summaryrefslogtreecommitdiffstats
path: root/lib/libc/stdlib/malloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libc/stdlib/malloc.c')
-rw-r--r--lib/libc/stdlib/malloc.c4578
1 files changed, 4578 insertions, 0 deletions
diff --git a/lib/libc/stdlib/malloc.c b/lib/libc/stdlib/malloc.c
new file mode 100644
index 0000000..79ceb4b
--- /dev/null
+++ b/lib/libc/stdlib/malloc.c
@@ -0,0 +1,4578 @@
+/*-
+ * Copyright (C) 2006,2007 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum, the size classes in each category are as follows:
+ *
+ * |=====================================|
+ * | Category | Subcategory | Size |
+ * |=====================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |----------------+---------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 480 |
+ * | | | 496 |
+ * | | | 512 |
+ * | |----------------+---------|
+ * | | Sub-page | 1 kB |
+ * | | | 2 kB |
+ * |=====================================|
+ * | Large | 4 kB |
+ * | | 8 kB |
+ * | | 12 kB |
+ * | | ... |
+ * | | 1012 kB |
+ * | | 1016 kB |
+ * | | 1020 kB |
+ * |=====================================|
+ * | Huge | 1 MB |
+ * | | 2 MB |
+ * | | 3 MB |
+ * | | ... |
+ * |=====================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ * Small : Each size class is segregated into its own set of runs. Each run
+ * maintains a bitmap of which regions are free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+/* #define MALLOC_PRODUCTION */
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* MALLOC_STATS enables statistics calculation. */
+# define MALLOC_STATS
+#endif
+
+/*
+ * MALLOC_LAZY_FREE enables the use of a per-thread vector of slots that free()
+ * can atomically stuff object pointers into. This can reduce arena lock
+ * contention.
+ */
+#define MALLOC_LAZY_FREE
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+#define MALLOC_BALANCE
+
+/*
+ * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
+ * segment (DSS). In an ideal world, this functionality would be completely
+ * unnecessary, but we are burdened by history and the lack of resource limits
+ * for anonymous mapped memory.
+ */
+#define MALLOC_DSS
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+# define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#include <sys/mman.h>
+#include <sys/param.h>
+#include <sys/stddef.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/sysctl.h>
+#include <sys/tree.h>
+#include <sys/uio.h>
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/atomic.h>
+#include <machine/cpufunc.h>
+#include <machine/vmparam.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <pthread.h>
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <strings.h>
+#include <unistd.h>
+
+#include "un-namespace.h"
+
+#ifdef MALLOC_DEBUG
+# ifdef NDEBUG
+# undef NDEBUG
+# endif
+#else
+# ifndef NDEBUG
+# define NDEBUG
+# endif
+#endif
+#include <assert.h>
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
+#ifdef __i386__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+#endif
+#ifdef __alpha__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __amd64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __powerpc__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+#endif
+
+#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_BALANCE requires TLS. */
+# ifdef MALLOC_BALANCE
+# undef MALLOC_BALANCE
+# endif
+ /* MALLOC_LAZY_FREE requires TLS. */
+# ifdef MALLOC_LAZY_FREE
+# undef MALLOC_LAZY_FREE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#define CHUNK_2POW_DEFAULT 20
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
+ * so over-estimates are okay (up to a point), but under-estimates will
+ * negatively affect performance.
+ */
+#define CACHELINE_2POW 6
+#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
+
+/* Smallest size class to support. */
+#define TINY_MIN_2POW 1
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define SMALL_MAX_2POW_DEFAULT 9
+#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT)
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
+#define RUN_MAX_SMALL_2POW 15
+#define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW)
+
+#ifdef MALLOC_LAZY_FREE
+ /* Default size of each arena's lazy free cache. */
+# define LAZY_FREE_2POW_DEFAULT 8
+ /*
+ * Number of pseudo-random probes to conduct before considering the cache to
+ * be overly full. It takes on average n probes to detect fullness of
+ * (n-1)/n. However, we are effectively doing multiple non-independent
+ * trials (each deallocation is a trial), so the actual average threshold
+ * for clearing the cache is somewhat lower.
+ */
+# define LAZY_FREE_NPROBES 5
+#endif
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define SPIN_LIMIT_2POW 11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define BLOCK_COST_2POW 4
+
+#ifdef MALLOC_BALANCE
+ /*
+ * We use an exponential moving average to track recent lock contention,
+ * where the size of the history window is N, and alpha=2/(N+1).
+ *
+ * Due to integer math rounding, very small values here can cause
+ * substantial degradation in accuracy, thus making the moving average decay
+ * faster than it would with precise calculation.
+ */
+# define BALANCE_ALPHA_INV_2POW 9
+
+ /*
+ * Threshold value for the exponential moving contention average at which to
+ * re-assign a thread.
+ */
+# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+typedef struct {
+ spinlock_t lock;
+} malloc_mutex_t;
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+/* Used to avoid initialization races. */
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ unsigned long highruns;
+
+ /* Current number of runs in this bin. */
+ unsigned long curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+ /* Number of times this arena reassigned a thread due to contention. */
+ uint64_t nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+ /* Number of chunks that were allocated. */
+ uint64_t nchunks;
+
+ /* High-water mark for number of chunks allocated. */
+ unsigned long highchunks;
+
+ /*
+ * Current number of chunks allocated. This value isn't maintained for
+ * any other purpose, so keep track of it in order to be able to set
+ * highchunks.
+ */
+ unsigned long curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Chunk data structures.
+ */
+
+/* Tree of chunks. */
+typedef struct chunk_node_s chunk_node_t;
+struct chunk_node_s {
+ /* Linkage for the chunk tree. */
+ RB_ENTRY(chunk_node_s) link;
+
+ /*
+ * Pointer to the chunk that this tree node is responsible for. In some
+ * (but certainly not all) cases, this data structure is placed at the
+ * beginning of the corresponding chunk, so this field may point to this
+ * node.
+ */
+ void *chunk;
+
+ /* Total chunk size. */
+ size_t size;
+};
+typedef struct chunk_tree_s chunk_tree_t;
+RB_HEAD(chunk_tree_s, chunk_node_s);
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Number of pages in run. For a free run that has never been touched,
+ * this is NPAGES_EMPTY for the central pages, which allows us to avoid
+ * zero-filling untouched pages for calloc().
+ */
+#define NPAGES_EMPTY ((uint32_t)0x0U)
+ uint32_t npages;
+ /*
+ * Position within run. For a free run, this is POS_EMPTY/POS_FREE for
+ * the first and last pages. The special values make it possible to
+ * quickly coalesce free runs. POS_EMPTY indicates that the run has
+ * never been touched, which allows us to avoid zero-filling untouched
+ * pages for calloc().
+ *
+ * This is the limiting factor for chunksize; there can be at most 2^31
+ * pages in a run.
+ *
+ * POS_EMPTY is assumed by arena_run_dalloc() to be less than POS_FREE.
+ */
+#define POS_EMPTY ((uint32_t)0xfffffffeU)
+#define POS_FREE ((uint32_t)0xffffffffU)
+ uint32_t pos;
+};
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunk tree. */
+ RB_ENTRY(arena_chunk_s) link;
+
+ /*
+ * Number of pages in use. This is maintained in order to make
+ * detection of empty chunks fast.
+ */
+ uint32_t pages_used;
+
+ /*
+ * Every time a free run larger than this value is created/coalesced,
+ * this value is increased. The only way that the value decreases is if
+ * arena_run_alloc() fails to find a free run as large as advertised by
+ * this value.
+ */
+ uint32_t max_frun_npages;
+
+ /*
+ * Every time a free run that starts at an earlier page than this value
+ * is created/coalesced, this value is decreased. It is reset in a
+ * similar fashion to max_frun_npages.
+ */
+ uint32_t min_frun_ind;
+
+ /*
+ * Map of pages within chunk that keeps track of free/large/small. For
+ * free runs, only the map entries for the first and last pages are
+ * kept up to date, so that free runs can be quickly coalesced.
+ */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef struct arena_chunk_tree_s arena_chunk_tree_t;
+RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+ /* Linkage for run trees. */
+ RB_ENTRY(arena_run_s) link;
+
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+typedef struct arena_run_tree_s arena_run_tree_t;
+RB_HEAD(arena_run_tree_s, arena_run_s);
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+ pthread_mutex_t lock;
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+#endif
+
+ /*
+ * Tree of chunks this arena manages.
