0);
+ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ assert((chunk->map[pageind+head_npages].bits & CHUNK_MAP_DIRTY) == 0);
+ chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize, bool dirty)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
+ size_t npages = newsize >> PAGE_SHIFT;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * trailing run as separately allocated.
+ */
+ assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0);
+ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ assert((chunk->map[pageind+npages].bits & CHUNK_MAP_DIRTY) == 0);
+ chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+ dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_chunk_map_t *mapelm;
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ mapelm = arena_run_tree_first(&bin->runs);
+ if (mapelm != NULL) {
+ arena_chunk_t *chunk;
+ size_t pageind;
+
+ /* run is guaranteed to have available space. */
+ arena_run_tree_remove(&bin->runs, mapelm);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mapelm);
+ pageind = (((uintptr_t)mapelm - (uintptr_t)chunk->map) /
+ sizeof(arena_chunk_map_t));
+ run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
+ ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT))
+ << PAGE_SHIFT));
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin->run_size, false, false);
+ if (run == NULL)
+ return (NULL);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1);
+ if (remainder == 0)
+ run->regs_mask[i] = UINT_MAX;
+ else {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (LG_SIZEOF_INT + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ assert(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+ assert(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ * *) run header size < PAGE_SIZE
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= PAGE_SIZE);
+ assert(min_run_size <= arena_maxclass);
+ assert(min_run_size <= RUN_MAX_SMALL);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) +
+ ((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += PAGE_SIZE;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) +
+ ((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size
+ && (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)))
+ < PAGE_SIZE);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (LG_SIZEOF_INT + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_TCACHE
+static inline void
+tcache_event(tcache_t *tcache)
+{
+
+ if (tcache_gc_incr == 0)
+ return;
+
+ tcache->ev_cnt++;
+ assert(tcache->ev_cnt <= tcache_gc_incr);
+ if (tcache->ev_cnt >= tcache_gc_incr) {
+ size_t binind = tcache->next_gc_bin;
+ tcache_bin_t *tbin = tcache->tbins[binind];
+
+ if (tbin != NULL) {
+ if (tbin->high_water == 0) {
+ /*
+ * This bin went completely unused for an
+ * entire GC cycle, so throw away the tbin.
+ */
+ assert(tbin->ncached == 0);
+ tcache_bin_destroy(tcache, tbin, binind);
+ tcache->tbins[binind] = NULL;
+ } else {
+ if (tbin->low_water > 0) {
+ /*
+ * Flush (ceiling) half of the objects
+ * below the low water mark.
+ */
+ tcache_bin_flush(tbin, binind,
+ tbin->ncached - (tbin->low_water >>
+ 1) - (tbin->low_water & 1));
+ }
+ tbin->low_water = tbin->ncached;
+ tbin->high_water = tbin->ncached;
+ }
+ }
+
+ tcache->next_gc_bin++;
+ if (tcache->next_gc_bin == nbins)
+ tcache->next_gc_bin = 0;
+ tcache->ev_cnt = 0;
+ }
+}
+
+static inline void *
+tcache_bin_alloc(tcache_bin_t *tbin)
+{
+
+ if (tbin->ncached == 0)
+ return (NULL);
+ tbin->ncached--;
+ if (tbin->ncached < tbin->low_water)
+ tbin->low_water = tbin->ncached;
+ return (tbin->slots[tbin->ncached]);
+}
+
+static void
+tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
+{
+ arena_t *arena;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ void *ptr;
+ unsigned i;
+
+ assert(tbin->ncached == 0);
+
+ arena = tcache->arena;
+ bin = &arena->bins[binind];
+ malloc_spin_lock(&arena->lock);
+ for (i = 0; i < (tcache_nslots >> 1); i++) {
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ptr = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ptr = arena_bin_malloc_hard(arena, bin);
+ if (ptr == NULL)
+ break;
+ /*
+ * Fill tbin such that the objects lowest in memory are used
+ * first.
+ */
+ tbin->slots[(tcache_nslots >> 1) - 1 - i] = ptr;
+ }
+#ifdef MALLOC_STATS
+ bin->stats.nfills++;
+ bin->stats.nrequests += tbin->tstats.nrequests;
+ if (bin->reg_size <= small_maxclass) {
+ arena->stats.nmalloc_small += (i - tbin->ncached);
+ arena->stats.allocated_small += (i - tbin->ncached) *
+ bin->reg_size;
+ arena->stats.nmalloc_small += tbin->tstats.nrequests;
+ } else {
+ arena->stats.nmalloc_medium += (i - tbin->ncached);
+ arena->stats.allocated_medium += (i - tbin->ncached) *
+ bin->reg_size;
+ arena->stats.nmalloc_medium += tbin->tstats.nrequests;
+ }
+ tbin->tstats.nrequests = 0;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ tbin->ncached = i;
+ if (tbin->ncached > tbin->high_water)
+ tbin->high_water = tbin->ncached;
+}
+
+static inline void *
+tcache_alloc(tcache_t *tcache, size_t size, bool zero)
+{
+ void *ret;
+ tcache_bin_t *tbin;
+ size_t binind;
+
+ if (size <= small_maxclass)
+ binind = small_size2bin[size];
+ else {
+ binind = mbin0 + ((MEDIUM_CEILING(size) - medium_min) >>
+ lg_mspace);
+ }
+ assert(binind < nbins);
+ tbin = tcache->tbins[binind];
+ if (tbin == NULL) {
+ tbin = tcache_bin_create(tcache->arena);
+ if (tbin == NULL)
+ return (NULL);
+ tcache->tbins[binind] = tbin;
+ }
+
+ ret = tcache_bin_alloc(tbin);
+ if (ret == NULL) {
+ ret = tcache_alloc_hard(tcache, tbin, binind);
+ if (ret == NULL)
+ return (NULL);
+ }
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+#ifdef MALLOC_STATS
+ tbin->tstats.nrequests++;
+#endif
+ tcache_event(tcache);
+ return (ret);
+}
+
+static void *
+tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
+{
+ void *ret;
+
+ tcache_bin_fill(tcache, tbin, binind);
+ ret = tcache_bin_alloc(tbin);
+
+ return (ret);
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ size_t binind;
+
+ binind = small_size2bin[size];
+ assert(binind < mbin0);
+ bin = &arena->bins[binind];
+ size = bin->reg_size;
+
+ malloc_spin_lock(&arena->lock);
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+# ifdef MALLOC_TCACHE
+ if (__isthreaded == false) {
+# endif
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+# ifdef MALLOC_TCACHE
+ }
+# endif
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_medium(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+ size_t binind;
+
+ size = MEDIUM_CEILING(size);
+ binind = mbin0 + ((size - medium_min) >> lg_mspace);
+ assert(binind < nbins);
+ bin = &arena->bins[binind];
+ assert(bin->reg_size == size);
+
+ malloc_spin_lock(&arena->lock);
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+# ifdef MALLOC_TCACHE
+ if (__isthreaded == false) {
+# endif
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_medium++;
+# ifdef MALLOC_TCACHE
+ }
+# endif
+ arena->stats.allocated_medium += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+ malloc_spin_lock(&arena->lock);
+ ret = (void *)arena_run_alloc(arena, size, true, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
+ if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
