diff options
Diffstat (limited to 'lib/libc/softfloat')
40 files changed, 0 insertions, 14986 deletions
diff --git a/lib/libc/softfloat/Makefile.inc b/lib/libc/softfloat/Makefile.inc deleted file mode 100644 index ac7fbf7..0000000 --- a/lib/libc/softfloat/Makefile.inc +++ /dev/null @@ -1,20 +0,0 @@ -# $NetBSD: Makefile.inc,v 1.3 2003/05/06 08:58:20 rearnsha Exp $ -# $FreeBSD$ - -SOFTFLOAT_BITS?=64 -.PATH: ${LIBC_ARCH}/softfloat \ - ${.CURDIR}/softfloat/bits${SOFTFLOAT_BITS} ${.CURDIR}/softfloat - -CFLAGS+= -I${.CURDIR}/${LIBC_ARCH}/softfloat -I${.CURDIR}/softfloat -CFLAGS+= -DSOFTFLOAT_FOR_GCC - -SRCS+= softfloat.c - -SRCS+= fpgetround.c fpsetround.c fpgetmask.c fpsetmask.c \ - fpgetsticky.c - -SRCS+= eqsf2.c nesf2.c gtsf2.c gesf2.c ltsf2.c lesf2.c negsf2.c \ - eqdf2.c nedf2.c gtdf2.c gedf2.c ltdf2.c ledf2.c negdf2.c \ - unordsf2.c unorddf2.c - -SYM_MAPS+= ${.CURDIR}/softfloat/Symbol.map diff --git a/lib/libc/softfloat/README.NetBSD b/lib/libc/softfloat/README.NetBSD deleted file mode 100644 index c6ca7a8..0000000 --- a/lib/libc/softfloat/README.NetBSD +++ /dev/null @@ -1,9 +0,0 @@ -$NetBSD: README.NetBSD,v 1.2 2002/05/21 23:51:05 bjh21 Exp $ -$FreeBSD$ - -This is a modified version of part of John Hauser's SoftFloat 2a package. -This version has been heavily modified to support its use with GCC to -implement built-in floating-point operations, but compiling -softfloat.c without SOFTFLOAT_FOR_GCC defined should get you the same -results as from the original. - diff --git a/lib/libc/softfloat/README.txt b/lib/libc/softfloat/README.txt deleted file mode 100644 index fe28ccc..0000000 --- a/lib/libc/softfloat/README.txt +++ /dev/null @@ -1,40 +0,0 @@ -$NetBSD: README.txt,v 1.1 2000/06/06 08:15:02 bjh21 Exp $ -$FreeBSD$ - -Package Overview for SoftFloat Release 2a - -John R. Hauser -1998 December 13 - - -SoftFloat is a software implementation of floating-point that conforms to -the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat is -distributed in the form of C source code. Compiling the SoftFloat sources -generates two things: - --- A SoftFloat object file (typically `softfloat.o') containing the complete - set of IEC/IEEE floating-point routines. - --- A `timesoftfloat' program for evaluating the speed of the SoftFloat - routines. (The SoftFloat module is linked into this program.) - -The SoftFloat package is documented in four text files: - - softfloat.txt Documentation for using the SoftFloat functions. - softfloat-source.txt Documentation for compiling SoftFloat. - softfloat-history.txt History of major changes to SoftFloat. - timesoftfloat.txt Documentation for using `timesoftfloat'. - -Other files in the package comprise the source code for SoftFloat. - -Please be aware that some work is involved in porting this software to other -targets. It is not just a matter of getting `make' to complete without -error messages. I would have written the code that way if I could, but -there are fundamental differences between systems that I can't make go away. -You should not attempt to compile SoftFloat without first reading both -`softfloat.txt' and `softfloat-source.txt'. - -At the time of this writing, the most up-to-date information about -SoftFloat and the latest release can be found at the Web page `http:// -HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'. - diff --git a/lib/libc/softfloat/Symbol.map b/lib/libc/softfloat/Symbol.map deleted file mode 100644 index 12fb335..0000000 --- a/lib/libc/softfloat/Symbol.map +++ /dev/null @@ -1,47 +0,0 @@ -/* - * $FreeBSD$ - */ - -FBSD_1.0 { - _fpgetmask; - fpgetmask; - _fpgetround; - fpgetround; - _fpgetsticky; - fpgetsticky; - _fpsetmask; - fpsetmask; - _fpsetround; - fpsetround; - _fpsetsticky; - fpsetsticky; -}; - -FBSDprivate_1.0 { - _softfloat_float_exception_flags; - _softfloat_float_exception_mask; - _softfloat_float_rounding_mode; - _softfloat_float_raise; - _softfloat_float32_eq; - _softfloat_float32_le; - _softfloat_float32_lt; - _softfloat_float64_eq; - _softfloat_float64_le; - _softfloat_float64_lt; - __eqdf2; - __eqsf2; - __gedf2; - __gesf2; - __gtdf2; - __gtsf2; - __ledf2; - __lesf2; - __ltdf2; - __ltsf2; - __nedf2; - __negdf2; - __negsf2; - __nesf2; - __unorddf2; - __unordsf2; -}; diff --git a/lib/libc/softfloat/bits32/softfloat-macros b/lib/libc/softfloat/bits32/softfloat-macros deleted file mode 100644 index 4fd4f2f..0000000 --- a/lib/libc/softfloat/bits32/softfloat-macros +++ /dev/null @@ -1,649 +0,0 @@ -/* $FreeBSD$ */ - -/* -=============================================================================== - -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -/* -------------------------------------------------------------------------------- -Shifts `a' right by the number of bits given in `count'. If any nonzero -bits are shifted off, they are ``jammed'' into the least significant bit of -the result by setting the least significant bit to 1. The value of `count' -can be arbitrarily large; in particular, if `count' is greater than 32, the -result will be either 0 or 1, depending on whether `a' is zero or nonzero. -The result is stored in the location pointed to by `zPtr'. -------------------------------------------------------------------------------- -*/ -INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) -{ - bits32 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 32 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the -number of bits given in `count'. Any bits shifted off are lost. The value -of `count' can be arbitrarily large; in particular, if `count' is greater -than 64, the result will be 0. The result is broken into two 32-bit pieces -which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shift64Right( - bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) -{ - bits32 z0, z1; - int8 negCount = ( - count ) & 31; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 32 ) { - z1 = ( a0<<negCount ) | ( a1>>count ); - z0 = a0>>count; - } - else { - z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0; - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the -number of bits given in `count'. If any nonzero bits are shifted off, they -are ``jammed'' into the least significant bit of the result by setting the -least significant bit to 1. The value of `count' can be arbitrarily large; -in particular, if `count' is greater than 64, the result will be either 0 -or 1, depending on whether the concatenation of `a0' and `a1' is zero or -nonzero. The result is broken into two 32-bit pieces which are stored at -the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shift64RightJamming( - bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) -{ - bits32 z0, z1; - int8 negCount = ( - count ) & 31; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 32 ) { - z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); - z0 = a0>>count; - } - else { - if ( count == 32 ) { - z1 = a0 | ( a1 != 0 ); - } - else if ( count < 64 ) { - z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); - } - else { - z1 = ( ( a0 | a1 ) != 0 ); - } - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right -by 32 _plus_ the number of bits given in `count'. The shifted result is -at most 64 nonzero bits; these are broken into two 32-bit pieces which are -stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted -off form a third 32-bit result as follows: The _last_ bit shifted off is -the most-significant bit of the extra result, and the other 31 bits of the -extra result are all zero if and only if _all_but_the_last_ bits shifted off -were all zero. This extra result is stored in the location pointed to by -`z2Ptr'. The value of `count' can be arbitrarily large. - (This routine makes more sense if `a0', `a1', and `a2' are considered -to form a fixed-point value with binary point between `a1' and `a2'. This -fixed-point value is shifted right by the number of bits given in `count', -and the integer part of the result is returned at the locations pointed to -by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly -corrupted as described above, and is returned at the location pointed to by -`z2Ptr'.) -------------------------------------------------------------------------------- -*/ -INLINE void - shift64ExtraRightJamming( - bits32 a0, - bits32 a1, - bits32 a2, - int16 count, - bits32 *z0Ptr, - bits32 *z1Ptr, - bits32 *z2Ptr - ) -{ - bits32 z0, z1, z2; - int8 negCount = ( - count ) & 31; - - if ( count == 0 ) { - z2 = a2; - z1 = a1; - z0 = a0; - } - else { - if ( count < 32 ) { - z2 = a1<<negCount; - z1 = ( a0<<negCount ) | ( a1>>count ); - z0 = a0>>count; - } - else { - if ( count == 32 ) { - z2 = a1; - z1 = a0; - } - else { - a2 |= a1; - if ( count < 64 ) { - z2 = a0<<negCount; - z1 = a0>>( count & 31 ); - } - else { - z2 = ( count == 64 ) ? a0 : ( a0 != 0 ); - z1 = 0; - } - } - z0 = 0; - } - z2 |= ( a2 != 0 ); - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the -number of bits given in `count'. Any bits shifted off are lost. The value -of `count' must be less than 32. The result is broken into two 32-bit -pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shortShift64Left( - bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) -{ - - *z1Ptr = a1<<count; - *z0Ptr = - ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) ); - -} - -/* -------------------------------------------------------------------------------- -Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left -by the number of bits given in `count'. Any bits shifted off are lost. -The value of `count' must be less than 32. The result is broken into three -32-bit pieces which are stored at the locations pointed to by `z0Ptr', -`z1Ptr', and `z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shortShift96Left( - bits32 a0, - bits32 a1, - bits32 a2, - int16 count, - bits32 *z0Ptr, - bits32 *z1Ptr, - bits32 *z2Ptr - ) -{ - bits32 z0, z1, z2; - int8 negCount; - - z2 = a2<<count; - z1 = a1<<count; - z0 = a0<<count; - if ( 0 < count ) { - negCount = ( ( - count ) & 31 ); - z1 |= a2>>negCount; - z0 |= a1>>negCount; - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit -value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so -any carry out is lost. The result is broken into two 32-bit pieces which -are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - add64( - bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) -{ - bits32 z1; - - z1 = a1 + b1; - *z1Ptr = z1; - *z0Ptr = a0 + b0 + ( z1 < a1 ); - -} - -/* -------------------------------------------------------------------------------- -Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the -96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is -modulo 2^96, so any carry out is lost. The result is broken into three -32-bit pieces which are stored at the locations pointed to by `z0Ptr', -`z1Ptr', and `z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - add96( - bits32 a0, - bits32 a1, - bits32 a2, - bits32 b0, - bits32 b1, - bits32 b2, - bits32 *z0Ptr, - bits32 *z1Ptr, - bits32 *z2Ptr - ) -{ - bits32 z0, z1, z2; - int8 carry0, carry1; - - z2 = a2 + b2; - carry1 = ( z2 < a2 ); - z1 = a1 + b1; - carry0 = ( z1 < a1 ); - z0 = a0 + b0; - z1 += carry1; - z0 += ( z1 < carry1 ); - z0 += carry0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the -64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo -2^64, so any borrow out (carry out) is lost. The result is broken into two -32-bit pieces which are stored at the locations pointed to by `z0Ptr' and -`z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - sub64( - bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) -{ - - *z1Ptr = a1 - b1; - *z0Ptr = a0 - b0 - ( a1 < b1 ); - -} - -/* -------------------------------------------------------------------------------- -Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from -the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction -is modulo 2^96, so any borrow out (carry out) is lost. The result is broken -into three 32-bit pieces which are stored at the locations pointed to by -`z0Ptr', `z1Ptr', and `z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - sub96( - bits32 a0, - bits32 a1, - bits32 a2, - bits32 b0, - bits32 b1, - bits32 b2, - bits32 *z0Ptr, - bits32 *z1Ptr, - bits32 *z2Ptr - ) -{ - bits32 z0, z1, z2; - int8 borrow0, borrow1; - - z2 = a2 - b2; - borrow1 = ( a2 < b2 ); - z1 = a1 - b1; - borrow0 = ( a1 < b1 ); - z0 = a0 - b0; - z0 -= ( z1 < borrow1 ); - z1 -= borrow1; - z0 -= borrow0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Multiplies `a' by `b' to obtain a 64-bit product. The product is broken -into two 32-bit pieces which are stored at the locations pointed to by -`z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr ) -{ - bits16 aHigh, aLow, bHigh, bLow; - bits32 z0, zMiddleA, zMiddleB, z1; - - aLow = a; - aHigh = a>>16; - bLow = b; - bHigh = b>>16; - z1 = ( (bits32) aLow ) * bLow; - zMiddleA = ( (bits32) aLow ) * bHigh; - zMiddleB = ( (bits32) aHigh ) * bLow; - z0 = ( (bits32) aHigh ) * bHigh; - zMiddleA += zMiddleB; - z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 ); - zMiddleA <<= 16; - z1 += zMiddleA; - z0 += ( z1 < zMiddleA ); - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b' -to obtain a 96-bit product. The product is broken into three 32-bit pieces -which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and -`z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - mul64By32To96( - bits32 a0, - bits32 a1, - bits32 b, - bits32 *z0Ptr, - bits32 *z1Ptr, - bits32 *z2Ptr - ) -{ - bits32 z0, z1, z2, more1; - - mul32To64( a1, b, &z1, &z2 ); - mul32To64( a0, b, &z0, &more1 ); - add64( z0, more1, 0, z1, &z0, &z1 ); - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the -64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit -product. The product is broken into four 32-bit pieces which are stored at -the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - mul64To128( - bits32 a0, - bits32 a1, - bits32 b0, - bits32 b1, - bits32 *z0Ptr, - bits32 *z1Ptr, - bits32 *z2Ptr, - bits32 *z3Ptr - ) -{ - bits32 z0, z1, z2, z3; - bits32 more1, more2; - - mul32To64( a1, b1, &z2, &z3 ); - mul32To64( a1, b0, &z1, &more2 ); - add64( z1, more2, 0, z2, &z1, &z2 ); - mul32To64( a0, b0, &z0, &more1 ); - add64( z0, more1, 0, z1, &z0, &z1 ); - mul32To64( a0, b1, &more1, &more2 ); - add64( more1, more2, 0, z2, &more1, &z2 ); - add64( z0, z1, 0, more1, &z0, &z1 ); - *z3Ptr = z3; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Returns an approximation to the 32-bit integer quotient obtained by dividing -`b' into the 64-bit value formed by concatenating `a0' and `a1'. The -divisor `b' must be at least 2^31. If q is the exact quotient truncated -toward zero, the approximation returned lies between q and q + 2 inclusive. -If the exact quotient q is larger than 32 bits, the maximum positive 32-bit -unsigned integer is returned. -------------------------------------------------------------------------------- -*/ -static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b ) -{ - bits32 b0, b1; - bits32 rem0, rem1, term0, term1; - bits32 z; - - if ( b <= a0 ) return 0xFFFFFFFF; - b0 = b>>16; - z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16; - mul32To64( b, z, &term0, &term1 ); - sub64( a0, a1, term0, term1, &rem0, &rem1 ); - while ( ( (sbits32) rem0 ) < 0 ) { - z -= 0x10000; - b1 = b<<16; - add64( rem0, rem1, b0, b1, &rem0, &rem1 ); - } - rem0 = ( rem0<<16 ) | ( rem1>>16 ); - z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0; - return z; - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns an approximation to the square root of the 32-bit significand given -by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of -`aExp' (the least significant bit) is 1, the integer returned approximates -2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' -is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either -case, the approximation returned lies strictly within +/-2 of the exact -value. -------------------------------------------------------------------------------- -*/ -static bits32 estimateSqrt32( int16 aExp, bits32 a ) -{ - static const bits16 sqrtOddAdjustments[] = { - 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, - 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 - }; - static const bits16 sqrtEvenAdjustments[] = { - 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, - 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 - }; - int8 index; - bits32 z; - - index = ( a>>27 ) & 15; - if ( aExp & 1 ) { - z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; - z = ( ( a / z )<<14 ) + ( z<<15 ); - a >>= 1; - } - else { - z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; - z = a / z + z; - z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); - if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); - } - return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the number of leading 0 bits before the most-significant 1 bit of -`a'. If `a' is zero, 32 is returned. -------------------------------------------------------------------------------- -*/ -static int8 countLeadingZeros32( bits32 a ) -{ - static const int8 countLeadingZerosHigh[] = { - 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, - 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 - }; - int8 shiftCount; - - shiftCount = 0; - if ( a < 0x10000 ) { - shiftCount += 16; - a <<= 16; - } - if ( a < 0x1000000 ) { - shiftCount += 8; - a <<= 8; - } - shiftCount += countLeadingZerosHigh[ a>>24 ]; - return shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is -equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, -returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) -{ - - return ( a0 == b0 ) && ( a1 == b1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less -than or equal to the 64-bit value formed by concatenating `b0' and `b1'. -Otherwise, returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less -than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, -returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not -equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, -returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) -{ - - return ( a0 != b0 ) || ( a1 != b1 ); - -} - diff --git a/lib/libc/softfloat/bits32/softfloat.c b/lib/libc/softfloat/bits32/softfloat.c deleted file mode 100644 index 7785c4e..0000000 --- a/lib/libc/softfloat/bits32/softfloat.c +++ /dev/null @@ -1,2347 +0,0 @@ -/* $NetBSD: softfloat.c,v 1.1 2002/05/21 23:51:07 bjh21 Exp $ */ - -/* - * This version hacked for use with gcc -msoft-float by bjh21. - * (Mostly a case of #ifdefing out things GCC doesn't need or provides - * itself). - */ - -/* - * Things you may want to define: - * - * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with - * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them - * properly renamed. - */ - -/* - * This differs from the standard bits32/softfloat.c in that float64 - * is defined to be a 64-bit integer rather than a structure. The - * structure is float64s, with translation between the two going via - * float64u. - */ - -/* -=============================================================================== - -This C source file is part of the SoftFloat IEC/IEEE Floating-Point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif - -#include "milieu.h" -#include "softfloat.h" - -/* - * Conversions between floats as stored in memory and floats as - * SoftFloat uses them - */ -#ifndef FLOAT64_DEMANGLE -#define FLOAT64_DEMANGLE(a) (a) -#endif -#ifndef FLOAT64_MANGLE -#define FLOAT64_MANGLE(a) (a) -#endif - -/* -------------------------------------------------------------------------------- -Floating-point rounding mode and exception flags. -------------------------------------------------------------------------------- -*/ -fp_rnd_t float_rounding_mode = float_round_nearest_even; -fp_except float_exception_flags = 0; - -/* -------------------------------------------------------------------------------- -Primitive arithmetic functions, including multi-word arithmetic, and -division and square root approximations. (Can be specialized to target if -desired.) -------------------------------------------------------------------------------- -*/ -#include "softfloat-macros" - -/* -------------------------------------------------------------------------------- -Functions and definitions to determine: (1) whether tininess for underflow -is detected before or after rounding by default, (2) what (if anything) -happens when exceptions are raised, (3) how signaling NaNs are distinguished -from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs -are propagated from function inputs to output. These details are target- -specific. -------------------------------------------------------------------------------- -*/ -#include "softfloat-specialize" - -/* -------------------------------------------------------------------------------- -Returns the fraction bits of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat32Frac( float32 a ) -{ - - return a & 0x007FFFFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int16 extractFloat32Exp( float32 a ) -{ - - return ( a>>23 ) & 0xFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat32Sign( float32 a ) -{ - - return a>>31; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal single-precision floating-point value represented -by the denormalized significand `aSig'. The normalized exponent and -significand are stored at the locations pointed to by `zExpPtr' and -`zSigPtr', respectively. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( aSig ) - 8; - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', exponent `zExp', and significand `zSig' into a -single-precision floating-point value, returning the result. After being -shifted into the proper positions, the three fields are simply added -together to form the result. This means that any integer portion of `zSig' -will be added into the exponent. Since a properly normalized significand -will have an integer portion equal to 1, the `zExp' input should be 1 less -than the desired result exponent whenever `zSig' is a complete, normalized -significand. -------------------------------------------------------------------------------- -*/ -INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - - return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper single-precision floating- -point value corresponding to the abstract input. Ordinarily, the abstract -value is simply rounded and packed into the single-precision format, with -the inexact exception raised if the abstract input cannot be represented -exactly. However, if the abstract value is too large, the overflow and -inexact exceptions are raised and an infinity or maximal finite value is -returned. If the abstract value is too small, the input value is rounded to -a subnormal number, and the underflow and inexact exceptions are raised if -the abstract input cannot be represented exactly as a subnormal single- -precision floating-point number. - The input significand `zSig' has its binary point between bits 30 -and 29, which is 7 bits to the left of the usual location. This shifted -significand must be normalized or smaller. If `zSig' is not normalized, -`zExp' must be 0; in that case, the result returned is a subnormal number, -and it must not require rounding. In the usual case that `zSig' is -normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. -The handling of underflow and overflow follows the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 roundingMode; - flag roundNearestEven; - int8 roundIncrement, roundBits; - flag isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = roundingMode == float_round_nearest_even; - roundIncrement = 0x40; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x7F; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = zSig & 0x7F; - if ( 0xFD <= (bits16) zExp ) { - if ( ( 0xFD < zExp ) - || ( ( zExp == 0xFD ) - && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ( zSig + roundIncrement < 0x80000000 ); - shift32RightJamming( zSig, - zExp, &zSig ); - zExp = 0; - roundBits = zSig & 0x7F; - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); - } - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - zSig = ( zSig + roundIncrement )>>7; - zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper single-precision floating- -point value corresponding to the abstract input. This routine is just like -`roundAndPackFloat32' except that `zSig' does not have to be normalized. -Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -floating-point exponent. -------------------------------------------------------------------------------- -*/ -static float32 - normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( zSig ) - 1; - return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); - -} - -/* -------------------------------------------------------------------------------- -Returns the least-significant 32 fraction bits of the double-precision -floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat64Frac1( float64 a ) -{ - - return FLOAT64_DEMANGLE(a) & LIT64( 0x00000000FFFFFFFF ); - -} - -/* -------------------------------------------------------------------------------- -Returns the most-significant 20 fraction bits of the double-precision -floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat64Frac0( float64 a ) -{ - - return ( FLOAT64_DEMANGLE(a)>>32 ) & 0x000FFFFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int16 extractFloat64Exp( float64 a ) -{ - - return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat64Sign( float64 a ) -{ - - return FLOAT64_DEMANGLE(a)>>63; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal double-precision floating-point value represented -by the denormalized significand formed by the concatenation of `aSig0' and -`aSig1'. The normalized exponent is stored at the location pointed to by -`zExpPtr'. The most significant 21 bits of the normalized significand are -stored at the location pointed to by `zSig0Ptr', and the least significant -32 bits of the normalized significand are stored at the location pointed to -by `zSig1Ptr'. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat64Subnormal( - bits32 aSig0, - bits32 aSig1, - int16 *zExpPtr, - bits32 *zSig0Ptr, - bits32 *zSig1Ptr - ) -{ - int8 shiftCount; - - if ( aSig0 == 0 ) { - shiftCount = countLeadingZeros32( aSig1 ) - 11; - if ( shiftCount < 0 ) { - *zSig0Ptr = aSig1>>( - shiftCount ); - *zSig1Ptr = aSig1<<( shiftCount & 31 ); - } - else { - *zSig0Ptr = aSig1<<shiftCount; - *zSig1Ptr = 0; - } - *zExpPtr = - shiftCount - 31; - } - else { - shiftCount = countLeadingZeros32( aSig0 ) - 11; - shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); - *zExpPtr = 1 - shiftCount; - } - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', the exponent `zExp', and the significand formed by -the concatenation of `zSig0' and `zSig1' into a double-precision floating- -point value, returning the result. After being shifted into the proper -positions, the three fields `zSign', `zExp', and `zSig0' are simply added -together to form the most significant 32 bits of the result. This means -that any integer portion of `zSig0' will be added into the exponent. Since -a properly normalized significand will have an integer portion equal to 1, -the `zExp' input should be 1 less than the desired result exponent whenever -`zSig0' and `zSig1' concatenated form a complete, normalized significand. -------------------------------------------------------------------------------- -*/ -INLINE float64 - packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) -{ - - return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) + - ( ( (bits64) zExp )<<52 ) + - ( ( (bits64) zSig0 )<<32 ) + zSig1 ); - - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and extended significand formed by the concatenation of `zSig0', `zSig1', -and `zSig2', and returns the proper double-precision floating-point value -corresponding to the abstract input. Ordinarily, the abstract value is -simply rounded and packed into the double-precision format, with the inexact -exception raised if the abstract input cannot be represented exactly. -However, if the abstract value is too large, the overflow and inexact -exceptions are raised and an infinity or maximal finite value is returned. -If the abstract value is too small, the input value is rounded to a -subnormal number, and the underflow and inexact exceptions are raised if the -abstract input cannot be represented exactly as a subnormal double-precision -floating-point number. - The input significand must be normalized or smaller. If the input -significand is not normalized, `zExp' must be 0; in that case, the result -returned is a subnormal number, and it must not require rounding. In the -usual case that the input significand is normalized, `zExp' must be 1 less -than the ``true'' floating-point exponent. The handling of underflow and -overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 - roundAndPackFloat64( - flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 ) -{ - int8 roundingMode; - flag roundNearestEven, increment, isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - increment = ( (sbits32) zSig2 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig2; - } - else { - increment = ( roundingMode == float_round_up ) && zSig2; - } - } - } - if ( 0x7FD <= (bits16) zExp ) { - if ( ( 0x7FD < zExp ) - || ( ( zExp == 0x7FD ) - && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 ) - && increment - ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - if ( ( roundingMode == float_round_to_zero ) - || ( zSign && ( roundingMode == float_round_up ) ) - || ( ! zSign && ( roundingMode == float_round_down ) ) - ) { - return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF ); - } - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ! increment - || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF ); - shift64ExtraRightJamming( - zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); - zExp = 0; - if ( isTiny && zSig2 ) float_raise( float_flag_underflow ); - if ( roundNearestEven ) { - increment = ( (sbits32) zSig2 < 0 ); - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig2; - } - else { - increment = ( roundingMode == float_round_up ) && zSig2; - } - } - } - } - if ( zSig2 ) float_exception_flags |= float_flag_inexact; - if ( increment ) { - add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); - zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); - } - else { - if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; - } - return packFloat64( zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand formed by the concatenation of `zSig0' and `zSig1', and -returns the proper double-precision floating-point value corresponding -to the abstract input. This routine is just like `roundAndPackFloat64' -except that the input significand has fewer bits and does not have to be -normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- -point exponent. -------------------------------------------------------------------------------- -*/ -static float64 - normalizeRoundAndPackFloat64( - flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) -{ - int8 shiftCount; - bits32 zSig2; - - if ( zSig0 == 0 ) { - zSig0 = zSig1; - zSig1 = 0; - zExp -= 32; - } - shiftCount = countLeadingZeros32( zSig0 ) - 11; - if ( 0 <= shiftCount ) { - zSig2 = 0; - shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - } - else { - shift64ExtraRightJamming( - zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); - } - zExp -= shiftCount; - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' to -the single-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 int32_to_float32( int32 a ) -{ - flag zSign; - - if ( a == 0 ) return 0; - if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); - zSign = ( a < 0 ); - return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' to -the double-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 int32_to_float64( int32 a ) -{ - flag zSign; - bits32 absA; - int8 shiftCount; - bits32 zSig0, zSig1; - - if ( a == 0 ) return packFloat64( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros32( absA ) - 11; - if ( 0 <= shiftCount ) { - zSig0 = absA<<shiftCount; - zSig1 = 0; - } - else { - shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 ); - } - return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float32_to_int32( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig, aSigExtra; - int32 z; - int8 roundingMode; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0x96; - if ( 0 <= shiftCount ) { - if ( 0x9E <= aExp ) { - if ( a != 0xCF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return 0x7FFFFFFF; - } - } - return (sbits32) 0x80000000; - } - z = ( aSig | 0x00800000 )<<shiftCount; - if ( aSign ) z = - z; - } - else { - if ( aExp < 0x7E ) { - aSigExtra = aExp | aSig; - z = 0; - } - else { - aSig |= 0x00800000; - aSigExtra = aSig<<( shiftCount & 31 ); - z = aSig>>( - shiftCount ); - } - if ( aSigExtra ) float_exception_flags |= float_flag_inexact; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( (sbits32) aSigExtra < 0 ) { - ++z; - if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1; - } - if ( aSign ) z = - z; - } - else { - aSigExtra = ( aSigExtra != 0 ); - if ( aSign ) { - z += ( roundingMode == float_round_down ) & aSigExtra; - z = - z; - } - else { - z += ( roundingMode == float_round_up ) & aSigExtra; - } - } - } - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float32_to_int32_round_to_zero( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - int32 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0x9E; - if ( 0 <= shiftCount ) { - if ( a != 0xCF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; - } - return (sbits32) 0x80000000; - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig = ( aSig | 0x00800000 )<<8; - z = aSig>>( - shiftCount ); - if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the double-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float32_to_float64( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig, zSig0, zSig1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); - return packFloat64( aSign, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - shift64Right( aSig, 0, 3, &zSig0, &zSig1 ); - return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Rounds the single-precision floating-point value `a' to an integer, -and returns the result as a single-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_round_to_int( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - float32 z; - - aExp = extractFloat32Exp( a ); - if ( 0x96 <= aExp ) { - if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { - return propagateFloat32NaN( a, a ); - } - return a; - } - if ( aExp <= 0x7E ) { - if ( (bits32) ( a<<1 ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat32Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { - return packFloat32( aSign, 0x7F, 0 ); - } - break; - case float_round_to_zero: - break; - case float_round_down: - return aSign ? 0xBF800000 : 0; - case float_round_up: - return aSign ? 0x80000000 : 0x3F800000; - } - return packFloat32( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x96 - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != a ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the single-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 6; - bSig <<= 6; - if ( 0 < expDiff ) { - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x20000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x20000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); - zSig = 0x40000000 + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= 0x20000000; - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits32) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the single- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 7; - bSig <<= 7; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign ^ 1, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x40000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - bSig |= 0x40000000; - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x40000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - aSig |= 0x40000000; - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the single-precision floating-point values `a' -and `b'. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_add( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return addFloat32Sigs( a, b, aSign ); - } - else { - return subFloat32Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the single-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_sub( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return subFloat32Sigs( a, b, aSign ); - } - else { - return addFloat32Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the single-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_mul( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig0, zSig1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x7F; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - mul32To64( aSig, bSig, &zSig0, &zSig1 ); - zSig0 |= ( zSig1 != 0 ); - if ( 0 <= (sbits32) ( zSig0<<1 ) ) { - zSig0 <<= 1; - --zExp; - } - return roundAndPackFloat32( zSign, zExp, zSig0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the single-precision floating-point value `a' -by the corresponding value `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_div( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig, rem0, rem1, term0, term1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat32( zSign, 0xFF, 0 ); - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x7D; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = estimateDiv64To32( aSig, 0, bSig ); - if ( ( zSig & 0x3F ) <= 2 ) { - mul32To64( bSig, zSig, &term0, &term1 ); - sub64( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits32) rem0 < 0 ) { - --zSig; - add64( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig |= ( rem1 != 0 ); - } - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the remainder of the single-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_rem( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig, bSig, q, allZero, alternateASig; - sbits32 sigMean; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig = ( aSig | 0x00800000 )<<8; - bSig = ( bSig | 0x00800000 )<<8; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - expDiff -= 32; - while ( 0 < expDiff ) { - q = estimateDiv64To32( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - aSig = - ( ( bSig>>2 ) * q ); - expDiff -= 30; - } - expDiff += 32; - if ( 0 < expDiff ) { - q = estimateDiv64To32( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 32 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits32) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits32) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); - -} -#endif - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the square root of the single-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_sqrt( float32 a ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig, zSig, rem0, rem1, term0, term1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, 0 ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return 0; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; - aSig = ( aSig | 0x00800000 )<<8; - zSig = estimateSqrt32( aExp, aSig ) + 2; - if ( ( zSig & 0x7F ) <= 5 ) { - if ( zSig < 2 ) { - zSig = 0x7FFFFFFF; - goto roundAndPack; - } - else { - aSig >>= aExp & 1; - mul32To64( zSig, zSig, &term0, &term1 ); - sub64( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits32) rem0 < 0 ) { - --zSig; - shortShift64Left( 0, zSig, 1, &term0, &term1 ); - term1 |= 1; - add64( rem0, rem1, term0, term1, &rem0, &rem1 ); - } - zSig |= ( ( rem0 | rem1 ) != 0 ); - } - } - shift32RightJamming( zSig, 1, &zSig ); - roundAndPack: - return roundAndPackFloat32( 0, zExp, zSig ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_eq( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_le( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_lt( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_eq_signaling( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_le_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - int16 aExp, bExp; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_lt_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float64_to_int32( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig0, aSig1, absZ, aSigExtra; - int32 z; - int8 roundingMode; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - shiftCount = aExp - 0x413; - if ( 0 <= shiftCount ) { - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; - goto invalid; - } - shortShift64Left( - aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); - if ( 0x80000000 < absZ ) goto invalid; - } - else { - aSig1 = ( aSig1 != 0 ); - if ( aExp < 0x3FE ) { - aSigExtra = aExp | aSig0 | aSig1; - absZ = 0; - } - else { - aSig0 |= 0x00100000; - aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; - absZ = aSig0>>( - shiftCount ); - } - } - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( (sbits32) aSigExtra < 0 ) { - ++absZ; - if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1; - } - z = aSign ? - absZ : absZ; - } - else { - aSigExtra = ( aSigExtra != 0 ); - if ( aSign ) { - z = - ( absZ - + ( ( roundingMode == float_round_down ) & aSigExtra ) ); - } - else { - z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra ); - } - } - if ( ( aSign ^ ( z < 0 ) ) && z ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( aSigExtra ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float64_to_int32_round_to_zero( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig0, aSig1, absZ, aSigExtra; - int32 z; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - shiftCount = aExp - 0x413; - if ( 0 <= shiftCount ) { - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; - goto invalid; - } - shortShift64Left( - aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); - } - else { - if ( aExp < 0x3FF ) { - if ( aExp | aSig0 | aSig1 ) { - float_exception_flags |= float_flag_inexact; - } - return 0; - } - aSig0 |= 0x00100000; - aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; - absZ = aSig0>>( - shiftCount ); - } - z = aSign ? - absZ : absZ; - if ( ( aSign ^ ( z < 0 ) ) && z ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( aSigExtra ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the single-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float64_to_float32( float64 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig0, aSig1, zSig; - bits32 allZero; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat32( float64ToCommonNaN( a ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig ); - if ( aExp ) zSig |= 0x40000000; - return roundAndPackFloat32( aSign, aExp - 0x381, zSig ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Rounds the double-precision floating-point value `a' to an integer, -and returns the result as a double-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_round_to_int( float64 a ) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - float64 z; - - aExp = extractFloat64Exp( a ); - if ( 0x413 <= aExp ) { - if ( 0x433 <= aExp ) { - if ( ( aExp == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) { - return propagateFloat64NaN( a, a ); - } - return a; - } - lastBitMask = 1; - lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( lastBitMask ) { - add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else { - if ( (sbits32) z.low < 0 ) { - ++z.high; - if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1; - } - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); - } - } - z.low &= ~ roundBitsMask; - } - else { - if ( aExp <= 0x3FE ) { - if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat64Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FE ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) - ) { - return packFloat64( aSign, 0x3FF, 0, 0 ); - } - break; - case float_round_down: - return - aSign ? packFloat64( 1, 0x3FF, 0, 0 ) - : packFloat64( 0, 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloat64( 1, 0, 0, 0 ) - : packFloat64( 0, 0x3FF, 0, 0 ); - } - return packFloat64( aSign, 0, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x413 - aExp; - roundBitsMask = lastBitMask - 1; - z.low = 0; - z.high = a.high; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z.high += lastBitMask>>1; - if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { - z.high &= ~ lastBitMask; - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - z.high |= ( a.low != 0 ); - z.high += roundBitsMask; - } - } - z.high &= ~ roundBitsMask; - } - if ( ( z.low != a.low ) || ( z.high != a.high ) ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the double-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - int16 expDiff; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= 0x00100000; - } - shift64ExtraRightJamming( - bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= 0x00100000; - } - shift64ExtraRightJamming( - aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat64NaN( a, b ); - } - return a; - } - add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 ); - zSig2 = 0; - zSig0 |= 0x00200000; - zExp = aExp; - goto shiftRight1; - } - aSig0 |= 0x00100000; - add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - --zExp; - if ( zSig0 < 0x00200000 ) goto roundAndPack; - ++zExp; - shiftRight1: - shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - roundAndPack: - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the double- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; - int16 expDiff; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 ); - shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 ); - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat64NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig0 < aSig0 ) goto aBigger; - if ( aSig0 < bSig0 ) goto bBigger; - if ( bSig1 < aSig1 ) goto aBigger; - if ( aSig1 < bSig1 ) goto bBigger; - return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign ^ 1, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= 0x40000000; - } - shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - bSig0 |= 0x40000000; - bBigger: - sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= 0x40000000; - } - shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); - aSig0 |= 0x40000000; - aBigger: - sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the double-precision floating-point values `a' -and `b'. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_add( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return addFloat64Sigs( a, b, aSign ); - } - else { - return subFloat64Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the double-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_sub( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return subFloat64Sigs( a, b, aSign ); - } - else { - return addFloat64Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the double-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_mul( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat64NaN( a, b ); - } - if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); - normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - zExp = aExp + bExp - 0x400; - aSig0 |= 0x00100000; - shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 ); - mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); - add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zSig2 |= ( zSig3 != 0 ); - if ( 0x00200000 <= zSig0 ) { - shift64ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - ++zExp; - } - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the double-precision floating-point value `a' -by the corresponding value `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_div( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - goto invalid; - } - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0, 0, 0 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = aExp - bExp + 0x3FD; - shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 ); - shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); - if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) { - shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); - ++zExp; - } - zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 ); - mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); - sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); - while ( (sbits32) rem0 < 0 ) { - --zSig0; - add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); - } - zSig1 = estimateDiv64To32( rem1, rem2, bSig0 ); - if ( ( zSig1 & 0x3FF ) <= 4 ) { - mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); - sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits32) rem1 < 0 ) { - --zSig1; - add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the remainder of the double-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_rem( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; - bits32 allZero, alternateASig0, alternateASig1, sigMean1; - sbits32 sigMean0; - float64 z; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - if ( aExp == 0x7FF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat64NaN( a, b ); - } - goto invalid; - } - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return a; - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - expDiff = aExp - bExp; - if ( expDiff < -1 ) return a; - shortShift64Left( - aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 ); - shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); - q = le64( bSig0, bSig1, aSig0, aSig1 ); - if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - expDiff -= 32; - while ( 0 < expDiff ) { - q = estimateDiv64To32( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); - shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero ); - shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero ); - sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 ); - expDiff -= 29; - } - if ( -32 < expDiff ) { - q = estimateDiv64To32( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - q >>= - expDiff; - shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); - expDiff += 24; - if ( expDiff < 0 ) { - shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - } - else { - shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); - } - mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); - sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); - } - else { - shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 ); - shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); - } - do { - alternateASig0 = aSig0; - alternateASig1 = aSig1; - ++q; - sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - } while ( 0 <= (sbits32) aSig0 ); - add64( - aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); - if ( ( sigMean0 < 0 ) - || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - } - zSign = ( (sbits32) aSig0 < 0 ); - if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); - return - normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); - -} -#endif - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the square root of the double-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_sqrt( float64 a ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; - bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float64 z; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; - aSig0 |= 0x00100000; - shortShift64Left( aSig0, aSig1, 11, &term0, &term1 ); - zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1; - if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF; - doubleZSig0 = zSig0 + zSig0; - shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 ); - mul32To64( zSig0, zSig0, &term0, &term1 ); - sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits32) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & 0x1FF ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul32To64( doubleZSig0, zSig1, &term1, &term2 ); - sub64( rem1, 0, term1, term2, &rem1, &rem2 ); - mul32To64( zSig1, zSig1, &term2, &term3 ); - sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits32) rem1 < 0 ) { - --zSig1; - shortShift64Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_eq( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_le( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) - return aSign || - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == - 0 ); - return ( a == b ) || - ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_lt( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) - return aSign && - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != - 0 ); - return ( a != b ) && - ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_eq_signaling( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_le_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_lt_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -#endif diff --git a/lib/libc/softfloat/bits64/softfloat-macros b/lib/libc/softfloat/bits64/softfloat-macros deleted file mode 100644 index 9b478e8..0000000 --- a/lib/libc/softfloat/bits64/softfloat-macros +++ /dev/null @@ -1,746 +0,0 @@ -/* $NetBSD: softfloat-macros,v 1.1 2002/05/21 23:51:08 bjh21 Exp $ */ -/* $FreeBSD$ */ - -/* -=============================================================================== - -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -/* -------------------------------------------------------------------------------- -Shifts `a' right by the number of bits given in `count'. If any nonzero -bits are shifted off, they are ``jammed'' into the least significant bit of -the result by setting the least significant bit to 1. The value of `count' -can be arbitrarily large; in particular, if `count' is greater than 32, the -result will be either 0 or 1, depending on whether `a' is zero or nonzero. -The result is stored in the location pointed to by `zPtr'. -------------------------------------------------------------------------------- -*/ -INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) -{ - bits32 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 32 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/* -------------------------------------------------------------------------------- -Shifts `a' right by the number of bits given in `count'. If any nonzero -bits are shifted off, they are ``jammed'' into the least significant bit of -the result by setting the least significant bit to 1. The value of `count' -can be arbitrarily large; in particular, if `count' is greater than 64, the -result will be either 0 or 1, depending on whether `a' is zero or nonzero. -The result is stored in the location pointed to by `zPtr'. -------------------------------------------------------------------------------- -*/ -INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) -{ - bits64 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 64 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 -_plus_ the number of bits given in `count'. The shifted result is at most -64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The -bits shifted off form a second 64-bit result as follows: The _last_ bit -shifted off is the most-significant bit of the extra result, and the other -63 bits of the extra result are all zero if and only if _all_but_the_last_ -bits shifted off were all zero. This extra result is stored in the location -pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. - (This routine makes more sense if `a0' and `a1' are considered to form a -fixed-point value with binary point between `a0' and `a1'. This fixed-point -value is shifted right by the number of bits given in `count', and the -integer part of the result is returned at the location pointed to by -`z0Ptr'. The fractional part of the result may be slightly corrupted as -described above, and is returned at the location pointed to by `z1Ptr'.) -------------------------------------------------------------------------------- -*/ -INLINE void - shift64ExtraRightJamming( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<<negCount ) | ( a1 != 0 ); - z0 = a0>>count; - } - else { - if ( count == 64 ) { - z1 = a0 | ( a1 != 0 ); - } - else { - z1 = ( ( a0 | a1 ) != 0 ); - } - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the -number of bits given in `count'. Any bits shifted off are lost. The value -of `count' can be arbitrarily large; in particular, if `count' is greater -than 128, the result will be 0. The result is broken into two 64-bit pieces -which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shift128Right( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<<negCount ) | ( a1>>count ); - z0 = a0>>count; - } - else { - z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the -number of bits given in `count'. If any nonzero bits are shifted off, they -are ``jammed'' into the least significant bit of the result by setting the -least significant bit to 1. The value of `count' can be arbitrarily large; -in particular, if `count' is greater than 128, the result will be either -0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or -nonzero. The result is broken into two 64-bit pieces which are stored at -the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shift128RightJamming( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); - z0 = a0>>count; - } - else { - if ( count == 64 ) { - z1 = a0 | ( a1 != 0 ); - } - else if ( count < 128 ) { - z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); - } - else { - z1 = ( ( a0 | a1 ) != 0 ); - } - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right -by 64 _plus_ the number of bits given in `count'. The shifted result is -at most 128 nonzero bits; these are broken into two 64-bit pieces which are -stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted -off form a third 64-bit result as follows: The _last_ bit shifted off is -the most-significant bit of the extra result, and the other 63 bits of the -extra result are all zero if and only if _all_but_the_last_ bits shifted off -were all zero. This extra result is stored in the location pointed to by -`z2Ptr'. The value of `count' can be arbitrarily large. - (This routine makes more sense if `a0', `a1', and `a2' are considered -to form a fixed-point value with binary point between `a1' and `a2'. This -fixed-point value is shifted right by the number of bits given in `count', -and the integer part of the result is returned at the locations pointed to -by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly -corrupted as described above, and is returned at the location pointed to by -`z2Ptr'.) -------------------------------------------------------------------------------- -*/ -INLINE void - shift128ExtraRightJamming( - bits64 a0, - bits64 a1, - bits64 a2, - int16 count, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z2 = a2; - z1 = a1; - z0 = a0; - } - else { - if ( count < 64 ) { - z2 = a1<<negCount; - z1 = ( a0<<negCount ) | ( a1>>count ); - z0 = a0>>count; - } - else { - if ( count == 64 ) { - z2 = a1; - z1 = a0; - } - else { - a2 |= a1; - if ( count < 128 ) { - z2 = a0<<negCount; - z1 = a0>>( count & 63 ); - } - else { - z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); - z1 = 0; - } - } - z0 = 0; - } - z2 |= ( a2 != 0 ); - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the -number of bits given in `count'. Any bits shifted off are lost. The value -of `count' must be less than 64. The result is broken into two 64-bit -pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shortShift128Left( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - - *z1Ptr = a1<<count; - *z0Ptr = - ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); - -} - -/* -------------------------------------------------------------------------------- -Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left -by the number of bits given in `count'. Any bits shifted off are lost. -The value of `count' must be less than 64. The result is broken into three -64-bit pieces which are stored at the locations pointed to by `z0Ptr', -`z1Ptr', and `z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - shortShift192Left( - bits64 a0, - bits64 a1, - bits64 a2, - int16 count, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 negCount; - - z2 = a2<<count; - z1 = a1<<count; - z0 = a0<<count; - if ( 0 < count ) { - negCount = ( ( - count ) & 63 ); - z1 |= a2>>negCount; - z0 |= a1>>negCount; - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit -value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so -any carry out is lost. The result is broken into two 64-bit pieces which -are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - add128( - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z1; - - z1 = a1 + b1; - *z1Ptr = z1; - *z0Ptr = a0 + b0 + ( z1 < a1 ); - -} - -/* -------------------------------------------------------------------------------- -Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the -192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is -modulo 2^192, so any carry out is lost. The result is broken into three -64-bit pieces which are stored at the locations pointed to by `z0Ptr', -`z1Ptr', and `z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - add192( - bits64 a0, - bits64 a1, - bits64 a2, - bits64 b0, - bits64 b1, - bits64 b2, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 carry0, carry1; - - z2 = a2 + b2; - carry1 = ( z2 < a2 ); - z1 = a1 + b1; - carry0 = ( z1 < a1 ); - z0 = a0 + b0; - z1 += carry1; - z0 += ( z1 < carry1 ); - z0 += carry0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the -128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo -2^128, so any borrow out (carry out) is lost. The result is broken into two -64-bit pieces which are stored at the locations pointed to by `z0Ptr' and -`z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - sub128( - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - - *z1Ptr = a1 - b1; - *z0Ptr = a0 - b0 - ( a1 < b1 ); - -} - -/* -------------------------------------------------------------------------------- -Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' -from the 192-bit value formed by concatenating `a0', `a1', and `a2'. -Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The -result is broken into three 64-bit pieces which are stored at the locations -pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - sub192( - bits64 a0, - bits64 a1, - bits64 a2, - bits64 b0, - bits64 b1, - bits64 b2, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 borrow0, borrow1; - - z2 = a2 - b2; - borrow1 = ( a2 < b2 ); - z1 = a1 - b1; - borrow0 = ( a1 < b1 ); - z0 = a0 - b0; - z0 -= ( z1 < borrow1 ); - z1 -= borrow1; - z0 -= borrow0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Multiplies `a' by `b' to obtain a 128-bit product. The product is broken -into two 64-bit pieces which are stored at the locations pointed to by -`z0Ptr' and `z1Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits32 aHigh, aLow, bHigh, bLow; - bits64 z0, zMiddleA, zMiddleB, z1; - - aLow = a; - aHigh = a>>32; - bLow = b; - bHigh = b>>32; - z1 = ( (bits64) aLow ) * bLow; - zMiddleA = ( (bits64) aLow ) * bHigh; - zMiddleB = ( (bits64) aHigh ) * bLow; - z0 = ( (bits64) aHigh ) * bHigh; - zMiddleA += zMiddleB; - z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); - zMiddleA <<= 32; - z1 += zMiddleA; - z0 += ( z1 < zMiddleA ); - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Multiplies the 128-bit value formed by concatenating `a0' and `a1' by -`b' to obtain a 192-bit product. The product is broken into three 64-bit -pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and -`z2Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - mul128By64To192( - bits64 a0, - bits64 a1, - bits64 b, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2, more1; - - mul64To128( a1, b, &z1, &z2 ); - mul64To128( a0, b, &z0, &more1 ); - add128( z0, more1, 0, z1, &z0, &z1 ); - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the -128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit -product. The product is broken into four 64-bit pieces which are stored at -the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. -------------------------------------------------------------------------------- -*/ -INLINE void - mul128To256( - bits64 a0, - bits64 a1, - bits64 b0, - bits64 b1, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr, - bits64 *z3Ptr - ) -{ - bits64 z0, z1, z2, z3; - bits64 more1, more2; - - mul64To128( a1, b1, &z2, &z3 ); - mul64To128( a1, b0, &z1, &more2 ); - add128( z1, more2, 0, z2, &z1, &z2 ); - mul64To128( a0, b0, &z0, &more1 ); - add128( z0, more1, 0, z1, &z0, &z1 ); - mul64To128( a0, b1, &more1, &more2 ); - add128( more1, more2, 0, z2, &more1, &z2 ); - add128( z0, z1, 0, more1, &z0, &z1 ); - *z3Ptr = z3; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/* -------------------------------------------------------------------------------- -Returns an approximation to the 64-bit integer quotient obtained by dividing -`b' into the 128-bit value formed by concatenating `a0' and `a1'. The -divisor `b' must be at least 2^63. If q is the exact quotient truncated -toward zero, the approximation returned lies between q and q + 2 inclusive. -If the exact quotient q is larger than 64 bits, the maximum positive 64-bit -unsigned integer is returned. -------------------------------------------------------------------------------- -*/ -static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) -{ - bits64 b0, b1; - bits64 rem0, rem1, term0, term1; - bits64 z; - - if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); - b0 = b>>32; - z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; - mul64To128( b, z, &term0, &term1 ); - sub128( a0, a1, term0, term1, &rem0, &rem1 ); - while ( ( (sbits64) rem0 ) < 0 ) { - z -= LIT64( 0x100000000 ); - b1 = b<<32; - add128( rem0, rem1, b0, b1, &rem0, &rem1 ); - } - rem0 = ( rem0<<32 ) | ( rem1>>32 ); - z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; - return z; - -} - -#if !defined(SOFTFLOAT_FOR_GCC) || defined(FLOATX80) || defined(FLOAT128) -/* -------------------------------------------------------------------------------- -Returns an approximation to the square root of the 32-bit significand given -by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of -`aExp' (the least significant bit) is 1, the integer returned approximates -2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' -is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either -case, the approximation returned lies strictly within +/-2 of the exact -value. -------------------------------------------------------------------------------- -*/ -static bits32 estimateSqrt32( int16 aExp, bits32 a ) -{ - static const bits16 sqrtOddAdjustments[] = { - 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, - 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 - }; - static const bits16 sqrtEvenAdjustments[] = { - 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, - 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 - }; - int8 idx; - bits32 z; - - idx = ( a>>27 ) & 15; - if ( aExp & 1 ) { - z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ idx ]; - z = ( ( a / z )<<14 ) + ( z<<15 ); - a >>= 1; - } - else { - z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ idx ]; - z = a / z + z; - z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); - if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); - } - return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the number of leading 0 bits before the most-significant 1 bit of -`a'. If `a' is zero, 32 is returned. -------------------------------------------------------------------------------- -*/ -static int8 countLeadingZeros32( bits32 a ) -{ - static const int8 countLeadingZerosHigh[] = { - 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, - 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 - }; - int8 shiftCount; - - shiftCount = 0; - if ( a < 0x10000 ) { - shiftCount += 16; - a <<= 16; - } - if ( a < 0x1000000 ) { - shiftCount += 8; - a <<= 8; - } - shiftCount += countLeadingZerosHigh[ a>>24 ]; - return shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Returns the number of leading 0 bits before the most-significant 1 bit of -`a'. If `a' is zero, 64 is returned. -------------------------------------------------------------------------------- -*/ -static int8 countLeadingZeros64( bits64 a ) -{ - int8 shiftCount; - - shiftCount = 0; - if ( a < ( (bits64) 1 )<<32 ) { - shiftCount += 32; - } - else { - a >>= 32; - } - shiftCount += countLeadingZeros32( a ); - return shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' -is equal to the 128-bit value formed by concatenating `b0' and `b1'. -Otherwise, returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 == b0 ) && ( a1 == b1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less -than or equal to the 128-bit value formed by concatenating `b0' and `b1'. -Otherwise, returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less -than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, -returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is -not equal to the 128-bit value formed by concatenating `b0' and `b1'. -Otherwise, returns 0. -------------------------------------------------------------------------------- -*/ -INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 != b0 ) || ( a1 != b1 ); - -} - diff --git a/lib/libc/softfloat/bits64/softfloat.c b/lib/libc/softfloat/bits64/softfloat.c deleted file mode 100644 index ffd5661..0000000 --- a/lib/libc/softfloat/bits64/softfloat.c +++ /dev/null @@ -1,5500 +0,0 @@ -/* $NetBSD: softfloat.c,v 1.2 2003/07/26 19:24:52 salo Exp $ */ - -/* - * This version hacked for use with gcc -msoft-float by bjh21. - * (Mostly a case of #ifdefing out things GCC doesn't need or provides - * itself). - */ - -/* - * Things you may want to define: - * - * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with - * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them - * properly renamed. - */ - -/* -=============================================================================== - -This C source file is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif - -#include "milieu.h" -#include "softfloat.h" - -/* - * Conversions between floats as stored in memory and floats as - * SoftFloat uses them - */ -#ifndef FLOAT64_DEMANGLE -#define FLOAT64_DEMANGLE(a) (a) -#endif -#ifndef FLOAT64_MANGLE -#define FLOAT64_MANGLE(a) (a) -#endif - -/* -------------------------------------------------------------------------------- -Floating-point