+ */
+ arena_chunk_tree_t chunks;
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. This caching is disabled by opt_hint.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+#ifdef MALLOC_BALANCE
+ /*
+ * The arena load balancing machinery needs to keep track of how much
+ * lock contention there is. This value is exponentially averaged.
+ */
+ uint32_t contention;
+#endif
+
+#ifdef MALLOC_LAZY_FREE
+ /*
+ * Deallocation of small objects can be lazy, in which case free_cache
+ * stores pointers to those objects that have not yet been deallocated.
+ * In order to avoid lock contention, slots are chosen randomly. Empty
+ * slots contain NULL.
+ */
+ void **free_cache;
+#endif
+
+ /*
+ * bins is used to store rings of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * 6 | 64 |
+ * : :
+ * : :
+ * 33 | 496 |
+ * 34 | 512 |
+ * --------+------+
+ * 35 | 1024 |
+ * 36 | 2048 |
+ * --------+------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned ncpus;
+
+/* VM page size. */
+static size_t pagesize;
+static size_t pagesize_mask;
+static size_t pagesize_2pow;
+
+/* Various bin-related settings. */
+static size_t bin_maxclass; /* Max size class for bins. */
+static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
+static size_t small_min;
+static size_t small_max;
+
+/* Various quantum-related settings. */
+static size_t quantum;
+static size_t quantum_mask; /* (quantum - 1). */
+
+/* Various chunk-related settings. */
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static unsigned chunk_npages;
+static unsigned arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t chunks_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static chunk_tree_t huge;
+
+#ifdef MALLOC_DSS
+/*
+ * Protects sbrk() calls. This must be separate from chunks_mtx, since
+ * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
+ * could cause recursive lock acquisition).
+ */
+static malloc_mutex_t dss_mtx;
+/* Base address of the DSS. */
+static void *dss_base;
+/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
+static void *dss_prev;
+/* Current upper limit on DSS addresses. */
+static void *dss_max;
+#endif
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+#endif
+
+/*
+ * Tree of chunks that were previously allocated. This is used when allocating
+ * chunks, in an attempt to re-use address space.
+ */
+static chunk_tree_t old_chunks;
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+#ifndef NO_TLS
+# ifdef MALLOC_BALANCE
+static unsigned narenas_2pow;
+# else
+static unsigned next_arena;
+# endif
+#endif
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+static __thread arena_t *arenas_map;
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+static bool opt_junk = true;
+#else
+static bool opt_abort = false;
+static bool opt_junk = false;
+#endif
+#ifdef MALLOC_DSS
+static bool opt_dss = true;
+static bool opt_mmap = false;
+#endif
+static bool opt_hint = false;
+#ifdef MALLOC_LAZY_FREE
+static int opt_lazy_free_2pow = LAZY_FREE_2POW_DEFAULT;
+#endif
+#ifdef MALLOC_BALANCE
+static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool opt_print_stats = false;
+static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
+static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
+static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static bool opt_utrace = false;
+static bool opt_sysv = false;
+static bool opt_xmalloc = false;
+static bool opt_zero = false;
+static int opt_narenas_lshift = 0;
+
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut = {a, b, c}; \
+ utrace(&ut, sizeof(ut)); \
+ }
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static void malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(pthread_mutex_t *lock);
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+static void malloc_printf(const char *format, ...);
+#endif
+static char *umax2s(uintmax_t x, char *s);
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static chunk_node_t *base_chunk_node_alloc(void);
+static void base_chunk_node_dealloc(chunk_node_t *node);
+#ifdef MALLOC_STATS
+static void stats_print(arena_t *arena);
+#endif
+static void *pages_map(void *addr, size_t size);
+static void pages_unmap(void *addr, size_t size);
+static void *chunk_alloc(size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool zero);
+static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool zero);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+static void *arena_malloc(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static size_t arena_salloc(const void *ptr);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
+static bool arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t alignment, size_t size);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void *imalloc(size_t size);
+static void *ipalloc(size_t alignment, size_t size);
+static void *icalloc(size_t size);
+static size_t isalloc(const void *ptr);
+static void *iralloc(void *ptr, size_t size);
+static void idalloc(void *ptr);
+static void malloc_print_stats(void);
+static bool malloc_init_hard(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+/*
+ * Begin mutex. We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static void
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+ static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+ mutex->lock = lock;
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ _SPINLOCK(&mutex->lock);
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+ if (__isthreaded)
+ _SPINUNLOCK(&mutex->lock);
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+ _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+
+ return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+ unsigned ret = 0;
+
+ if (__isthreaded) {
+ if (_pthread_mutex_trylock(lock) != 0) {
+ unsigned i;
+ volatile unsigned j;
+
+ /* Exponentially back off. */
+ for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+ for (j = 0; j < (1U << i); j++)
+ ret++;
+
+ CPU_SPINWAIT;
+ if (_pthread_mutex_trylock(lock) == 0)
+ return (ret);
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ _pthread_mutex_lock(lock);
+ assert((ret << BLOCK_COST_2POW) != 0);
+ return (ret << BLOCK_COST_2POW);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded)
+ _pthread_mutex_unlock(lock);
+}
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + quantum_mask) & ~quantum_mask)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + pagesize_mask) & ~pagesize_mask)
+
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+
+#if (defined(MALLOC_LAZY_FREE) || defined(MALLOC_BALANCE))
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+# define PRN_DEFINE(suffix, var, a, c) \
+static inline void \
+sprn_##suffix(uint32_t seed) \
+{ \
+ var = seed; \
+} \
+ \
+static inline uint32_t \
+prn_##suffix(uint32_t lg_range) \
+{ \
+ uint32_t ret, x; \
+ \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ x = (var * (a)) + (c); \
+ var = x; \
+ ret = x >> (32 - lg_range); \
+ \
+ return (ret); \
+}
+# define SPRN(suffix, seed) sprn_##suffix(seed)
+# define PRN(suffix, lg_range) prn_##suffix(lg_range)
+#endif
+
+/*
+ * Define PRNGs, one for each purpose, in order to avoid auto-correlation
+ * problems.
+ */
+
+#ifdef MALLOC_LAZY_FREE
+/* Define the per-thread PRNG used for lazy deallocation. */
+static __thread uint32_t lazy_free_x;
+PRN_DEFINE(lazy_free, lazy_free_x, 12345, 12347)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+
+ _write(STDERR_FILENO, p1, strlen(p1));
+ _write(STDERR_FILENO, p2, strlen(p2));
+ _write(STDERR_FILENO, p3, strlen(p3));
+ _write(STDERR_FILENO, p4, strlen(p4));
+}
+
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+}
+#endif
+
+/*
+ * We don't want to depend on vsnprintf() for production builds, since that can
+ * cause unnecessary bloat for static binaries. umax2s() provides minimal
+ * integer printing functionality, so that malloc_printf() use can be limited to
+ * MALLOC_STATS code.
+ */
+#define UMAX2S_BUFSIZE 21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+ unsigned i;
+
+ /* Make sure UMAX2S_BUFSIZE is large enough. */
+ assert(sizeof(uintmax_t) <= 8);
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+
+ return (&s[i]);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_DSS
+static inline bool
+base_pages_alloc_dss(size_t minsize)
+{
+
+ /*
+ * Do special DSS allocation here, since base allocations don't need to
+ * be chunk-aligned.
+ */
+ if (dss_prev != (void *)-1) {
+ void *dss_cur;
+ intptr_t incr;
+ size_t csize = CHUNK_CEILING(minsize);
+
+ malloc_mutex_lock(&dss_mtx);
+ do {
+ /* Get the current end of the DSS. */
+ dss_cur = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS. Don't worry about
+ * dss_cur not being chunk-aligned though.