+ }
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ }
+
+ return (ret);
+}
+
+static inline void *
+arena_malloc(size_t size, bool zero)
+{
+
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+#ifdef MALLOC_TCACHE
+ if (__isthreaded && tcache_nslots) {
+ tcache_t *tcache = tcache_tls;
+ if ((uintptr_t)tcache > (uintptr_t)1)
+ return (tcache_alloc(tcache, size, zero));
+ else if (tcache == NULL) {
+ tcache = tcache_create(choose_arena());
+ if (tcache == NULL)
+ return (NULL);
+ return (tcache_alloc(tcache, size, zero));
+ }
+ }
+#endif
+ if (size <= small_maxclass) {
+ return (arena_malloc_small(choose_arena(), size,
+ zero));
+ } else {
+ return (arena_malloc_medium(choose_arena(),
+ size, zero));
+ }
+ } else
+ return (arena_malloc_large(choose_arena(), size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(size, false));
+ else
+ return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(size, true));
+ else
+ return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+
+ assert((size & PAGE_MASK) == 0);
+ assert((alignment & PAGE_MASK) == 0);
+
+ malloc_spin_lock(&arena->lock);
+ ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & PAGE_MASK) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0)
+ arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
+ else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ if (leadsize > 0) {
+ arena_run_trim_head(arena, chunk, ret, alloc_size,
+ alloc_size - leadsize);
+ ret = (void *)((uintptr_t)ret + leadsize);
+ }
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_run_trim_tail(arena, chunk, ret, size + trailsize,
+ size, false);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
+ if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
+ }
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve subpage alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * PAGE_SIZE of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - PAGE_SIZE;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract PAGE_SIZE, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - PAGE_SIZE;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(alignment, ceil_size);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+static bool
+arena_is_large(const void *ptr)
+{
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
+ mapbits = chunk->map[pageind].bits;
+ assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ return ((mapbits & CHUNK_MAP_LARGE) != 0);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
+ mapbits = chunk->map[pageind].bits;
+ assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+ arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
+ (uintptr_t)((pageind - ((mapbits & CHUNK_MAP_PG_MASK) >>
+ CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT));
+ assert(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else {
+ ret = mapbits & ~PAGE_MASK;
+ assert(ret != 0);
+ }
+
+ return (ret);
+}
+
+static inline size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ extent_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm)
+{
+ size_t pageind;
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
+ run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
+ ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
+ PAGE_SHIFT));
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs)
+ arena_dalloc_bin_run(arena, chunk, run, bin);
+ else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ arena_chunk_t *runcur_chunk =
+ CHUNK_ADDR2BASE(bin->runcur);
+ size_t runcur_pageind =
+ (((uintptr_t)bin->runcur -
+ (uintptr_t)runcur_chunk)) >> PAGE_SHIFT;
+ arena_chunk_map_t *runcur_mapelm =
+ &runcur_chunk->map[runcur_pageind];
+
+ /* Insert runcur. */
+ arena_run_tree_insert(&bin->runs,
+ runcur_mapelm);
+ }
+ bin->runcur = run;
+ } else {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> PAGE_SHIFT;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ NULL);
+ arena_run_tree_insert(&bin->runs, run_mapelm);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ if (size <= small_maxclass) {
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+ } else {
+ arena->stats.allocated_medium -= size;
+ arena->stats.ndalloc_medium++;
+ }
+#endif
+}
+
+static void
+arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ arena_bin_t *bin)
+{
+ size_t run_ind;
+
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> PAGE_SHIFT;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ arena_run_tree_remove(&bin->runs, run_mapelm);
+ }
+ /*
+ * Mark the first page as dirty. The dirty bit for every other page in
+ * the run is already properly set, which means we can call
+ * arena_run_dalloc(..., false), thus potentially avoiding the needless
+ * creation of many dirty pages.
+ */
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT);
+ assert((chunk->map[run_ind].bits & CHUNK_MAP_DIRTY) == 0);
+ chunk->map[run_ind].bits |= CHUNK_MAP_DIRTY;
+ chunk->ndirty++;
+ arena->ndirty++;
+
+#ifdef MALLOC_DEBUG
+ run->magic = 0;
+#endif
+ arena_run_dalloc(arena, run, false);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+
+ if (chunk->dirtied == false) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk);
+ chunk->dirtied = true;
+ }
+ /* Enforce opt_lg_dirty_mult. */
+ if (opt_lg_dirty_mult >= 0 && (arena->nactive >> opt_lg_dirty_mult) <
+ arena->ndirty)
+ arena_purge(arena);
+}
+
+#ifdef MALLOC_STATS
+static void
+arena_stats_print(arena_t *arena)
+{
+
+ malloc_printf("dirty pages: %zu:%zu active:dirty, %"PRIu64" sweep%s,"
+ " %"PRIu64" madvise%s, %"PRIu64" purged\n",
+ arena->nactive, arena->ndirty,
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged);
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12zu %12"PRIu64" %12"PRIu64"\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("medium: %12zu %12"PRIu64" %12"PRIu64"\n",
+ arena->stats.allocated_medium, arena->stats.nmalloc_medium,
+ arena->stats.ndalloc_medium);
+ malloc_printf("large: %12zu %12"PRIu64" %12"PRIu64"\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12zu %12"PRIu64" %12"PRIu64"\n",
+ arena->stats.allocated_small + arena->stats.allocated_medium +
+ arena->stats.allocated_large, arena->stats.nmalloc_small +
+ arena->stats.nmalloc_medium + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_medium +
+ arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12zu\n", arena->stats.mapped);
+
+ if (arena->stats.nmalloc_small + arena->stats.nmalloc_medium > 0) {
+ unsigned i, gap_start;
+#ifdef MALLOC_TCACHE
+ malloc_printf("bins: bin size regs pgs requests "
+ "nfills nflushes newruns reruns maxruns curruns\n");
+#else
+ malloc_printf("bins: bin size regs pgs requests "
+ "newruns reruns maxruns curruns\n");
+#endif
+ for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
+ if (arena->bins[i].stats.nruns == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /*
+ * Gap of more than one size
+ * class.
+ */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n",
+ gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+ "%13u %1s %5u %4u %3u %9"PRIu64" %9"PRIu64
+#ifdef MALLOC_TCACHE
+ " %9"PRIu64" %9"PRIu64
+#endif
+ " %9"PRIu64" %7zu %7zu\n",
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ?
