diff options
Diffstat (limited to 'lib/libc/stdlib/malloc.c')
-rw-r--r-- | lib/libc/stdlib/malloc.c | 3539 |
1 files changed, 3539 insertions, 0 deletions
diff --git a/lib/libc/stdlib/malloc.c b/lib/libc/stdlib/malloc.c new file mode 100644 index 0000000..91357a0 --- /dev/null +++ b/lib/libc/stdlib/malloc.c @@ -0,0 +1,3539 @@ +/*- + * Copyright (C) 2006 Jason Evans <jasone@FreeBSD.org>. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice(s), this list of conditions and the following disclaimer as + * the first lines of this file unmodified other than the possible + * addition of one or more copyright notices. + * 2. Redistributions in binary form must reproduce the above copyright + * notice(s), this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ******************************************************************************* + * + * This allocator implementation is designed to provide scalable performance + * for multi-threaded programs on multi-processor systems. The following + * features are included for this purpose: + * + * + Multiple arenas are used if there are multiple CPUs, which reduces lock + * contention and cache sloshing. + * + * + Cache line sharing between arenas is avoided for internal data + * structures. + * + * + Memory is managed in chunks and runs (chunks can be split into runs using + * a binary buddy scheme), rather than as individual pages. This provides + * a constant-time mechanism for associating allocations with particular + * arenas. + * + * Allocation requests are rounded up to the nearest size class, and no record + * of the original request size is maintained. Allocations are broken into + * categories according to size class. Assuming runtime defaults, 4 kB pages + * and a 16 byte quantum, the size classes in each category are as follows: + * + * |====================================| + * | Category | Subcategory | Size | + * |====================================| + * | Small | Tiny | 2 | + * | | | 4 | + * | | | 8 | + * | |----------------+--------| + * | | Quantum-spaced | 16 | + * | | | 32 | + * | | | 48 | + * | | | ... | + * | | | 480 | + * | | | 496 | + * | | | 512 | + * | |----------------+--------| + * | | Sub-page | 1 kB | + * | | | 2 kB | + * |====================================| + * | Medium | 4 kB | + * | | 8 kB | + * | | 16 kB | + * | | ... | + * | | 256 kB | + * | | 512 kB | + * | | 1 MB | + * |====================================| + * | Large | 2 MB | + * | | 4 MB | + * | | 6 MB | + * | | ... | + * |====================================| + * + * A different mechanism is used for each category: + * + * Small : Each size class is segregated into its own set of runs. Each run + * maintains a bitmap of which regions are free/allocated. + * + * Medium : Each allocation is backed by a dedicated run. Metadata are stored + * in the associated arena chunk header maps. + * + * Large : Each allocation is backed by a dedicated contiguous set of chunks. + * Metadata are stored in a separate red-black tree. + * + ******************************************************************************* + */ + +/* + ******************************************************************************* + * + * Ring macros. + * + ******************************************************************************* + */ + +/* Ring definitions. */ +#define qr(a_type) struct { \ + a_type *qre_next; \ + a_type *qre_prev; \ +} + +#define qr_initializer {NULL, NULL} + +/* Ring functions. */ +#define qr_new(a_qr, a_field) do { \ + (a_qr)->a_field.qre_next = (a_qr); \ + (a_qr)->a_field.qre_prev = (a_qr); \ +} while (0) + +#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next) + +#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev) + +#define qr_before_insert(a_qrelm, a_qr, a_field) do { \ + (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \ + (a_qr)->a_field.qre_next = (a_qrelm); \ + (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \ + (a_qrelm)->a_field.qre_prev = (a_qr); \ +} while (0) + +#define qr_after_insert(a_qrelm, a_qr, a_field) do { \ + (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \ + (a_qr)->a_field.qre_prev = (a_qrelm); \ + (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \ + (a_qrelm)->a_field.qre_next = (a_qr); \ +} while (0) + +#define qr_meld(a_qr_a, a_qr_b, a_type, a_field) do { \ + a_type *t; \ + (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \ + (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \ + t = (a_qr_a)->a_field.qre_prev; \ + (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \ + (a_qr_b)->a_field.qre_prev = t; \ +} while (0) + +/* qr_meld() and qr_split() are functionally equivalent, so there's no need to + * have two copies of the code. */ +#define qr_split(a_qr_a, a_qr_b, a_type, a_field) \ + qr_meld((a_qr_a), (a_qr_b), a_type, a_field) + +#define qr_remove(a_qr, a_field) do { \ + (a_qr)->a_field.qre_prev->a_field.qre_next \ + = (a_qr)->a_field.qre_next; \ + (a_qr)->a_field.qre_next->a_field.qre_prev \ + = (a_qr)->a_field.qre_prev; \ + (a_qr)->a_field.qre_next = (a_qr); \ + (a_qr)->a_field.qre_prev = (a_qr); \ +} while (0) + +#define qr_foreach(var, a_qr, a_field) \ + for ((var) = (a_qr); \ + (var) != NULL; \ + (var) = (((var)->a_field.qre_next != (a_qr)) \ + ? (var)->a_field.qre_next : NULL)) + +#define qr_reverse_foreach(var, a_qr, a_field) \ + for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \ + (var) != NULL; \ + (var) = (((var) != (a_qr)) \ + ? (var)->a_field.qre_prev : NULL)) + +/******************************************************************************/ + +/* + * In order to disable various extra features that may have negative + * performance impacts, (assertions, expanded statistics, redzones), define + * NO_MALLOC_EXTRAS. + */ +/* #define NO_MALLOC_EXTRAS */ + +#ifndef NO_MALLOC_EXTRAS +# define MALLOC_DEBUG +#endif + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include "libc_private.h" +#ifdef MALLOC_DEBUG +# define _LOCK_DEBUG +#endif +#include "spinlock.h" +#include "namespace.h" +#include <sys/mman.h> +#include <sys/param.h> +#include <sys/stddef.h> +#include <sys/time.h> +#include <sys/types.h> +#include <sys/sysctl.h> +#include <sys/tree.h> +#include <sys/uio.h> +#include <sys/ktrace.h> /* Must come after several other sys/ includes. */ + +#include <machine/atomic.h> +#include <machine/cpufunc.h> +#include <machine/vmparam.h> + +#include <errno.h> +#include <limits.h> +#include <pthread.h> +#include <sched.h> +#include <stdarg.h> +#include <stdbool.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <strings.h> +#include <unistd.h> + +#include "un-namespace.h" + +/* + * Calculate statistics that can be used to get an idea of how well caching is + * working. + */ +#ifndef NO_MALLOC_EXTRAS +# define MALLOC_STATS +#endif + +#ifndef MALLOC_DEBUG +# ifndef NDEBUG +# define NDEBUG +# endif +#endif +#include <assert.h> + +#ifdef MALLOC_DEBUG + /* Disable inlining to make debugging easier. */ +# define inline +#endif + +/* Size of stack-allocated buffer passed to strerror_r(). */ +#define STRERROR_BUF 64 + +/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */ +#ifdef __i386__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR 4 +# define USE_BRK +#endif +#ifdef __ia64__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR 8 +# define NO_TLS +#endif +#ifdef __alpha__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR 8 +# define NO_TLS +#endif +#ifdef __sparc64__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR 8 +# define NO_TLS +#endif +#ifdef __amd64__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR 8 +#endif +#ifdef __arm__ +# define QUANTUM_2POW_MIN 3 +# define SIZEOF_PTR 4 +# define USE_BRK +# define NO_TLS +#endif +#ifdef __powerpc__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR 4 +# define USE_BRK +#endif + +/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ +#if (!defined(PIC) && !defined(NO_TLS)) +# define NO_TLS +#endif + +/* + * Size and alignment of memory chunks that are allocated by the OS's virtual + * memory system. + * + * chunksize limits: + * + * 2^(pagesize_2pow - 1 + RUN_MIN_REGS_2POW) <= chunk_size <= 2^28 + */ +#define CHUNK_2POW_DEFAULT 21 +#define CHUNK_2POW_MAX 28 + +/* + * Maximum size of L1 cache line. This is used to avoid cache line aliasing, + * so over-estimates are okay (up to a point), but under-estimates will + * negatively affect performance. + */ +#define CACHELINE_2POW 6 +#define CACHELINE ((size_t)(1 << CACHELINE_2POW)) + +/* + * Maximum size class that is a multiple of the quantum, but not (necessarily) + * a power of 2. Above this size, allocations are rounded up to the nearest + * power of 2. + */ +#define SMALL_MAX_2POW_DEFAULT 9 +#define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT) + +/* + * Minimum number of regions that must fit into a run that serves quantum-size + * bin allocations. + * + * Note that if this is set too low, space will be wasted if there are size + * classes that are small enough that RUN_MIN_REGS regions don't fill a page. + * If this is set too high, then the overhead of searching through the bitmap + * that tracks region usage will become excessive. + */ +#define RUN_MIN_REGS_2POW 10 +#define RUN_MIN_REGS (1 << RUN_MIN_REGS_2POW) + +/* + * Maximum number of pages for a run that is used for bin allocations. + * + * Note that if this is set too low, then fragmentation for the largest bin + * size classes will be high. If this is set too high, then even small + * programs will often have to allocate more than two chunks early on. + */ +#define RUN_MAX_PAGES_2POW 4 +#define RUN_MAX_PAGES (1 << RUN_MAX_PAGES_2POW) + +/******************************************************************************/ + +/* + * Mutexes based on spinlocks. We can't use normal pthread mutexes, because + * they require malloc()ed memory. + */ +typedef struct { + spinlock_t lock; +} malloc_mutex_t; + +static bool malloc_initialized = false; + +/******************************************************************************/ +/* + * Statistics data structures. + */ + +#ifdef MALLOC_STATS + +typedef struct malloc_bin_stats_s malloc_bin_stats_t; +struct malloc_bin_stats_s { + /* + * Number of allocation requests that corresponded to the size of this + * bin. + */ + uint64_t nrequests; + + /* Total number of runs created for this bin's size class. */ + uint64_t nruns; + + /* + * Total number of run promotions/demotions for this bin's size class. + */ + uint64_t npromote; + uint64_t ndemote; + + /* High-water mark for this bin. */ + unsigned long highruns; + + /* Current number of runs in this bin. */ + unsigned long curruns; +}; + +typedef struct arena_stats_s arena_stats_t; +struct arena_stats_s { + /* Total byte count of allocated memory, not including overhead. */ + size_t allocated; + + /* Number of times each function was called. */ + uint64_t