+ */
+ incr = (intptr_t)chunksize
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_cur);
+ if (incr < minsize)
+ incr += csize;
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_cur) {
+ /* Success. */
+ malloc_mutex_unlock(&dss_mtx);
+ base_pages = dss_cur;
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages
+ + incr);
+#ifdef MALLOC_STATS
+ base_mapped += incr;
+#endif
+ return (false);
+ }
+ } while (dss_prev != (void *)-1);
+ malloc_mutex_unlock(&dss_mtx);
+ }
+
+ return (true);
+}
+#endif
+
+static inline bool
+base_pages_alloc_mmap(size_t minsize)
+{
+ size_t csize;
+
+ assert(minsize != 0);
+ csize = PAGE_CEILING(minsize);
+ base_pages = pages_map(NULL, csize);
+ if (base_pages == NULL)
+ return (true);
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_STATS
+ base_mapped += csize;
+#endif
+
+ return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (base_pages_alloc_dss(minsize) == false)
+ return (false);
+ }
+
+ if (opt_mmap && minsize != 0)
+#endif
+ {
+ if (base_pages_alloc_mmap(minsize) == false)
+ return (false);
+ }
+
+ return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+
+RETURN:
+ malloc_mutex_unlock(&base_mtx);
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static chunk_node_t *
+base_chunk_node_alloc(void)
+{
+ chunk_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_chunk_nodes != NULL) {
+ ret = base_chunk_nodes;
+ base_chunk_nodes = *(chunk_node_t **)ret;
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_chunk_node_dealloc(chunk_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ *(chunk_node_t **)node = base_chunk_nodes;
+ base_chunk_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+ unsigned i, gap_start;
+
+ malloc_printf(
+ " allocated/mapped nmalloc ndalloc\n");
+ malloc_printf("small: %12llu %-12s %12llu %12llu\n",
+ arena->stats.allocated_small, "", arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12llu %-12s %12llu %12llu\n",
+ arena->stats.allocated_large, "", arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12llu/%-12llu %12llu %12llu\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.mapped,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+
+ malloc_printf("bins: bin size regs pgs requests newruns"
+ " reruns maxruns curruns\n");
+ for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
+ if (arena->bins[i].stats.nrequests == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+ "%13u %1s %4u %4u %3u %9llu %9llu"
+ " %9llu %7lu %7lu\n",
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> pagesize_2pow,
+ arena->bins[i].stats.nrequests,
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+static inline int
+chunk_comp(chunk_node_t *a, chunk_node_t *b)
+{
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
+ return (-1);
+ else if (a->chunk == b->chunk)
+ return (0);
+ else
+ return (1);
+}
+
+/* Generate red-black tree code for chunks. */
+RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp)
+
+static void *
+pages_map(void *addr, size_t size)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ -1, 0);
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else if (addr != NULL && ret != addr) {
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+
+#ifdef MALLOC_DSS
+static inline void *
+chunk_alloc_dss(size_t size)
+{
+
+ /*
+ * Try to create allocations in the DSS, in order to make full use of
+ * limited address space.
+ */
+ if (dss_prev != (void *)-1) {
+ void *dss_cur;
+ intptr_t incr;
+
+ /*
+ * The loop is necessary to recover from races with other
+ * threads that are using the DSS for something other than
+ * malloc.
+ */
+ malloc_mutex_lock(&dss_mtx);
+ do {
+ void *ret;
+
+ /* Get the current end of the DSS. */
+ dss_cur = sbrk(0);
+
+ /*
+ * Calculate how much padding is necessary to
+ * chunk-align the end of the DSS.
+ */
+ incr = (intptr_t)size
+ - (intptr_t)CHUNK_ADDR2OFFSET(dss_cur);
+ if (incr == size) {
+ ret = dss_cur;
+ } else {
+ ret = (void *)((intptr_t)dss_cur + incr);
+ incr += size;
+ }
+
+ dss_prev = sbrk(incr);
+ if (dss_prev == dss_cur) {
+ /* Success. */
+ malloc_mutex_unlock(&dss_mtx);
+ dss_max = (void *)((intptr_t)ret + size);
+ return (ret);
+ }
+ } while (dss_prev != (void *)-1);
+ malloc_mutex_unlock(&dss_mtx);
+ }
+
+ return (NULL);
+}
+#endif
+
+static inline void *
+chunk_alloc_mmap(size_t size)
+{
+
+ /*
+ * Try to over-allocate, but allow the OS to place the allocation
+ * anywhere. Beware of size_t wrap-around.
+ */
+ if (size + chunksize > size) {
+ void *ret;
+
+ if ((ret = pages_map(NULL, size + chunksize)) != NULL) {
+ size_t offset = CHUNK_ADDR2OFFSET(ret);
+
+ /*
+ * Success. Clean up unneeded leading/trailing space.
+ */
+ if (offset != 0) {
+ /* Leading space. */
+ pages_unmap(ret, chunksize - offset);
+
+ ret = (void *)((uintptr_t)ret + (chunksize -
+ offset));
+
+ /* Trailing space. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ offset);
+ } else {
+ /* Trailing space only. */
+ pages_unmap((void *)((uintptr_t)ret + size),
+ chunksize);
+ }
+ return (ret);
+ }
+ }
+
+ return (NULL);
+}
+
+static void *
+chunk_alloc(size_t size)
+{
+ void *ret, *chunk;
+ chunk_node_t *tchunk, *delchunk;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+ malloc_mutex_lock(&chunks_mtx);
+
+ if (size == chunksize) {
+ /*
+ * Check for address ranges that were previously chunks and try
+ * to use them.
+ */
+
+ tchunk = RB_MIN(chunk_tree_s, &old_chunks);
+ while (tchunk != NULL) {
+ /* Found an address range. Try to recycle it. */
+
+ chunk = tchunk->chunk;
+ delchunk = tchunk;
+ tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
+
+ /* Remove delchunk from the tree. */
+ RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
+ base_chunk_node_dealloc(delchunk);
+
+#ifdef MALLOC_DSS
+ if (opt_dss && (uintptr_t)chunk >= (uintptr_t)dss_base
+ && (uintptr_t)chunk < (uintptr_t)dss_max) {
+ /* Re-use a previously freed DSS chunk. */
+ ret = chunk;
+ /*
+ * Maintain invariant that all newly allocated
+ * chunks are untouched or zero-filled.
+ */
+ memset(ret, 0, size);
+ goto RETURN;
+ }
+#endif
+ if ((ret = pages_map(chunk, size)) != NULL) {
+ /* Success. */
+ goto RETURN;
+ }
+ }
+ }
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ ret = chunk_alloc_dss(size);
+ if (ret != NULL)
+ goto RETURN;
+ }
+
+ if (opt_mmap)
+#endif
+ {
+ ret = chunk_alloc_mmap(size);
+ if (ret != NULL)
+ goto RETURN;
+ }
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+ if (ret != NULL) {
+ chunk_node_t key;
+ /*
+ * Clean out any entries in old_chunks that overlap with the
+ * memory we just allocated.
+ */
+ key.chunk = ret;
+ tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
+ while (tchunk != NULL
+ && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
+ && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
+ delchunk = tchunk;
+ tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
+ RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
+ base_chunk_node_dealloc(delchunk);
+ }
+
+ }
+#ifdef MALLOC_STATS
+ if (ret != NULL) {
+ stats_chunks.nchunks += (size / chunksize);
+ stats_chunks.curchunks += (size / chunksize);
+ }
+ if (stats_chunks.curchunks > stats_chunks.highchunks)
+ stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+ malloc_mutex_unlock(&chunks_mtx);
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+#ifdef MALLOC_DSS
+static inline bool
+chunk_dealloc_dss(void *chunk, size_t size)
+{
+ chunk_node_t *node;
+
+ if ((uintptr_t)chunk >= (uintptr_t)dss_base
+ && (uintptr_t)chunk < (uintptr_t)dss_max) {
+ void *dss_cur;
+
+ malloc_mutex_lock(&dss_mtx);
+ /* Get the current end of the DSS. */
+ dss_cur = sbrk(0);
+
+ /*
+ * Try to shrink the DSS if this chunk is at the end of the
+ * DSS. The sbrk() call here is subject to a race condition
+ * with threads that use brk(2) or sbrk(2) directly, but the
+ * alternative would be to leak memory for the sake of poorly
+ * designed multi-threaded programs.
+ */
+ if (dss_cur == dss_max
+ && (void *)((uintptr_t)chunk + size) == dss_max
+ && sbrk(-(intptr_t)size) == dss_max) {
+ malloc_mutex_unlock(&dss_mtx);
+ if (dss_prev == dss_max) {
+ /* Success. */
+ dss_prev = (void *)((intptr_t)dss_max
+ - (intptr_t)size);
+ dss_max = dss_prev;
+ }
+ } else {
+ size_t offset;
+
+ malloc_mutex_unlock(&dss_mtx);
+ madvise(chunk, size, MADV_FREE);
+
+ /*
+ * Iteratively create records of each chunk-sized
+ * memory region that 'chunk' is comprised of, so that
+ * the address range can be recycled if memory usage
+ * increases later on.
+ */
+ for (offset = 0; offset < size; offset += chunksize) {
+ node = base_chunk_node_alloc();
+ if (node == NULL)
+ break;
+
+ node->chunk = (void *)((uintptr_t)chunk
+ + (uintptr_t)offset);
+ node->size = chunksize;
+ RB_INSERT(chunk_tree_s, &old_chunks, node);
+ }
+ }
+
+ return (false);
+ }
+
+ return (true);
+}
+#endif
+
+static inline void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+ chunk_node_t *node;
+
+ pages_unmap(chunk, size);
+
+ /*
+ * Make a record of the chunk's address, so that the address
+ * range can be recycled if memory usage increases later on.