+ "Q" : i < ntbins + nqbins + ncbins ? "C" :
+ i < ntbins + nqbins + ncbins + nsbins ? "S"
+ : "M",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> PAGE_SHIFT,
+ arena->bins[i].stats.nrequests,
+#ifdef MALLOC_TCACHE
+ arena->bins[i].stats.nfills,
+ arena->bins[i].stats.nflushes,
+#endif
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+ }
+
+ if (arena->stats.nmalloc_large > 0) {
+ size_t i;
+ ssize_t gap_start;
+ size_t nlclasses = (chunksize - PAGE_SIZE) >> PAGE_SHIFT;
+
+ malloc_printf(
+ "large: size pages nrequests maxruns curruns\n");
+
+ for (i = 0, gap_start = -1; i < nlclasses; i++) {
+ if (arena->stats.lstats[i].nrequests == 0) {
+ if (gap_start == -1)
+ gap_start = i;
+ } else {
+ if (gap_start != -1) {
+ malloc_printf("[%zu]\n", i - gap_start);
+ gap_start = -1;
+ }
+ malloc_printf(
+ "%13zu %5zu %9"PRIu64" %9zu %9zu\n",
+ (i+1) << PAGE_SHIFT, i+1,
+ arena->stats.lstats[i].nrequests,
+ arena->stats.lstats[i].highruns,
+ arena->stats.lstats[i].curruns);
+ }
+ }
+ if (gap_start != -1)
+ malloc_printf("[%zu]\n", i - gap_start);
+ }
+}
+#endif
+
+static void
+stats_print_atexit(void)
+{
+
+#if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS))
+ unsigned i;
+
+ /*
+ * Merge stats from extant threads. This is racy, since individual
+ * threads do not lock when recording tcache stats events. As a
+ * consequence, the final stats may be slightly out of date by the time
+ * they are reported, if other threads continue to allocate.
+ */
+ for (i = 0; i < narenas; i++) {
+ arena_t *arena = arenas[i];
+ if (arena != NULL) {
+ tcache_t *tcache;
+
+ malloc_spin_lock(&arena->lock);
+ ql_foreach(tcache, &arena->tcache_ql, link) {
+ tcache_stats_merge(tcache, arena);
+ }
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+#endif
+ malloc_stats_print();
+}
+
+#ifdef MALLOC_TCACHE
+static void
+tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem)
+{
+ arena_chunk_t *chunk;
+ arena_t *arena;
+ void *ptr;
+ unsigned i, ndeferred, ncached;
+
+ for (ndeferred = tbin->ncached - rem; ndeferred > 0;) {
+ ncached = ndeferred;
+ /* Lock the arena associated with the first object. */
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(tbin->slots[0]);
+ arena = chunk->arena;
+ malloc_spin_lock(&arena->lock);
+ /* Deallocate every object that belongs to the locked arena. */
+ for (i = ndeferred = 0; i < ncached; i++) {
+ ptr = tbin->slots[i];
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk->arena == arena) {
+ size_t pageind = (((uintptr_t)ptr -
+ (uintptr_t)chunk) >> PAGE_SHIFT);
+ arena_chunk_map_t *mapelm =
+ &chunk->map[pageind];
+ arena_dalloc_bin(arena, chunk, ptr, mapelm);
+ } else {
+ /*
+ * This object was allocated via a different
+ * arena than the one that is currently locked.
+ * Stash the object, so that it can be handled
+ * in a future pass.
+ */
+ tbin->slots[ndeferred] = ptr;
+ ndeferred++;
+ }
+ }
+#ifdef MALLOC_STATS
+ arena->bins[binind].stats.nflushes++;
+ {
+ arena_bin_t *bin = &arena->bins[binind];
+ bin->stats.nrequests += tbin->tstats.nrequests;
+ if (bin->reg_size <= small_maxclass) {
+ arena->stats.nmalloc_small +=
+ tbin->tstats.nrequests;
+ } else {
+ arena->stats.nmalloc_medium +=
+ tbin->tstats.nrequests;
+ }
+ tbin->tstats.nrequests = 0;
+ }
+#endif
+ malloc_spin_unlock(&arena->lock);
+ }
+
+ if (rem > 0) {
+ /*
+ * Shift the remaining valid pointers to the base of the slots
+ * array.
+ */
+ memmove(&tbin->slots[0], &tbin->slots[tbin->ncached - rem],
+ rem * sizeof(void *));
+ }
+ tbin->ncached = rem;
+}
+
+static inline void
+tcache_dalloc(tcache_t *tcache, void *ptr)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_bin_t *bin;
+ tcache_bin_t *tbin;
+ size_t pageind, binind;
+ arena_chunk_map_t *mapelm;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
+ mapelm = &chunk->map[pageind];
+ run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
+ ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
+ PAGE_SHIFT));
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
+ sizeof(arena_bin_t);
+ assert(binind < nbins);
+
+ if (opt_junk)
+ memset(ptr, 0x5a, arena->bins[binind].reg_size);
+
+ tbin = tcache->tbins[binind];
+ if (tbin == NULL) {
+ tbin = tcache_bin_create(choose_arena());
+ if (tbin == NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_bin(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ return;
+ }
+ tcache->tbins[binind] = tbin;
+ }
+
+ if (tbin->ncached == tcache_nslots)
+ tcache_bin_flush(tbin, binind, (tcache_nslots >> 1));
+ assert(tbin->ncached < tcache_nslots);
+ tbin->slots[tbin->ncached] = ptr;
+ tbin->ncached++;
+ if (tbin->ncached > tbin->high_water)
+ tbin->high_water = tbin->ncached;
+
+ tcache_event(tcache);
+}
+#endif
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+
+ /* Large allocation. */
+ malloc_spin_lock(&arena->lock);
+
+#ifndef MALLOC_STATS
+ if (opt_junk)
+#endif
+ {
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+ PAGE_SHIFT;
+ size_t size = chunk->map[pageind].bits & ~PAGE_MASK;
+
+#ifdef MALLOC_STATS
+ if (opt_junk)
+#endif
+ memset(ptr, 0x5a, size);
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+ arena->stats.allocated_large -= size;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns--;
+#endif
+ }
+
+ arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+ malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(chunk->arena == arena);
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
+ mapelm = &chunk->map[pageind];
+ assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+ /* Small allocation. */
+#ifdef MALLOC_TCACHE
+ if (__isthreaded && tcache_nslots) {
+ tcache_t *tcache = tcache_tls;
+ if ((uintptr_t)tcache > (uintptr_t)1)
+ tcache_dalloc(tcache, ptr);
+ else {
+ arena_dalloc_hard(arena, chunk, ptr, mapelm,
+ tcache);
+ }
+ } else {
+#endif
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_bin(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+#ifdef MALLOC_TCACHE
+ }
+#endif
+ } else
+ arena_dalloc_large(arena, chunk, ptr);
+}
+
+#ifdef MALLOC_TCACHE
+static void
+arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm, tcache_t *tcache)
+{
+
+ if (tcache == NULL) {
+ tcache = tcache_create(arena);
+ if (tcache == NULL) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_bin(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ tcache_dalloc(tcache, ptr);
+ } else {
+ /* This thread is currently exiting, so directly deallocate. */
+ assert(tcache == (void *)(uintptr_t)1);
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_bin(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ }
+}
+#endif
+
+static inline void
+idalloc(void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr)
+ arena_dalloc(chunk->arena, chunk, ptr);
+ else
+ huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+
+ assert(size < oldsize);
+
+ /*
+ * Shrink the run, and make trailing pages available for other
+ * allocations.