nmalloc; + uint64_t npalloc; + uint64_t ncalloc; + uint64_t ndalloc; + uint64_t nralloc; + uint64_t nmadvise; +}; + +typedef struct chunk_stats_s chunk_stats_t; +struct chunk_stats_s { + /* Number of chunks that were allocated. */ + uint64_t nchunks; + + /* High-water mark for number of chunks allocated. */ + unsigned long highchunks; + + /* + * Current number of chunks allocated. This value isn't maintained for + * any other purpose, so keep track of it in order to be able to set + * highchunks. + */ + unsigned long curchunks; +}; + +#endif /* #ifdef MALLOC_STATS */ + +/******************************************************************************/ +/* + * Chunk data structures. + */ + +/* Tree of chunks. */ +typedef struct chunk_node_s chunk_node_t; +struct chunk_node_s { + /* Linkage for the chunk tree. */ + RB_ENTRY(chunk_node_s) link; + + /* + * Pointer to the chunk that this tree node is responsible for. In some + * (but certainly not all) cases, this data structure is placed at the + * beginning of the corresponding chunk, so this field may point to this + * node. + */ + void *chunk; + + /* Total chunk size. */ + size_t size; +}; +typedef struct chunk_tree_s chunk_tree_t; +RB_HEAD(chunk_tree_s, chunk_node_s); + +/******************************************************************************/ +/* + * Arena data structures. + */ + +typedef struct arena_s arena_t; +typedef struct arena_bin_s arena_bin_t; + +typedef struct arena_chunk_map_s arena_chunk_map_t; +struct arena_chunk_map_s { + bool free:1; + bool large:1; + unsigned npages:15; /* Limiting factor for CHUNK_2POW_MAX. */ + unsigned pos:15; +}; + +/* Arena chunk header. */ +typedef struct arena_chunk_s arena_chunk_t; +struct arena_chunk_s { + /* Arena that owns the chunk. */ + arena_t *arena; + + /* Linkage for the arena's chunk tree. */ + RB_ENTRY(arena_chunk_s) link; + + /* + * Number of pages in use. This is maintained in order to make + * detection of empty chunks fast. + */ + uint32_t pages_used; + + /* + * Array of counters that keeps track of how many free runs of each + * size are available in this chunk. This table is sized at compile + * time, which is wasteful. However, due to unrelated rounding, this + * doesn't actually waste any otherwise useful space. + * + * index == 2^n pages + * + * index | npages + * ------+------- + * 0 | 1 + * 1 | 2 + * 2 | 4 + * 3 | 8 + * : + */ + uint32_t nfree_runs[CHUNK_2POW_MAX/* - PAGE_SHIFT */]; + + /* Map of pages within chunk that keeps track of free/large/small. */ + arena_chunk_map_t map[1]; /* Dynamically sized. */ +}; +typedef struct arena_chunk_tree_s arena_chunk_tree_t; +RB_HEAD(arena_chunk_tree_s, arena_chunk_s); + +typedef struct arena_run_s arena_run_t; +struct arena_run_s { + /* Linkage for run rings. */ + qr(arena_run_t) link; + +#ifdef MALLOC_DEBUG + uint32_t magic; +# define ARENA_RUN_MAGIC 0x384adf93 +#endif + + /* Bin this run is associated with. */ + arena_bin_t *bin; + + /* Bitmask of in-use regions (0: in use, 1: free). */ +#define REGS_MASK_NELMS \ + ((1 << (RUN_MIN_REGS_2POW + 1)) / (sizeof(unsigned) << 3)) + unsigned regs_mask[REGS_MASK_NELMS]; + + /* Index of first element that might have a free region. */ + unsigned regs_minelm:(RUN_MIN_REGS_2POW + 2); + + /* Number of free regions in run. */ + unsigned nfree:(RUN_MIN_REGS_2POW + 2); + + /* + * Current quartile for this run, one of: {RUN_QINIT, RUN_Q0, RUN_25, + * RUN_Q50, RUN_Q75, RUN_Q100}. + */ +#define RUN_QINIT 0 +#define RUN_Q0 1 +#define RUN_Q25 2 +#define RUN_Q50 3 +#define RUN_Q75 4 +#define RUN_Q100 5 + unsigned quartile:3; + + /* + * Limits on the number of free regions for the fullness quartile this + * run is currently in. If nfree goes outside these limits, the run + * is moved to a different fullness quartile. + */ + unsigned free_max:(RUN_MIN_REGS_2POW + 2); + unsigned free_min:(RUN_MIN_REGS_2POW + 2); +}; + +/* Used for run ring headers, where the run isn't actually used. */ +typedef struct arena_run_link_s arena_run_link_t; +struct arena_run_link_s { + /* Linkage for run rings. */ + qr(arena_run_t) link; +}; + +struct arena_bin_s { + /* + * Current run being used to service allocations of this bin's size + * class. + */ + arena_run_t *runcur; + + /* + * Links into rings of runs, of various fullnesses (names indicate + * approximate lower bounds). A new run conceptually starts off in + * runsinit, and it isn't inserted into the runs0 ring until it + * reaches 25% full (hysteresis mechanism). For the run to be moved + * again, it must become either empty or 50% full. Thus, each ring + * contains runs that are within 50% above the advertised fullness for + * the ring. This provides a low-overhead mechanism for segregating + * runs into approximate fullness classes. + * + * Conceptually, there is a runs100 that contains completely full runs. + * Since we don't need to search for these runs though, no runs100 ring + * is actually maintained. + * + * These rings are useful when looking for an existing run to use when + * runcur is no longer usable. We look for usable runs in the + * following order: + * + * 1) runs50 + * 2) runs25 + * 3) runs0 + * 4) runs75 + * + * runs75 isn't a good place to look, because it contains runs that may + * be nearly completely full. Still, we look there as a last resort in + * order to avoid allocating a new run if at all possible. + */ + /* arena_run_link_t runsinit; 0% <= fullness < 25% */ + arena_run_link_t runs0; /* 0% < fullness < 50% */ + arena_run_link_t runs25; /* 25% < fullness < 75% */ + arena_run_link_t runs50; /* 50% < fullness < 100% */ + arena_run_link_t runs75; /* 75% < fullness < 100% */ + /* arena_run_link_t runs100; fullness == 100% */ + + /* Size of regions in a run for this bin's size class. */ + size_t reg_size; + + /* Total size of a run for this bin's size class. */ + size_t run_size; + + /* Total number of regions in a run for this bin's size class. */ + uint32_t nregs; + + /* Offset of first region in a run for this bin's size class. */ + uint32_t reg0_offset; + +#ifdef MALLOC_STATS + /* Bin statistics. */ + malloc_bin_stats_t stats; +#endif +}; + +struct arena_s { +#ifdef MALLOC_DEBUG + uint32_t magic; +# define ARENA_MAGIC 0x947d3d24 +#endif + + /* All operations on this arena require that mtx be locked. */ + malloc_mutex_t mtx; + +#ifdef MALLOC_STATS + arena_stats_t stats; +#endif + + /* + * Tree of chunks this arena manages. + */ + arena_chunk_tree_t chunks; + + /* + * bins is used to store rings of free regions of the following sizes, + * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS. + * + * bins[i] | size | + * --------+------+ + * 0 | 2 | + * 1 | 4 | + * 2 | 8 | + * --------+------+ + * 3 | 16 | + * 4 | 32 | + * 5 | 48 | + * 6 | 64 | + * : : + * : : + * 33 | 496 | + * 34 | 512 | + * --------+------+ + * 35 | 1024 | + * 36 | 2048 | + * --------+------+ + */ + arena_bin_t bins[1]; /* Dynamically sized. */ +}; + +/******************************************************************************/ +/* + * Data. + */ + +/* Used as a special "nil" return value for malloc(0). */ +static int nil; + +/* Number of CPUs. */ +static unsigned ncpus; + +/* VM page size. */ +static unsigned pagesize; +static unsigned pagesize_2pow; + +/* Various bin-related settings. */ +static size_t bin_maxclass; /* Max size class for bins. */ +static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */ +static unsigned nqbins; /* Number of quantum-spaced bins. */ +static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */ +static size_t small_min; +static size_t small_max; +static unsigned tiny_min_2pow; + +/* Various quantum-related settings. */ +static size_t quantum; +static size_t quantum_mask; /* (quantum - 1). */ + +/* Various chunk-related settings. */ +static size_t chunk_size; +static size_t chunk_size_mask; /* (chunk_size - 1). */ +static size_t arena_maxclass; /* Max size class for arenas. */ +static unsigned arena_chunk_maplen; + +/********/ +/* + * Chunks. + */ + +/* Protects chunk-related data structures. */ +static malloc_mutex_t chunks_mtx; + +/* Tree of chunks that are stand-alone huge allocations. */ +static chunk_tree_t huge; + +#ifdef USE_BRK +/* + * Try to use brk for chunk-size allocations, due to address space constraints. + */ +/* Result of first sbrk(0) call. */ +static void *brk_base; +/* Current end of brk, or ((void *)-1) if brk is exhausted. */ +static void *brk_prev; +/* Upper limit on brk addresses (may be an over-estimate). */ +static void *brk_max; +#endif + +#ifdef MALLOC_STATS +/* + * Byte counters for allocated/total space used by the chunks in the huge + * allocations tree. + */ +static uint64_t huge_nmalloc; +static uint64_t huge_ndalloc; +static size_t huge_allocated; +#endif + +/* + * Tree of chunks that were previously allocated. This is used when allocating + * chunks, in an attempt to re-use address space. + */ +static chunk_tree_t old_chunks; + +/****************************/ +/* + * base (internal allocation). + */ + +/* + * Current chunk that is being used for internal memory allocations. This + * chunk is carved up in cacheline-size quanta, so that there is no chance of + * false cache line sharing. + */ +static void *base_chunk; +static void *base_next_addr; +static void *base_past_addr; /* Addr immediately past base_chunk. */ +static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */ +static malloc_mutex_t base_mtx; +#ifdef MALLOC_STATS +static uint64_t base_total; +#endif + +/********/ +/* + * Arenas. + */ + +/* + * Arenas that are used to service external requests. Not all elements of the + * arenas array are necessarily used; arenas are created lazily as needed. + */ +static arena_t **arenas; +static unsigned narenas; +#ifndef NO_TLS +static unsigned next_arena; +#endif +static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */ + +#ifndef NO_TLS +/* + * Map of pthread_self() --> arenas[???], used for selecting an arena to use + * for allocations. + */ +static __thread arena_t *arenas_map; +#endif + +#ifdef MALLOC_STATS +/* Chunk statistics. */ +static chunk_stats_t stats_chunks; +#endif + +/*******************************/ +/* + * Runtime configuration options. + */ +const char *_malloc_options; + +#ifndef NO_MALLOC_EXTRAS +static bool opt_abort = true; +static bool opt_junk = true; +#else +static bool opt_abort = false; +static bool opt_junk = false; +#endif +static bool opt_hint = false; +static bool opt_print_stats = false; +static size_t opt_quantum_2pow = QUANTUM_2POW_MIN; +static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT; +static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT; +static bool opt_utrace = false; +static bool opt_sysv = false; +static bool opt_xmalloc = false; +static bool opt_zero = false; +static int32_t opt_narenas_lshift = 0; + +typedef struct { + void *p; + size_t s; + void *r; +} malloc_utrace_t; + +#define