+ * Don't bother to create entries if (size > chunksize), since
+ * doing so could cause scalability issues for truly gargantuan
+ * objects (many gigabytes or larger).
+ */
+ if (size == chunksize) {
+ node = base_chunk_node_alloc();
+ if (node != NULL) {
+ node->chunk = (void *)(uintptr_t)chunk;
+ node->size = chunksize;
+ RB_INSERT(chunk_tree_s, &old_chunks, node);
+ }
+ }
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+ malloc_mutex_lock(&chunks_mtx);
+
+#ifdef MALLOC_DSS
+ if (opt_dss) {
+ if (chunk_dealloc_dss(chunk, size) == false)
+ goto RETURN;
+ }
+
+ if (opt_mmap)
+#endif
+ chunk_dealloc_mmap(chunk, size);
+
+#ifdef MALLOC_DSS
+RETURN:
+#endif
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (size / chunksize);
+#endif
+ malloc_mutex_unlock(&chunks_mtx);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (__isthreaded == false) {
+ /*
+ * Avoid the overhead of TLS for single-threaded operation. If the
+ * app switches to threaded mode, the initial thread may end up
+ * being assigned to some other arena, but this one-time switch
+ * shouldn't cause significant issues.
+ */
+ return (arenas[0]);
+ }
+
+ ret = arenas_map;
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ assert(ret != NULL);
+ }
+#else
+ if (__isthreaded) {
+ unsigned long ind;
+
+ /*
+ * Hash _pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient _pthread_self() values. Without specific
+ * knowledge of how _pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) _pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(__isthreaded);
+
+#ifdef MALLOC_LAZY_FREE
+ /*
+ * Seed the PRNG used for lazy deallocation. Since seeding only occurs
+ * on the first allocation by a thread, it is possible for a thread to
+ * deallocate before seeding. This is not a critical issue though,
+ * since it is extremely unusual for an application to to use threads
+ * that deallocate but *never* allocate, and because even if seeding
+ * never occurs for multiple threads, they will tend to drift apart
+ * unless some aspect of the application forces deallocation
+ * synchronization.
+ */
+ SPRN(lazy_free, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+#ifdef MALLOC_BALANCE
+ /*
+ * Seed the PRNG used for arena load balancing. We can get away with
+ * using the same seed here as for the lazy_free PRNG without
+ * introducing autocorrelation because the PRNG parameters are
+ * distinct.
+ */
+ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+ if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+ unsigned ind;
+
+ ind = PRN(balance, narenas_2pow);
+ if ((ret = arenas[ind]) == NULL) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[ind]) == NULL)
+ ret = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+#else
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+#endif
+ } else
+ ret = arenas[0];
+
+ arenas_map = ret;
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ if ((uintptr_t)a < (uintptr_t)b)
+ return (-1);
+ else if (a == b)
+ return (0);
+ else
+ return (1);
+}
+
+/* Generate red-black tree code for arena chunks. */
+RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_run_t *a, arena_run_t *b)
+{
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ if ((uintptr_t)a < (uintptr_t)b)
+ return (-1);
+ else if (a == b)
+ return (0);
+ else
+ return (1);
+}
+
+/* Generate red-black tree code for arena runs. */
+RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ assert(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ /*
+ * To divide by a number D that is not a power of two we multiply
+ * by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
+ */
+#define SIZE_INV_SHIFT 21
+#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
+ static const unsigned size_invs[] = {
+ SIZE_INV(3),
+ SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
+ SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
+ SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
+ SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
+ SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
+ SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
+ SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
+#if (QUANTUM_2POW_MIN < 4)
+ ,
+ SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
+ SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
+ SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
+ SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
+ SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
+ SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
+ SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
+ SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
+#endif
+ };
+ unsigned diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
+ >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+ if ((size & (size - 1)) == 0) {
+ /*
+ * log2_table allows fast division of a power of two in the
+ * [1..128] range.
+ *
+ * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+ */
+ static const unsigned char log2_table[] = {
+ 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+ };
+
+ if (size <= 128)
+ regind = (diff >> log2_table[size - 1]);
+ else if (size <= 32768)
+ regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+ else {
+ /*
+ * The page size is too large for us to use the lookup
+ * table. Use real division.
+ */
+ regind = diff / size;
+ }
+ } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
+ << QUANTUM_2POW_MIN) + 2) {
+ regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else {
+ /*
+ * size_invs isn't large enough to handle this size class, so
+ * calculate regind using actual division. This only happens
+ * if the user increases small_max via the 'S' runtime
+ * configuration option.
+ */
+ regind = diff / size;
+ };
+ assert(diff == regind * size);
+ assert(regind < bin->nregs);
+
+ elm = regind >> (SIZEOF_INT_2POW + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+ assert((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+#undef SIZE_INV
+#undef SIZE_INV_SHIFT
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool zero)
+{
+ arena_chunk_t *chunk;
+ unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
+ unsigned i;
+ uint32_t pos_beg, pos_end;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ total_pages = chunk->map[run_ind].npages;
+ need_pages = (size >> pagesize_2pow);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ /* Split enough pages from the front of run to fit allocation size. */
+ map_offset = run_ind;
+ pos_beg = chunk->map[map_offset].pos;
+ pos_end = chunk->map[map_offset + total_pages - 1].pos;
+ if (zero == false) {
+ for (i = 0; i < need_pages; i++) {
+ chunk->map[map_offset + i].npages = need_pages;
+ chunk->map[map_offset + i].pos = i;
+ }
+ } else {
+ /*
+ * Handle first page specially, since we need to look for
+ * POS_EMPTY rather than NPAGES_EMPTY.
+ */
+ i = 0;
+ if (chunk->map[map_offset + i].pos != POS_EMPTY) {
+ memset((void *)((uintptr_t)chunk + ((map_offset + i) <<
+ pagesize_2pow)), 0, pagesize);
+ }
+ chunk->map[map_offset + i].npages = need_pages;
+ chunk->map[map_offset + i].pos = i;
+
+ /* Handle central pages. */
+ for (i++; i < need_pages - 1; i++) {
+ if (chunk->map[map_offset + i].npages != NPAGES_EMPTY) {
+ memset((void *)((uintptr_t)chunk + ((map_offset
+ + i) << pagesize_2pow)), 0, pagesize);
+ }
+ chunk->map[map_offset + i].npages = need_pages;
+ chunk->map[map_offset + i].pos = i;
+ }
+
+ /*
+ * Handle last page specially, since we need to look for
+ * POS_EMPTY rather than NPAGES_EMPTY.
+ */
+ if (i < need_pages) {
+ if (chunk->map[map_offset + i].npages != POS_EMPTY) {
+ memset((void *)((uintptr_t)chunk + ((map_offset
+ + i) << pagesize_2pow)), 0, pagesize);
+ }
+ chunk->map[map_offset + i].npages = need_pages;
+ chunk->map[map_offset + i].pos = i;
+ }
+ }
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ /* Update map for trailing pages. */
+ map_offset += need_pages;
+ chunk->map[map_offset].npages = rem_pages;
+ chunk->map[map_offset].pos = pos_beg;
+ chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
+ chunk->map[map_offset + rem_pages - 1].pos = pos_end;
+ }
+
+ chunk->pages_used += need_pages;
+}
+
+static arena_chunk_t *
+arena_chunk_alloc(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+
+ if (arena->spare != NULL) {
+ chunk = arena->spare;
+ arena->spare = NULL;
+
+ RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
+ } else {
+ unsigned i;
+
+ chunk = (arena_chunk_t *)chunk_alloc(chunksize);
+ if (chunk == NULL)
+ return (NULL);
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+
+ RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
+
+ /*
+ * Claim that no pages are in use, since the header is merely
+ * overhead.
+ */
+ chunk->pages_used = 0;
+
+ chunk->max_frun_npages = chunk_npages -
+ arena_chunk_header_npages;
+ chunk->min_frun_ind = arena_chunk_header_npages;
+
+ /*
+ * Initialize enough of the map to support one maximal free run.