+ */
+ malloc_spin_lock(&arena->lock);
+ arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+ true);
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+ arena->stats.allocated_large -= oldsize;
+ arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--;
+
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
+ if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
+ }
+#endif
+ malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
+ size_t npages = oldsize >> PAGE_SHIFT;
+
+ assert(oldsize == (chunk->map[pageind].bits & ~PAGE_MASK));
+
+ /* Try to extend the run. */
+ assert(size > oldsize);
+ malloc_spin_lock(&arena->lock);
+ if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+ & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+ ~PAGE_MASK) >= size - oldsize) {
+ /*
+ * The next run is available and sufficiently large. Split the
+ * following run, then merge the first part with the existing
+ * allocation.
+ */
+ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+ ((pageind+npages) << PAGE_SHIFT)), size - oldsize, true,
+ false);
+
+ chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+ arena->stats.allocated_large -= oldsize;
+ arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--;
+
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
+ if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
+ arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
+ }
+#endif
+ malloc_spin_unlock(&arena->lock);
+ return (false);
+ }
+ malloc_spin_unlock(&arena->lock);
+
+ return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying. This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+ size_t psize;
+
+ psize = PAGE_CEILING(size);
+ if (psize == oldsize) {
+ /* Same size class. */
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+ size);
+ }
+ return (false);
+ } else {
+ arena_chunk_t *chunk;
+ arena_t *arena;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ assert(arena->magic == ARENA_MAGIC);
+
+ if (psize < oldsize) {
+ /* Fill before shrinking in order avoid a race. */
+ if (opt_junk) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a,
+ oldsize - size);
+ }
+ arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+ oldsize);
+ return (false);
+ } else {
+ bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+ psize, oldsize);
+ if (ret == false && opt_zero) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0,
+ size - oldsize);
+ }
+ return (ret);
+ }
+ }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /*
+ * Try to avoid moving the allocation.
+ *
+ * posix_memalign() can cause allocation of "large" objects that are
+ * smaller than bin_maxclass (in order to meet alignment requirements).
+ * Therefore, do not assume that (oldsize <= bin_maxclass) indicates
+ * ptr refers to a bin-allocated object.
+ */
+ if (oldsize <= arena_maxclass) {
+ if (arena_is_large(ptr) == false ) {
+ if (size <= small_maxclass) {
+ if (oldsize <= small_maxclass &&
+ small_size2bin[size] ==
+ small_size2bin[oldsize])
+ goto IN_PLACE;
+ } else if (size <= bin_maxclass) {
+ if (small_maxclass < oldsize && oldsize <=
+ bin_maxclass && MEDIUM_CEILING(size) ==
+ MEDIUM_CEILING(oldsize))
+ goto IN_PLACE;
+ }
+ } else {
+ assert(size <= arena_maxclass);
+ if (size > bin_maxclass) {
+ if (arena_ralloc_large(ptr, size, oldsize) ==
+ false)
+ return (ptr);
+ }
+ }
+ }
+
+ /* Try to avoid moving the allocation. */
+ if (size <= small_maxclass) {
+ if (oldsize <= small_maxclass && small_size2bin[size] ==
+ small_size2bin[oldsize])
+ goto IN_PLACE;
+ } else if (size <= bin_maxclass) {
+ if (small_maxclass < oldsize && oldsize <= bin_maxclass &&
+ MEDIUM_CEILING(size) == MEDIUM_CEILING(oldsize))
+ goto IN_PLACE;
+ } else {
+ if (bin_maxclass < oldsize && oldsize <= arena_maxclass) {
+ assert(size > bin_maxclass);
+ if (arena_ralloc_large(ptr, size, oldsize) == false)
+ return (ptr);
+ }
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to move the object. In that case, fall back to allocating new
+ * space and copying.
+ */
+ ret = arena_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+ if (opt_junk && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+ return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+ if (size <= arena_maxclass)
+ return (arena_ralloc(ptr, size, oldsize));
+ else
+ return (huge_ralloc(ptr, size, oldsize));
+}
+
+static bool
+arena_new(arena_t *arena, unsigned ind)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+ arena->stats.lstats = (malloc_large_stats_t *)base_alloc(
+ sizeof(malloc_large_stats_t) * ((chunksize - PAGE_SIZE) >>
+ PAGE_SHIFT));
+ if (arena->stats.lstats == NULL)
+ return (true);
+ memset(arena->stats.lstats, 0, sizeof(malloc_large_stats_t) *
+ ((chunksize - PAGE_SIZE) >> PAGE_SHIFT));
+# ifdef MALLOC_TCACHE
+ ql_new(&arena->tcache_ql);
+# endif
+#endif
+
+ /* Initialize chunks. */
+ arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+ arena->spare = NULL;
+
+ arena->nactive = 0;
+ arena->ndirty = 0;
+
+ arena_avail_tree_new(&arena->runs_avail);
+
+ /* Initialize bins. */
+ prev_run_size = PAGE_SIZE;
+
+ i = 0;
+#ifdef MALLOC_TINY
+ /* (2^n)-spaced tiny bins. */
+ for (; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (1U << (LG_TINY_MIN + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+#endif
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (i - ntbins + 1) << LG_QUANTUM;
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Cacheline-spaced bins. */
+ for (; i < ntbins + nqbins + ncbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
+ LG_CACHELINE);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Subpage-spaced bins. */