UTRACE(a, b, c) \ + if (opt_utrace) { \ + malloc_utrace_t ut = {a, b, c}; \ + utrace(&ut, sizeof(ut)); \ + } + +/******************************************************************************/ +/* + * Begin function prototypes for non-inline static functions. + */ + +static void malloc_mutex_init(malloc_mutex_t *a_mutex); +static void wrtmessage(const char *p1, const char *p2, const char *p3, + const char *p4); +static void malloc_printf(const char *format, ...); +static void *base_alloc(size_t size); +static chunk_node_t *base_chunk_node_alloc(void); +static void base_chunk_node_dealloc(chunk_node_t *node); +#ifdef MALLOC_STATS +static void stats_print(arena_t *arena); +#endif +static void *pages_map(void *addr, size_t size); +static void pages_unmap(void *addr, size_t size); +static void *chunk_alloc(size_t size); +static void chunk_dealloc(void *chunk, size_t size); +static void arena_run_split(arena_t *arena, arena_run_t *run, bool large, + size_t size); +static arena_chunk_t *arena_chunk_alloc(arena_t *arena); +static void arena_chunk_dealloc(arena_chunk_t *chunk); +static void arena_bin_run_refile(arena_t *arena, arena_bin_t *bin, + arena_run_t *run, size_t size, bool promote); +static arena_run_t *arena_run_alloc(arena_t *arena, bool large, size_t size); +static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size); +static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin, + size_t size); +static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin, + size_t size); +static void *arena_malloc(arena_t *arena, size_t size); +static size_t arena_salloc(arena_t *arena, const void *ptr); +static void *arena_ralloc(arena_t *arena, void *ptr, size_t size, + size_t oldsize); +static void arena_dalloc(arena_t *arena, void *ptr); +static bool arena_new(arena_t *arena); +static arena_t *arenas_extend(unsigned ind); +#ifndef NO_TLS +static arena_t *choose_arena_hard(void); +#endif +static void *huge_malloc(size_t size); +static void *huge_ralloc(void *ptr, size_t size, size_t oldsize); +static void huge_dalloc(void *ptr); +static void *imalloc(arena_t *arena, size_t size); +static void *ipalloc(arena_t *arena, size_t alignment, size_t size); +static void *icalloc(arena_t *arena, size_t size); +static size_t isalloc(const void *ptr); +static void *iralloc(arena_t *arena, void *ptr, size_t size); +static void idalloc(void *ptr); +static void malloc_print_stats(void); +static bool malloc_init_hard(void); + +/* + * End function prototypes. + */ +/******************************************************************************/ +/* + * Begin mutex. + */ + +static void +malloc_mutex_init(malloc_mutex_t *a_mutex) +{ + static const spinlock_t lock = _SPINLOCK_INITIALIZER; + + a_mutex->lock = lock; +} + +static inline void +malloc_mutex_lock(malloc_mutex_t *a_mutex) +{ + + if (__isthreaded) + _SPINLOCK(&a_mutex->lock); +} + +static inline void +malloc_mutex_unlock(malloc_mutex_t *a_mutex) +{ + + if (__isthreaded) + _SPINUNLOCK(&a_mutex->lock); +} + +/* + * End mutex. + */ +/******************************************************************************/ +/* + * Begin Utility functions/macros. + */ + +/* Return the chunk address for allocation address a. */ +#define CHUNK_ADDR2BASE(a) \ + ((void *)((uintptr_t)(a) & ~chunk_size_mask)) + +/* Return the chunk offset of address a. */ +#define CHUNK_ADDR2OFFSET(a) \ + ((size_t)((uintptr_t)(a) & chunk_size_mask)) + +/* Return the smallest chunk multiple that is >= s. */ +#define CHUNK_CEILING(s) \ + (((s) + chunk_size_mask) & ~chunk_size_mask) + +/* Return the smallest cacheline multiple that is >= s. */ +#define CACHELINE_CEILING(s) \ + (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1)) + +/* Return the smallest quantum multiple that is >= a. */ +#define QUANTUM_CEILING(a) \ + (((a) + quantum_mask) & ~quantum_mask) + +/* Compute the smallest power of 2 that is >= x. */ +static inline size_t +pow2_ceil(size_t x) +{ + x--; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; +#if (SIZEOF_PTR == 8) + x |= x >> 32; +#endif + x++; + return (x); +} + +static void +wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4) +{ + + _write(STDERR_FILENO, p1, strlen(p1)); + _write(STDERR_FILENO, p2, strlen(p2)); + _write(STDERR_FILENO, p3, strlen(p3)); + _write(STDERR_FILENO, p4, strlen(p4)); +} + +void (*_malloc_message)(const char *p1, const char *p2, const char *p3, + const char *p4) = wrtmessage; + +/* + * Print to stderr in such a way as to (hopefully) avoid memory allocation. + */ +static void +malloc_printf(const char *format, ...) +{ + char buf[4096]; + va_list ap; + + va_start(ap, format); + vsnprintf(buf, sizeof(buf), format, ap); + va_end(ap); + _malloc_message(buf, "", "", ""); +} + +/******************************************************************************/ + +static void * +base_alloc(size_t size) +{ + void *ret; + size_t csize; + + /* Round size up to nearest multiple of the cacheline size. */ + csize = CACHELINE_CEILING(size); + + malloc_mutex_lock(&base_mtx); + + /* Make sure there's enough space for the allocation. */ + if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) { + void *tchunk; + + assert(csize <= chunk_size); + + tchunk = chunk_alloc(chunk_size); + if (tchunk == NULL) { + ret = NULL; + goto RETURN; + } + base_chunk = tchunk; + base_next_addr = (void *)base_chunk; + base_past_addr = (void *)((uintptr_t)base_chunk + chunk_size); +#ifdef MALLOC_STATS + base_total += chunk_size; +#endif + } + + /* Allocate. */ + ret = base_next_addr; + base_next_addr = (void *)((uintptr_t)base_next_addr + csize); + +RETURN: + malloc_mutex_unlock(&base_mtx); + return (ret); +} + +static chunk_node_t * +base_chunk_node_alloc(void) +{ + chunk_node_t *ret; + + malloc_mutex_lock(&base_mtx); + if (base_chunk_nodes != NULL) { + ret = base_chunk_nodes; + base_chunk_nodes = *(chunk_node_t **)ret; + malloc_mutex_unlock(&base_mtx); + } else { + malloc_mutex_unlock(&base_mtx); + ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t)); + } + + return (ret); +} + +static void +base_chunk_node_dealloc(chunk_node_t *node) +{ + + malloc_mutex_lock(&base_mtx); + *(chunk_node_t **)node = base_chunk_nodes; + base_chunk_nodes = node; + malloc_mutex_unlock(&base_mtx); +} + +/******************************************************************************/ + +#ifdef MALLOC_STATS +static void +stats_print(arena_t *arena) +{ + unsigned i; + int gap_start; + + malloc_printf("allocated: %zu\n", arena->stats.allocated); + + malloc_printf("calls:\n"); + malloc_printf(" %12s %12s %12s %12s %12s %12s\n", "nmalloc", "npalloc", + "ncalloc", "ndalloc", "nralloc", "nmadvise"); + malloc_printf(" %12llu %12llu %12llu %12llu %12llu %12llu\n", + arena->stats.nmalloc, arena->stats.npalloc, arena->stats.ncalloc, + arena->stats.ndalloc, arena->stats.nralloc, arena->stats.nmadvise); + + malloc_printf("bins:\n"); + malloc_printf("%13s %1s %4s %5s %8s %9s %5s %6s %7s %6s %6s\n", + "bin", "", "size", "nregs", "run_size", "nrequests", "nruns", + "hiruns", "curruns", "npromo", "ndemo"); + for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) { + if (arena->bins[i].stats.nrequests == 0) { + if (gap_start == -1) + gap_start = i; + } else { + if (gap_start != -1) { + if (i > gap_start + 1) { + /* Gap of more than one size class. */ + malloc_printf("[%u..%u]\n", + gap_start, i - 1); + } else { + /* Gap of one size class. */ + malloc_printf("[%u]\n", gap_start); + } + gap_start = -1; + } + malloc_printf( + "%13u %1s %4u %5u %8u %9llu %5llu" + " %6lu %7lu %6llu %6llu\n", + i, + i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S", + arena->bins[i].reg_size, + arena->bins[i].nregs, + arena->bins[i].run_size, + arena->bins[i].stats.nrequests, + arena->bins[i].stats.nruns, + arena->bins[i].stats.highruns, + arena->bins[i].stats.curruns, + arena->bins[i].stats.npromote, + arena->bins[i].stats.ndemote); + } + } + if (gap_start != -1) { + if (i > gap_start + 1) { + /* Gap of more than one size class. */ + malloc_printf("[%u..%u]\n", gap_start, i - 1); + } else { + /* Gap of one size class. */ + malloc_printf("[%u]\n", gap_start); + } + } +} +#endif + +/* + * End Utility functions/macros. + */ +/******************************************************************************/ +/* + * Begin chunk management functions. + */ + +static inline int +chunk_comp(chunk_node_t *a, chunk_node_t *b) +{ + + assert(a != NULL); + assert(b != NULL); + + if ((uintptr_t)a->chunk < (uintptr_t)b->chunk) + return (-1); + else if (a->chunk == b->chunk) + return (0); + else + return (1); +} + +/* Generate red-black tree code for chunks. */ +RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp); + +static void * +pages_map(void *addr, size_t size) +{ + void *ret; + +#ifdef USE_BRK +AGAIN: +#endif + /* + * We don't use MAP_FIXED here, because it can cause the *replacement* + * of existing mappings, and we only want to create new mappings. + */ + ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, + -1, 0); + assert(ret != NULL); + + if (ret == MAP_FAILED) + ret = NULL; + else if (addr != NULL && ret != addr) { + /* + * We succeeded in mapping memory, but not in the right place. + */ + if (munmap(ret, size) == -1) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + malloc_printf("%s: (malloc) Error in munmap(): %s\n", + _getprogname(), buf); + if (opt_abort) + abort(); + } + ret = NULL; + } +#ifdef USE_BRK + else if ((uintptr_t)ret >= (uintptr_t)brk_base + && (uintptr_t)ret < (uintptr_t)brk_max) { + /* + * We succeeded in mapping memory, but at a location that could + * be confused with brk. Leave the mapping intact so that this + * won't ever happen again, then try again. + */ + assert(addr == NULL); + goto AGAIN; + } +#endif + + assert(ret == NULL || (addr == NULL && ret != addr) + || (addr != NULL && ret == addr)); + return (ret); +} + +static void +pages_unmap(void *addr, size_t size) +{ + + if (munmap(addr, size) == -1) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + malloc_printf("%s: (malloc) Error in munmap(): %s\n", + _getprogname(), buf); + if (opt_abort) + abort(); + } +} + +static void * +chunk_alloc(size_t size) +{ + void *ret, *chunk; + chunk_node_t *tchunk, *delchunk; + + assert(size != 0); + assert(size % chunk_size == 0); + + malloc_mutex_lock(&chunks_mtx); + + if (size == chunk_size) { + /* + * Check for address ranges that were previously chunks and try + * to use them. + */ + + tchunk = RB_MIN(chunk_tree_s, &old_chunks); + while (tchunk != NULL) { + /* Found an address range. Try to recycle it. */ + + chunk = tchunk->chunk; + delchunk = tchunk; + tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk); + + /* Remove delchunk from the tree. */ + RB_REMOVE(chunk_tree_s, &old_chunks, delchunk); + base_chunk_node_dealloc(delchunk); + +#ifdef USE_BRK + if ((uintptr_t)chunk >= (uintptr_t)brk_base + && (uintptr_t)chunk < (uintptr_t)brk_max) { + /* Re-use a previously freed brk chunk. */ + ret = chunk; + goto RETURN; + } +#endif + if ((ret = pages_map(chunk, size)) != NULL) { + /* Success. */ + goto RETURN; + } + } + +#ifdef USE_BRK + /* + * Try to create chunk-size allocations in brk, in order to + * make full use of limited address space. + */ + if (brk_prev != (void *)-1) { + void *brk_cur; + intptr_t incr; + + /* + * The loop is necessary to recover from races with + * other threads that are using brk for something other + * than malloc. + */ + do { + /* Get the current end of brk. */ + brk_cur = sbrk(0); + + /* + * Calculate how much padding is necessary to + * chunk-align the end of brk. + */ + incr = (intptr_t)chunk_size + - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur); + if (incr == chunk_size) { + ret = brk_cur; + } else { + ret = (void *)(intptr_t)brk_cur + incr; + incr += chunk_size; + } + + brk_prev = sbrk(incr); + if (brk_prev == brk_cur) { + /* Success. */ + goto RETURN; + } + } while (brk_prev != (void *)-1); + } +#endif + } + + /* + * Try to over-allocate, but allow the OS to place the allocation + * anywhere. Beware of size_t wrap-around. + */ + if (size + chunk_size > size) { + if ((ret = pages_map(NULL, size + chunk_size)) != NULL) { + size_t offset = CHUNK_ADDR2OFFSET(ret); + + /* + * Success. Clean up unneeded leading/trailing space. + */ + if (offset != 0) { + /* Leading space. */ + pages_unmap(ret, chunk_size - offset); + + ret = (void *)((uintptr_t)ret + (chunk_size - + offset)); + + /* Trailing space. */ + pages_unmap((void *)((uintptr_t)ret + size), + offset); + } else { + /* Trailing space only. */ + pages_unmap((void *)((uintptr_t)ret + size), + chunk_size); + } + goto RETURN; + } + } + + /* All strategies for allocation failed. */ + ret = NULL; +RETURN: +#ifdef MALLOC_STATS + if (ret != NULL) { + stats_chunks.nchunks += (size / chunk_size); + stats_chunks.curchunks += (size / chunk_size); + } + if (stats_chunks.curchunks > stats_chunks.highchunks) + stats_chunks.highchunks = stats_chunks.curchunks; +#endif + malloc_mutex_unlock(&chunks_mtx); + + assert(CHUNK_ADDR2BASE(ret) == ret); + return (ret); +} + +static void +chunk_dealloc(void *chunk, size_t size) +{ + size_t offset; + chunk_node_t *node; + + assert(chunk != NULL); + assert(CHUNK_ADDR2BASE(chunk) == chunk); + assert(size != 0); + assert(size % chunk_size == 0); + + malloc_mutex_lock(&chunks_mtx); + for (offset = 0; offset < size; offset += chunk_size) { + node = base_chunk_node_alloc(); + if (node == NULL) + break; + + /* + * Create a record of this chunk before deallocating it, so + * that the address range can be recycled if memory usage + * increases later on. + */ + node->chunk = (void *)((uintptr_t)chunk + (uintptr_t)offset); + node->size = chunk_size; + RB_INSERT(chunk_tree_s, &old_chunks, node); + } + +#ifdef USE_BRK + if ((uintptr_t)chunk >= (uintptr_t)brk_base + && (uintptr_t)chunk < (uintptr_t)brk_max) + madvise(chunk, size, MADV_FREE); + else +#endif + pages_unmap(chunk, size); + +#ifdef MALLOC_STATS + stats_chunks.curchunks -= (size / chunk_size); +#endif + malloc_mutex_unlock(&chunks_mtx); +} + +/* + * End chunk management functions. + */ +/******************************************************************************/ +/* + * Begin arena. + */ + +static inline int +arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b) +{ + + assert(a != NULL); + assert(b != NULL); + + if ((uintptr_t)a < (uintptr_t)b) + return (-1); + else if (a == b) + return (0); + else + return (1); +} + +/* Generate red-black tree code for arena chunks. */ +RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp); + +static inline void +arena_run_mask_free_set(arena_run_t *run, unsigned reg) +{ + unsigned elm, bit; + + assert(run->magic == ARENA_RUN_MAGIC); + assert(reg < run->bin->nregs); + + elm = reg / (sizeof(unsigned) << 3); + if (elm < run->regs_minelm) + run->regs_minelm = elm; + bit = reg - (elm * (sizeof(unsigned) << 3)); + assert((run->regs_mask[elm] & (1 << bit)) == 0); + run->regs_mask[elm] |= (1 << bit); +} + +static inline void +arena_run_mask_free_unset(arena_run_t *run, unsigned reg) +{ + unsigned elm, bit; + + assert(run->magic == ARENA_RUN_MAGIC); + assert(reg < run->bin->nregs); + + elm = reg / (sizeof(unsigned) << 3); + bit = reg - (elm * (sizeof(unsigned) << 3)); + assert((run->regs_mask[elm] & (1 << bit)) != 0); + run->regs_mask[elm] ^= (1 << bit); +} + +static inline unsigned +arena_run_search(arena_run_t *run) +{ + unsigned i, mask, bit; + + assert(run->magic == ARENA_RUN_MAGIC); + + for (i = run->regs_minelm; i < REGS_MASK_NELMS; i++) { + mask = run->regs_mask[i]; + if (mask != 0) { + bit = ffs(mask); + if (bit != 0) { + /* Usable allocation found. */ + return ((i * (sizeof(unsigned) << 3)) + + bit - 1); + } + } else { + /* + * Make a note that nothing before this element + * contains a free region. + */ + run->regs_minelm = i + 1; + } + } + + return (UINT_MAX); +} + +static void +arena_run_split(arena_t *arena, arena_run_t *run, bool large, size_t size) +{ + arena_chunk_t *chunk; + unsigned run_ind, map_offset, total_pages, need_pages; + unsigned i, log2_run_pages, run_pages; + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); + run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) + >> pagesize_2pow); + assert(chunk->map[run_ind].free); + total_pages = chunk->map[run_ind].npages; + need_pages = (size >> pagesize_2pow); + +#ifdef MALLOC_DEBUG + for (i = 0; i < total_pages; i++) { + assert(chunk->map[run_ind + i].free); + assert(chunk->map[run_ind + i].large == false); + assert(chunk->map[run_ind + i].npages == total_pages); + assert(chunk->map[run_ind + i].pos == i); + } +#endif + + /* Split enough pages from the front of run to fit allocation size. */ + map_offset = run_ind; + for (i = 0; i < need_pages; i++) { + chunk->map[map_offset + i].free = false; + chunk->map[map_offset + i].large = large; + chunk->map[map_offset + i].npages = need_pages; + chunk->map[map_offset + i].pos = i; + } + + /* Update map for trailing pages. */ + map_offset += need_pages; + while (map_offset < run_ind + total_pages) { + log2_run_pages = ffs(map_offset) - 1; + run_pages = (1 << log2_run_pages); + for (i = 0; i < run_pages; i++) { + chunk->map[map_offset + i].free = true; + chunk->map[map_offset + i].large = false; + chunk->map[map_offset + i].npages = run_pages; + chunk->map[map_offset + i].pos = i; + } + + chunk->nfree_runs[log2_run_pages]++; + + map_offset += run_pages; + } + + chunk->pages_used += (size >> pagesize_2pow); +} + +static arena_chunk_t * +arena_chunk_alloc(arena_t *arena) +{ + arena_chunk_t *chunk; + unsigned i, j, header_npages, pow2_header_npages, map_offset; + unsigned log2_run_pages, run_pages; + size_t header_size; + + chunk = (arena_chunk_t *)chunk_alloc(chunk_size); + if (chunk == NULL) + return (NULL); + + chunk->arena = arena; + + RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk); + + /* + * Claim that no pages are in use, since the header is merely overhead. + */ + chunk->pages_used = 0; + + memset(&chunk->nfree_runs, 0, sizeof(chunk->nfree_runs)); + + header_size = (size_t)((uintptr_t)&chunk->map[arena_chunk_maplen] + - (uintptr_t)chunk); + if (header_size % pagesize != 0) { + /* Round up to the nearest page boundary. */ + header_size += pagesize - (header_size % pagesize); + } + + header_npages = header_size / pagesize; + pow2_header_npages = pow2_ceil(header_npages); + + /* + * Iteratively mark runs as in use, until we've spoken for the entire + * header. + */ + map_offset = 0; + for (i = 0; header_npages > 0; i++) { + if ((pow2_header_npages >> i) <= header_npages) { + for (j = 0; j < (pow2_header_npages >> i); j++) { + chunk->map[map_offset + j].free = false; + chunk->map[map_offset + j].large = false; + chunk->map[map_offset + j].npages = + (pow2_header_npages >> i); + chunk->map[map_offset + j].pos = j; + } + header_npages -= (pow2_header_npages >> i); + map_offset += (pow2_header_npages >> i); + } + } + + /* + * Finish initializing map. The chunk header takes up some space at + * the beginning of the chunk, which we just took care of by + * "allocating" the leading pages. + */ + while (map_offset < (chunk_size / pagesize)) { + log2_run_pages = ffs(map_offset) - 1; + run_pages = (1 << log2_run_pages); + for (i = 0; i < run_pages; i++) { + chunk->map[map_offset + i].free = true; + chunk->map[map_offset + i].large = false; + chunk->map[map_offset + i].npages = run_pages; + chunk->map[map_offset + i].pos = i; + } + + chunk->nfree_runs[log2_run_pages]++; + + map_offset += run_pages; + } + + return (chunk); +} + +static void +arena_chunk_dealloc(arena_chunk_t *chunk) +{ + + RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk); + + chunk_dealloc((void *)chunk, chunk_size); +} + +static void +arena_bin_run_refile(arena_t *arena, arena_bin_t *bin, arena_run_t *run, + size_t size, bool promote) +{ + + assert(bin == run->bin); + + /* Determine whether to promote or demote run. */ + if (promote) { + /* Promote. */ + assert(run->free_min > run->nfree); + assert(run->quartile < RUN_Q100); + run->quartile++; + if (run->quartile == RUN_Q75) { + /* + * Skip RUN_Q75 during promotion from RUN_Q50. + * Separate handling of RUN_Q75 and RUN_Q100 allows us + * to keep completely full runs in RUN_Q100, thus + * guaranteeing that runs in RUN_Q75 are only mostly + * full. This provides a method for avoiding a linear + * search for non-full runs, which avoids some + * pathological edge cases. + */ + run->quartile++; + } +#ifdef MALLOC_STATS + bin->stats.npromote++; +#endif + } else { + /* Demote. */ + assert(run->free_max < run->nfree); + assert(run->quartile > RUN_QINIT); + run->quartile--; +#ifdef MALLOC_STATS + bin->stats.ndemote++; +#endif + } + + /* Re-file run. */ + qr_remove(run, link); + switch (run->quartile) { + case RUN_QINIT: +#ifdef MALLOC_STATS + bin->stats.curruns--; +#endif + if (bin->runcur == run) + bin->runcur = NULL; +#ifdef MALLOC_DEBUG + run->magic = 0; +#endif + arena_run_dalloc(arena, run, bin->run_size); + break; + case RUN_Q0: + qr_before_insert((arena_run_t *)&bin->runs0, run, link); + run->free_max = run->bin->nregs - 1; + run->free_min = (run->bin->nregs >> 1) + 1; + assert(run->nfree <= run->free_max); + assert(run->nfree >= run->free_min); + break; + case RUN_Q25: + qr_before_insert((arena_run_t *)&bin->runs25, run, + link); + run->free_max = ((run->bin->nregs >> 2) * 3) - 1; + run->free_min = (run->bin->nregs >> 2) + 1; + assert(run->nfree <= run->free_max); + assert(run->nfree >= run->free_min); + break; + case RUN_Q50: + qr_before_insert((arena_run_t *)&bin->runs50, run, + link); + run->free_max = (run->bin->nregs >> 1) - 1; + run->free_min = 1; + assert(run->nfree <= run->free_max); + assert(run->nfree >= run->free_min); + break; + case RUN_Q75: + qr_before_insert((arena_run_t *)&bin->runs75, run, + link); + run->free_max = (run->bin->nregs >> 2) - 1; + run->free_min = 1; + assert(run->nfree <= run->free_max); + assert(run->nfree >= run->free_min); + break; + case RUN_Q100: + assert(bin->runcur == run); + bin->runcur = NULL; + run->free_max = 0; + run->free_min = 0; + assert(run->nfree <= run->free_max); + assert(run->nfree >= run->free_min); + break; + default: + assert(0); + break; + } +} + +static arena_run_t * +arena_run_alloc(arena_t *arena, bool large, size_t size) +{ + arena_run_t *run; + unsigned min_ind, i, j; + arena_chunk_t *chunk; +#ifndef NDEBUG + int rep = 0; +#endif + + assert(size <= arena_maxclass); + +AGAIN: +#ifndef NDEBUG + rep++; + assert(rep <= 2); +#endif + + /* + * Search through arena's chunks in address order for a run that is + * large enough. Look for a precise fit, but do not pass up a chunk + * that has a run which is large enough to split. + */ + min_ind = ffs(size / pagesize) - 1; + RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) { + for (i = min_ind; + i < (opt_chunk_2pow - pagesize_2pow); + i++) { + if (chunk->nfree_runs[i] > 0) { + arena_chunk_map_t *map = chunk->map; + + /* Scan chunk's map for free run. */ + for (j = 0; + j < arena_chunk_maplen; + j += map[j].npages) { + if (map[j].free + && map[j].npages == (1 << i)) + {/*<----------------------------*/ + run = (arena_run_t *)&((char *)chunk)[j + << pagesize_2pow]; + + assert(chunk->nfree_runs[i] > 0); + chunk->nfree_runs[i]--; + + /* Update page map. */ + arena_run_split(arena, run, large, size); + + return (run); + }/*---------------------------->*/ + } + /* Not reached. */ + assert(0); + } + } + } + + /* No usable runs. Allocate a new chunk, then try again. */ + if (arena_chunk_alloc(arena) == NULL) + return (NULL); + goto AGAIN; +} + +static void +arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size) +{ + arena_chunk_t *chunk; + unsigned i, run_ind, buddy_ind, base_run_ind, run_pages, log2_run_pages; + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); + run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) + >> pagesize_2pow); + run_pages = (size >> pagesize_2pow); + log2_run_pages = ffs(run_pages) - 1; + assert(run_pages > 0); + + /* Subtract pages from count of pages used in chunk. */ + chunk->pages_used -= run_pages; + + /* Mark run as deallocated. */ + for (i = 0; i < run_pages; i++) { + chunk->map[run_ind + i].free = true; + chunk->map[run_ind + i].large = false; + chunk->map[run_ind + i].npages = run_pages; + chunk->map[run_ind + i].pos = i; + } + + /* + * Tell the kernel that we don't need the data in this run, but only if + * requested via runtime configuration. + */ + if (opt_hint) { + madvise(run, size, MADV_FREE); +#ifdef MALLOC_STATS + arena->stats.nmadvise += (size >> pagesize_2pow); +#endif + } + + /* + * Iteratively coalesce with buddies. Conceptually, the buddy scheme + * induces a tree on the set of pages. If we know the number of pages + * in the subtree rooted at the current node, we can quickly determine + * whether a run is the left or right buddy, and then calculate the + * buddy's index. + */ + for (; + (run_pages = (1 << log2_run_pages)) < arena_chunk_maplen; + log2_run_pages++) { + if (((run_ind >> log2_run_pages) & 1) == 0) { + /* Current run precedes its buddy. */ + buddy_ind = run_ind + run_pages; + base_run_ind = run_ind; + } else { + /* Current run follows its buddy. */ + buddy_ind = run_ind - run_pages; + base_run_ind = buddy_ind; + } + + if (chunk->map[buddy_ind].free == false + || chunk->map[buddy_ind].npages != run_pages) + break; + + assert(chunk->nfree_runs[log2_run_pages] > 0); + chunk->nfree_runs[log2_run_pages]--; + + /* Coalesce. */ + for (i = 0; i < (run_pages << 1); i++) { + chunk->map[base_run_ind + i].npages = (run_pages << 1); + chunk->map[base_run_ind + i].pos = i; + } + + /* Update run_ind to be the beginning of the coalesced run. */ + run_ind = base_run_ind; + } + + chunk->nfree_runs[log2_run_pages]++; + + /* Free pages, to the extent possible. */ + if (chunk->pages_used == 0) { + /* This chunk is completely unused now, so deallocate it. */ + arena_chunk_dealloc(chunk); + } +} + +static arena_run_t * +arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin, size_t size) +{ + arena_run_t *run; + unsigned i, remainder; + + /* Look for a usable run. */ + if ((run = qr_next((arena_run_t *)&bin->runs50, link)) + != (arena_run_t *)&bin->runs50 + || (run = qr_next((arena_run_t *)&bin->runs25, link)) + != (arena_run_t *)&bin->runs25 + || (run = qr_next((arena_run_t *)&bin->runs0, link)) + != (arena_run_t *)&bin->runs0 + || (run = qr_next((arena_run_t *)&bin->runs75, link)) + != (arena_run_t *)&bin->runs75) { + /* run is guaranteed to have available space. */ + qr_remove(run, link); + return (run); + } + /* No existing runs have any space available. */ + + /* Allocate a new run. */ + run = arena_run_alloc(arena, false, bin->run_size); + if (run == NULL) + return (NULL); + + /* Initialize run internals. */ + qr_new(run, link); + run->bin = bin; + + for (i = 0; i < bin->nregs / (sizeof(unsigned) << 3); i++) + run->regs_mask[i] = UINT_MAX; + remainder = bin->nregs % (sizeof(unsigned) << 3); + if (remainder != 0) { + run->regs_mask[i] = (UINT_MAX >> ((sizeof(unsigned) << 3) + - remainder)); + i++; + } + for (; i < REGS_MASK_NELMS; i++) + run->regs_mask[i] = 0; + + run->regs_minelm = 0; + + run->nfree = bin->nregs; + run->quartile = RUN_QINIT; + run->free_max = bin->nregs; + run->free_min = ((bin->nregs >> 2) * 3) + 1; +#ifdef MALLOC_DEBUG + run->magic = ARENA_RUN_MAGIC; +#endif + +#ifdef MALLOC_STATS + bin->stats.nruns++; + bin->stats.curruns++; + if (bin->stats.curruns > bin->stats.highruns) + bin->stats.highruns = bin->stats.curruns; +#endif + return (run); +} + +/* bin->runcur must have space available before this function is called. */ +static inline void * +arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run, + size_t size) +{ + void *ret; + unsigned regind; + + assert(run->magic == ARENA_RUN_MAGIC); + assert(run->nfree > 0); + + regind = arena_run_search(run); + assert(regind != UINT_MAX); + assert(regind < bin->nregs); + + ret = (void *)&((char *)run)[bin->reg0_offset + (bin->reg_size + * regind)]; + arena_run_mask_free_unset(run, regind); + run->nfree--; + if (run->nfree < run->free_min) { + /* Promote run to higher fullness quartile. */ + arena_bin_run_refile(arena, bin, run, size, true); + } + + return (ret); +} + +/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */ +static void * +arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin, size_t size) +{ + + assert(bin->runcur == NULL || bin->runcur->quartile == RUN_Q100); + + bin->runcur = arena_bin_nonfull_run_get(arena, bin, size); + if (bin->runcur == NULL) + return (NULL); + assert(bin->runcur->magic == ARENA_RUN_MAGIC); + assert(bin->runcur->nfree > 0); + + return (arena_bin_malloc_easy(arena, bin, bin->runcur, size)); +} + +static void * +arena_malloc(arena_t *arena, size_t size) +{ + void *ret; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(size != 0); + assert(QUANTUM_CEILING(size) <= arena_maxclass); + + malloc_mutex_lock(&arena->mtx); + if (size <= bin_maxclass) { + arena_bin_t *bin; + arena_run_t *run; + + /* Small allocation. */ + + if (size < small_min) { + /* Tiny. */ + size = pow2_ceil(size); + bin = &arena->bins[ffs(size >> (tiny_min_2pow + 1))]; +#ifdef MALLOC_STATS + /* + * Bin calculation is always correct, but we may need to + * fix size for the purposes of stats accuracy. + */ + if (size < (1 << tiny_min_2pow)) + size = (1 << tiny_min_2pow); +#endif + } else if (size <= small_max) { + /* Quantum-spaced. */ + size = QUANTUM_CEILING(size); + bin = &arena->bins[ntbins + (size >> opt_quantum_2pow) + - 1]; + } else { + /* Sub-page. */ + size = pow2_ceil(size); + bin = &arena->bins[ntbins + nqbins + + (ffs(size >> opt_small_max_2pow) - 2)]; + } + assert(size == bin->reg_size); + + if ((run = bin->runcur) != NULL) + ret = arena_bin_malloc_easy(arena, bin, run, size); + else + ret = arena_bin_malloc_hard(arena, bin, size); + +#ifdef MALLOC_STATS + bin->stats.nrequests++; +#endif + } else { + /* Medium allocation. */ + size = pow2_ceil(size); + ret = (void *)arena_run_alloc(arena, true, size); + } + +#ifdef MALLOC_STATS + if (ret != NULL) + arena->stats.allocated += size; +#endif + + malloc_mutex_unlock(&arena->mtx); + + if (opt_junk && ret != NULL) + memset(ret, 0xa5, size); + else if (opt_zero && ret != NULL) + memset(ret, 0, size); + return (ret); +} + +/* Return the size of the allocation pointed to by ptr. */ +static size_t +arena_salloc(arena_t *arena, const void *ptr) +{ + size_t ret; + arena_chunk_t *chunk; + uint32_t pageind; + arena_chunk_map_t *mapelm; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(ptr != NULL); + assert(ptr != &nil); + assert(CHUNK_ADDR2BASE(ptr) != ptr); + + malloc_mutex_lock(&arena->mtx); + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); + mapelm = &chunk->map[pageind]; + assert(mapelm->free == false); + if (mapelm->large == false) { + arena_run_t *run; + + pageind -= mapelm->pos; + mapelm = &chunk->map[pageind]; + + run = (arena_run_t *)&((char *)chunk)[pageind << pagesize_2pow]; + assert(run->magic == ARENA_RUN_MAGIC); + ret = run->bin->reg_size; + } else + ret = mapelm->npages << pagesize_2pow; + + malloc_mutex_unlock(&arena->mtx); + + return (ret); +} + +static void * +arena_ralloc(arena_t *arena, void *ptr, size_t size, size_t oldsize) +{ + void *ret; + + /* Avoid moving the allocation if the size class would not change. */ + if (size < small_min) { + if (oldsize < small_min && + ffs(pow2_ceil(size) >> (tiny_min_2pow + 1)) + == ffs(pow2_ceil(oldsize) >> (tiny_min_2pow + 1))) + goto IN_PLACE; + } else if (size <= small_max) { + if (oldsize >= small_min && oldsize <= small_max && + (QUANTUM_CEILING(size) >> opt_quantum_2pow) + == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow)) + goto IN_PLACE; + } else { + if (oldsize > small_max && + pow2_ceil(size) == pow2_ceil(oldsize)) + goto IN_PLACE; + } + + /* + * If we get here, then size and oldsize are different enough that we + * need to use a different size class. In that case, fall back to + * allocating new space and copying. + */ + ret = arena_malloc(arena, size); + if (ret == NULL) + return (NULL); + + if (size < oldsize) + memcpy(ret, ptr, size); + else + memcpy(ret, ptr, oldsize); + idalloc(ptr); + return (ret); +IN_PLACE: + if (opt_junk && size < oldsize) + memset(&((char *)ptr)[size], 0x5a, oldsize - size); + else if (opt_zero && size > oldsize) + memset(&((char *)ptr)[size], 0, size - oldsize); + return (ptr); +} + +static void +arena_dalloc(arena_t *arena, void *ptr) +{ + arena_chunk_t *chunk; + unsigned pageind; + arena_chunk_map_t *mapelm; + size_t size; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(ptr != NULL); + assert(ptr != &nil); + assert(CHUNK_ADDR2BASE(ptr) != ptr); + + malloc_mutex_lock(&arena->mtx); + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + assert(chunk->arena == arena); + pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); + mapelm = &chunk->map[pageind]; + assert(mapelm->free == false); + if (mapelm->large == false) { + arena_run_t *run; + unsigned regind; + + /* Small allocation. */ + + pageind -= mapelm->pos; + mapelm = &chunk->map[pageind]; + + run = (arena_run_t *)&((char *)chunk)[pageind << pagesize_2pow]; + assert(run->magic == ARENA_RUN_MAGIC); + size = run->bin->reg_size; + + if (opt_junk) + memset(ptr, 0x5a, size); + + regind = (unsigned)(((uintptr_t)ptr + - (uintptr_t)&((char *)run)[run->bin->reg0_offset]) + / run->bin->reg_size); + arena_run_mask_free_set(run, regind); + run->nfree++; + if (run->nfree > run->free_max) { + /* Demote run to lower fullness quartile. */ + arena_bin_run_refile(arena, run->bin, run, size, false); + } + } else { + /* Medium allocation. */ + + size = mapelm->npages << pagesize_2pow; + + if (opt_junk) + memset(ptr, 0x5a, size); + + arena_run_dalloc(arena, (arena_run_t *)ptr, size); + } + +#ifdef MALLOC_STATS + arena->stats.allocated -= size; +#endif + + malloc_mutex_unlock(&arena->mtx); +} + +static bool +arena_new(arena_t *arena) +{ + unsigned i; + arena_bin_t *bin; + size_t pow2_size, run_size; + + malloc_mutex_init(&arena->mtx); + +#ifdef MALLOC_STATS + memset(&arena->stats, 0, sizeof(arena_stats_t)); +#endif + + /* Initialize chunks. */ + RB_INIT(&arena->chunks); + + /* Initialize bins. */ + + /* (2^n)-spaced tiny bins. */ + for (i = 0; i < ntbins; i++) { + bin = &arena->bins[i]; + bin->runcur = NULL; + qr_new((arena_run_t *)&bin->runs0, link); + qr_new((arena_run_t *)&bin->runs25, link); + qr_new((arena_run_t *)&bin->runs50, link); + qr_new((arena_run_t *)&bin->runs75, link); + + bin->reg_size = (1 << (tiny_min_2pow + i)); + + /* + * Calculate how large of a run to allocate. Make sure that at + * least RUN_MIN_REGS regions fit in the run. + */ + run_size = bin->reg_size << RUN_MIN_REGS_2POW; + if (run_size < pagesize) + run_size = pagesize; + if (run_size > (pagesize << RUN_MAX_PAGES_2POW)) + run_size = (pagesize << RUN_MAX_PAGES_2POW); + if (run_size > arena_maxclass) + run_size = arena_maxclass; + bin->run_size = run_size; + + assert(run_size >= sizeof(arena_run_t)); + bin->nregs = (run_size - sizeof(arena_run_t)) / bin->reg_size; + if (bin->nregs > REGS_MASK_NELMS * (sizeof(unsigned) << 3)) { + /* Take care not to overflow regs_mask. */ + bin->nregs = REGS_MASK_NELMS * (sizeof(unsigned) << 3); + } + bin->reg0_offset = run_size - (bin->nregs * bin->reg_size); + +#ifdef MALLOC_STATS + memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); +#endif + } + + /* Quantum-spaced bins. */ + for (; i < ntbins + nqbins; i++) { + bin = &arena->bins[i]; + bin->runcur = NULL; + qr_new((arena_run_t *)&bin->runs0, link); + qr_new((arena_run_t *)&bin->runs25, link); + qr_new((arena_run_t *)&bin->runs50, link); + qr_new((arena_run_t *)&bin->runs75, link); + + bin->reg_size = quantum * (i - ntbins + 1); + + /* + * Calculate how large of a run to allocate. Make sure that at + * least RUN_MIN_REGS regions fit in the run. + */ + pow2_size = pow2_ceil(quantum * (i - ntbins + 1)); + run_size = (pow2_size << RUN_MIN_REGS_2POW); + if (run_size < pagesize) + run_size = pagesize; + if (run_size > (pagesize << RUN_MAX_PAGES_2POW)) + run_size = (pagesize << RUN_MAX_PAGES_2POW); + if (run_size > arena_maxclass) + run_size = arena_maxclass; + bin->run_size = run_size; + + bin->nregs = (run_size - sizeof(arena_run_t)) / bin->reg_size; + assert(bin->nregs <= REGS_MASK_NELMS * (sizeof(unsigned) << 3)); + bin->reg0_offset = run_size - (bin->nregs * bin->reg_size); + +#ifdef MALLOC_STATS + memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); +#endif + } + + /* (2^n)-spaced sub-page bins. */ + for (; i < ntbins + nqbins + nsbins; i++) { + bin = &arena->bins[i]; + bin->runcur = NULL; + qr_new((arena_run_t *)&bin->runs0, link); + qr_new((arena_run_t *)&bin->runs25, link); + qr_new((arena_run_t *)&bin->runs50, link); + qr_new((arena_run_t *)&bin->runs75, link); + + bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1)); + + /* + * Calculate how large of a run to allocate. Make sure that at + * least RUN_MIN_REGS regions fit in the run. + */ + run_size = bin->reg_size << RUN_MIN_REGS_2POW; + if (run_size < pagesize) + run_size = pagesize; + if (run_size > (pagesize << RUN_MAX_PAGES_2POW)) + run_size = (pagesize << RUN_MAX_PAGES_2POW); + if (run_size > arena_maxclass) + run_size = arena_maxclass; + bin->run_size = run_size; + + bin->nregs = (run_size - sizeof(arena_run_t)) / bin->reg_size; + assert(bin->nregs <= REGS_MASK_NELMS * (sizeof(unsigned) << 3)); + bin->reg0_offset = run_size - (bin->nregs * bin->reg_size); + +#ifdef MALLOC_STATS + memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); +#endif + } + +#ifdef MALLOC_DEBUG + arena->magic = ARENA_MAGIC; +#endif + + return (false); +} + +/* Create a new arena and insert it into the arenas array at index ind. */ +static arena_t * +arenas_extend(unsigned ind) +{ + arena_t *ret; + + /* Allocate enough space for trailing bins. */ + ret = (arena_t *)base_alloc(sizeof(arena_t) + + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1))); + if (ret != NULL && arena_new(ret) == false) { + arenas[ind] = ret; + return (ret); + } + /* Only reached if there is an OOM error. */ + + /* + * OOM here is quite inconvenient to propagate, since dealing with it + * would require a check for failure in the fast path. Instead, punt + * by using arenas[0]. In practice, this is an extremely unlikely + * failure. + */ + malloc_printf("%s: (malloc) Error initializing arena\n", + _getprogname()); + if (opt_abort) + abort(); + + return (arenas[0]); +} + +/* + * End arena. + */ +/******************************************************************************/ +/* + * Begin general internal functions. + */ + +/* + * Choose an arena based on a per-thread value (fast-path code, calls slow-path + * code if necessary. + */ +static inline arena_t * +choose_arena(void) +{ + arena_t *ret; + + /* + * We can only use TLS if this is a PIC library, since for the static + * library version, libc's malloc is used by TLS allocation, which + * introduces a bootstrapping issue. + */ +#ifndef NO_TLS + ret = arenas_map; + if (ret == NULL) + ret = choose_arena_hard(); +#else + if (__isthreaded) { + unsigned long ind; + + /* + * Hash _pthread_self() to one of the arenas. There is a prime + * number of arenas, so this has a reasonable chance of + * working. Even so, the hashing can be easily thwarted by + * inconvenient _pthread_self() values. Without specific + * knowledge of how _pthread_self() calculates values, we can't + * do much better than this. + */ + ind = (unsigned long) _pthread_self() % narenas; + + /* + * Optimistially assume that arenas[ind] has been initialized. + * At worst, we find out that some other thread has already + * done so, after acquiring the lock in preparation. Note that + * this lazy locking also has the effect of lazily forcing + * cache coherency; without the lock acquisition, there's no + * guarantee that modification of arenas[ind] by another thread + * would be seen on this CPU for an arbitrary amount of time. + * + * In general, this approach to modifying a synchronized value + * isn't a good idea, but in this case we only ever modify the + * value once, so things work out well. + */ + ret = arenas[ind]; + if (ret == NULL) { + /* + * Avoid races with another thread that may have already + * initialized arenas[ind]. + */ + malloc_mutex_lock(&arenas_mtx); + if (arenas[ind] == NULL) + ret = arenas_extend((unsigned)ind); + else + ret = arenas[ind]; + malloc_mutex_unlock(&arenas_mtx); + } + } else + ret = arenas[0]; +#endif + + return (ret); +} + +#ifndef NO_TLS +/* + * Choose an arena based on a per-thread value (slow-path code only, called + * only by choose_arena()). + */ +static arena_t * +choose_arena_hard(void) +{ + arena_t *ret; + + /* Assign one of the arenas to this thread, in a round-robin fashion. */ + if (__isthreaded) { + malloc_mutex_lock(&arenas_mtx); + ret = arenas[next_arena]; + if (ret == NULL) + ret = arenas_extend(next_arena); + next_arena = (next_arena + 1) % narenas; + malloc_mutex_unlock(&arenas_mtx); + } else + ret = arenas[0]; + arenas_map = ret; + + return (ret); +} +#endif + +static void * +huge_malloc(size_t size) +{ + void *ret; + size_t chunk_size; + chunk_node_t *node; + + /* Allocate a chunk for this request. */ + + chunk_size = CHUNK_CEILING(size); + if (chunk_size == 0) { + /* size is large enough to cause size_t wrap-around. */ + return (NULL); + } + + /* Allocate a chunk node with which to track the chunk. */ + node = base_chunk_node_alloc(); + if (node == NULL) + return (NULL); + + ret = chunk_alloc(chunk_size); + if (ret == NULL) { + base_chunk_node_dealloc(node); + return (NULL); + } + + /* Insert node into chunks. */ + node->chunk = ret; + node->size = chunk_size; + + malloc_mutex_lock(&chunks_mtx); + RB_INSERT(chunk_tree_s, &huge, node); +#ifdef MALLOC_STATS + huge_nmalloc++; + huge_allocated += chunk_size; +#endif + malloc_mutex_unlock(&chunks_mtx); + + if (opt_junk && ret != NULL) + memset(ret, 0xa5, chunk_size); + else if (opt_zero && ret != NULL) + memset(ret, 0, chunk_size); + + return (ret); +} + +static void * +huge_ralloc(void *ptr, size_t size, size_t oldsize) +{ + void *ret; + + /* Avoid moving the allocation if the size class would not change. */ + if (oldsize > arena_maxclass && + CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) + return (ptr); + + /* + * If we get here, then size and oldsize are different enough that we + * need to use a different size class. In that case, fall back to + * allocating new space and copying. + */ + ret = huge_malloc(size); + if (ret == NULL) + return (NULL); + + if (CHUNK_ADDR2BASE(ptr) == ptr) { + /* The old allocation is a chunk. */ + if (size < oldsize) + memcpy(ret, ptr, size); + else + memcpy(ret, ptr, oldsize); + } else { + /* The old allocation is a region. */ + assert(oldsize < size); + memcpy(ret, ptr, oldsize); + } + idalloc(ptr); + return (ret); +} + +static void +huge_dalloc(void *ptr) +{ + chunk_node_t key; + chunk_node_t *node; + + malloc_mutex_lock(&chunks_mtx); + + /* Extract from tree of huge allocations. */ + key.chunk = ptr; + node = RB_FIND(chunk_tree_s, &huge, &key); + assert(node != NULL); + assert(node->chunk == ptr); + RB_REMOVE(chunk_tree_s, &huge, node); + +#ifdef MALLOC_STATS + /* Update counters. */ + huge_ndalloc++; + huge_allocated -= node->size; +#endif + + malloc_mutex_unlock(&chunks_mtx); + + /* Unmap chunk. */ +#ifdef USE_BRK + if (opt_junk) + memset(node->chunk, 0x5a, node->size); +#endif + chunk_dealloc(node->chunk, node->size); + + base_chunk_node_dealloc(node); +} + +static