+ */
+ i = arena_chunk_header_npages;
+ chunk->map[i].npages = chunk_npages - arena_chunk_header_npages;
+ chunk->map[i].pos = POS_EMPTY;
+
+ /* Mark the free run's central pages as untouched. */
+ for (i++; i < chunk_npages - 1; i++)
+ chunk->map[i].npages = NPAGES_EMPTY;
+
+ /* Take care when (chunk_npages == 2). */
+ if (i < chunk_npages) {
+ chunk->map[i].npages = chunk_npages -
+ arena_chunk_header_npages;
+ chunk->map[i].pos = POS_EMPTY;
+ }
+ }
+
+ return (chunk);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ /*
+ * Remove chunk from the chunk tree, regardless of whether this chunk
+ * will be cached, so that the arena does not use it.
+ */
+ RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
+
+ if (opt_hint == false) {
+ if (arena->spare != NULL) {
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+ arena->spare = chunk;
+ } else {
+ assert(arena->spare == NULL);
+ chunk_dealloc((void *)chunk, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, size_t size, bool zero)
+{
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ unsigned need_npages, limit_pages, compl_need_npages;
+
+ assert(size <= (chunksize - (arena_chunk_header_npages <<
+ pagesize_2pow)));
+ assert((size & pagesize_mask) == 0);
+
+ /*
+ * Search through arena's chunks in address order for a free run that is
+ * large enough. Look for the first fit.
+ */
+ need_npages = (size >> pagesize_2pow);
+ limit_pages = chunk_npages - arena_chunk_header_npages;
+ compl_need_npages = limit_pages - need_npages;
+ RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
+ /*
+ * Avoid searching this chunk if there are not enough
+ * contiguous free pages for there to possibly be a large
+ * enough free run.
+ */
+ if (chunk->pages_used <= compl_need_npages &&
+ need_npages <= chunk->max_frun_npages) {
+ arena_chunk_map_t *mapelm;
+ unsigned i;
+ unsigned max_frun_npages = 0;
+ unsigned min_frun_ind = chunk_npages;
+
+ assert(chunk->min_frun_ind >=
+ arena_chunk_header_npages);
+ for (i = chunk->min_frun_ind; i < chunk_npages;) {
+ mapelm = &chunk->map[i];
+ if (mapelm->pos >= POS_EMPTY) {
+ if (mapelm->npages >= need_npages) {
+ run = (arena_run_t *)
+ ((uintptr_t)chunk + (i <<
+ pagesize_2pow));
+ /* Update page map. */
+ arena_run_split(arena, run,
+ size, zero);
+ return (run);
+ }
+ if (mapelm->npages >
+ max_frun_npages) {
+ max_frun_npages =
+ mapelm->npages;
+ }
+ if (i < min_frun_ind) {
+ min_frun_ind = i;
+ if (i < chunk->min_frun_ind)
+ chunk->min_frun_ind = i;
+ }
+ }
+ i += mapelm->npages;
+ }
+ /*
+ * Search failure. Reset cached chunk->max_frun_npages.
+ * chunk->min_frun_ind was already reset above (if
+ * necessary).
+ */
+ chunk->max_frun_npages = max_frun_npages;
+ }
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate the run.
+ */
+ chunk = arena_chunk_alloc(arena);
+ if (chunk == NULL)
+ return (NULL);
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ pagesize_2pow));
+ /* Update page map. */
+ arena_run_split(arena, run, size, zero);
+ return (run);
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
+{
+ arena_chunk_t *chunk;
+ unsigned run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ assert(run_ind >= arena_chunk_header_npages);
+ assert(run_ind < (chunksize >> pagesize_2pow));
+ run_pages = (size >> pagesize_2pow);
+ assert(run_pages == chunk->map[run_ind].npages);
+
+ /* Subtract pages from count of pages used in chunk. */
+ chunk->pages_used -= run_pages;
+
+ /* Mark run as deallocated. */
+ assert(chunk->map[run_ind].npages == run_pages);
+ chunk->map[run_ind].pos = POS_FREE;
+ assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
+ chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
+
+ /*
+ * Tell the kernel that we don't need the data in this run, but only if
+ * requested via runtime configuration.
+ */
+ if (opt_hint)
+ madvise(run, size, MADV_FREE);
+
+ /* Try to coalesce with neighboring runs. */
+ if (run_ind > arena_chunk_header_npages &&
+ chunk->map[run_ind - 1].pos >= POS_EMPTY) {
+ unsigned prev_npages;
+
+ /* Coalesce with previous run. */
+ prev_npages = chunk->map[run_ind - 1].npages;
+ /*
+ * The way run allocation currently works (lowest first fit),
+ * it is impossible for a free run to have empty (untouched)
+ * pages followed by dirty pages. If the run allocation policy
+ * changes, then we will need to account for it here.
+ */
+ assert(chunk->map[run_ind - 1].pos != POS_EMPTY);
+#if 0 /* Currently unnecessary. */
+ if (prev_npages > 1 && chunk->map[run_ind - 1].pos == POS_EMPTY)
+ chunk->map[run_ind - 1].npages = NPAGES_EMPTY;
+#endif
+ run_ind -= prev_npages;
+ assert(chunk->map[run_ind].npages == prev_npages);
+ assert(chunk->map[run_ind].pos >= POS_EMPTY);
+ run_pages += prev_npages;
+
+ chunk->map[run_ind].npages = run_pages;
+ assert(chunk->map[run_ind].pos >= POS_EMPTY);
+ chunk->map[run_ind + run_pages - 1].npages = run_pages;
+ assert(chunk->map[run_ind + run_pages - 1].pos >= POS_EMPTY);
+ }
+
+ if (run_ind + run_pages < chunk_npages &&
+ chunk->map[run_ind + run_pages].pos >= POS_EMPTY) {
+ unsigned next_npages;
+
+ /* Coalesce with next run. */
+ next_npages = chunk->map[run_ind + run_pages].npages;
+ if (next_npages > 1 && chunk->map[run_ind + run_pages].pos ==
+ POS_EMPTY)
+ chunk->map[run_ind + run_pages].npages = NPAGES_EMPTY;
+ run_pages += next_npages;
+ assert(chunk->map[run_ind + run_pages - 1].npages ==
+ next_npages);
+ assert(chunk->map[run_ind + run_pages - 1].pos >= POS_EMPTY);
+
+ chunk->map[run_ind].npages = run_pages;
+ assert(chunk->map[run_ind].pos >= POS_EMPTY);
+ chunk->map[run_ind + run_pages - 1].npages = run_pages;
+ assert(chunk->map[run_ind + run_pages - 1].pos >= POS_EMPTY);
+ }
+
+ if (chunk->map[run_ind].npages > chunk->max_frun_npages)
+ chunk->max_frun_npages = chunk->map[run_ind].npages;
+ if (run_ind < chunk->min_frun_ind)
+ chunk->min_frun_ind = run_ind;
+
+ /* Deallocate chunk if it is now completely unused. */
+ if (chunk->pages_used == 0)
+ arena_chunk_dealloc(arena, chunk);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
+ /* run is guaranteed to have available space. */
+ RB_REMOVE(arena_run_tree_s, &bin->runs, run);
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin->run_size, false);
+ if (run == NULL)
+ return (NULL);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+ if (remainder != 0) {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ assert(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+ assert(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= pagesize);
+ assert(min_run_size <= arena_maxclass);
+ assert(min_run_size <= RUN_MAX_SMALL);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += pagesize;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+ unsigned contention;
+
+ contention = malloc_spin_lock(&arena->lock);
+ if (narenas > 1) {
+ /*
+ * Calculate the exponentially averaged contention for this
+ * arena. Due to integer math always rounding down, this value
+ * decays somewhat faster then normal.
+ */
+ arena->contention = (((uint64_t)arena->contention
+ * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+ if (arena->contention >= opt_balance_threshold) {
+ uint32_t ind;
+
+ arena->contention = 0;
+#ifdef MALLOC_STATS
+ arena->stats.nbalance++;
+#endif
+ ind = PRN(balance, narenas_2pow);
+ if (arenas[ind] != NULL)
+ arenas_map = arenas[ind];
+ else {
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] != NULL)
+ arenas_map = arenas[ind];
+ else
+ arenas_map = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+ }
+ }
+}
+#endif
+
+static void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+ arena_bin_t *bin;
+ arena_run_t *run;
+
+ /* Small allocation. */
+
+ if (size < small_min) {
+ /* Tiny. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
+ 1)))];
+#if (!defined(NDEBUG) || defined(MALLOC_STATS))
+ /*
+ * Bin calculation is always correct, but we may need
+ * to fix size for the purposes of assertions and/or
+ * stats accuracy.