+ for (; i < ntbins + nqbins + ncbins + nsbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
+ << LG_SUBPAGE);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Medium bins. */
+ for (; i < nbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = medium_min + ((i - (ntbins + nqbins + ncbins +
+ nsbins)) << lg_mspace);
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#ifdef MALLOC_DEBUG
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (nbins - 1)));
+ if (ret != NULL && arena_new(ret, ind) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+#ifdef MALLOC_TCACHE
+static tcache_bin_t *
+tcache_bin_create(arena_t *arena)
+{
+ tcache_bin_t *ret;
+ size_t tsize;
+
+ tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
+ if (tsize <= small_maxclass)
+ ret = (tcache_bin_t *)arena_malloc_small(arena, tsize, false);
+ else if (tsize <= bin_maxclass)
+ ret = (tcache_bin_t *)arena_malloc_medium(arena, tsize, false);
+ else
+ ret = (tcache_bin_t *)imalloc(tsize);
+ if (ret == NULL)
+ return (NULL);
+#ifdef MALLOC_STATS
+ memset(&ret->tstats, 0, sizeof(tcache_bin_stats_t));
+#endif
+ ret->low_water = 0;
+ ret->high_water = 0;
+ ret->ncached = 0;
+
+ return (ret);
+}
+
+static void
+tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin, unsigned binind)
+{
+ arena_t *arena;
+ arena_chunk_t *chunk;
+ size_t pageind, tsize;
+ arena_chunk_map_t *mapelm;
+
+ chunk = CHUNK_ADDR2BASE(tbin);
+ arena = chunk->arena;
+ pageind = (((uintptr_t)tbin - (uintptr_t)chunk) >> PAGE_SHIFT);
+ mapelm = &chunk->map[pageind];
+
+#ifdef MALLOC_STATS
+ if (tbin->tstats.nrequests != 0) {
+ arena_t *arena = tcache->arena;
+ arena_bin_t *bin = &arena->bins[binind];
+ malloc_spin_lock(&arena->lock);
+ bin->stats.nrequests += tbin->tstats.nrequests;
+ if (bin->reg_size <= small_maxclass)
+ arena->stats.nmalloc_small += tbin->tstats.nrequests;
+ else
+ arena->stats.nmalloc_medium += tbin->tstats.nrequests;
+ malloc_spin_unlock(&arena->lock);
+ }
+#endif
+
+ assert(tbin->ncached == 0);
+ tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
+ if (tsize <= bin_maxclass) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_bin(arena, chunk, tbin, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ idalloc(tbin);
+}
+
+#ifdef MALLOC_STATS
+static void
+tcache_stats_merge(tcache_t *tcache, arena_t *arena)
+{
+ unsigned i;
+
+ /* Merge and reset tcache stats. */
+ for (i = 0; i < mbin0; i++) {
+ arena_bin_t *bin = &arena->bins[i];
+ tcache_bin_t *tbin = tcache->tbins[i];
+ if (tbin != NULL) {
+ bin->stats.nrequests += tbin->tstats.nrequests;
+ arena->stats.nmalloc_small += tbin->tstats.nrequests;
+ tbin->tstats.nrequests = 0;
+ }
+ }
+ for (; i < nbins; i++) {
+ arena_bin_t *bin = &arena->bins[i];
+ tcache_bin_t *tbin = tcache->tbins[i];
+ if (tbin != NULL) {
+ bin->stats.nrequests += tbin->tstats.nrequests;
+ arena->stats.nmalloc_medium += tbin->tstats.nrequests;
+ tbin->tstats.nrequests = 0;
+ }
+ }
+}
+#endif
+
+static tcache_t *
+tcache_create(arena_t *arena)
+{
+ tcache_t *tcache;
+
+ if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
+ small_maxclass) {
+ tcache = (tcache_t *)arena_malloc_small(arena, sizeof(tcache_t)
+ + (sizeof(tcache_bin_t *) * (nbins - 1)), true);
+ } else if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
+ bin_maxclass) {
+ tcache = (tcache_t *)arena_malloc_medium(arena, sizeof(tcache_t)
+ + (sizeof(tcache_bin_t *) * (nbins - 1)), true);
+ } else {
+ tcache = (tcache_t *)icalloc(sizeof(tcache_t) +
+ (sizeof(tcache_bin_t *) * (nbins - 1)));
+ }
+
+ if (tcache == NULL)
+ return (NULL);
+
+#ifdef MALLOC_STATS
+ /* Link into list of extant tcaches. */
+ malloc_spin_lock(&arena->lock);
+ ql_elm_new(tcache, link);
+ ql_tail_insert(&arena->tcache_ql, tcache, link);
+ malloc_spin_unlock(&arena->lock);
+#endif
+
+ tcache->arena = arena;
+
+ tcache_tls = tcache;
+
+ return (tcache);
+}
+
+static void
+tcache_destroy(tcache_t *tcache)
+{
+ unsigned i;
+
+#ifdef MALLOC_STATS
+ /* Unlink from list of extant tcaches. */
+ malloc_spin_lock(&tcache->arena->lock);
+ ql_remove(&tcache->arena->tcache_ql, tcache, link);
+ tcache_stats_merge(tcache, tcache->arena);
+ malloc_spin_unlock(&tcache->arena->lock);
+#endif
+
+ for (i = 0; i < nbins; i++) {
+ tcache_bin_t *tbin = tcache->tbins[i];
+ if (tbin != NULL) {
+ tcache_bin_flush(tbin, i, 0);
+ tcache_bin_destroy(tcache, tbin, i);
+ }
+ }
+
+ if (arena_salloc(tcache) <= bin_maxclass) {
+ arena_chunk_t *chunk = CHUNK_ADDR2BASE(tcache);
+ arena_t *arena = chunk->arena;
+ size_t pageind = (((uintptr_t)tcache - (uintptr_t)chunk) >>
+ PAGE_SHIFT);
+ arena_chunk_map_t *mapelm = &chunk->map[pageind];
+
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_bin(arena, chunk, tcache, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ idalloc(tcache);
+}
+#endif
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ void *ret;
+ size_t csize;
+ extent_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize, &zero);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ node->size = csize;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += csize;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, csize);
+ else if (opt_zero)
+ memset(ret, 0, csize);
+ }
+
+ return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t alloc_size, chunk_size, offset;
+ extent_node_t *node;
+ bool zero;
+
+ /*
+ * This allocation requires alignment that is even larger than chunk
+ * alignment. This means that huge_malloc() isn't good enough.
+ *
+ * Allocate almost twice as many chunks as are demanded by the size or
+ * alignment, in order to assure the alignment can be achieved, then
+ * unmap leading and trailing chunks.