void * +imalloc(arena_t *arena, size_t size) +{ + void *ret; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(size != 0); + + if (size <= arena_maxclass) + ret = arena_malloc(arena, size); + else + ret = huge_malloc(size); + +#ifdef MALLOC_STATS + malloc_mutex_lock(&arena->mtx); + arena->stats.nmalloc++; + malloc_mutex_unlock(&arena->mtx); +#endif + + return (ret); +} + +static void * +ipalloc(arena_t *arena, size_t alignment, size_t size) +{ + void *ret; + size_t pow2_size; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + + /* + * Round up to the nearest power of two that is >= alignment and + * >= size. + */ + if (size > alignment) + pow2_size = pow2_ceil(size); + else + pow2_size = alignment; + pow2_size = QUANTUM_CEILING(pow2_size); + if (pow2_size < size) { + /* size_t overflow. */ + return (NULL); + } + + if (pow2_size <= arena_maxclass) + ret = arena_malloc(arena, pow2_size); + else { + if (alignment <= chunk_size) + ret = huge_malloc(size); + else { + size_t chunksize, alloc_size, offset; + chunk_node_t *node; + + /* + * This allocation requires alignment that is even + * larger than chunk alignment. This means that + * huge_malloc() isn't good enough. + * + * Allocate almost twice as many chunks as are demanded + * by the size or alignment, in order to assure the + * alignment can be achieved, then unmap leading and + * trailing chunks. + */ + + chunksize = CHUNK_CEILING(size); + + if (size >= alignment) + alloc_size = chunksize + alignment - chunk_size; + else + alloc_size = (alignment << 1) - chunk_size; + + /* + * Allocate a chunk node with which to track the chunk. + */ + node = base_chunk_node_alloc(); + if (node == NULL) + return (NULL); + + ret = chunk_alloc(alloc_size); + if (ret == NULL) { + base_chunk_node_dealloc(node); + return (NULL); + } + + offset = (uintptr_t)ret & (alignment - 1); + assert(offset % chunk_size == 0); + assert(offset < alloc_size); + if (offset == 0) { + /* Trim trailing space. */ + chunk_dealloc((void *)((uintptr_t)ret + + chunksize), alloc_size - chunksize); + } else { + size_t trailsize; + + /* Trim leading space. */ + chunk_dealloc(ret, alignment - offset); + + ret = (void *)((uintptr_t)ret + (alignment + - offset)); + + trailsize = alloc_size - (alignment - offset) + - chunksize; + if (trailsize != 0) { + /* Trim trailing space. */ + assert(trailsize < alloc_size); + chunk_dealloc((void *)((uintptr_t)ret + + chunksize), trailsize); + } + } + + /* Insert node into chunks. */ + node->chunk = ret; + node->size = chunksize; + + malloc_mutex_lock(&chunks_mtx); + RB_INSERT(chunk_tree_s, &huge, node); +#ifdef MALLOC_STATS + huge_allocated += size; +#endif + malloc_mutex_unlock(&chunks_mtx); + + if (opt_junk) + memset(ret, 0xa5, chunksize); + else if (opt_zero) + memset(ret, 0, chunksize); + } + } + +#ifdef MALLOC_STATS + malloc_mutex_lock(&arena->mtx); + arena->stats.npalloc++; + malloc_mutex_unlock(&arena->mtx); +#endif + assert(((uintptr_t)ret & (alignment - 1)) == 0); + return (ret); +} + +static void * +icalloc(arena_t *arena, size_t size) +{ + void *ret; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + + if (size <= arena_maxclass) { + ret = arena_malloc(arena, size); + if (ret == NULL) + return (NULL); + memset(ret, 0, size); + } else { + /* + * The virtual memory system provides zero-filled pages, so + * there is no need to do so manually, unless opt_junk is + * enabled, in which case huge_malloc() fills huge allocations + * with junk. + */ + ret = huge_malloc(size); + if (ret == NULL) + return (NULL); + + if (opt_junk) + memset(ret, 0, size); +#ifdef USE_BRK + else if ((uintptr_t)ret >= (uintptr_t)brk_base + && (uintptr_t)ret < (uintptr_t)brk_max) { + /* + * This may be a re-used brk chunk. Therefore, zero + * the memory. + */ + memset(ret, 0, size); + } +#endif + } + +#ifdef MALLOC_STATS + malloc_mutex_lock(&arena->mtx); + arena->stats.ncalloc++; + malloc_mutex_unlock(&arena->mtx); +#endif + + return (ret); +} + +static size_t +isalloc(const void *ptr) +{ + size_t ret; + arena_chunk_t *chunk; + + assert(ptr != NULL); + assert(ptr != &nil); + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + if (chunk != ptr) { + /* Region. */ + assert(chunk->arena->magic == ARENA_MAGIC); + + ret = arena_salloc(chunk->arena, ptr); + } else { + chunk_node_t *node, key; + + /* Chunk (huge allocation). */ + + malloc_mutex_lock(&chunks_mtx); + + /* Extract from tree of huge allocations. */ + key.chunk = (void *)ptr; + node = RB_FIND(chunk_tree_s, &huge, &key); + assert(node != NULL); + + ret = node->size; + + malloc_mutex_unlock(&chunks_mtx); + } + + return (ret); +} + +static void * +iralloc(arena_t *arena, void *ptr, size_t size) +{ + void *ret; + size_t oldsize; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(ptr != NULL); + assert(ptr != &nil); + assert(size != 0); + + oldsize = isalloc(ptr); + + if (size <= arena_maxclass) + ret = arena_ralloc(arena, ptr, size, oldsize); + else + ret = huge_ralloc(ptr, size, oldsize); + +#ifdef MALLOC_STATS + malloc_mutex_lock(&arena->mtx); + arena->stats.nralloc++; + malloc_mutex_unlock(&arena->mtx); +#endif + return (ret); +} + +static void +idalloc(void *ptr) +{ + arena_chunk_t *chunk; + + assert(ptr != NULL); + assert(ptr != &nil); + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + if (chunk != ptr) { + /* Region. */ +#ifdef MALLOC_STATS + malloc_mutex_lock(&chunk->arena->mtx); + chunk->arena->stats.ndalloc++; + malloc_mutex_unlock(&chunk->arena->mtx); +#endif + arena_dalloc(chunk->arena, ptr); + } else + huge_dalloc(ptr); +} + +static void +malloc_print_stats(void) +{ + + if (opt_print_stats) { + malloc_printf("___ Begin malloc statistics ___\n"); + malloc_printf("Number of CPUs: %u\n", ncpus); + malloc_printf("Number of arenas: %u\n", narenas); + malloc_printf("Chunk size: %zu (2^%zu)\n", chunk_size, + opt_chunk_2pow); + malloc_printf("Quantum size: %zu (2^%zu)\n", quantum, + opt_quantum_2pow); + malloc_printf("Max small size: %zu\n", small_max); + malloc_printf("Pointer size: %u\n", sizeof(void *)); + malloc_printf("Assertions %s\n", +#ifdef NDEBUG + "disabled" +#else + "enabled" +#endif + ); + +#ifdef MALLOC_STATS + + { + size_t allocated, total; + unsigned i; + arena_t *arena; + + /* Calculate and print allocated/total stats. */ + + /* arenas. */ + for (i = 0, allocated = 0; i < narenas; i++) { + if (arenas[i] != NULL) { + malloc_mutex_lock(&arenas[i]->mtx); + allocated += arenas[i]->stats.allocated; + malloc_mutex_unlock(&arenas[i]->mtx); + } + } + + /* huge. */ + malloc_mutex_lock(&chunks_mtx); + allocated += huge_allocated; + total = stats_chunks.curchunks * chunk_size; + malloc_mutex_unlock(&chunks_mtx); + + malloc_printf("Allocated: %zu, space used: %zu\n", + allocated, total); + + /* Print chunk stats. */ + { + chunk_stats_t chunks_stats; + + malloc_mutex_lock(&chunks_mtx); + chunks_stats = stats_chunks; + malloc_mutex_unlock(&chunks_mtx); + + malloc_printf("\nchunks:\n"); + malloc_printf(" %13s%13s%13s\n", "nchunks", + "highchunks", "curchunks"); + malloc_printf(" %13llu%13lu%13lu\n", + chunks_stats.nchunks, + chunks_stats.highchunks, + chunks_stats.curchunks); + } + + /* Print chunk stats. */ + malloc_printf("\nhuge:\n"); + malloc_printf("%12s %12s %12s\n", + "nmalloc", "ndalloc", "allocated"); + malloc_printf("%12llu %12llu %12zu\n", + huge_nmalloc, huge_ndalloc, huge_allocated); + + /* Print stats for each arena. */ + for (i = 0; i < narenas; i++) { + arena = arenas[i]; + if (arena != NULL) { + malloc_printf( + "\narenas[%u] statistics:\n", i); + malloc_mutex_lock(&arena->mtx); + stats_print(arena); + malloc_mutex_unlock(&arena->mtx); + } + } + } +#endif /* #ifdef MALLOC_STATS */ + malloc_printf("--- End malloc statistics ---\n"); + } +} + +/* + * FreeBSD's pthreads implementation calls malloc(3), so the malloc + * implementation has to take pains to avoid infinite recursion during + * initialization. + * + * atomic_init_start() returns true if it started initializing. In that case, + * the caller must also call atomic_init_finish(), just before returning to its + * caller. This delayed finalization of initialization is critical, since + * otherwise choose_arena() has no way to know whether it's safe to call + * _pthread_self(). + */ +static inline bool +malloc_init(void) +{ + + /* + * We always initialize before threads are created, since any thread + * creation first triggers allocations. + */ + assert(__isthreaded == 0 || malloc_initialized); + + if (malloc_initialized == false) + return (malloc_init_hard()); + + return (false); +} + +static bool +malloc_init_hard(void) +{ + unsigned i, j; + int linklen; + char buf[PATH_MAX + 1]; + const char *opts; + + /* Get number of CPUs. */ + { + int mib[2]; + size_t len; + + mib[0] = CTL_HW; + mib[1] = HW_NCPU; + len = sizeof(ncpus); + if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) { + /* Error. */ + ncpus = 1; + } + } + + /* Get page size. */ + { + long result; + + result = sysconf(_SC_PAGESIZE); + assert(result != -1); + pagesize = (unsigned) result; + + /* + * We assume that pagesize is a power of 2 when calculating + * pagesize_2pow. + */ + assert(((result - 1) & result) == 0); + pagesize_2pow = ffs(result) - 1; + } + + for (i = 0; i < 3; i++) { + /* Get runtime configuration. */ + switch (i) { + case 0: + if ((linklen = readlink("/etc/malloc.conf", buf, + sizeof(buf) - 1)) != -1) { + /* + * Use the contents of the "/etc/malloc.conf" + * symbolic link's name. + */ + buf[linklen] = '\0'; + opts = buf; + } else { + /* No configuration specified. */ + buf[0] = '\0'; + opts = buf; + } + break; + case 1: + if (issetugid() == 0 && (opts = + getenv("MALLOC_OPTIONS")) != NULL) { + /* + * Do nothing; opts is already initialized to + * the value of the MALLOC_OPTIONS environment + * variable. + */ + } else { + /* No configuration specified. */ + buf[0] = '\0'; + opts = buf; + } + break; + case 2: + if (_malloc_options != NULL) { + /* + * Use options that were compiled into the program. + */ + opts = _malloc_options; + } else { + /* No configuration specified. */ + buf[0] = '\0'; + opts = buf; + } + break; + default: + /* NOTREACHED */ + assert(false); + } + + for (j = 0; opts[j] != '\0'; j++) { + switch (opts[j]) { + case 'a': + opt_abort = false; + break; + case 'A': + opt_abort = true; + break; + case 'h': + opt_hint = false; + break; + case 'H': + opt_hint = true; + break; + case 'j': + opt_junk = false; + break; + case 'J': + opt_junk = true; + break; + case 'k': + /* + * Run fullness quartile limits don't have + * enough resolution if there are too few + * regions for the largest bin size classes. + */ + if (opt_chunk_2pow > pagesize_2pow + 3) + opt_chunk_2pow--; + break; + case 'K': + if (opt_chunk_2pow < CHUNK_2POW_MAX) + opt_chunk_2pow++; + break; + case 'n': + opt_narenas_lshift--; + break; + case 'N': + opt_narenas_lshift++; + break; + case 'p': + opt_print_stats = false; + break; + case 'P': + opt_print_stats = true; + break; + case 'q': + if (opt_quantum_2pow > QUANTUM_2POW_MIN) + opt_quantum_2pow--; + break; + case 'Q': + if (opt_quantum_2pow < pagesize_2pow - 1) + opt_quantum_2pow++; + break; + case 's': + if (opt_small_max_2pow > QUANTUM_2POW_MIN) + opt_small_max_2pow--; + break; + case 'S': + if (opt_small_max_2pow < pagesize_2pow - 1) + opt_small_max_2pow++; + break; + case 'u': + opt_utrace = false; + break; + case 'U': + opt_utrace = true; + break; + case 'v': + opt_sysv = false; + break; + case 'V': + opt_sysv = true; + break; + case 'x': + opt_xmalloc = false; + break; + case 'X': + opt_xmalloc = true; + break; + case 'z': + opt_zero = false; + break; + case 'Z': + opt_zero = true; + break; + default: + malloc_printf("%s: (malloc) Unsupported" + " character in malloc options: '%c'\n", + _getprogname(), opts[j]); + } + } + } + + /* Take care to call atexit() only once. */ + if (opt_print_stats) { + /* Print statistics at exit. */ + atexit(malloc_print_stats); + } + + /* Set variables according to the value of opt_small_max_2pow. */ + if (opt_small_max_2pow < opt_quantum_2pow) + opt_small_max_2pow = opt_quantum_2pow; + small_max = (1 << opt_small_max_2pow); + + /* Set bin-related variables. */ + bin_maxclass = (pagesize >> 1); + if (pagesize_2pow > RUN_MIN_REGS_2POW + 1) + tiny_min_2pow = pagesize_2pow - (RUN_MIN_REGS_2POW + 1); + else + tiny_min_2pow = 1; + assert(opt_quantum_2pow >= tiny_min_2pow); + ntbins = opt_quantum_2pow - tiny_min_2pow; + assert(ntbins <= opt_quantum_2pow); + nqbins = (small_max >> opt_quantum_2pow); + nsbins = pagesize_2pow - opt_small_max_2pow - 1; + + /* Set variables according to the value of opt_quantum_2pow. */ + quantum = (1 << opt_quantum_2pow); + quantum_mask = quantum - 1; + if (ntbins > 0) + small_min = (quantum >> 1) + 1; + else + small_min = 1; + assert(small_min <= quantum); + + /* Set variables according to the value of opt_chunk_2pow. */ + chunk_size = (1 << opt_chunk_2pow); + chunk_size_mask = chunk_size - 1; + arena_chunk_maplen = (1 << (opt_chunk_2pow - pagesize_2pow)); + arena_maxclass = (chunk_size >> 1); + + UTRACE(0, 0, 0); + +#ifdef MALLOC_STATS + memset(&stats_chunks, 0, sizeof(chunk_stats_t)); +#endif + + /* Various sanity checks that regard configuration. */ + assert(quantum >= sizeof(void *)); + assert(quantum <= pagesize); + assert(chunk_size >= pagesize); + assert(quantum * 4 <= chunk_size); + + /* Initialize chunks data. */ + malloc_mutex_init(&chunks_mtx); + RB_INIT(&huge); +#ifdef USE_BRK + brk_base = sbrk(0); + brk_prev = brk_base; + brk_max = (void *)((uintptr_t)brk_base + MAXDSIZ); +#endif +#ifdef MALLOC_STATS + huge_nmalloc = 0; + huge_ndalloc = 0; + huge_allocated = 0; +#endif + RB_INIT(&old_chunks); + + /* Initialize base allocation data structures. */ +#ifdef MALLOC_STATS + base_total = 0; +#endif +#ifdef USE_BRK + /* + * Do special brk allocation here, since the base chunk doesn't really + * need to be chunk-aligned. + */ + { + void *brk_cur; + intptr_t incr; + + do { + /* Get the current end of brk. */ + brk_cur = sbrk(0); + + /* + * Calculate how much padding is necessary to + * chunk-align the end of brk. Don't worry about + * brk_cur not being chunk-aligned though. + */ + incr = (intptr_t)chunk_size + - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur); + + brk_prev = sbrk(incr); + if (brk_prev == brk_cur) { + /* Success. */ + break; + } + } while (brk_prev != (void *)-1); + + base_chunk = brk_cur; + base_next_addr = base_chunk; + base_past_addr = (void *)((uintptr_t)base_chunk + incr); +#ifdef MALLOC_STATS + base_total += incr; + stats_chunks.nchunks = 1; + stats_chunks.curchunks = 1; + stats_chunks.highchunks = 1; +#endif + } +#else + /* + * The first base chunk will be allocated when needed by base_alloc(). + */ + base_chunk = NULL; + base_next_addr = NULL; + base_past_addr = NULL; +#endif + base_chunk_nodes = NULL; + malloc_mutex_init(&base_mtx); + + if (ncpus > 1) { + /* + * For SMP systems, create four times as many arenas as there + * are CPUs by default. + */ + opt_narenas_lshift += 2; + } + + /* Determine how many arenas to use. */ + narenas = ncpus; + if (opt_narenas_lshift > 0) { + if ((narenas << opt_narenas_lshift) > narenas) + narenas <<= opt_narenas_lshift; + /* + * Make sure not to exceed the limits of what base_malloc() + * can handle. + */ + if (narenas * sizeof(arena_t *) > chunk_size) + narenas = chunk_size / sizeof(arena_t *); + } else if (opt_narenas_lshift < 0) { + if ((narenas << opt_narenas_lshift) < narenas) + narenas <<= opt_narenas_lshift; + /* Make sure there is at least one arena. */ + if (narenas == 0) + narenas = 1; + } + +#ifdef NO_TLS + if (narenas > 1) { + static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19, + 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, + 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, + 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, + 223, 227, 229, 233, 239, 241, 251, 257, 263}; + unsigned i, nprimes, parenas; + + /* + * Pick a prime number of hash arenas that is more than narenas + * so that direct hashing of pthread_self() pointers tends to + * spread allocations evenly among the arenas. + */ + assert((narenas & 1) == 0); /* narenas must be even. */ + nprimes = sizeof(primes) / sizeof(unsigned); + parenas = primes[nprimes - 1]; /* In case not enough primes. */ + for (i = 1; i < nprimes; i++) { + if (primes[i] > narenas) { + parenas = primes[i]; + break; + } + } + narenas = parenas; + } +#endif + +#ifndef NO_TLS + next_arena = 0; +#endif + + /* Allocate and initialize arenas. */ + arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); + if (arenas == NULL) + return (true); + /* + * Zero the array. In practice, this should always be pre-zeroed, + * since it was just mmap()ed, but let's be sure. + */ + memset(arenas, 0, sizeof(arena_t *) * narenas); + + /* + * Initialize one arena here. The rest are lazily created in + * arena_choose_hard(). + */ + arenas_extend(0); + if (arenas[0] == NULL) + return (true); + + malloc_mutex_init(&arenas_mtx); + + malloc_initialized = true; + return (false); +} + +/* + * End general internal functions. + */ +/******************************************************************************/ +/* + * Begin malloc(3)-compatible functions. + */ + +void * +malloc(size_t size) +{ + void *ret; + arena_t *arena; + + if (malloc_init()) { + ret = NULL; + goto RETURN; + } + + if (size == 0) { + if (opt_sysv == false) + ret = &nil; + else + ret = NULL; + goto RETURN; + } + + arena = choose_arena(); + if (arena != NULL) + ret = imalloc(arena, size); + else + ret = NULL; + +RETURN: + if (ret == NULL) { + if (opt_xmalloc) { + malloc_printf("%s: (malloc) Error in malloc(%zu):" + " out of memory\n", _getprogname(), size); + abort(); + } + errno = ENOMEM; + } + + UTRACE(0, size, ret); + return (ret); +} + +int +posix_memalign(void **memptr, size_t alignment, size_t size) +{ + int ret; + arena_t *arena; + void *result; + + if (malloc_init()) + result = NULL; + else { + /* Make sure that alignment is a large enough power of 2. */ + if (((alignment - 1) & alignment) != 0 + || alignment < sizeof(void *)) { + if (opt_xmalloc) { + malloc_printf("%s: (malloc) Error in" + " posix_memalign(%zu, %zu):" + " invalid alignment\n", + _getprogname(), alignment, size); + abort(); + } + result = NULL; + ret = EINVAL; + goto RETURN; + } + + arena = choose_arena(); + if (arena != NULL) + result = ipalloc(arena, alignment, size); + else + result = NULL; + } + + if (result == NULL) { + if (opt_xmalloc) { + malloc_printf("%s: (malloc) Error in" + " posix_memalign(%zu, %zu): out of memory\n", + _getprogname(), alignment, size); + abort(); + } + ret = ENOMEM; + goto RETURN; + } + + *memptr = result; + ret = 0; + +RETURN: + UTRACE(0, size, result); + return (ret); +} + +void * +calloc(size_t num, size_t size) +{ + void *ret; + arena_t *arena; + + if (malloc_init()) { + ret = NULL; + goto RETURN; + } + + if (num * size == 0) { + if (opt_sysv == false) + ret = &nil; + else + ret = NULL; + goto RETURN; + } else if ((num * size) / size != num) { + /* size_t overflow. */ + ret = NULL; + goto RETURN; + } + + arena = choose_arena(); + if (arena != NULL) + ret = icalloc(arena, num * size); + else + ret = NULL; + +RETURN: + if (ret == NULL) { + if (opt_xmalloc) { + malloc_printf("%s: (malloc) Error in" + " calloc(%zu, %zu): out of memory\n", + _getprogname(), num, size); + abort(); + } + errno = ENOMEM; + } + + UTRACE(0, num * size, ret); + return (ret); +} + +void * +realloc(void *ptr, size_t size) +{ + void *ret; + + if (size != 0) { + arena_t *arena; + + if (ptr != &nil && ptr != NULL) { + assert(malloc_initialized); + + arena = choose_arena(); + if (arena != NULL) + ret = iralloc(arena, ptr, size); + else + ret = NULL; + + if (ret == NULL) { + if (opt_xmalloc) { + malloc_printf("%s: (malloc) Error in" + " ralloc(%p, %zu): out of memory\n", + _getprogname(), ptr, size); + abort(); + } + errno = ENOMEM; + } + } else { + if (malloc_init()) + ret = NULL; + else { + arena = choose_arena(); + if (arena != NULL) + ret = imalloc(arena, size); + else + ret = NULL; + } + + if (ret == NULL) { + if (opt_xmalloc) { + malloc_printf("%s: (malloc) Error in" + " ralloc(%p, %zu): out of memory\n", + _getprogname(), ptr, size); + abort(); + } + errno = ENOMEM; + } + } + } else { + if (ptr != &nil && ptr != NULL) + idalloc(ptr); + + ret = &nil; + } + + UTRACE(ptr, size, ret); + return (ret); +} + +void +free(void *ptr) +{ + + UTRACE(ptr, 0, 0); + if (ptr != &nil && ptr != NULL) { + assert(malloc_initialized); + + idalloc(ptr); + } +} + +/* + * End malloc(3)-compatible functions. + */ +/******************************************************************************/ +/* + * Begin library-private functions, used by threading libraries for protection + * of malloc during fork(). These functions are only called if the program is + * running in threaded mode, so there is no need to check whether the program + * is threaded here. + */ + +void +_malloc_prefork(void) +{ + unsigned i; + + /* Acquire all mutexes in a safe order. */ + + malloc_mutex_lock(&arenas_mtx); + for (i = 0; i < narenas; i++) { + if (arenas[i] != NULL) + malloc_mutex_lock(&arenas[i]->mtx); + } + malloc_mutex_unlock(&arenas_mtx); + + malloc_mutex_lock(&base_mtx); + + malloc_mutex_lock(&chunks_mtx); +} + +void +_malloc_postfork(void) +{ + unsigned i; + + /* Release all mutexes, now that fork() has completed. */ + + malloc_mutex_unlock(&chunks_mtx); + + malloc_mutex_unlock(&base_mtx); + + malloc_mutex_lock(&arenas_mtx); + for (i = 0; i < narenas; i++) { + if (arenas[i] != NULL) + malloc_mutex_unlock(&arenas[i]->mtx); + } + malloc_mutex_unlock(&arenas_mtx); +} + +/* + * End library-private functions. + */ +/******************************************************************************/ |