+ */
+ if (size < (1U << TINY_MIN_2POW))
+ size = (1U << TINY_MIN_2POW);
+#endif
+ } else if (size <= small_max) {
+ /* Quantum-spaced. */
+ size = QUANTUM_CEILING(size);
+ bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
+ - 1];
+ } else {
+ /* Sub-page. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ntbins + nqbins
+ + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
+ }
+ assert(size == bin->reg_size);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ } else
+ memset(ret, 0, size);
+ } else {
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, size, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
+ unsigned npages)
+{
+ unsigned i;
+
+ assert(npages > 0);
+
+ /*
+ * Modifiy the map such that arena_run_dalloc() sees the run as
+ * separately allocated.
+ */
+ for (i = 0; i < npages; i++) {
+ chunk->map[pageind + i].npages = npages;
+ chunk->map[pageind + i].pos = i;
+ }
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
+ pagesize_2pow)), npages << pagesize_2pow);
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+ unsigned pageind, i, npages;
+
+ assert((size & pagesize_mask) == 0);
+ assert((alignment & pagesize_mask) == 0);
+
+ npages = size >> pagesize_2pow;
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, alloc_size, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & pagesize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0) {
+ pageind = (((uintptr_t)ret - (uintptr_t)chunk) >>
+ pagesize_2pow);
+
+ /* Update the map for the run to be kept. */
+ for (i = 0; i < npages; i++) {
+ chunk->map[pageind + i].npages = npages;
+ assert(chunk->map[pageind + i].pos == i);
+ }
+
+ /* Trim trailing space. */
+ arena_palloc_trim(arena, chunk, pageind + npages,
+ (alloc_size - size) >> pagesize_2pow);
+ } else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ ret = (void *)((uintptr_t)ret + leadsize);
+ pageind = (((uintptr_t)ret - (uintptr_t)chunk) >>
+ pagesize_2pow);
+
+ /* Update the map for the run to be kept. */
+ for (i = 0; i < npages; i++) {
+ chunk->map[pageind + i].npages = npages;
+ chunk->map[pageind + i].pos = i;
+ }
+
+ /* Trim leading space. */
+ arena_palloc_trim(arena, chunk, pageind - (leadsize >>
+ pagesize_2pow), leadsize >> pagesize_2pow);
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_palloc_trim(arena, chunk, pageind + npages,
+ trailsize >> pagesize_2pow);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+ return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ arena_chunk_map_t *mapelm;
+ unsigned pageind;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ /*
+ * No arena data structures that we query here can change in a way that
+ * affects this function, so we don't need to lock.
+ */
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ if (mapelm->pos != 0 || ptr != (void *)(((uintptr_t)chunk) + (pageind <<
+ pagesize_2pow))) {
+ arena_run_t *run;
+
+ pageind -= mapelm->pos;
+
+ run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
+ pagesize_2pow));
+ assert(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else
+ ret = mapelm->npages << pagesize_2pow;
+
+ return (ret);
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+
+ /* Avoid moving the allocation if the size class would not change. */
+ if (size < small_min) {
+ if (oldsize < small_min &&
+ ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
+ == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
+ goto IN_PLACE;
+ } else if (size <= small_max) {
+ if (oldsize >= small_min && oldsize <= small_max &&
+ (QUANTUM_CEILING(size) >> opt_quantum_2pow)
+ == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
+ goto IN_PLACE;
+ } else {
+ /*
+ * We make no attempt to resize runs here, though it would be
+ * possible to do so.
+ */
+ if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
+ goto IN_PLACE;
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = arena_malloc(choose_arena(), size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ if (size < oldsize)
+ memcpy(ret, ptr, size);
+ else
+ memcpy(ret, ptr, oldsize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+ if (opt_junk && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+ return (ptr);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ unsigned pageind, arena_chunk_map_t *mapelm)
+{
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ pageind -= mapelm->pos;
+
+ run = (arena_run_t *)((uintptr_t)chunk + (pageind << pagesize_2pow));
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs) {
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ RB_REMOVE(arena_run_tree_s, &bin->runs, run);
+ }
+#ifdef MALLOC_DEBUG
+ run->magic = 0;
+#endif
+ arena_run_dalloc(arena, run, bin->run_size);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+ } else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ /* Insert runcur. */
+ RB_INSERT(arena_run_tree_s, &bin->runs,
+ bin->runcur);
+ }
+ bin->runcur = run;
+ } else
+ RB_INSERT(arena_run_tree_s, &bin->runs, run);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+#endif
+}
+
+#ifdef MALLOC_LAZY_FREE
+static inline void
+arena_dalloc_lazy(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ unsigned pageind, arena_chunk_map_t *mapelm)
+{
+ void **free_cache = arena->free_cache;
+ unsigned i, slot;
+
+ if (!__isthreaded || opt_lazy_free_2pow < 0) {
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, pageind, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ return;
+ }
+
+ for (i = 0; i < LAZY_FREE_NPROBES; i++) {
+ slot = PRN(lazy_free, opt_lazy_free_2pow);
+ if (atomic_cmpset_ptr((uintptr_t *)&free_cache[slot],
+ (uintptr_t)NULL, (uintptr_t)ptr)) {
+ return;
+ }
+ }
+
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, pageind, mapelm);
+
+ /*
+ * Check whether another thread already cleared the cache. It is
+ * possible that another thread cleared the cache *and* this slot was
+ * already refilled, which could result in a mostly fruitless cache
+ * sweep, but such a sequence of events causes no correctness issues.
+ */
+ if ((ptr = (void *)atomic_readandclear_ptr(
+ (uintptr_t *)&free_cache[slot]))
+ != NULL) {
+ unsigned lazy_free_mask;
+
+ /*
+ * Clear the cache, since we failed to find a slot. It is
+ * possible that other threads will continue to insert objects
+ * into the cache while this one sweeps, but that is okay,
+ * since on average the cache is still swept with the same
+ * frequency.
+ */
+
+ /* Handle pointer at current slot. */
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >>
+ pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ arena_dalloc_small(arena, chunk, ptr, pageind, mapelm);
+
+ /* Sweep remainder of slots. */
+ lazy_free_mask = (1U << opt_lazy_free_2pow) - 1;
+ for (i = (slot + 1) & lazy_free_mask;
+ i != slot;
+ i = (i + 1) & lazy_free_mask) {
+ ptr = (void *)atomic_readandclear_ptr(
+ (uintptr_t *)&free_cache[i]);
+ if (ptr != NULL) {
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ arena_dalloc_small(arena, chunk, ptr, pageind,
+ mapelm);
+ }
+ }
+ }
+
+ malloc_spin_unlock(&arena->lock);
+}
+#endif
+
+static void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ unsigned pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(chunk->arena == arena);
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ if (mapelm->pos != 0 || ptr != (void *)(((uintptr_t)chunk) + (pageind <<
+ pagesize_2pow))) {
+ /* Small allocation. */
+#ifdef MALLOC_LAZY_FREE
+ arena_dalloc_lazy(arena, chunk, ptr, pageind, mapelm);
+#else
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, pageind, mapelm);
+ malloc_spin_unlock(&arena->lock);
+#endif
+ } else {
+ size_t size;
+
+ /* Large allocation. */
+
+ size = mapelm->npages << pagesize_2pow;
+ assert((((uintptr_t)ptr) & pagesize_mask) == 0);
+
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+
+ malloc_spin_lock(&arena->lock);
+ arena_run_dalloc(arena, (arena_run_t *)ptr, size);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= size;
+ arena->stats.ndalloc_large++;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ }
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t pow2_size, prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+ /* Initialize chunks. */
+ RB_INIT(&arena->chunks);
+ arena->spare = NULL;
+
+#ifdef MALLOC_BALANCE
+ arena->contention = 0;
+#endif
+#ifdef MALLOC_LAZY_FREE
+ if (opt_lazy_free_2pow >= 0) {
+ arena->free_cache = (void **) base_alloc(sizeof(void *)
+ * (1U << opt_lazy_free_2pow));
+ if (arena->free_cache == NULL)
+ return (true);
+ memset(arena->free_cache, 0, sizeof(void *)
+ * (1U << opt_lazy_free_2pow));
+ } else
+ arena->free_cache = NULL;
+#endif
+
+ /* Initialize bins. */
+ prev_run_size = pagesize;
+
+ /* (2^n)-spaced tiny bins. */
+ for (i = 0; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ RB_INIT(&bin->runs);
+
+ bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ RB_INIT(&bin->runs);
+
+ bin->reg_size = quantum * (i - ntbins + 1);
+
+ pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* (2^n)-spaced sub-page bins. */
+ for (; i < ntbins + nqbins + nsbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ RB_INIT(&bin->runs);
+
+ bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#ifdef MALLOC_DEBUG
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
+ if (ret != NULL && arena_new(ret) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ void *ret;
+ size_t csize;
+ chunk_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate a chunk node with which to track the chunk. */
+ node = base_chunk_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize);
+ if (ret == NULL) {
+ base_chunk_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->chunk = ret;
+ node->size = csize;
+
+ malloc_mutex_lock(&chunks_mtx);
+ RB_INSERT(chunk_tree_s, &huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += csize;
+#endif
+ malloc_mutex_unlock(&chunks_mtx);
+
+ if (zero == false) {
+ if (opt_junk)
+ memset(ret, 0xa5, csize);
+ else if (opt_zero)
+ memset(ret, 0, csize);
+ }
+
+ return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t alloc_size, chunk_size, offset;
+ chunk_node_t *node;
+
+ /*
+ * This allocation requires alignment that is even larger than chunk
+ * alignment. This means that huge_malloc() isn't good enough.