+ */
+ assert(alignment >= chunksize);
+
+ chunk_size = CHUNK_CEILING(size);
+
+ if (size >= alignment)
+ alloc_size = chunk_size + alignment - chunksize;
+ else
+ alloc_size = (alignment << 1) - chunksize;
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ zero = false;
+ ret = chunk_alloc(alloc_size, &zero);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & chunksize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0) {
+ /* Trim trailing space. */
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+ - chunk_size);
+ } else {
+ size_t trailsize;
+
+ /* Trim leading space. */
+ chunk_dealloc(ret, alignment - offset);
+
+ ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+ trailsize = alloc_size - (alignment - offset) - chunk_size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+ trailsize);
+ }
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+ node->size = chunk_size;
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += chunk_size;
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+ if (opt_junk)
+ memset(ret, 0xa5, chunk_size);
+ else if (opt_zero)
+ memset(ret, 0, chunk_size);
+
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Avoid moving the allocation if the size class would not change. */
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+ - size);
+ } else if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ copysize = (size < oldsize) ? size : oldsize;
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ extent_node_t *node, key;
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = ptr;
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->addr == ptr);
+ extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Unmap chunk. */
+#ifdef MALLOC_DSS
+ if (opt_dss && opt_junk)
+ memset(node->addr, 0x5a, node->size);
+#endif
+ chunk_dealloc(node->addr, node->size);
+
+ base_node_dealloc(node);
+}
+
+static void
+malloc_stats_print(void)
+{
+ char s[UMAX2S_BUFSIZE];
+
+ _malloc_message("___ Begin malloc statistics ___\n", "", "", "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ", opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+ _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+ _malloc_message("P", "", "", "");
+ _malloc_message(opt_utrace ? "U" : "u", "", "", "");
+ _malloc_message(opt_sysv ? "V" : "v", "", "", "");
+ _malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
+ _malloc_message(opt_zero ? "Z" : "z", "", "", "");
+ _malloc_message("\n", "", "", "");
+
+ _malloc_message("CPUs: ", umax2s(ncpus, 10, s), "\n", "");
+ _malloc_message("Max arenas: ", umax2s(narenas, 10, s), "\n", "");
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), 10, s), "\n", "");
+ _malloc_message("Quantum size: ", umax2s(QUANTUM, 10, s), "\n", "");
+ _malloc_message("Cacheline size (assumed): ",
+ umax2s(CACHELINE, 10, s), "\n", "");
+ _malloc_message("Subpage spacing: ", umax2s(SUBPAGE, 10, s), "\n", "");
+ _malloc_message("Medium spacing: ", umax2s((1U << lg_mspace), 10, s), "\n",
+ "");
+#ifdef MALLOC_TINY
+ _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U << LG_TINY_MIN), 10,
+ s), "..", "");
+ _malloc_message(umax2s((qspace_min >> 1), 10, s), "]\n", "", "");
+#endif
+ _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min, 10, s), "..",
+ "");
+ _malloc_message(umax2s(qspace_max, 10, s), "]\n", "", "");
+ _malloc_message("Cacheline-spaced sizes: [",
+ umax2s(cspace_min, 10, s), "..", "");
+ _malloc_message(umax2s(cspace_max, 10, s), "]\n", "", "");
+ _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min, 10, s), "..",
+ "");
+ _malloc_message(umax2s(sspace_max, 10, s), "]\n", "", "");
+ _malloc_message("Medium sizes: [", umax2s(medium_min, 10, s), "..", "");
+ _malloc_message(umax2s(medium_max, 10, s), "]\n", "", "");
+ if (opt_lg_dirty_mult >= 0) {
+ _malloc_message("Min active:dirty page ratio per arena: ",
+ umax2s((1U << opt_lg_dirty_mult), 10, s), ":1\n", "");
+ } else {
+ _malloc_message("Min active:dirty page ratio per arena: N/A\n", "",
+ "", "");
+ }
+#ifdef MALLOC_TCACHE
+ _malloc_message("Thread cache slots per size class: ",
+ tcache_nslots ? umax2s(tcache_nslots, 10, s) : "N/A", "\n", "");
+ _malloc_message("Thread cache GC sweep interval: ",
+ (tcache_nslots && tcache_gc_incr > 0) ?
+ umax2s((1U << opt_lg_tcache_gc_sweep), 10, s) : "N/A", "", "");
+ _malloc_message(" (increment interval: ",
+ (tcache_nslots && tcache_gc_incr > 0) ? umax2s(tcache_gc_incr, 10, s)
+ : "N/A", ")\n", "");
+#endif
+ _malloc_message("Chunk size: ", umax2s(chunksize, 10, s), "", "");
+ _malloc_message(" (2^", umax2s(opt_lg_chunk, 10, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped;
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated += arenas[i]->stats.allocated_small;
+ allocated += arenas[i]->stats.allocated_large;
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&huge_mtx);
+ allocated += huge_allocated;
+ mapped = stats_chunks.curchunks * chunksize;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_printf("Allocated: %zu, mapped: %zu\n", allocated,
+ mapped);
+
+ /* Print chunk stats. */
+ {
+ chunk_stats_t chunks_stats;
+
+ malloc_mutex_lock(&huge_mtx);
+ chunks_stats = stats_chunks;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_printf("chunks: nchunks "
+ "highchunks curchunks\n");
+ malloc_printf(" %13"PRIu64"%13zu%13zu\n",
+ chunks_stats.nchunks, chunks_stats.highchunks,
+ chunks_stats.curchunks);
+ }
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+ malloc_printf(" %12"PRIu64" %12"PRIu64" %12zu\n", huge_nmalloc,
+ huge_ndalloc, huge_allocated);
+
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf("\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ arena_stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+}
+
+#ifdef MALLOC_DEBUG
+static void
+small_size2bin_validate(void)
+{
+ size_t i, size, binind;
+
+ assert(small_size2bin[0] == 0xffU);
+ i = 1;
+# ifdef MALLOC_TINY
+ /* Tiny. */
+ for (; i < (1U << LG_TINY_MIN); i++) {
+ size = pow2_ceil(1U << LG_TINY_MIN);
+ binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
+ assert(small_size2bin[i] == binind);
+ }
+ for (; i < qspace_min; i++) {
+ size = pow2_ceil(i);
+ binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
+ assert(small_size2bin[i] == binind);
+ }
+# endif
+ /* Quantum-spaced. */
+ for (; i <= qspace_max; i++) {
+ size = QUANTUM_CEILING(i);
+ binind = ntbins + (size >> LG_QUANTUM) - 1;
+ assert(small_size2bin[i] == binind);
+ }
+ /* Cacheline-spaced. */
+ for (; i <= cspace_max; i++) {
+ size = CACHELINE_CEILING(i);
+ binind = ntbins + nqbins + ((size - cspace_min) >>
+ LG_CACHELINE);
+ assert(small_size2bin[i] == binind);
+ }
+ /* Sub-page. */
+ for (; i <= sspace_max; i++) {
+ size = SUBPAGE_CEILING(i);
+ binind = ntbins + nqbins + ncbins + ((size - sspace_min)
+ >> LG_SUBPAGE);
+ assert(small_size2bin[i] == binind);
+ }
+}
+#endif
+
+static bool
+small_size2bin_init(void)
+{
+
+ if (opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT
+ || opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT
+ || sizeof(const_small_size2bin) != small_maxclass + 1)
+ return (small_size2bin_init_hard());
+
+ small_size2bin = const_small_size2bin;
+#ifdef MALLOC_DEBUG
+ assert(sizeof(const_small_size2bin) == small_maxclass + 1);
+ small_size2bin_validate();
+#endif
+ return (false);
+}
+
+static bool
+small_size2bin_init_hard(void)
+{
+ size_t i, size, binind;
+ uint8_t *custom_small_size2bin;
+
+ assert(opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT
+ || opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT
+ || sizeof(const_small_size2bin) != small_maxclass + 1);
+
+ custom_small_size2bin = (uint8_t *)base_alloc(small_maxclass + 1);
+ if (custom_small_size2bin == NULL)
+ return (true);
+
+ custom_small_size2bin[0] = 0xffU;
+ i = 1;
+#ifdef MALLOC_TINY
+ /* Tiny. */
+ for (; i < (1U << LG_TINY_MIN); i++) {
+ size = pow2_ceil(1U << LG_TINY_MIN);
+ binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
+ custom_small_size2bin[i] = binind;
+ }
+ for (; i < qspace_min; i++) {
+ size = pow2_ceil(i);
+ binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
+ custom_small_size2bin[i] = binind;
+ }
+#endif
+ /* Quantum-spaced. */
+ for (; i <= qspace_max; i++) {
+ size = QUANTUM_CEILING(i);
+ binind = ntbins + (size >> LG_QUANTUM) - 1;
+ custom_small_size2bin[i] = binind;
+ }
+ /* Cacheline-spaced. */
+ for (; i <= cspace_max; i++) {
+ size = CACHELINE_CEILING(i);
+ binind = ntbins + nqbins + ((size - cspace_min) >>
+ LG_CACHELINE);
+ custom_small_size2bin[i] = binind;
+ }
+ /* Sub-page. */
+ for (; i <= sspace_max; i++) {
+ size = SUBPAGE_CEILING(i);
+ binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
+ LG_SUBPAGE);
+ custom_small_size2bin[i] = binind;
+ }
+
+ small_size2bin = custom_small_size2bin;
+#ifdef MALLOC_DEBUG
+ small_size2bin_validate();
+#endif
+ return (false);
+}
+
+static unsigned
+malloc_ncpus(void)
+{
+ int mib[2];
+ unsigned ret;
+ int error;
+ size_t len;
+
+ error = _elf_aux_info(AT_NCPUS, &ret, sizeof(ret));
+ if (error != 0 || ret == 0) {
+ mib[0] = CTL_HW;
+ mib[1] = HW_NCPU;
+ len = sizeof(ret);
+ if (sysctl(mib, 2, &ret, &len, (void *)NULL, 0) == -1) {
+ /* Error. */
+ ret = 1;
+ }
+ }
+
+ return (ret);
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+
+static bool
+malloc_init_hard(void)
+{
+ unsigned i;
+ int linklen;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+
+ malloc_mutex_lock(&init_lock);
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+ }
+
+ /* Get number of CPUs. */
+ ncpus = malloc_ncpus();
+
+ /*
+ * Increase the chunk size to the largest page size that is greater
+ * than the default chunk size and less than or equal to 4MB.
+ */
+ {
+ size_t pagesizes[MAXPAGESIZES];
+ int k, nsizes;
+
+ nsizes = getpagesizes(pagesizes, MAXPAGESIZES);
+ for (k = 0; k < nsizes; k++)
+ if (pagesizes[k] <= (1LU << 22))
+ while ((1LU << opt_lg_chunk) < pagesizes[k])
+ opt_lg_chunk++;
+ }
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if (issetugid() == 0 && (opts =
+ getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the
+ * program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ assert(false);
+ buf[0] = '\0';
+ opts = buf;
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto MALLOC_OUT;
+ }
+ }
+MALLOC_OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'c':
+ if (opt_lg_cspace_max - 1 >
+ opt_lg_qspace_max &&
+ opt_lg_cspace_max >
+ LG_CACHELINE)
+ opt_lg_cspace_max--;
+ break;
+ case 'C':
+ if (opt_lg_cspace_max < PAGE_SHIFT
+ - 1)
+ opt_lg_cspace_max++;
+ break;
+ case 'd':
+#ifdef MALLOC_DSS
+ opt_dss = false;
+#endif
+ break;
+ case 'D':
+#ifdef MALLOC_DSS
+ opt_dss = true;
+#endif
+ break;
+ case 'e':
+ if (opt_lg_medium_max > PAGE_SHIFT)
+ opt_lg_medium_max--;
+ break;
+ case 'E':
+ if (opt_lg_medium_max + 1 <
+ opt_lg_chunk)
+ opt_lg_medium_max++;
+ break;
+ case 'f':
+ if (opt_lg_dirty_mult + 1 <
+ (sizeof(size_t) << 3))
+ opt_lg_dirty_mult++;
+ break;
+ case 'F':
+ if (opt_lg_dirty_mult >= 0)
+ opt_lg_dirty_mult--;
+ break;
+#ifdef MALLOC_TCACHE
+ case 'g':
+ if (opt_lg_tcache_gc_sweep >= 0)
+ opt_lg_tcache_gc_sweep--;
+ break;
+ case 'G':
+ if (opt_lg_tcache_gc_sweep + 1 <
+ (sizeof(size_t) << 3))
+ opt_lg_tcache_gc_sweep++;
+ break;
+ case 'h':
+ if (opt_lg_tcache_nslots > 0)
+ opt_lg_tcache_nslots--;
+ break;
+ case 'H':
+ if (opt_lg_tcache_nslots + 1 <
+ (sizeof(size_t) << 3))
+ opt_lg_tcache_nslots++;
+ break;
+#endif
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, plus enough room to
+ * hold a run for the largest medium
+ * size class (one page more than the
+ * size).
+ */
+ if ((1U << (opt_lg_chunk - 1)) >=
+ (2U << PAGE_SHIFT) + (1U <<
+ opt_lg_medium_max))
+ opt_lg_chunk--;
+ break;
+ case 'K':
+ if (opt_lg_chunk + 1 <
+ (sizeof(size_t) << 3))
+ opt_lg_chunk++;
+ break;
+ case 'm':
+#ifdef MALLOC_DSS
+ opt_mmap = false;
+#endif
+ break;
+ case 'M':
+#ifdef MALLOC_DSS
+ opt_mmap = true;
+#endif
+ break;
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+ case 'p':
+ opt_stats_print = false;
+ break;
+ case 'P':
+ opt_stats_print = true;
+ break;
+ case 'q':
+ if (opt_lg_qspace_max > LG_QUANTUM)
+ opt_lg_qspace_max--;
+ break;
+ case 'Q':
+ if (opt_lg_qspace_max + 1 <
+ opt_lg_cspace_max)
+ opt_lg_qspace_max++;
+ break;
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+#ifdef MALLOC_DSS
+ /* Make sure that there is some method for acquiring memory. */
+ if (opt_dss == false && opt_mmap == false)
+ opt_mmap = true;
+#endif
+ if (opt_stats_print) {
+ /* Print statistics at exit. */
+ atexit(stats_print_atexit);
+ }
+
+
+ /* Set variables according to the value of opt_lg_[qc]space_max. */
+ qspace_max = (1U << opt_lg_qspace_max);
+ cspace_min = CACHELINE_CEILING(qspace_max);
+ if (cspace_min == qspace_max)
+ cspace_min += CACHELINE;
+ cspace_max = (1U << opt_lg_cspace_max);
+ sspace_min = SUBPAGE_CEILING(cspace_max);
+ if (sspace_min == cspace_max)
+ sspace_min += SUBPAGE;
+ assert(sspace_min < PAGE_SIZE);
+ sspace_max = PAGE_SIZE - SUBPAGE;
+ medium_max = (1U << opt_lg_medium_max);
+
+#ifdef MALLOC_TINY
+ assert(LG_QUANTUM >= LG_TINY_MIN);
+#endif
+ assert(ntbins <= LG_QUANTUM);
+ nqbins = qspace_max >> LG_QUANTUM;
+ ncbins = ((cspace_max - cspace_min) >> LG_CACHELINE) + 1;
+ nsbins = ((sspace_max - sspace_min) >> LG_SUBPAGE) + 1;
+
+ /*
+ * Compute medium size class spacing and the number of medium size
+ * classes. Limit spacing to no more than pagesize, but if possible
+ * use the smallest spacing that does not exceed NMBINS_MAX medium size
+ * classes.