+ *
+ * Allocate almost twice as many chunks as are demanded by the size or
+ * alignment, in order to assure the alignment can be achieved, then
+ * unmap leading and trailing chunks.
+ */
+ assert(alignment >= chunksize);
+
+ chunk_size = CHUNK_CEILING(size);
+
+ if (size >= alignment)
+ alloc_size = chunk_size + alignment - chunksize;
+ else
+ alloc_size = (alignment << 1) - chunksize;
+
+ /* Allocate a chunk node with which to track the chunk. */
+ node = base_chunk_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(alloc_size);
+ if (ret == NULL) {
+ base_chunk_node_dealloc(node);
+ return (NULL);
+ }
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & chunksize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0) {
+ /* Trim trailing space. */
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
+ - chunk_size);
+ } else {
+ size_t trailsize;
+
+ /* Trim leading space. */
+ chunk_dealloc(ret, alignment - offset);
+
+ ret = (void *)((uintptr_t)ret + (alignment - offset));
+
+ trailsize = alloc_size - (alignment - offset) - chunk_size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
+ trailsize);
+ }
+ }
+
+ /* Insert node into huge. */
+ node->chunk = ret;
+ node->size = chunk_size;
+
+ malloc_mutex_lock(&chunks_mtx);
+ RB_INSERT(chunk_tree_s, &huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+ huge_allocated += chunk_size;
+#endif
+ malloc_mutex_unlock(&chunks_mtx);
+
+ if (opt_junk)
+ memset(ret, 0xa5, chunk_size);
+ else if (opt_zero)
+ memset(ret, 0, chunk_size);
+
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+
+ /* Avoid moving the allocation if the size class would not change. */
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+ - size);
+ } else if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ if (CHUNK_ADDR2BASE(ptr) == ptr) {
+ /* The old allocation is a chunk. */
+ if (size < oldsize)
+ memcpy(ret, ptr, size);
+ else
+ memcpy(ret, ptr, oldsize);
+ } else {
+ /* The old allocation is a region. */
+ assert(oldsize < size);
+ memcpy(ret, ptr, oldsize);
+ }
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ chunk_node_t key;
+ chunk_node_t *node;
+
+ malloc_mutex_lock(&chunks_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.chunk = ptr;
+ node = RB_FIND(chunk_tree_s, &huge, &key);
+ assert(node != NULL);
+ assert(node->chunk == ptr);
+ RB_REMOVE(chunk_tree_s, &huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+#endif
+
+ malloc_mutex_unlock(&chunks_mtx);
+
+ /* Unmap chunk. */
+#ifdef MALLOC_DSS
+ if (opt_dss && opt_junk)
+ memset(node->chunk, 0x5a, node->size);
+#endif
+ chunk_dealloc(node->chunk, node->size);
+
+ base_chunk_node_dealloc(node);
+}
+
+static void *
+imalloc(size_t size)
+{
+ void *ret;
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ ret = arena_malloc(choose_arena(), size, false);
+ else
+ ret = huge_malloc(size, false);
+
+ return (ret);
+}
+
+static void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= pagesize || (alignment <= pagesize
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(choose_arena(), ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve sub-page alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * pagesize of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - pagesize;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract pagesize, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - pagesize;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(alignment, ceil_size);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+static void *
+icalloc(size_t size)
+{
+ void *ret;
+
+ if (size <= arena_maxclass)
+ ret = arena_malloc(choose_arena(), size, true);
+ else
+ ret = huge_malloc(size, true);
+
+ return (ret);
+}
+
+static size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ chunk_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&chunks_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.chunk = __DECONST(void *, ptr);
+ node = RB_FIND(chunk_tree_s, &huge, &key);
+ assert(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&chunks_mtx);
+ }
+
+ return (ret);
+}
+
+static void *
+iralloc(void *ptr, size_t size)
+{
+ void *ret;
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+ if (size <= arena_maxclass)
+ ret = arena_ralloc(ptr, size, oldsize);
+ else
+ ret = huge_ralloc(ptr, size, oldsize);
+
+ return (ret);
+}
+
+static void
+idalloc(void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ arena_dalloc(chunk->arena, chunk, ptr);
+ } else
+ huge_dalloc(ptr);
+}
+
+static void
+malloc_print_stats(void)
+{
+
+ if (opt_print_stats) {
+ char s[UMAX2S_BUFSIZE];
+ _malloc_message("___ Begin malloc statistics ___\n", "", "",
+ "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ",
+ opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_dss ? "D" : "d", "", "", "");
+#endif
+ _malloc_message(opt_hint ? "H" : "h",
+ opt_junk ? "J" : "j", "", "");
+#ifdef MALLOC_DSS
+ _malloc_message(opt_mmap ? "M" : "m", "", "", "");
+#endif
+ _malloc_message(opt_utrace ? "PU" : "Pu",
+ opt_sysv ? "V" : "v",
+ opt_xmalloc ? "X" : "x",
+ opt_zero ? "Z\n" : "z\n");
+
+ _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+ _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_LAZY_FREE
+ if (opt_lazy_free_2pow >= 0) {
+ _malloc_message("Lazy free slots: ",
+ umax2s(1U << opt_lazy_free_2pow, s), "\n", "");
+ } else
+ _malloc_message("Lazy free slots: 0\n", "", "", "");
+#endif
+#ifdef MALLOC_BALANCE
+ _malloc_message("Arena balance threshold: ",
+ umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+ "\n", "");
+ _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
+ _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
+ "");
+
+ _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+ _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+ uint64_t nbalance = 0;
+#endif
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated +=
+ arenas[i]->stats.allocated_small;
+ allocated +=
+ arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+ nbalance += arenas[i]->stats.nbalance;
+#endif
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&chunks_mtx);
+ allocated += huge_allocated;
+ mapped = stats_chunks.curchunks * chunksize;
+ malloc_mutex_unlock(&chunks_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_printf("Allocated: %zu, mapped: %zu\n",
+ allocated, mapped);
+
+#ifdef MALLOC_BALANCE
+ malloc_printf("Arena balance reassignments: %llu\n",
+ nbalance);
+#endif
+
+ /* Print chunk stats. */
+ {
+ chunk_stats_t chunks_stats;
+
+ malloc_mutex_lock(&chunks_mtx);
+ chunks_stats = stats_chunks;
+ malloc_mutex_unlock(&chunks_mtx);
+
+ malloc_printf("chunks: nchunks "
+ "highchunks curchunks\n");
+ malloc_printf(" %13llu%13lu%13lu\n",
+ chunks_stats.nchunks,
+ chunks_stats.highchunks,
+ chunks_stats.curchunks);
+ }
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+ malloc_printf(" %12llu %12llu %12zu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf(
+ "\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+ }
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+
+static bool
+malloc_init_hard(void)
+{
+ unsigned i;
+ int linklen;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+
+ malloc_mutex_lock(&init_lock);
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+ }
+
+ /* Get number of CPUs. */
+ {
+ int mib[2];
+ size_t len;
+
+ mib[0] = CTL_HW;
+ mib[1] = HW_NCPU;
+ len = sizeof(ncpus);
+ if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
+ /* Error. */
+ ncpus = 1;
+ }
+ }
+
+#ifdef MALLOC_LAZY_FREE
+ if (ncpus == 1)
+ opt_lazy_free_2pow = -1;
+#endif
+
+ /* Get page size. */
+ {
+ long result;
+
+ result = sysconf(_SC_PAGESIZE);
+ assert(result != -1);
+ pagesize = (unsigned) result;
+
+ /*
+ * We assume that pagesize is a power of 2 when calculating
+ * pagesize_mask and pagesize_2pow.
+ */
+ assert(((result - 1) & result) == 0);
+ pagesize_mask = result - 1;
+ pagesize_2pow = ffs((int)result) - 1;
+ }
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if (issetugid() == 0 && (opts =
+ getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ assert(false);
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto OUT;
+ }
+ }
+OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'b':
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold >>= 1;
+#endif
+ break;
+ case 'B':
+#ifdef MALLOC_BALANCE
+ if (opt_balance_threshold == 0)
+ opt_balance_threshold = 1;
+ else if ((opt_balance_threshold << 1)
+ > opt_balance_threshold)
+ opt_balance_threshold <<= 1;
+#endif
+ break;
+ case 'd':
+#ifdef MALLOC_DSS
+ opt_dss = false;
+#endif
+ break;
+ case 'D':
+#ifdef MALLOC_DSS
+ opt_dss = true;
+#endif
+ break;
+ case 'h':
+ opt_hint = false;
+ break;
+ case 'H':
+ opt_hint = true;
+ break;
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, so chunks can never be
+ * smaller than two pages.
+ */
+ if (opt_chunk_2pow > pagesize_2pow + 1)
+ opt_chunk_2pow--;
+ break;
+ case 'K':
+ /*
+ * There must be fewer pages in a chunk
+ * than can be recorded by the pos
+ * field of arena_chunk_map_t, in order
+ * to make POS_EMPTY/POS_FREE special.
+ */
+ if (opt_chunk_2pow - pagesize_2pow
+ < (sizeof(uint32_t) << 3) - 1)
+ opt_chunk_2pow++;
+ break;
+ case 'l':
+#ifdef MALLOC_LAZY_FREE
+ if (opt_lazy_free_2pow >= 0)
+ opt_lazy_free_2pow--;
+#endif
+ break;
+ case 'L':
+#ifdef MALLOC_LAZY_FREE
+ if (ncpus > 1)
+ opt_lazy_free_2pow++;
+#endif
+ break;
+ case 'm':
+#ifdef MALLOC_DSS
+ opt_mmap = false;
+#endif
+ break;
+ case 'M':
+#ifdef MALLOC_DSS
+ opt_mmap = true;
+#endif
+ break;
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+ case 'p':
+ opt_print_stats = false;
+ break;
+ case 'P':
+ opt_print_stats = true;
+ break;
+ case 'q':
+ if (opt_quantum_2pow > QUANTUM_2POW_MIN)
+ opt_quantum_2pow--;
+ break;
+ case 'Q':
+ if (opt_quantum_2pow < pagesize_2pow -
+ 1)
+ opt_quantum_2pow++;
+ break;
+ case 's':
+ if (opt_small_max_2pow >
+ QUANTUM_2POW_MIN)
+ opt_small_max_2pow--;
+ break;
+ case 'S':
+ if (opt_small_max_2pow < pagesize_2pow
+ - 1)
+ opt_small_max_2pow++;
+ break;
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+#ifdef MALLOC_DSS
+ /* Make sure that there is some method for acquiring memory. */
+ if (opt_dss == false && opt_mmap == false)
+ opt_mmap = true;
+#endif
+
+ /* Take care to call atexit() only once. */
+ if (opt_print_stats) {
+ /* Print statistics at exit. */
+ atexit(malloc_print_stats);
+ }
+
+ /* Set variables according to the value of opt_small_max_2pow. */
+ if (opt_small_max_2pow < opt_quantum_2pow)
+ opt_small_max_2pow = opt_quantum_2pow;
+ small_max = (1U << opt_small_max_2pow);
+
+ /* Set bin-related variables. */
+ bin_maxclass = (pagesize >> 1);
+ assert(opt_quantum_2pow >= TINY_MIN_2POW);
+ ntbins = opt_quantum_2pow - TINY_MIN_2POW;
+ assert(ntbins <= opt_quantum_2pow);
+ nqbins = (small_max >> opt_quantum_2pow);
+ nsbins = pagesize_2pow - opt_small_max_2pow - 1;
+
+ /* Set variables according to the value of opt_quantum_2pow. */
+ quantum = (1U << opt_quantum_2pow);
+ quantum_mask = quantum - 1;
+ if (ntbins > 0)
+ small_min = (quantum >> 1) + 1;
+ else
+ small_min = 1;
+ assert(small_min <= quantum);
+
+ /* Set variables according to the value of opt_chunk_2pow. */
+ chunksize = (1LU << opt_chunk_2pow);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> pagesize_2pow);
+ {
+ unsigned header_size;
+
+ header_size = sizeof(arena_chunk_t) + (sizeof(arena_chunk_map_t)
+ * (chunk_npages - 1));
+ arena_chunk_header_npages = (header_size >> pagesize_2pow);
+ if ((header_size & pagesize_mask) != 0)
+ arena_chunk_header_npages++;
+ }
+ arena_maxclass = chunksize - (arena_chunk_header_npages <<
+ pagesize_2pow);
+#ifdef MALLOC_LAZY_FREE
+ /*
+ * Make sure that allocating the free_cache does not exceed the limits
+ * of what base_alloc() can handle.
+ */
+ while ((sizeof(void *) << opt_lazy_free_2pow) > chunksize)
+ opt_lazy_free_2pow--;
+#endif
+
+ UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+ memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+ /* Various sanity checks that regard configuration. */
+ assert(quantum >= sizeof(void *));
+ assert(quantum <= pagesize);
+ assert(chunksize >= pagesize);
+ assert(quantum * 4 <= chunksize);
+
+ /* Initialize chunks data. */
+ malloc_mutex_init(&chunks_mtx);
+ RB_INIT(&huge);
+#ifdef MALLOC_DSS
+ malloc_mutex_init(&dss_mtx);
+ dss_base = sbrk(0);
+ dss_prev = dss_base;
+ dss_max = dss_base;
+#endif
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+#endif
+ RB_INIT(&old_chunks);
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+#endif
+#ifdef MALLOC_DSS
+ /*
+ * Allocate a base chunk here, since it doesn't actually have to be
+ * chunk-aligned. Doing this before allocating any other chunks allows
+ * the use of space that would otherwise be wasted.
+ */
+ if (opt_dss)
+ base_pages_alloc(0);
+#endif
+ base_chunk_nodes = NULL;
+ malloc_mutex_init(&base_mtx);
+
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create four times as many arenas as there
+ * are CPUs by default.
+ */
+ opt_narenas_lshift += 2;
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+#ifdef MALLOC_BALANCE
+ assert(narenas != 0);
+ for (narenas_2pow = 0;
+ (narenas >> (narenas_2pow + 1)) != 0;
+ narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+# ifndef MALLOC_BALANCE
+ next_arena = 0;
+# endif
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+ malloc_mutex_unlock(&init_lock);
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+ arenas_map = arenas[0];
+#endif
+ /*
+ * Seed here for the initial thread, since choose_arena_hard() is only
+ * called for other threads. The seed values don't really matter.
+ */
+#ifdef MALLOC_LAZY_FREE
+ SPRN(lazy_free, 42);
+#endif
+#ifdef MALLOC_BALANCE
+ SPRN(balance, 42);
+#endif
+
+ malloc_spin_init(&arenas_lock);
+
+ malloc_initialized = true;
+ malloc_mutex_unlock(&init_lock);
+ return (false);
+}
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+void *
+malloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ ret = imalloc(size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+ int ret;
+ void *result;
+
+ if (malloc_init())
+ result = NULL;
+ else {
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0
+ || alignment < sizeof(void *)) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+ result = NULL;
+ ret = EINVAL;
+ goto RETURN;
+ }
+
+ result = ipalloc(alignment, size);
+ }
+
+ if (result == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): out of memory\n",
+ "", "");
+ abort();
+ }
+ ret = ENOMEM;
+ goto RETURN;
+ }
+
+ *memptr = result;
+ ret = 0;
+
+RETURN:
+ UTRACE(0, size, result);
+ return (ret);
+}
+
+void *
+calloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+ num_size = 1;
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+void *
+realloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+ if (opt_sysv == false)
+ size = 1;
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+ errno = ENOMEM;
+ }
+ }
+
+RETURN:
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+void
+free(void *ptr)
+{
+
+ UTRACE(ptr, 0, 0);
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ idalloc(ptr);
+ }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions, used by threading libraries for protection
+ * of malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&chunks_mtx);
+}
+
+void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+ malloc_mutex_unlock(&chunks_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
OpenPOWER on IntegriCloud