+ */
+ lg_mspace = LG_SUBPAGE;
+ nmbins = ((medium_max - medium_min) >> lg_mspace) + 1;
+ while (lg_mspace < PAGE_SHIFT && nmbins > NMBINS_MAX) {
+ lg_mspace = lg_mspace + 1;
+ nmbins = ((medium_max - medium_min) >> lg_mspace) + 1;
+ }
+ mspace_mask = (1U << lg_mspace) - 1U;
+
+ mbin0 = ntbins + nqbins + ncbins + nsbins;
+ nbins = mbin0 + nmbins;
+ /*
+ * The small_size2bin lookup table uses uint8_t to encode each bin
+ * index, so we cannot support more than 256 small size classes. This
+ * limit is difficult to exceed (not even possible with 16B quantum and
+ * 4KiB pages), and such configurations are impractical, but
+ * nonetheless we need to protect against this case in order to avoid
+ * undefined behavior.
+ */
+ if (mbin0 > 256) {
+ char line_buf[UMAX2S_BUFSIZE];
+ _malloc_message(_getprogname(),
+ ": (malloc) Too many small size classes (",
+ umax2s(mbin0, 10, line_buf), " > max 256)\n");
+ abort();
+ }
+
+ if (small_size2bin_init()) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+
+#ifdef MALLOC_TCACHE
+ if (opt_lg_tcache_nslots > 0) {
+ tcache_nslots = (1U << opt_lg_tcache_nslots);
+
+ /* Compute incremental GC event threshold. */
+ if (opt_lg_tcache_gc_sweep >= 0) {
+ tcache_gc_incr = ((1U << opt_lg_tcache_gc_sweep) /
+ nbins) + (((1U << opt_lg_tcache_gc_sweep) % nbins ==
+ 0) ? 0 : 1);
+ } else
+ tcache_gc_incr = 0;
+ } else
+ tcache_nslots = 0;
+#endif
+
+ /* Set variables according to the value of opt_lg_chunk. */
+ chunksize = (1LU << opt_lg_chunk);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> PAGE_SHIFT);
+ {
+ size_t header_size;
+
+ /*
+ * Compute the header size such that it is large enough to
+ * contain the page map.
+ */
+ header_size = sizeof(arena_chunk_t) +
+ (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+ arena_chunk_header_npages = (header_size >> PAGE_SHIFT) +
+ ((header_size & PAGE_MASK) != 0);
+ }
+ arena_maxclass = chunksize - (arena_chunk_header_npages <<
+ PAGE_SHIFT);
+
+ UTRACE((void *)(intptr_t)(-1), 0, 0);
+
+#ifdef MALLOC_STATS
+ malloc_mutex_init(&chunks_mtx);
+ memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+ /* Various sanity checks that regard configuration. */
+ assert(chunksize >= PAGE_SIZE);
+
+ /* Initialize chunks data. */
+ malloc_mutex_init(&huge_mtx);
+ extent_tree_ad_new(&huge);
+#ifdef MALLOC_DSS
+ malloc_mutex_init(&dss_mtx);
+ dss_base = sbrk(0);
+ dss_prev = dss_base;
+ dss_max = dss_base;
+ extent_tree_szad_new(&dss_chunks_szad);
+ extent_tree_ad_new(&dss_chunks_ad);
+#endif
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+#endif
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+ /*
+ * Allocate a base chunk here, since it doesn't actually have to be
+ * chunk-aligned. Doing this before allocating any other chunks allows
+ * the use of space that would otherwise be wasted.
+ */
+ if (opt_dss)
+ base_pages_alloc(0);
+#endif
+ base_nodes = NULL;
+ malloc_mutex_init(&base_mtx);
+
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create more than one arena per CPU by
+ * default.
+ */
+#ifdef MALLOC_TCACHE
+ if (tcache_nslots) {
+ /*
+ * Only large object allocation/deallocation is
+ * guaranteed to acquire an arena mutex, so we can get
+ * away with fewer arenas than without thread caching.
+ */
+ opt_narenas_lshift += 1;
+ } else {
+#endif
+ /*
+ * All allocations must acquire an arena mutex, so use
+ * plenty of arenas.
+ */
+ opt_narenas_lshift += 2;
+#ifdef MALLOC_TCACHE
+ }
+#endif
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> LG_SIZEOF_INT);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+ next_arena = 0;
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+ arenas_map = arenas[0];
+#endif
+ malloc_spin_init(&arenas_lock);
+
+ malloc_initialized = true;
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+}
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+void *
+malloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto OOM;
+ }
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): "
+ "invalid size 0\n", "", "");
+ abort();
+ }
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ ret = imalloc(size);
+
+OOM:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+RETURN:
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+ int ret;
+ void *result;
+
+ if (malloc_init())
+ result = NULL;
+ else {
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in "
+ "posix_memalign(): invalid "
+ "size 0\n", "", "");
+ abort();
+ }
+ result = NULL;
+ *memptr = NULL;
+ ret = 0;
+ goto RETURN;
+ }
+ }
+
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0
+ || alignment < sizeof(void *)) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+ result = NULL;
+ ret = EINVAL;
+ goto RETURN;
+ }
+
+ result = ipalloc(alignment, size);
+ }
+
+ if (result == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): out of memory\n",
+ "", "");
+ abort();
+ }
+ ret = ENOMEM;
+ goto RETURN;
+ }
+
+ *memptr = result;
+ ret = 0;
+
+RETURN:
+ UTRACE(0, size, result);
+ return (ret);
+}
+
+void *
+calloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+ num_size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+void *
+realloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ }
+
+RETURN:
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+void
+free(void *ptr)
+{
+
+ UTRACE(ptr, 0, 0);
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ idalloc(ptr);
+ }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions.
+ */
+
+/*
+ * We provide an unpublished interface in order to receive notifications from
+ * the pthreads library whenever a thread exits. This allows us to clean up
+ * thread caches.
+ */
+void
+_malloc_thread_cleanup(void)
+{
+
+#ifdef MALLOC_TCACHE
+ tcache_t *tcache = tcache_tls;
+
+ if (tcache != NULL) {
+ assert(tcache != (void *)(uintptr_t)1);
+ tcache_destroy(tcache);
+ tcache_tls = (void *)(uintptr_t)1;
+ }
+#endif
+}
+
+/*
+ * The following functions are used by threading libraries for protection of
+ * malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&huge_mtx);
+
+#ifdef MALLOC_DSS
+ malloc_mutex_lock(&dss_mtx);
+#endif
+}
+
+void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+#ifdef MALLOC_DSS
+ malloc_mutex_unlock(&dss_mtx);
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
OpenPOWER on IntegriCloud