rounding mode, extended double-precision rounding precision, -and exception flags. -------------------------------------------------------------------------------- -*/ -fp_rnd_t float_rounding_mode = float_round_nearest_even; -fp_except float_exception_flags = 0; -#ifdef FLOATX80 -int8 floatx80_rounding_precision = 80; -#endif - -/* -------------------------------------------------------------------------------- -Primitive arithmetic functions, including multi-word arithmetic, and -division and square root approximations. (Can be specialized to target if -desired.) -------------------------------------------------------------------------------- -*/ -#include "softfloat-macros" - -/* -------------------------------------------------------------------------------- -Functions and definitions to determine: (1) whether tininess for underflow -is detected before or after rounding by default, (2) what (if anything) -happens when exceptions are raised, (3) how signaling NaNs are distinguished -from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs -are propagated from function inputs to output. These details are target- -specific. -------------------------------------------------------------------------------- -*/ -#include "softfloat-specialize" - -#if !defined(SOFTFLOAT_FOR_GCC) || defined(FLOATX80) || defined(FLOAT128) -/* -------------------------------------------------------------------------------- -Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 -and 7, and returns the properly rounded 32-bit integer corresponding to the -input. If `zSign' is 1, the input is negated before being converted to an -integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input -is simply rounded to an integer, with the inexact exception raised if the -input cannot be represented exactly as an integer. However, if the fixed- -point input is too large, the invalid exception is raised and the largest -positive or negative integer is returned. -------------------------------------------------------------------------------- -*/ -static int32 roundAndPackInt32( flag zSign, bits64 absZ ) -{ - int8 roundingMode; - flag roundNearestEven; - int8 roundIncrement, roundBits; - int32 z; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - roundIncrement = 0x40; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x7F; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = absZ & 0x7F; - absZ = ( absZ + roundIncrement )>>7; - absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - z = absZ; - if ( zSign ) z = - z; - if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { - float_raise( float_flag_invalid ); - return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/* -------------------------------------------------------------------------------- -Takes the 128-bit fixed-point value formed by concatenating `absZ0' and -`absZ1', with binary point between bits 63 and 64 (between the input words), -and returns the properly rounded 64-bit integer corresponding to the input. -If `zSign' is 1, the input is negated before being converted to an integer. -Ordinarily, the fixed-point input is simply rounded to an integer, with -the inexact exception raised if the input cannot be represented exactly as -an integer. However, if the fixed-point input is too large, the invalid -exception is raised and the largest positive or negative integer is -returned. -------------------------------------------------------------------------------- -*/ -static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 ) -{ - int8 roundingMode; - flag roundNearestEven, increment; - int64 z; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - increment = ( (sbits64) absZ1 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && absZ1; - } - else { - increment = ( roundingMode == float_round_up ) && absZ1; - } - } - } - if ( increment ) { - ++absZ0; - if ( absZ0 == 0 ) goto overflow; - absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); - } - z = absZ0; - if ( zSign ) z = - z; - if ( z && ( ( z < 0 ) ^ zSign ) ) { - overflow: - float_raise( float_flag_invalid ); - return - zSign ? (sbits64) LIT64( 0x8000000000000000 ) - : LIT64( 0x7FFFFFFFFFFFFFFF ); - } - if ( absZ1 ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the fraction bits of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat32Frac( float32 a ) -{ - - return a & 0x007FFFFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int16 extractFloat32Exp( float32 a ) -{ - - return ( a>>23 ) & 0xFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat32Sign( float32 a ) -{ - - return a>>31; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal single-precision floating-point value represented -by the denormalized significand `aSig'. The normalized exponent and -significand are stored at the locations pointed to by `zExpPtr' and -`zSigPtr', respectively. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( aSig ) - 8; - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', exponent `zExp', and significand `zSig' into a -single-precision floating-point value, returning the result. After being -shifted into the proper positions, the three fields are simply added -together to form the result. This means that any integer portion of `zSig' -will be added into the exponent. Since a properly normalized significand -will have an integer portion equal to 1, the `zExp' input should be 1 less -than the desired result exponent whenever `zSig' is a complete, normalized -significand. -------------------------------------------------------------------------------- -*/ -INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - - return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper single-precision floating- -point value corresponding to the abstract input. Ordinarily, the abstract -value is simply rounded and packed into the single-precision format, with -the inexact exception raised if the abstract input cannot be represented -exactly. However, if the abstract value is too large, the overflow and -inexact exceptions are raised and an infinity or maximal finite value is -returned. If the abstract value is too small, the input value is rounded to -a subnormal number, and the underflow and inexact exceptions are raised if -the abstract input cannot be represented exactly as a subnormal single- -precision floating-point number. - The input significand `zSig' has its binary point between bits 30 -and 29, which is 7 bits to the left of the usual location. This shifted -significand must be normalized or smaller. If `zSig' is not normalized, -`zExp' must be 0; in that case, the result returned is a subnormal number, -and it must not require rounding. In the usual case that `zSig' is -normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. -The handling of underflow and overflow follows the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 roundingMode; - flag roundNearestEven; - int8 roundIncrement, roundBits; - flag isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - roundIncrement = 0x40; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x7F; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = zSig & 0x7F; - if ( 0xFD <= (bits16) zExp ) { - if ( ( 0xFD < zExp ) - || ( ( zExp == 0xFD ) - && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ( zSig + roundIncrement < 0x80000000 ); - shift32RightJamming( zSig, - zExp, &zSig ); - zExp = 0; - roundBits = zSig & 0x7F; - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); - } - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - zSig = ( zSig + roundIncrement )>>7; - zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper single-precision floating- -point value corresponding to the abstract input. This routine is just like -`roundAndPackFloat32' except that `zSig' does not have to be normalized. -Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -floating-point exponent. -------------------------------------------------------------------------------- -*/ -static float32 - normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( zSig ) - 1; - return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); - -} - -/* -------------------------------------------------------------------------------- -Returns the fraction bits of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits64 extractFloat64Frac( float64 a ) -{ - - return FLOAT64_DEMANGLE(a) & LIT64( 0x000FFFFFFFFFFFFF ); - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int16 extractFloat64Exp( float64 a ) -{ - - return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat64Sign( float64 a ) -{ - - return FLOAT64_DEMANGLE(a)>>63; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal double-precision floating-point value represented -by the denormalized significand `aSig'. The normalized exponent and -significand are stored at the locations pointed to by `zExpPtr' and -`zSigPtr', respectively. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( aSig ) - 11; - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', exponent `zExp', and significand `zSig' into a -double-precision floating-point value, returning the result. After being -shifted into the proper positions, the three fields are simply added -together to form the result. This means that any integer portion of `zSig' -will be added into the exponent. Since a properly normalized significand -will have an integer portion equal to 1, the `zExp' input should be 1 less -than the desired result exponent whenever `zSig' is a complete, normalized -significand. -------------------------------------------------------------------------------- -*/ -INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) -{ - - return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) + - ( ( (bits64) zExp )<<52 ) + zSig ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper double-precision floating- -point value corresponding to the abstract input. Ordinarily, the abstract -value is simply rounded and packed into the double-precision format, with -the inexact exception raised if the abstract input cannot be represented -exactly. However, if the abstract value is too large, the overflow and -inexact exceptions are raised and an infinity or maximal finite value is -returned. If the abstract value is too small, the input value is rounded to -a subnormal number, and the underflow and inexact exceptions are raised if -the abstract input cannot be represented exactly as a subnormal double- -precision floating-point number. - The input significand `zSig' has its binary point between bits 62 -and 61, which is 10 bits to the left of the usual location. This shifted -significand must be normalized or smaller. If `zSig' is not normalized, -`zExp' must be 0; in that case, the result returned is a subnormal number, -and it must not require rounding. In the usual case that `zSig' is -normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. -The handling of underflow and overflow follows the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) -{ - int8 roundingMode; - flag roundNearestEven; - int16 roundIncrement, roundBits; - flag isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - roundIncrement = 0x200; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x3FF; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = zSig & 0x3FF; - if ( 0x7FD <= (bits16) zExp ) { - if ( ( 0x7FD < zExp ) - || ( ( zExp == 0x7FD ) - && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - return FLOAT64_MANGLE( - FLOAT64_DEMANGLE(packFloat64( zSign, 0x7FF, 0 )) - - ( roundIncrement == 0 )); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); - shift64RightJamming( zSig, - zExp, &zSig ); - zExp = 0; - roundBits = zSig & 0x3FF; - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); - } - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - zSig = ( zSig + roundIncrement )>>10; - zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat64( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper double-precision floating- -point value corresponding to the abstract input. This routine is just like -`roundAndPackFloat64' except that `zSig' does not have to be normalized. -Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -floating-point exponent. -------------------------------------------------------------------------------- -*/ -static float64 - normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( zSig ) - 1; - return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the fraction bits of the extended double-precision floating-point -value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits64 extractFloatx80Frac( floatx80 a ) -{ - - return a.low; - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the extended double-precision floating-point -value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int32 extractFloatx80Exp( floatx80 a ) -{ - - return a.high & 0x7FFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the extended double-precision floating-point value -`a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloatx80Sign( floatx80 a ) -{ - - return a.high>>15; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal extended double-precision floating-point value -represented by the denormalized significand `aSig'. The normalized exponent -and significand are stored at the locations pointed to by `zExpPtr' and -`zSigPtr', respectively. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( aSig ); - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', exponent `zExp', and significand `zSig' into an -extended double-precision floating-point value, returning the result. -------------------------------------------------------------------------------- -*/ -INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) -{ - floatx80 z; - - z.low = zSig; - z.high = ( ( (bits16) zSign )<<15 ) + zExp; - return z; - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and extended significand formed by the concatenation of `zSig0' and `zSig1', -and returns the proper extended double-precision floating-point value -corresponding to the abstract input. Ordinarily, the abstract value is -rounded and packed into the extended double-precision format, with the -inexact exception raised if the abstract input cannot be represented -exactly. However, if the abstract value is too large, the overflow and -inexact exceptions are raised and an infinity or maximal finite value is -returned. If the abstract value is too small, the input value is rounded to -a subnormal number, and the underflow and inexact exceptions are raised if -the abstract input cannot be represented exactly as a subnormal extended -double-precision floating-point number. - If `roundingPrecision' is 32 or 64, the result is rounded to the same -number of bits as single or double precision, respectively. Otherwise, the -result is rounded to the full precision of the extended double-precision -format. - The input significand must be normalized or smaller. If the input -significand is not normalized, `zExp' must be 0; in that case, the result -returned is a subnormal number, and it must not require rounding. The -handling of underflow and overflow follows the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static floatx80 - roundAndPackFloatx80( - int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 - ) -{ - int8 roundingMode; - flag roundNearestEven, increment, isTiny; - int64 roundIncrement, roundMask, roundBits; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - if ( roundingPrecision == 80 ) goto precision80; - if ( roundingPrecision == 64 ) { - roundIncrement = LIT64( 0x0000000000000400 ); - roundMask = LIT64( 0x00000000000007FF ); - } - else if ( roundingPrecision == 32 ) { - roundIncrement = LIT64( 0x0000008000000000 ); - roundMask = LIT64( 0x000000FFFFFFFFFF ); - } - else { - goto precision80; - } - zSig0 |= ( zSig1 != 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = roundMask; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = zSig0 & roundMask; - if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { - if ( ( 0x7FFE < zExp ) - || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) - ) { - goto overflow; - } - if ( zExp <= 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < 0 ) - || ( zSig0 <= zSig0 + roundIncrement ); - shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); - zExp = 0; - roundBits = zSig0 & roundMask; - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); - if ( roundBits ) float_exception_flags |= float_flag_inexact; - zSig0 += roundIncrement; - if ( (sbits64) zSig0 < 0 ) zExp = 1; - roundIncrement = roundMask + 1; - if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { - roundMask |= roundIncrement; - } - zSig0 &= ~ roundMask; - return packFloatx80( zSign, zExp, zSig0 ); - } - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - zSig0 += roundIncrement; - if ( zSig0 < roundIncrement ) { - ++zExp; - zSig0 = LIT64( 0x8000000000000000 ); - } - roundIncrement = roundMask + 1; - if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { - roundMask |= roundIncrement; - } - zSig0 &= ~ roundMask; - if ( zSig0 == 0 ) zExp = 0; - return packFloatx80( zSign, zExp, zSig0 ); - precision80: - increment = ( (sbits64) zSig1 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig1; - } - else { - increment = ( roundingMode == float_round_up ) && zSig1; - } - } - } - if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { - if ( ( 0x7FFE < zExp ) - || ( ( zExp == 0x7FFE ) - && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) - && increment - ) - ) { - roundMask = 0; - overflow: - float_raise( float_flag_overflow | float_flag_inexact ); - if ( ( roundingMode == float_round_to_zero ) - || ( zSign && ( roundingMode == float_round_up ) ) - || ( ! zSign && ( roundingMode == float_round_down ) ) - ) { - return packFloatx80( zSign, 0x7FFE, ~ roundMask ); - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( zExp <= 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < 0 ) - || ! increment - || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); - shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); - zExp = 0; - if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); - if ( zSig1 ) float_exception_flags |= float_flag_inexact; - if ( roundNearestEven ) { - increment = ( (sbits64) zSig1 < 0 ); - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig1; - } - else { - increment = ( roundingMode == float_round_up ) && zSig1; - } - } - if ( increment ) { - ++zSig0; - zSig0 &= - ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); - if ( (sbits64) zSig0 < 0 ) zExp = 1; - } - return packFloatx80( zSign, zExp, zSig0 ); - } - } - if ( zSig1 ) float_exception_flags |= float_flag_inexact; - if ( increment ) { - ++zSig0; - if ( zSig0 == 0 ) { - ++zExp; - zSig0 = LIT64( 0x8000000000000000 ); - } - else { - zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); - } - } - else { - if ( zSig0 == 0 ) zExp = 0; - } - return packFloatx80( zSign, zExp, zSig0 ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent -`zExp', and significand formed by the concatenation of `zSig0' and `zSig1', -and returns the proper extended double-precision floating-point value -corresponding to the abstract input. This routine is just like -`roundAndPackFloatx80' except that the input significand does not have to be -normalized. -------------------------------------------------------------------------------- -*/ -static floatx80 - normalizeRoundAndPackFloatx80( - int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 - ) -{ - int8 shiftCount; - - if ( zSig0 == 0 ) { - zSig0 = zSig1; - zSig1 = 0; - zExp -= 64; - } - shiftCount = countLeadingZeros64( zSig0 ); - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - zExp -= shiftCount; - return - roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); - -} - -#endif - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the least-significant 64 fraction bits of the quadruple-precision -floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits64 extractFloat128Frac1( float128 a ) -{ - - return a.low; - -} - -/* -------------------------------------------------------------------------------- -Returns the most-significant 48 fraction bits of the quadruple-precision -floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits64 extractFloat128Frac0( float128 a ) -{ - - return a.high & LIT64( 0x0000FFFFFFFFFFFF ); - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the quadruple-precision floating-point value -`a'. -------------------------------------------------------------------------------- -*/ -INLINE int32 extractFloat128Exp( float128 a ) -{ - - return ( a.high>>48 ) & 0x7FFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the quadruple-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat128Sign( float128 a ) -{ - - return a.high>>63; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal quadruple-precision floating-point value -represented by the denormalized significand formed by the concatenation of -`aSig0' and `aSig1'. The normalized exponent is stored at the location -pointed to by `zExpPtr'. The most significant 49 bits of the normalized -significand are stored at the location pointed to by `zSig0Ptr', and the -least significant 64 bits of the normalized significand are stored at the -location pointed to by `zSig1Ptr'. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat128Subnormal( - bits64 aSig0, - bits64 aSig1, - int32 *zExpPtr, - bits64 *zSig0Ptr, - bits64 *zSig1Ptr - ) -{ - int8 shiftCount; - - if ( aSig0 == 0 ) { - shiftCount = countLeadingZeros64( aSig1 ) - 15; - if ( shiftCount < 0 ) { - *zSig0Ptr = aSig1>>( - shiftCount ); - *zSig1Ptr = aSig1<<( shiftCount & 63 ); - } - else { - *zSig0Ptr = aSig1<<shiftCount; - *zSig1Ptr = 0; - } - *zExpPtr = - shiftCount - 63; - } - else { - shiftCount = countLeadingZeros64( aSig0 ) - 15; - shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); - *zExpPtr = 1 - shiftCount; - } - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', the exponent `zExp', and the significand formed -by the concatenation of `zSig0' and `zSig1' into a quadruple-precision -floating-point value, returning the result. After being shifted into the -proper positions, the three fields `zSign', `zExp', and `zSig0' are simply -added together to form the most significant 32 bits of the result. This -means that any integer portion of `zSig0' will be added into the exponent. -Since a properly normalized significand will have an integer portion equal -to 1, the `zExp' input should be 1 less than the desired result exponent -whenever `zSig0' and `zSig1' concatenated form a complete, normalized -significand. -------------------------------------------------------------------------------- -*/ -INLINE float128 - packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 ) -{ - float128 z; - - z.low = zSig1; - z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0; - return z; - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and extended significand formed by the concatenation of `zSig0', `zSig1', -and `zSig2', and returns the proper quadruple-precision floating-point value -corresponding to the abstract input. Ordinarily, the abstract value is -simply rounded and packed into the quadruple-precision format, with the -inexact exception raised if the abstract input cannot be represented -exactly. However, if the abstract value is too large, the overflow and -inexact exceptions are raised and an infinity or maximal finite value is -returned. If the abstract value is too small, the input value is rounded to -a subnormal number, and the underflow and inexact exceptions are raised if -the abstract input cannot be represented exactly as a subnormal quadruple- -precision floating-point number. - The input significand must be normalized or smaller. If the input -significand is not normalized, `zExp' must be 0; in that case, the result -returned is a subnormal number, and it must not require rounding. In the -usual case that the input significand is normalized, `zExp' must be 1 less -than the ``true'' floating-point exponent. The handling of underflow and -overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float128 - roundAndPackFloat128( - flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 ) -{ - int8 roundingMode; - flag roundNearestEven, increment, isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - increment = ( (sbits64) zSig2 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig2; - } - else { - increment = ( roundingMode == float_round_up ) && zSig2; - } - } - } - if ( 0x7FFD <= (bits32) zExp ) { - if ( ( 0x7FFD < zExp ) - || ( ( zExp == 0x7FFD ) - && eq128( - LIT64( 0x0001FFFFFFFFFFFF ), - LIT64( 0xFFFFFFFFFFFFFFFF ), - zSig0, - zSig1 - ) - && increment - ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - if ( ( roundingMode == float_round_to_zero ) - || ( zSign && ( roundingMode == float_round_up ) ) - || ( ! zSign && ( roundingMode == float_round_down ) ) - ) { - return - packFloat128( - zSign, - 0x7FFE, - LIT64( 0x0000FFFFFFFFFFFF ), - LIT64( 0xFFFFFFFFFFFFFFFF ) - ); - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ! increment - || lt128( - zSig0, - zSig1, - LIT64( 0x0001FFFFFFFFFFFF ), - LIT64( 0xFFFFFFFFFFFFFFFF ) - ); - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); - zExp = 0; - if ( isTiny && zSig2 ) float_raise( float_flag_underflow ); - if ( roundNearestEven ) { - increment = ( (sbits64) zSig2 < 0 ); - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig2; - } - else { - increment = ( roundingMode == float_round_up ) && zSig2; - } - } - } - } - if ( zSig2 ) float_exception_flags |= float_flag_inexact; - if ( increment ) { - add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); - zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); - } - else { - if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; - } - return packFloat128( zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand formed by the concatenation of `zSig0' and `zSig1', and -returns the proper quadruple-precision floating-point value corresponding -to the abstract input. This routine is just like `roundAndPackFloat128' -except that the input significand has fewer bits and does not have to be -normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- -point exponent. -------------------------------------------------------------------------------- -*/ -static float128 - normalizeRoundAndPackFloat128( - flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 ) -{ - int8 shiftCount; - bits64 zSig2; - - if ( zSig0 == 0 ) { - zSig0 = zSig1; - zSig1 = 0; - zExp -= 64; - } - shiftCount = countLeadingZeros64( zSig0 ) - 15; - if ( 0 <= shiftCount ) { - zSig2 = 0; - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - } - else { - shift128ExtraRightJamming( - zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); - } - zExp -= shiftCount; - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' -to the single-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 int32_to_float32( int32 a ) -{ - flag zSign; - - if ( a == 0 ) return 0; - if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); - zSign = ( a < 0 ); - return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' -to the double-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 int32_to_float64( int32 a ) -{ - flag zSign; - uint32 absA; - int8 shiftCount; - bits64 zSig; - - if ( a == 0 ) return 0; - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros32( absA ) + 21; - zSig = absA; - return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' -to the extended double-precision floating-point format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 int32_to_floatx80( int32 a ) -{ - flag zSign; - uint32 absA; - int8 shiftCount; - bits64 zSig; - - if ( a == 0 ) return packFloatx80( 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros32( absA ) + 32; - zSig = absA; - return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); - -} - -#endif - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' to -the quadruple-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 int32_to_float128( int32 a ) -{ - flag zSign; - uint32 absA; - int8 shiftCount; - bits64 zSig0; - - if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros32( absA ) + 17; - zSig0 = absA; - return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); - -} - -#endif - -#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the 64-bit two's complement integer `a' -to the single-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 int64_to_float32( int64 a ) -{ - flag zSign; - uint64 absA; - int8 shiftCount; - - if ( a == 0 ) return 0; - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros64( absA ) - 40; - if ( 0 <= shiftCount ) { - return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); - } - else { - shiftCount += 7; - if ( shiftCount < 0 ) { - shift64RightJamming( absA, - shiftCount, &absA ); - } - else { - absA <<= shiftCount; - } - return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 64-bit two's complement integer `a' -to the double-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 int64_to_float64( int64 a ) -{ - flag zSign; - - if ( a == 0 ) return 0; - if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) { - return packFloat64( 1, 0x43E, 0 ); - } - zSign = ( a < 0 ); - return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a ); - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 64-bit two's complement integer `a' -to the extended double-precision floating-point format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 int64_to_floatx80( int64 a ) -{ - flag zSign; - uint64 absA; - int8 shiftCount; - - if ( a == 0 ) return packFloatx80( 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros64( absA ); - return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); - -} - -#endif - -#endif /* !SOFTFLOAT_FOR_GCC */ - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 64-bit two's complement integer `a' to -the quadruple-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 int64_to_float128( int64 a ) -{ - flag zSign; - uint64 absA; - int8 shiftCount; - int32 zExp; - bits64 zSig0, zSig1; - - if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros64( absA ) + 49; - zExp = 0x406E - shiftCount; - if ( 64 <= shiftCount ) { - zSig1 = 0; - zSig0 = absA; - shiftCount -= 64; - } - else { - zSig1 = absA; - zSig0 = 0; - } - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - return packFloat128( zSign, zExp, zSig0, zSig1 ); - -} - -#endif - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float32_to_int32( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( ( aExp == 0xFF ) && aSig ) aSign = 0; - if ( aExp ) aSig |= 0x00800000; - shiftCount = 0xAF - aExp; - aSig64 = aSig; - aSig64 <<= 32; - if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); - return roundAndPackInt32( aSign, aSig64 ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float32_to_int32_round_to_zero( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - int32 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0x9E; - if ( 0 <= shiftCount ) { - if ( a != 0xCF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; - } - return (sbits32) 0x80000000; - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig = ( aSig | 0x00800000 )<<8; - z = aSig>>( - shiftCount ); - if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 64-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int64 float32_to_int64( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64, aSigExtra; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = 0xBE - aExp; - if ( shiftCount < 0 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - if ( aExp ) aSig |= 0x00800000; - aSig64 = aSig; - aSig64 <<= 40; - shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); - return roundAndPackInt64( aSign, aSig64, aSigExtra ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 64-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. If -`a' is a NaN, the largest positive integer is returned. Otherwise, if the -conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int64 float32_to_int64_round_to_zero( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64; - int64 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0xBE; - if ( 0 <= shiftCount ) { - if ( a != 0xDF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig64 = aSig | 0x00800000; - aSig64 <<= 40; - z = aSig64>>( - shiftCount ); - if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the double-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float32_to_float64( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); - return packFloat64( aSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the extended double-precision floating-point format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 float32_to_floatx80( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - aSig |= 0x00800000; - return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); - -} - -#endif - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the double-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float32_to_float128( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) ); - return packFloat128( aSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); - -} - -#endif - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Rounds the single-precision floating-point value `a' to an integer, and -returns the result as a single-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_round_to_int( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - float32 z; - - aExp = extractFloat32Exp( a ); - if ( 0x96 <= aExp ) { - if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { - return propagateFloat32NaN( a, a ); - } - return a; - } - if ( aExp <= 0x7E ) { - if ( (bits32) ( a<<1 ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat32Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { - return packFloat32( aSign, 0x7F, 0 ); - } - break; - case float_round_to_zero: - break; - case float_round_down: - return aSign ? 0xBF800000 : 0; - case float_round_up: - return aSign ? 0x80000000 : 0x3F800000; - } - return packFloat32( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x96 - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != a ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the single-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 6; - bSig <<= 6; - if ( 0 < expDiff ) { - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x20000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x20000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); - zSig = 0x40000000 + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= 0x20000000; - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits32) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the single- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 7; - bSig <<= 7; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign ^ 1, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x40000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - bSig |= 0x40000000; - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x40000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - aSig |= 0x40000000; - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the single-precision floating-point values `a' -and `b'. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_add( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return addFloat32Sigs( a, b, aSign ); - } - else { - return subFloat32Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the single-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_sub( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return subFloat32Sigs( a, b, aSign ); - } - else { - return addFloat32Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the single-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_mul( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig; - bits64 zSig64; - bits32 zSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x7F; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); - zSig = zSig64; - if ( 0 <= (sbits32) ( zSig<<1 ) ) { - zSig <<= 1; - --zExp; - } - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the single-precision floating-point value `a' -by the corresponding value `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_div( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat32( zSign, 0xFF, 0 ); - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x7D; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = ( ( (bits64) aSig )<<32 ) / bSig; - if ( ( zSig & 0x3F ) == 0 ) { - zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); - } - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the remainder of the single-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_rem( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig, bSig; - bits32 q; - bits64 aSig64, bSig64, q64; - bits32 alternateASig; - sbits32 sigMean; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig |= 0x00800000; - bSig |= 0x00800000; - if ( expDiff < 32 ) { - aSig <<= 8; - bSig <<= 8; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - if ( 0 < expDiff ) { - q = ( ( (bits64) aSig )<<32 ) / bSig; - q >>= 32 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - } - else { - if ( bSig <= aSig ) aSig -= bSig; - aSig64 = ( (bits64) aSig )<<40; - bSig64 = ( (bits64) bSig )<<40; - expDiff -= 64; - while ( 0 < expDiff ) { - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - aSig64 = - ( ( bSig * q64 )<<38 ); - expDiff -= 62; - } - expDiff += 64; - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - q = q64>>( 64 - expDiff ); - bSig <<= 6; - aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits32) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits32) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the square root of the single-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_sqrt( float32 a ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig, zSig; - bits64 rem, term; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, 0 ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return 0; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; - aSig = ( aSig | 0x00800000 )<<8; - zSig = estimateSqrt32( aExp, aSig ) + 2; - if ( ( zSig & 0x7F ) <= 5 ) { - if ( zSig < 2 ) { - zSig = 0x7FFFFFFF; - goto roundAndPack; - } - aSig >>= aExp & 1; - term = ( (bits64) zSig ) * zSig; - rem = ( ( (bits64) aSig )<<32 ) - term; - while ( (sbits64) rem < 0 ) { - --zSig; - rem += ( ( (bits64) zSig )<<1 ) | 1; - } - zSig |= ( rem != 0 ); - } - shift32RightJamming( zSig, 1, &zSig ); - roundAndPack: - return roundAndPackFloat32( 0, zExp, zSig ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_eq( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_le( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_lt( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_eq_signaling( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_le_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_lt_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float64_to_int32( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x42C - aExp; - if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32( aSign, aSig ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float64_to_int32_round_to_zero( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig, savedASig; - int32 z; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FF ) { - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x433 - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<<shiftCount ) != savedASig ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 64-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int64 float64_to_int64( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig, aSigExtra; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x433 - aExp; - if ( shiftCount <= 0 ) { - if ( 0x43E < aExp ) { - float_raise( float_flag_invalid ); - if ( ! aSign - || ( ( aExp == 0x7FF ) - && ( aSig != LIT64( 0x0010000000000000 ) ) ) - ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - aSigExtra = 0; - aSig <<= - shiftCount; - } - else { - shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); - } - return roundAndPackInt64( aSign, aSig, aSigExtra ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 64-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int64 float64_to_int64_round_to_zero( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig; - int64 z; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); - shiftCount = aExp - 0x433; - if ( 0 <= shiftCount ) { - if ( 0x43E <= aExp ) { - if ( a != LIT64( 0xC3E0000000000000 ) ) { - float_raise( float_flag_invalid ); - if ( ! aSign - || ( ( aExp == 0x7FF ) - && ( aSig != LIT64( 0x0010000000000000 ) ) ) - ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - z = aSig<<shiftCount; - } - else { - if ( aExp < 0x3FE ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - z = aSig>>( - shiftCount ); - if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - } - if ( aSign ) z = - z; - return z; - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the single-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float64_to_float32( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - bits32 zSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 22, &aSig ); - zSig = aSig; - if ( aExp || zSig ) { - zSig |= 0x40000000; - aExp -= 0x381; - } - return roundAndPackFloat32( aSign, aExp, zSig ); - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the extended double-precision floating-point format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 float64_to_floatx80( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - return - packFloatx80( - aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); - -} - -#endif - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the quadruple-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float64_to_float128( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig, zSig0, zSig1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) ); - return packFloat128( aSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); - -} - -#endif - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Rounds the double-precision floating-point value `a' to an integer, and -returns the result as a double-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_round_to_int( float64 a ) -{ - flag aSign; - int16 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - float64 z; - - aExp = extractFloat64Exp( a ); - if ( 0x433 <= aExp ) { - if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { - return propagateFloat64NaN( a, a ); - } - return a; - } - if ( aExp < 0x3FF ) { - if ( (bits64) ( a<<1 ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat64Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { - return packFloat64( aSign, 0x3FF, 0 ); - } - break; - case float_round_to_zero: - break; - case float_round_down: - return aSign ? LIT64( 0xBFF0000000000000 ) : 0; - case float_round_up: - return - aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); - } - return packFloat64( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x433 - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != a ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the double-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 9; - bSig <<= 9; - if ( 0 < expDiff ) { - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0x7FF ) { - if ( aSig | bSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); - zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= LIT64( 0x2000000000000000 ); - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits64) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat64( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the double- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 10; - bSig <<= 10; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FF ) { - if ( aSig | bSig ) return propagateFloat64NaN( a, b ); - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign ^ 1, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - bSig |= LIT64( 0x4000000000000000 ); - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - aSig |= LIT64( 0x4000000000000000 ); - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the double-precision floating-point values `a' -and `b'. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_add( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return addFloat64Sigs( a, b, aSign ); - } - else { - return subFloat64Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the double-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_sub( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return subFloat64Sigs( a, b, aSign ); - } - else { - return addFloat64Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the double-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_mul( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FF; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - zSig0 |= ( zSig1 != 0 ); - if ( 0 <= (sbits64) ( zSig0<<1 ) ) { - zSig0 <<= 1; - --zExp; - } - return roundAndPackFloat64( zSign, zExp, zSig0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the double-precision floating-point value `a' -by the corresponding value `b'. The operation is performed according to -the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_div( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - bits64 rem0, rem1; - bits64 term0, term1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b ); - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat64( zSign, 0x7FF, 0 ); - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FD; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = estimateDiv128To64( aSig, 0, bSig ); - if ( ( zSig & 0x1FF ) <= 2 ) { - mul64To128( bSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig |= ( rem1 != 0 ); - } - return roundAndPackFloat64( zSign, zExp, zSig ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the remainder of the double-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_rem( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits64 aSig, bSig; - bits64 q, alternateASig; - sbits64 sigMean; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid ); - return float64_default_nan; - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - aSig = - ( ( bSig>>2 ) * q ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits64) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits64) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the square root of the double-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_sqrt( float64 a ) -{ - flag aSign; - int16 aExp, zExp; - bits64 aSig, zSig, doubleZSig; - bits64 rem0, rem1, term0, term1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, a ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return 0; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; - aSig |= LIT64( 0x0010000000000000 ); - zSig = estimateSqrt32( aExp, aSig>>21 ); - aSig <<= 9 - ( aExp & 1 ); - zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); - if ( ( zSig & 0x1FF ) <= 5 ) { - doubleZSig = zSig<<1; - mul64To128( zSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig; - doubleZSig -= 2; - add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); - } - zSig |= ( ( rem0 | rem1 ) != 0 ); - } - return roundAndPackFloat64( 0, zExp, zSig ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is equal to the -corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_eq( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. The comparison is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_le( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) - return aSign || - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == - 0 ); - return ( a == b ) || - ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_lt( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) - return aSign && - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != - 0 ); - return ( a != b ) && - ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is equal to the -corresponding value `b', and 0 otherwise. The invalid exception is raised -if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_eq_signaling( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_le_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_lt_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} -#endif - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the 32-bit two's complement integer format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic---which means in particular that the conversion -is rounded according to the current rounding mode. If `a' is a NaN, the -largest positive integer is returned. Otherwise, if the conversion -overflows, the largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 floatx80_to_int32( floatx80 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; - shiftCount = 0x4037 - aExp; - if ( shiftCount <= 0 ) shiftCount = 1; - shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32( aSign, aSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the 32-bit two's complement integer format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic, except that the conversion is always rounded -toward zero. If `a' is a NaN, the largest positive integer is returned. -Otherwise, if the conversion overflows, the largest integer with the same -sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 floatx80_to_int32_round_to_zero( floatx80 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig, savedASig; - int32 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - shiftCount = 0x403E - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<<shiftCount ) != savedASig ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the 64-bit two's complement integer format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic---which means in particular that the conversion -is rounded according to the current rounding mode. If `a' is a NaN, -the largest positive integer is returned. Otherwise, if the conversion -overflows, the largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int64 floatx80_to_int64( floatx80 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig, aSigExtra; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - shiftCount = 0x403E - aExp; - if ( shiftCount <= 0 ) { - if ( shiftCount ) { - float_raise( float_flag_invalid ); - if ( ! aSign - || ( ( aExp == 0x7FFF ) - && ( aSig != LIT64( 0x8000000000000000 ) ) ) - ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - aSigExtra = 0; - } - else { - shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); - } - return roundAndPackInt64( aSign, aSig, aSigExtra ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the 64-bit two's complement integer format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic, except that the conversion is always rounded -toward zero. If `a' is a NaN, the largest positive integer is returned. -Otherwise, if the conversion overflows, the largest integer with the same -sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int64 floatx80_to_int64_round_to_zero( floatx80 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig; - int64 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - shiftCount = aExp - 0x403E; - if ( 0 <= shiftCount ) { - aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); - if ( ( a.high != 0xC03E ) || aSig ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - else if ( aExp < 0x3FFF ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - z = aSig>>( - shiftCount ); - if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the single-precision floating-point format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 floatx80_to_float32( floatx80 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 33, &aSig ); - if ( aExp || aSig ) aExp -= 0x3F81; - return roundAndPackFloat32( aSign, aExp, aSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the double-precision floating-point format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 floatx80_to_float64( floatx80 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig, zSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shift64RightJamming( aSig, 1, &zSig ); - if ( aExp || aSig ) aExp -= 0x3C01; - return roundAndPackFloat64( aSign, aExp, zSig ); - -} - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point value `a' to the quadruple-precision floating-point format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 floatx80_to_float128( floatx80 a ) -{ - flag aSign; - int16 aExp; - bits64 aSig, zSig0, zSig1; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat128( floatx80ToCommonNaN( a ) ); - } - shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp, zSig0, zSig1 ); - -} - -#endif - -/* -------------------------------------------------------------------------------- -Rounds the extended double-precision floating-point value `a' to an integer, -and returns the result as an extended quadruple-precision floating-point -value. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_round_to_int( floatx80 a ) -{ - flag aSign; - int32 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - floatx80 z; - - aExp = extractFloatx80Exp( a ); - if ( 0x403E <= aExp ) { - if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { - return propagateFloatx80NaN( a, a ); - } - return a; - } - if ( aExp < 0x3FFF ) { - if ( ( aExp == 0 ) - && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { - return a; - } - float_exception_flags |= float_flag_inexact; - aSign = extractFloatx80Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) - ) { - return - packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); - } - break; - case float_round_to_zero: - break; - case float_round_down: - return - aSign ? - packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) - : packFloatx80( 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloatx80( 1, 0, 0 ) - : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); - } - return packFloatx80( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x403E - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z.low += lastBitMask>>1; - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z.low += roundBitsMask; - } - } - z.low &= ~ roundBitsMask; - if ( z.low == 0 ) { - ++z.high; - z.low = LIT64( 0x8000000000000000 ); - } - if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the extended double- -precision floating-point values `a' and `b'. If `zSign' is 1, the sum is -negated before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - int32 expDiff; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return a; - } - if ( bExp == 0 ) --expDiff; - shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) ++expDiff; - shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN( a, b ); - } - return a; - } - zSig1 = 0; - zSig0 = aSig + bSig; - if ( aExp == 0 ) { - normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); - goto roundAndPack; - } - zExp = aExp; - goto shiftRight1; - } - zSig0 = aSig + bSig; - if ( (sbits64) zSig0 < 0 ) goto roundAndPack; - shiftRight1: - shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= LIT64( 0x8000000000000000 ); - ++zExp; - roundAndPack: - return - roundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the extended -double-precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - int32 expDiff; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN( a, b ); - } - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - zSig1 = 0; - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) ++expDiff; - shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - bBigger: - sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return a; - } - if ( bExp == 0 ) --expDiff; - shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - aBigger: - sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - return - normalizeRoundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the extended double-precision floating-point -values `a' and `b'. The operation is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_add( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return addFloatx80Sigs( a, b, aSign ); - } - else { - return subFloatx80Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the extended double-precision floating- -point values `a' and `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_sub( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return subFloatx80Sigs( a, b, aSign ); - } - else { - return addFloatx80Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the extended double-precision floating- -point values `a' and `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_mul( floatx80 a, floatx80 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) goto invalid; - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FFE; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - if ( 0 < (sbits64) zSig0 ) { - shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); - --zExp; - } - return - roundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the extended double-precision floating-point -value `a' by the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_div( floatx80 a, floatx80 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - bits64 rem0, rem1, rem2, term0, term1, term2; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - goto invalid; - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return packFloatx80( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - float_raise( float_flag_divbyzero ); - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FFE; - rem1 = 0; - if ( bSig <= aSig ) { - shift128Right( aSig, 0, 1, &aSig, &rem1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig, rem1, bSig ); - mul64To128( bSig, zSig0, &term0, &term1 ); - sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, bSig ); - if ( (bits64) ( zSig1<<1 ) <= 8 ) { - mul64To128( bSig, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); - } - zSig1 |= ( ( rem1 | rem2 ) != 0 ); - } - return - roundAndPackFloatx80( - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the remainder of the extended double-precision floating-point value -`a' with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_rem( floatx80 a, floatx80 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, expDiff; - bits64 aSig0, aSig1, bSig; - bits64 q, term0, term1, alternateASig0, alternateASig1; - floatx80 z; - - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig0<<1 ) - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN( a, b ); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( (bits64) ( aSig0<<1 ) == 0 ) return a; - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - bSig |= LIT64( 0x8000000000000000 ); - zSign = aSign; - expDiff = aExp - bExp; - aSig1 = 0; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); - expDiff = 0; - } - q = ( bSig <= aSig0 ); - if ( q ) aSig0 -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - mul64To128( bSig, q, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); - while ( le128( term0, term1, aSig0, aSig1 ) ) { - ++q; - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - } - } - else { - term1 = 0; - term0 = bSig; - } - sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); - if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) - || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) - && ( q & 1 ) ) - ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - zSign = ! zSign; - } - return - normalizeRoundAndPackFloatx80( - 80, zSign, bExp + expDiff, aSig0, aSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the square root of the extended double-precision floating-point -value `a'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 floatx80_sqrt( floatx80 a ) -{ - flag aSign; - int32 aExp, zExp; - bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - floatx80 z; - - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid ); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - if ( aExp == 0 ) { - if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; - zSig0 = estimateSqrt32( aExp, aSig0>>32 ); - shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= doubleZSig0; - return - roundAndPackFloatx80( - floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is -equal to the corresponding value `b', and 0 otherwise. The comparison is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag floatx80_eq( floatx80 a, floatx80 b ) -{ - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is -less than or equal to the corresponding value `b', and 0 otherwise. The -comparison is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag floatx80_le( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is -less than the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag floatx80_lt( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is equal -to the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag floatx80_eq_signaling( floatx80 a, floatx80 b ) -{ - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is less -than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs -do not cause an exception. Otherwise, the comparison is performed according -to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag floatx80_le_quiet( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is less -than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause -an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag floatx80_lt_quiet( floatx80 a, floatx80 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -#endif - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the 32-bit two's complement integer format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float128_to_int32( float128 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; - if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); - aSig0 |= ( aSig1 != 0 ); - shiftCount = 0x4028 - aExp; - if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); - return roundAndPackInt32( aSign, aSig0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the 32-bit two's complement integer format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. If -`a' is a NaN, the largest positive integer is returned. Otherwise, if the -conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float128_to_int32_round_to_zero( float128 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1, savedASig; - int32 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - aSig0 |= ( aSig1 != 0 ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig0 |= LIT64( 0x0001000000000000 ); - shiftCount = 0x402F - aExp; - savedASig = aSig0; - aSig0 >>= shiftCount; - z = aSig0; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig0<<shiftCount ) != savedASig ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the 64-bit two's complement integer format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int64 float128_to_int64( float128 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); - shiftCount = 0x402F - aExp; - if ( shiftCount <= 0 ) { - if ( 0x403E < aExp ) { - float_raise( float_flag_invalid ); - if ( ! aSign - || ( ( aExp == 0x7FFF ) - && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) - ) - ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); - } - else { - shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); - } - return roundAndPackInt64( aSign, aSig0, aSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the 64-bit two's complement integer format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int64 float128_to_int64_round_to_zero( float128 a ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1; - int64 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); - shiftCount = aExp - 0x402F; - if ( 0 < shiftCount ) { - if ( 0x403E <= aExp ) { - aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); - if ( ( a.high == LIT64( 0xC03E000000000000 ) ) - && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { - if ( aSig1 ) float_exception_flags |= float_flag_inexact; - } - else { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); - if ( (bits64) ( aSig1<<shiftCount ) ) { - float_exception_flags |= float_flag_inexact; - } - } - else { - if ( aExp < 0x3FFF ) { - if ( aExp | aSig0 | aSig1 ) { - float_exception_flags |= float_flag_inexact; - } - return 0; - } - z = aSig0>>( - shiftCount ); - if ( aSig1 - || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { - float_exception_flags |= float_flag_inexact; - } - } - if ( aSign ) z = - z; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the single-precision floating-point format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float128_to_float32( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - bits32 zSig; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat32( float128ToCommonNaN( a ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - aSig0 |= ( aSig1 != 0 ); - shift64RightJamming( aSig0, 18, &aSig0 ); - zSig = aSig0; - if ( aExp || zSig ) { - zSig |= 0x40000000; - aExp -= 0x3F81; - } - return roundAndPackFloat32( aSign, aExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the double-precision floating-point format. The conversion -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float128_to_float64( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat64( float128ToCommonNaN( a ) ); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); - aSig0 |= ( aSig1 != 0 ); - if ( aExp || aSig0 ) { - aSig0 |= LIT64( 0x4000000000000000 ); - aExp -= 0x3C01; - } - return roundAndPackFloat64( aSign, aExp, aSig0 ); - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point -value `a' to the extended double-precision floating-point format. The -conversion is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -floatx80 float128_to_floatx80( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloatx80( float128ToCommonNaN( a ) ); - } - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - else { - aSig0 |= LIT64( 0x0001000000000000 ); - } - shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); - return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 ); - -} - -#endif - -/* -------------------------------------------------------------------------------- -Rounds the quadruple-precision floating-point value `a' to an integer, and -returns the result as a quadruple-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_round_to_int( float128 a ) -{ - flag aSign; - int32 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - float128 z; - - aExp = extractFloat128Exp( a ); - if ( 0x402F <= aExp ) { - if ( 0x406F <= aExp ) { - if ( ( aExp == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) - ) { - return propagateFloat128NaN( a, a ); - } - return a; - } - lastBitMask = 1; - lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( lastBitMask ) { - add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else { - if ( (sbits64) z.low < 0 ) { - ++z.high; - if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; - } - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat128Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); - } - } - z.low &= ~ roundBitsMask; - } - else { - if ( aExp < 0x3FFF ) { - if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat128Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) - && ( extractFloat128Frac0( a ) - | extractFloat128Frac1( a ) ) - ) { - return packFloat128( aSign, 0x3FFF, 0, 0 ); - } - break; - case float_round_to_zero: - break; - case float_round_down: - return - aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) - : packFloat128( 0, 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloat128( 1, 0, 0, 0 ) - : packFloat128( 0, 0x3FFF, 0, 0 ); - } - return packFloat128( aSign, 0, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x402F - aExp; - roundBitsMask = lastBitMask - 1; - z.low = 0; - z.high = a.high; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z.high += lastBitMask>>1; - if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { - z.high &= ~ lastBitMask; - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat128Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - z.high |= ( a.low != 0 ); - z.high += roundBitsMask; - } - } - z.high &= ~ roundBitsMask; - } - if ( ( z.low != a.low ) || ( z.high != a.high ) ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the quadruple-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float128 addFloat128Sigs( float128 a, float128 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - int32 expDiff; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= LIT64( 0x0001000000000000 ); - } - shift128ExtraRightJamming( - bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= LIT64( 0x0001000000000000 ); - } - shift128ExtraRightJamming( - aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat128NaN( a, b ); - } - return a; - } - add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 ); - zSig2 = 0; - zSig0 |= LIT64( 0x0002000000000000 ); - zExp = aExp; - goto shiftRight1; - } - aSig0 |= LIT64( 0x0001000000000000 ); - add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - --zExp; - if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; - ++zExp; - shiftRight1: - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - roundAndPack: - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the quadruple- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float128 subFloat128Sigs( float128 a, float128 b, flag zSign ) -{ - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; - int32 expDiff; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - expDiff = aExp - bExp; - shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); - shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat128NaN( a, b ); - } - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig0 < aSig0 ) goto aBigger; - if ( aSig0 < bSig0 ) goto bBigger; - if ( bSig1 < aSig1 ) goto aBigger; - if ( aSig1 < bSig1 ) goto bBigger; - return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= LIT64( 0x4000000000000000 ); - } - shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - bSig0 |= LIT64( 0x4000000000000000 ); - bBigger: - sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= LIT64( 0x4000000000000000 ); - } - shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); - aSig0 |= LIT64( 0x4000000000000000 ); - aBigger: - sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the quadruple-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_add( float128 a, float128 b ) -{ - flag aSign, bSign; - - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign == bSign ) { - return addFloat128Sigs( a, b, aSign ); - } - else { - return subFloat128Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the quadruple-precision floating-point -values `a' and `b'. The operation is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_sub( float128 a, float128 b ) -{ - flag aSign, bSign; - - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign == bSign ) { - return subFloat128Sigs( a, b, aSign ); - } - else { - return addFloat128Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the quadruple-precision floating-point -values `a' and `b'. The operation is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_mul( float128 a, float128 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN( a, b ); - } - if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - zExp = aExp + bExp - 0x4000; - aSig0 |= LIT64( 0x0001000000000000 ); - shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); - mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); - add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zSig2 |= ( zSig3 != 0 ); - if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - ++zExp; - } - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the quadruple-precision floating-point value -`a' by the corresponding value `b'. The operation is performed according to -the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_div( float128 a, float128 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - goto invalid; - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return packFloat128( zSign, 0, 0, 0 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - float_raise( float_flag_divbyzero ); - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = aExp - bExp + 0x3FFD; - shortShift128Left( - aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); - shortShift128Left( - bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); - if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { - shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); - mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); - sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); - } - zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); - if ( ( zSig1 & 0x3FFF ) <= 4 ) { - mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); - sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the remainder of the quadruple-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_rem( float128 a, float128 b ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, expDiff; - bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; - bits64 allZero, alternateASig0, alternateASig1, sigMean1; - sbits64 sigMean0; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN( a, b ); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return a; - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - expDiff = aExp - bExp; - if ( expDiff < -1 ) return a; - shortShift128Left( - aSig0 | LIT64( 0x0001000000000000 ), - aSig1, - 15 - ( expDiff < 0 ), - &aSig0, - &aSig1 - ); - shortShift128Left( - bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); - q = le128( bSig0, bSig1, aSig0, aSig1 ); - if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); - shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); - sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); - expDiff -= 61; - } - if ( -64 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - q >>= - expDiff; - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - expDiff += 52; - if ( expDiff < 0 ) { - shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - } - else { - shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); - } - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); - } - else { - shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - } - do { - alternateASig0 = aSig0; - alternateASig1 = aSig1; - ++q; - sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - } while ( 0 <= (sbits64) aSig0 ); - add128( - aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); - if ( ( sigMean0 < 0 ) - || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - } - zSign = ( (sbits64) aSig0 < 0 ); - if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); - return - normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the square root of the quadruple-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float128 float128_sqrt( float128 a ) -{ - flag aSign; - int32 aExp, zExp; - bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid ); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; - aSig0 |= LIT64( 0x0001000000000000 ); - zSig0 = estimateSqrt32( aExp, aSig0>>17 ); - shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & 0x1FFF ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float128_eq( float128 a, float128 b ) -{ - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float128_le( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float128_lt( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float128_eq_signaling( float128 a, float128 b ) -{ - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float128_le_quiet( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float128_lt_quiet( float128 a, float128 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -#endif - - -#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS) - -/* - * These two routines are not part of the original softfloat distribution. - * - * They are based on the corresponding conversions to integer but return - * unsigned numbers instead since these functions are required by GCC. - * - * Added by Mark Brinicombe <mark@NetBSD.org> 27/09/97 - * - * float64 version overhauled for SoftFloat 2a [bjh21 2000-07-15] - */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit unsigned integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-point -Arithmetic, except that the conversion is always rounded toward zero. If -`a' is a NaN, the largest positive integer is returned. If the conversion -overflows, the largest integer positive is returned. -------------------------------------------------------------------------------- -*/ -uint32 float64_to_uint32_round_to_zero( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig, savedASig; - uint32 z; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - - if (aSign) { - float_raise( float_flag_invalid ); - return(0); - } - - if ( 0x41E < aExp ) { - float_raise( float_flag_invalid ); - return 0xffffffff; - } - else if ( aExp < 0x3FF ) { - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x433 - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( ( aSig<<shiftCount ) != savedASig ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit unsigned integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-point -Arithmetic, except that the conversion is always rounded toward zero. If -`a' is a NaN, the largest positive integer is returned. If the conversion -overflows, the largest positive integer is returned. -------------------------------------------------------------------------------- -*/ -uint32 float32_to_uint32_round_to_zero( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - uint32 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0x9E; - - if (aSign) { - float_raise( float_flag_invalid ); - return(0); - } - if ( 0 < shiftCount ) { - float_raise( float_flag_invalid ); - return 0xFFFFFFFF; - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig = ( aSig | 0x800000 )<<8; - z = aSig>>( - shiftCount ); - if ( aSig<<( shiftCount & 31 ) ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} - -#endif diff --git a/lib/libc/softfloat/eqdf2.c b/lib/libc/softfloat/eqdf2.c deleted file mode 100644 index 68bb55c..0000000 --- a/lib/libc/softfloat/eqdf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: eqdf2.c,v 1.1 2000/06/06 08:15:02 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -flag __eqdf2(float64, float64); - -flag -__eqdf2(float64 a, float64 b) -{ - - /* libgcc1.c says !(a == b) */ - return !float64_eq(a, b); -} diff --git a/lib/libc/softfloat/eqsf2.c b/lib/libc/softfloat/eqsf2.c deleted file mode 100644 index d45b806..0000000 --- a/lib/libc/softfloat/eqsf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: eqsf2.c,v 1.1 2000/06/06 08:15:03 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -flag __eqsf2(float32, float32); - -flag -__eqsf2(float32 a, float32 b) -{ - - /* libgcc1.c says !(a == b) */ - return !float32_eq(a, b); -} diff --git a/lib/libc/softfloat/fpgetmask.c b/lib/libc/softfloat/fpgetmask.c deleted file mode 100644 index 20c6928..0000000 --- a/lib/libc/softfloat/fpgetmask.c +++ /dev/null @@ -1,53 +0,0 @@ -/* $NetBSD: fpgetmask.c,v 1.4 2008/04/28 20:23:00 martin Exp $ */ - -/*- - * Copyright (c) 1997 The NetBSD Foundation, Inc. - * All rights reserved. - * - * This code is derived from software contributed to The NetBSD Foundation - * by Neil A. Carson and Mark Brinicombe - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS - * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "namespace.h" - -#include <ieeefp.h> -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif -#include "milieu.h" -#include "softfloat.h" - -#ifdef __weak_alias -__weak_alias(fpgetmask,_fpgetmask) -#endif - -fp_except -fpgetmask(void) -{ - - return float_exception_mask; -} diff --git a/lib/libc/softfloat/fpgetround.c b/lib/libc/softfloat/fpgetround.c deleted file mode 100644 index 6ff1ffd..0000000 --- a/lib/libc/softfloat/fpgetround.c +++ /dev/null @@ -1,53 +0,0 @@ -/* $NetBSD: fpgetround.c,v 1.3 2008/04/28 20:23:00 martin Exp $ */ - -/*- - * Copyright (c) 1997 The NetBSD Foundation, Inc. - * All rights reserved. - * - * This code is derived from software contributed to The NetBSD Foundation - * by Neil A. Carson and Mark Brinicombe - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS - * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "namespace.h" - -#include <ieeefp.h> -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif -#include "milieu.h" -#include "softfloat.h" - -#ifdef __weak_alias -__weak_alias(fpgetround,_fpgetround) -#endif - -fp_rnd_t -fpgetround(void) -{ - - return float_rounding_mode; -} diff --git a/lib/libc/softfloat/fpgetsticky.c b/lib/libc/softfloat/fpgetsticky.c deleted file mode 100644 index f7ef466..0000000 --- a/lib/libc/softfloat/fpgetsticky.c +++ /dev/null @@ -1,53 +0,0 @@ -/* $NetBSD: fpgetsticky.c,v 1.3 2008/04/28 20:23:00 martin Exp $ */ - -/*- - * Copyright (c) 1997 The NetBSD Foundation, Inc. - * All rights reserved. - * - * This code is derived from software contributed to The NetBSD Foundation - * by Neil A. Carson and Mark Brinicombe - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS - * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "namespace.h" - -#include <ieeefp.h> -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif -#include "milieu.h" -#include "softfloat.h" - -#ifdef __weak_alias -__weak_alias(fpgetsticky,_fpgetsticky) -#endif - -fp_except -fpgetsticky(void) -{ - - return float_exception_flags; -} diff --git a/lib/libc/softfloat/fpsetmask.c b/lib/libc/softfloat/fpsetmask.c deleted file mode 100644 index 47dcc95..0000000 --- a/lib/libc/softfloat/fpsetmask.c +++ /dev/null @@ -1,56 +0,0 @@ -/* $NetBSD: fpsetmask.c,v 1.4 2008/04/28 20:23:00 martin Exp $ */ - -/*- - * Copyright (c) 1997 The NetBSD Foundation, Inc. - * All rights reserved. - * - * This code is derived from software contributed to The NetBSD Foundation - * by Neil A. Carson and Mark Brinicombe - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS - * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "namespace.h" - -#include <ieeefp.h> -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif -#include "milieu.h" -#include "softfloat.h" - -#ifdef __weak_alias -__weak_alias(fpsetmask,_fpsetmask) -#endif - -fp_except -fpsetmask(fp_except mask) -{ - fp_except old; - - old = float_exception_mask; - float_exception_mask = mask; - return old; -} diff --git a/lib/libc/softfloat/fpsetround.c b/lib/libc/softfloat/fpsetround.c deleted file mode 100644 index ecdb6ad..0000000 --- a/lib/libc/softfloat/fpsetround.c +++ /dev/null @@ -1,56 +0,0 @@ -/* $NetBSD: fpsetround.c,v 1.3 2008/04/28 20:23:00 martin Exp $ */ - -/*- - * Copyright (c) 1997 The NetBSD Foundation, Inc. - * All rights reserved. - * - * This code is derived from software contributed to The NetBSD Foundation - * by Neil A. Carson and Mark Brinicombe - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS - * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "namespace.h" - -#include <ieeefp.h> -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif -#include "milieu.h" -#include "softfloat.h" - -#ifdef __weak_alias -__weak_alias(fpsetround,_fpsetround) -#endif - -fp_rnd_t -fpsetround(fp_rnd_t rnd_dir) -{ - fp_rnd_t old; - - old = float_rounding_mode; - float_rounding_mode = rnd_dir; - return old; -} diff --git a/lib/libc/softfloat/fpsetsticky.c b/lib/libc/softfloat/fpsetsticky.c deleted file mode 100644 index 526b19f..0000000 --- a/lib/libc/softfloat/fpsetsticky.c +++ /dev/null @@ -1,56 +0,0 @@ -/* $NetBSD: fpsetsticky.c,v 1.3 2008/04/28 20:23:00 martin Exp $ */ - -/*- - * Copyright (c) 1997 The NetBSD Foundation, Inc. - * All rights reserved. - * - * This code is derived from software contributed to The NetBSD Foundation - * by Neil A. Carson and Mark Brinicombe - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS - * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include "namespace.h" - -#include <ieeefp.h> -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif -#include "milieu.h" -#include "softfloat.h" - -#ifdef __weak_alias -__weak_alias(fpsetsticky,_fpsetsticky) -#endif - -fp_except -fpsetsticky(fp_except except) -{ - fp_except old; - - old = float_exception_flags; - float_exception_flags = except; - return old; -} diff --git a/lib/libc/softfloat/gedf2.c b/lib/libc/softfloat/gedf2.c deleted file mode 100644 index 76e25de..0000000 --- a/lib/libc/softfloat/gedf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: gedf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __gedf2(float64, float64); - -flag -__gedf2(float64 a, float64 b) -{ - - /* libgcc1.c says (a >= b) - 1 */ - return float64_le(b, a) - 1; -} diff --git a/lib/libc/softfloat/gesf2.c b/lib/libc/softfloat/gesf2.c deleted file mode 100644 index b22e13a..0000000 --- a/lib/libc/softfloat/gesf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: gesf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __gesf2(float32, float32); - -flag -__gesf2(float32 a, float32 b) -{ - - /* libgcc1.c says (a >= b) - 1 */ - return float32_le(b, a) - 1; -} diff --git a/lib/libc/softfloat/gtdf2.c b/lib/libc/softfloat/gtdf2.c deleted file mode 100644 index ff5764a..0000000 --- a/lib/libc/softfloat/gtdf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: gtdf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __gtdf2(float64, float64); - -flag -__gtdf2(float64 a, float64 b) -{ - - /* libgcc1.c says a > b */ - return float64_lt(b, a); -} diff --git a/lib/libc/softfloat/gtsf2.c b/lib/libc/softfloat/gtsf2.c deleted file mode 100644 index 8e7e7a9..0000000 --- a/lib/libc/softfloat/gtsf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: gtsf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __gtsf2(float32, float32); - -flag -__gtsf2(float32 a, float32 b) -{ - - /* libgcc1.c says a > b */ - return float32_lt(b, a); -} diff --git a/lib/libc/softfloat/ledf2.c b/lib/libc/softfloat/ledf2.c deleted file mode 100644 index 7d3e8fb..0000000 --- a/lib/libc/softfloat/ledf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: ledf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __ledf2(float64, float64); - -flag -__ledf2(float64 a, float64 b) -{ - - /* libgcc1.c says 1 - (a <= b) */ - return 1 - float64_le(a, b); -} diff --git a/lib/libc/softfloat/lesf2.c b/lib/libc/softfloat/lesf2.c deleted file mode 100644 index 6fa13e5..0000000 --- a/lib/libc/softfloat/lesf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: lesf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __lesf2(float32, float32); - -flag -__lesf2(float32 a, float32 b) -{ - - /* libgcc1.c says 1 - (a <= b) */ - return 1 - float32_le(a, b); -} diff --git a/lib/libc/softfloat/ltdf2.c b/lib/libc/softfloat/ltdf2.c deleted file mode 100644 index b8c668c..0000000 --- a/lib/libc/softfloat/ltdf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: ltdf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __ltdf2(float64, float64); - -flag -__ltdf2(float64 a, float64 b) -{ - - /* libgcc1.c says -(a < b) */ - return -float64_lt(a, b); -} diff --git a/lib/libc/softfloat/ltsf2.c b/lib/libc/softfloat/ltsf2.c deleted file mode 100644 index 8a1e8fa9..0000000 --- a/lib/libc/softfloat/ltsf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: ltsf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __ltsf2(float32, float32); - -flag -__ltsf2(float32 a, float32 b) -{ - - /* libgcc1.c says -(a < b) */ - return -float32_lt(a, b); -} diff --git a/lib/libc/softfloat/nedf2.c b/lib/libc/softfloat/nedf2.c deleted file mode 100644 index 61f5044..0000000 --- a/lib/libc/softfloat/nedf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: nedf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __nedf2(float64, float64); - -flag -__nedf2(float64 a, float64 b) -{ - - /* libgcc1.c says a != b */ - return !float64_eq(a, b); -} diff --git a/lib/libc/softfloat/negdf2.c b/lib/libc/softfloat/negdf2.c deleted file mode 100644 index 2485d58..0000000 --- a/lib/libc/softfloat/negdf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: negdf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -float64 __negdf2(float64); - -float64 -__negdf2(float64 a) -{ - - /* libgcc1.c says -a */ - return a ^ FLOAT64_MANGLE(0x8000000000000000ULL); -} diff --git a/lib/libc/softfloat/negsf2.c b/lib/libc/softfloat/negsf2.c deleted file mode 100644 index 78f6c6b..0000000 --- a/lib/libc/softfloat/negsf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: negsf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -float32 __negsf2(float32); - -float32 -__negsf2(float32 a) -{ - - /* libgcc1.c says INTIFY(-a) */ - return a ^ 0x80000000; -} diff --git a/lib/libc/softfloat/nesf2.c b/lib/libc/softfloat/nesf2.c deleted file mode 100644 index b8317cb..0000000 --- a/lib/libc/softfloat/nesf2.c +++ /dev/null @@ -1,22 +0,0 @@ -/* $NetBSD: nesf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ - -/* - * Written by Ben Harris, 2000. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __nesf2(float32, float32); - -flag -__nesf2(float32 a, float32 b) -{ - - /* libgcc1.c says a != b */ - return !float32_eq(a, b); -} diff --git a/lib/libc/softfloat/softfloat-for-gcc.h b/lib/libc/softfloat/softfloat-for-gcc.h deleted file mode 100644 index fa5b3e8..0000000 --- a/lib/libc/softfloat/softfloat-for-gcc.h +++ /dev/null @@ -1,43 +0,0 @@ -/* $NetBSD: softfloat-for-gcc.h,v 1.6 2003/07/26 19:24:51 salo Exp $ */ -/* $FreeBSD$ */ - -/* - * Move private identifiers with external linkage into implementation - * namespace. -- Klaus Klein <kleink@NetBSD.org>, May 5, 1999 - */ -#define float_exception_flags _softfloat_float_exception_flags -#define float_exception_mask _softfloat_float_exception_mask -#define float_rounding_mode _softfloat_float_rounding_mode -#define float_raise _softfloat_float_raise -/* The following batch are called by GCC through wrappers */ -#define float32_eq _softfloat_float32_eq -#define float32_le _softfloat_float32_le -#define float32_lt _softfloat_float32_lt -#define float64_eq _softfloat_float64_eq -#define float64_le _softfloat_float64_le -#define float64_lt _softfloat_float64_lt - -/* - * Macros to define functions with the GCC expected names - */ - -#define float32_add __addsf3 -#define float64_add __adddf3 -#define float32_sub __subsf3 -#define float64_sub __subdf3 -#define float32_mul __mulsf3 -#define float64_mul __muldf3 -#define float32_div __divsf3 -#define float64_div __divdf3 -#define int32_to_float32 __floatsisf -#define int32_to_float64 __floatsidf -#define int64_to_float32 __floatdisf -#define int64_to_float64 __floatdidf -#define float32_to_int32_round_to_zero __fixsfsi -#define float64_to_int32_round_to_zero __fixdfsi -#define float32_to_int64_round_to_zero __fixsfdi -#define float64_to_int64_round_to_zero __fixdfdi -#define float32_to_uint32_round_to_zero __fixunssfsi -#define float64_to_uint32_round_to_zero __fixunsdfsi -#define float32_to_float64 __extendsfdf2 -#define float64_to_float32 __truncdfsf2 diff --git a/lib/libc/softfloat/softfloat-history.txt b/lib/libc/softfloat/softfloat-history.txt deleted file mode 100644 index d8c98db..0000000 --- a/lib/libc/softfloat/softfloat-history.txt +++ /dev/null @@ -1,53 +0,0 @@ -$NetBSD: softfloat-history.txt,v 1.1 2000/06/06 08:15:08 bjh21 Exp $ -$FreeBSD$ - -History of Major Changes to SoftFloat, up to Release 2a - -John R. Hauser -1998 December 16 - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Release 2a (1998 December) - --- Added functions to convert between 64-bit integers (int64) and all - supported floating-point formats. - --- Fixed a bug in all 64-bit-version square root functions except - `float32_sqrt' that caused the result sometimes to be off by 1 unit in - the last place (1 ulp) from what it should be. (Bug discovered by Paul - Donahue.) - --- Improved the makefiles. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Release 2 (1997 June) - --- Created the 64-bit (bits64) version, adding the floatx80 and float128 - formats. - --- Changed the source directory structure, splitting the sources into a - `bits32' and a `bits64' version. Renamed `environment.h' to `milieu.h' - (to avoid confusion with environment variables). - --- Fixed a small error that caused `float64_round_to_int' often to round the - wrong way in nearest/even mode when the operand was between 2^20 and 2^21 - and halfway between two integers. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Release 1a (1996 July) - --- Corrected a mistake that caused borderline underflow cases not to raise - the underflow flag when they should have. (Problem reported by Doug - Priest.) - --- Added the `float_detect_tininess' variable to control whether tininess is - detected before or after rounding. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Release 1 (1996 July) - --- Original release. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/lib/libc/softfloat/softfloat-source.txt b/lib/libc/softfloat/softfloat-source.txt deleted file mode 100644 index 0675966..0000000 --- a/lib/libc/softfloat/softfloat-source.txt +++ /dev/null @@ -1,384 +0,0 @@ -$NetBSD: softfloat-source.txt,v 1.1 2000/06/06 08:15:10 bjh21 Exp $ -$FreeBSD$ - -SoftFloat Release 2a Source Documentation - -John R. Hauser -1998 December 14 - - -------------------------------------------------------------------------------- -Introduction - -SoftFloat is a software implementation of floating-point that conforms to -the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat can -support four floating-point formats: single precision, double precision, -extended double precision, and quadruple precision. All operations required -by the IEEE Standard are implemented, except for conversions to and from -decimal. SoftFloat is distributed in the form of C source code, so a -C compiler is needed to compile the code. Support for the extended double- -precision and quadruple-precision formats is dependent on the C compiler -implementing a 64-bit integer type. - -This document gives information needed for compiling and/or porting -SoftFloat. - -The source code for SoftFloat is intended to be relatively machine- -independent and should be compilable using any ISO/ANSI C compiler. At the -time of this writing, SoftFloat has been successfully compiled with the GNU -C Compiler (`gcc') for several platforms. - - -------------------------------------------------------------------------------- -Limitations - -SoftFloat as written requires an ISO/ANSI-style C compiler. No attempt has -been made to accomodate compilers that are not ISO-conformant. Older ``K&R- -style'' compilers are not adequate for compiling SoftFloat. All testing I -have done so far has been with the GNU C Compiler. Compilation with other -compilers should be possible but has not been tested. - -The SoftFloat sources assume that source code file names can be longer than -8 characters. In order to compile under an MS-DOS-type system, many of the -source files will need to be renamed, and the source and makefiles edited -appropriately. Once compiled, the SoftFloat binary does not depend on the -existence of long file names. - -The underlying machine is assumed to be binary with a word size that is a -power of 2. Bytes are 8 bits. Support for the extended double-precision -and quadruple-precision formats depends on the C compiler implementing -a 64-bit integer type. If the largest integer type supported by the -C compiler is 32 bits, SoftFloat is limited to the single- and double- -precision formats. - - -------------------------------------------------------------------------------- -Contents - - Introduction - Limitations - Contents - Legal Notice - SoftFloat Source Directory Structure - SoftFloat Source Files - processors/*.h - softfloat/bits*/*/softfloat.h - softfloat/bits*/*/milieu.h - softfloat/bits*/*/softfloat-specialize - softfloat/bits*/softfloat-macros - softfloat/bits*/softfloat.c - Steps to Creating a `softfloat.o' - Making `softfloat.o' a Library - Testing SoftFloat - Timing SoftFloat - Compiler Options and Efficiency - Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros' - Contact Information - - - -------------------------------------------------------------------------------- -Legal Notice - -SoftFloat was written by John R. Hauser. This work was made possible in -part by the International Computer Science Institute, located at Suite 600, -1947 Center Street, Berkeley, California 94704. Funding was partially -provided by the National Science Foundation under grant MIP-9311980. The -original version of this code was written as part of a project to build -a fixed-point vector processor in collaboration with the University of -California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - - -------------------------------------------------------------------------------- -SoftFloat Source Directory Structure - -Because SoftFloat is targeted to multiple platforms, its source code -is slightly scattered between target-specific and target-independent -directories and files. The directory structure is as follows: - - processors - softfloat - bits64 - templates - 386-Win32-gcc - SPARC-Solaris-gcc - bits32 - templates - 386-Win32-gcc - SPARC-Solaris-gcc - -The two topmost directories and their contents are: - - softfloat - Most of the source code needed for SoftFloat. - processors - Target-specific header files that are not specific to - SoftFloat. - -The `softfloat' directory is further split into two parts: - - bits64 - SoftFloat implementation using 64-bit integers. - bits32 - SoftFloat implementation using only 32-bit integers. - -Within these directories are subdirectories for each of the targeted -platforms. The SoftFloat source code is distributed with targets -`386-Win32-gcc' and `SPARC-Solaris-gcc' (and perhaps others) already -prepared for both the 32-bit and 64-bit implementations. Source files that -are not within these target-specific subdirectories are intended to be -target-independent. - -The naming convention used for the target-specific directories is -`<processor>-<executable-type>-<compiler>'. The names of the supplied -target directories should be interpreted as follows: - - <processor>: - 386 - Intel 386-compatible processor. - SPARC - SPARC processor (as used by Sun machines). - <executable-type>: - Win32 - Microsoft Win32 executable. - Solaris - Sun Solaris executable. - <compiler>: - gcc - GNU C Compiler. - -You do not need to maintain this convention if you do not want to. - -Alongside the supplied target-specific directories is a `templates' -directory containing a set of ``generic'' target-specific source files. A -new target directory can be created by copying the `templates' directory and -editing the files inside. (Complete instructions for porting SoftFloat to a -new target are in the section _Steps_to_Creating_a_`softfloat.o'_.) Note -that the `templates' directory will not work as a target directory without -some editing. To avoid confusion, it would be wise to refrain from editing -the files inside `templates' directly. - - -------------------------------------------------------------------------------- -SoftFloat Source Files - -The purpose of each source file is described below. In the following, -the `*' symbol is used in place of the name of a specific target, such as -`386-Win32-gcc' or `SPARC-Solaris-gcc', or in place of some other text, as -in `bits*' for either `bits32' or `bits64'. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -processors/*.h - -The target-specific `processors' header file defines integer types -of various sizes, and also defines certain C preprocessor macros that -characterize the target. The two examples supplied are `386-gcc.h' and -`SPARC-gcc.h'. The naming convention used for processor header files is -`<processor>-<compiler>.h'. - -If 64-bit integers are supported by the compiler, the macro name `BITS64' -should be defined here along with the corresponding 64-bit integer -types. In addition, the function-like macro `LIT64' must be defined for -constructing 64-bit integer literals (constants). The `LIT64' macro is used -consistently in the SoftFloat code to annotate 64-bit literals. - -If `BITS64' is not defined, only the 32-bit version of SoftFloat can be -compiled. If `BITS64' _is_ defined, either can be compiled. - -If an inlining attribute (such as an `inline' keyword) is provided by the -compiler, the macro `INLINE' should be defined to the appropriate keyword. -If not, `INLINE' can be set to the keyword `static'. The `INLINE' macro -appears in the SoftFloat source code before every function that should -be inlined by the compiler. SoftFloat depends on inlining to obtain -good speed. Even if inlining cannot be forced with a language keyword, -the compiler may still be able to perform inlining on its own as an -optimization. If a command-line option is needed to convince the compiler -to perform this optimization, this should be assured in the makefile. (See -the section _Compiler_Options_and_Efficiency_ below.) - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -softfloat/bits*/*/softfloat.h - -The target-specific `softfloat.h' header file defines the SoftFloat -interface as seen by clients. - -Unlike the actual function definitions in `softfloat.c', the declarations -in `softfloat.h' do not use any of the types defined by the `processors' -header file. This is done so that clients will not have to include the -`processors' header file in order to use SoftFloat. Nevertheless, the -target-specific declarations in `softfloat.h' must match what `softfloat.c' -expects. For example, if `int32' is defined as `int' in the `processors' -header file, then in `softfloat.h' the output of `float32_to_int32' should -be stated as `int', although in `softfloat.c' it is given in target- -independent form as `int32'. - -For the `bits64' implementation of SoftFloat, the macro names `FLOATX80' and -`FLOAT128' must be defined in order for the extended double-precision and -quadruple-precision formats to be enabled in the code. Conversely, either -or both of the extended formats can be disabled by simply removing the -`#define' of the respective macro. When an extended format is not enabled, -none of the functions that either input or output the format are defined, -and no space is taken up in `softfloat.o' by such functions. There is no -provision for disabling the usual single- and double-precision formats. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -softfloat/bits*/*/milieu.h - -The target-specific `milieu.h' header file provides declarations that are -needed to compile SoftFloat. In addition, deviations from ISO/ANSI C by -the compiler (such as names not properly declared in system header files) -are corrected in this header if possible. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -softfloat/bits*/*/softfloat-specialize - -This target-specific C source fragment defines: - --- whether tininess for underflow is detected before or after rounding by - default; --- what (if anything) special happens when exceptions are raised; --- how signaling NaNs are distinguished from quiet NaNs; --- the default generated quiet NaNs; and --- how NaNs are propagated from function inputs to output. - -These details are not decided by the IEC/IEEE Standard. This fragment is -included verbatim within `softfloat.c' when SoftFloat is compiled. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -softfloat/bits*/softfloat-macros - -This target-independent C source fragment defines a number of arithmetic -functions used as primitives within the `softfloat.c' source. Most of the -functions defined here are intended to be inlined for efficiency. This -fragment is included verbatim within `softfloat.c' when SoftFloat is -compiled. - -Target-specific variations on this file are possible. See the section -_Processor-Specific_Optimization_of_`softfloat.c'_Using_`softfloat-macros'_ -below. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -softfloat/bits*/softfloat.c - -The target-independent `softfloat.c' source file contains the body of the -SoftFloat implementation. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -The inclusion of the files above within each other (using `#include') can be -shown graphically as follows: - - softfloat/bits*/softfloat.c - softfloat/bits*/*/milieu.h - processors/*.h - softfloat/bits*/*/softfloat.h - softfloat/bits*/*/softfloat-specialize - softfloat/bits*/softfloat-macros - -Note in particular that `softfloat.c' does not include the `processors' -header file directly. Rather, `softfloat.c' includes the target-specific -`milieu.h' header file, which in turn includes the processor header file. - - -------------------------------------------------------------------------------- -Steps to Creating a `softfloat.o' - -Porting and/or compiling SoftFloat involves the following steps: - -1. If one does not already exist, create an appropriate `.h' file in the - `processors' directory. - -2. If `BITS64' is defined in the `processors' header file, choose whether - to compile the 32-bit or 64-bit implementation of SoftFloat. If - `BITS64' is not defined, your only choice is the 32-bit implementation. - The remaining steps occur within either the `bits32' or `bits64' - subdirectories. - -3. If one does not already exist, create an appropriate target-specific - subdirectory by copying the given `templates' directory. - -4. In the target-specific subdirectory, edit the files `softfloat-specialize' - and `softfloat.h' to define the desired exception handling functions - and mode control values. In the `softfloat.h' header file, ensure also - that all declarations give the proper target-specific type (such as - `int' or `long') corresponding to the target-independent type used in - `softfloat.c' (such as `int32'). None of the type names declared in the - `processors' header file should appear in `softfloat.h'. - -5. In the target-specific subdirectory, edit the files `milieu.h' and - `Makefile' to reflect the current environment. - -6. In the target-specific subdirectory, execute `make'. - -For the targets that are supplied, if the expected compiler is available -(usually `gcc'), it should only be necessary to execute `make' in the -target-specific subdirectory. - - -------------------------------------------------------------------------------- -Making `softfloat.o' a Library - -SoftFloat is not made into a software library by the supplied makefile. -If desired, `softfloat.o' can easily be put into its own library (in Unix, -`softfloat.a') using the usual system tool (in Unix, `ar'). - - -------------------------------------------------------------------------------- -Testing SoftFloat - -SoftFloat can be tested using the `testsoftfloat' program by the same -author. The `testsoftfloat' program is part of the TestFloat package -available at the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/ -TestFloat.html'. - - -------------------------------------------------------------------------------- -Timing SoftFloat - -A program called `timesoftfloat' for timing the SoftFloat functions is -included with the SoftFloat source code. Compiling `timesoftfloat' should -pose no difficulties once `softfloat.o' exists. The supplied makefile -will create a `timesoftfloat' executable by default after generating -`softfloat.o'. See `timesoftfloat.txt' for documentation about using -`timesoftfloat'. - - -------------------------------------------------------------------------------- -Compiler Options and Efficiency - -In order to get good speed with SoftFloat, it is important that the compiler -inline the routines that have been marked `INLINE' in the code. Even if -inlining cannot be forced by an appropriate definition of the `INLINE' -macro, the compiler may still be able to perform inlining on its own as -an optimization. In that case, the makefile should be edited to give the -compiler whatever option is required to cause it to inline small functions. - -The ability of the processor to do fast shifts has been assumed. Efficiency -will not be as good on processors for which this is not the case (such as -the original Motorola 68000 or Intel 8086 processors). - - -------------------------------------------------------------------------------- -Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros' - -The `softfloat-macros' source fragment defines arithmetic functions used -as primitives by `softfloat.c'. This file has been written in a target- -independent form. For a given target, it may be possible to improve on -these functions using target-specific and/or non-ISO-C features (such -as `asm' statements). For example, one of the ``macro'' functions takes -two word-size integers and returns their full product in two words. -This operation can be done directly in hardware on many processors; but -because it is not available through standard C, the function defined in -`softfloat-macros' uses four multiplies to achieve the same result. - -To address these shortcomings, a customized version of `softfloat-macros' -can be created in any of the target-specific subdirectories. A simple -modification to the target's makefile should be sufficient to ensure that -the custom version is used instead of the generic one. - - -------------------------------------------------------------------------------- -Contact Information - -At the time of this writing, the most up-to-date information about -SoftFloat and the latest release can be found at the Web page `http:// -HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'. - - diff --git a/lib/libc/softfloat/softfloat-specialize b/lib/libc/softfloat/softfloat-specialize deleted file mode 100644 index e8585ce..0000000 --- a/lib/libc/softfloat/softfloat-specialize +++ /dev/null @@ -1,494 +0,0 @@ -/* $NetBSD: softfloat-specialize,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */ -/* $FreeBSD$ */ - -/* This is a derivative work. */ - -/* -=============================================================================== - -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -#include <signal.h> - -/* -------------------------------------------------------------------------------- -Underflow tininess-detection mode, statically initialized to default value. -(The declaration in `softfloat.h' must match the `int8' type here.) -------------------------------------------------------------------------------- -*/ -#ifdef SOFTFLOAT_FOR_GCC -static -#endif -#ifdef __sparc64__ -int8 float_detect_tininess = float_tininess_before_rounding; -#else -int8 float_detect_tininess = float_tininess_after_rounding; -#endif - -/* -------------------------------------------------------------------------------- -Raises the exceptions specified by `flags'. Floating-point traps can be -defined here if desired. It is currently not possible for such a trap to -substitute a result value. If traps are not implemented, this routine -should be simply `float_exception_flags |= flags;'. -------------------------------------------------------------------------------- -*/ -fp_except float_exception_mask = 0; -void float_raise( fp_except flags ) -{ - - float_exception_flags |= flags; - - if ( flags & float_exception_mask ) { - raise( SIGFPE ); - } -} - -/* -------------------------------------------------------------------------------- -Internal canonical NaN format. -------------------------------------------------------------------------------- -*/ -typedef struct { - flag sign; - bits64 high, low; -} commonNaNT; - -/* -------------------------------------------------------------------------------- -The pattern for a default generated single-precision NaN. -------------------------------------------------------------------------------- -*/ -#define float32_default_nan 0xFFFFFFFF - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is a NaN; -otherwise returns 0. -------------------------------------------------------------------------------- -*/ -#ifdef SOFTFLOAT_FOR_GCC -static -#endif -flag float32_is_nan( float32 a ) -{ - - return ( 0xFF000000 < (bits32) ( a<<1 ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is a signaling -NaN; otherwise returns 0. -------------------------------------------------------------------------------- -*/ -#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) -static -#endif -flag float32_is_signaling_nan( float32 a ) -{ - - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point NaN -`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -exception is raised. -------------------------------------------------------------------------------- -*/ -static commonNaNT float32ToCommonNaN( float32 a ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a>>31; - z.low = 0; - z.high = ( (bits64) a )<<41; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the canonical NaN `a' to the single- -precision floating-point format. -------------------------------------------------------------------------------- -*/ -static float32 commonNaNToFloat32( commonNaNT a ) -{ - - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); - -} - -/* -------------------------------------------------------------------------------- -Takes two single-precision floating-point values `a' and `b', one of which -is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -signaling NaN, the invalid exception is raised. -------------------------------------------------------------------------------- -*/ -static float32 propagateFloat32NaN( float32 a, float32 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - a |= 0x00400000; - b |= 0x00400000; - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -/* -------------------------------------------------------------------------------- -The pattern for a default generated double-precision NaN. -------------------------------------------------------------------------------- -*/ -#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is a NaN; -otherwise returns 0. -------------------------------------------------------------------------------- -*/ -#ifdef SOFTFLOAT_FOR_GCC -static -#endif -flag float64_is_nan( float64 a ) -{ - - return ( LIT64( 0xFFE0000000000000 ) < - (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is a signaling -NaN; otherwise returns 0. -------------------------------------------------------------------------------- -*/ -#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) -static -#endif -flag float64_is_signaling_nan( float64 a ) -{ - - return - ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE ) - && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point NaN -`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -exception is raised. -------------------------------------------------------------------------------- -*/ -static commonNaNT float64ToCommonNaN( float64 a ) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = FLOAT64_DEMANGLE(a)>>63; - z.low = 0; - z.high = FLOAT64_DEMANGLE(a)<<12; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the canonical NaN `a' to the double- -precision floating-point format. -------------------------------------------------------------------------------- -*/ -static float64 commonNaNToFloat64( commonNaNT a ) -{ - - return FLOAT64_MANGLE( - ( ( (bits64) a.sign )<<63 ) - | LIT64( 0x7FF8000000000000 ) - | ( a.high>>12 ) ); - -} - -/* -------------------------------------------------------------------------------- -Takes two double-precision floating-point values `a' and `b', one of which -is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -signaling NaN, the invalid exception is raised. -------------------------------------------------------------------------------- -*/ -static float64 propagateFloat64NaN( float64 a, float64 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); - b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -#ifdef FLOATX80 - -/* -------------------------------------------------------------------------------- -The pattern for a default generated extended double-precision NaN. The -`high' and `low' values hold the most- and least-significant bits, -respectively. -------------------------------------------------------------------------------- -*/ -#define floatx80_default_nan_high 0xFFFF -#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is a -NaN; otherwise returns 0. -------------------------------------------------------------------------------- -*/ -flag floatx80_is_nan( floatx80 a ) -{ - - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the extended double-precision floating-point value `a' is a -signaling NaN; otherwise returns 0. -------------------------------------------------------------------------------- -*/ -flag floatx80_is_signaling_nan( floatx80 a ) -{ - bits64 aLow; - - aLow = a.low & ~ LIT64( 0x4000000000000000 ); - return - ( ( a.high & 0x7FFF ) == 0x7FFF ) - && (bits64) ( aLow<<1 ) - && ( a.low == aLow ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the extended double-precision floating- -point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the -invalid exception is raised. -------------------------------------------------------------------------------- -*/ -static commonNaNT floatx80ToCommonNaN( floatx80 a ) -{ - commonNaNT z; - - if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>15; - z.low = 0; - z.high = a.low<<1; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the canonical NaN `a' to the extended -double-precision floating-point format. -------------------------------------------------------------------------------- -*/ -static floatx80 commonNaNToFloatx80( commonNaNT a ) -{ - floatx80 z; - - z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); - z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; - return z; - -} - -/* -------------------------------------------------------------------------------- -Takes two extended double-precision floating-point values `a' and `b', one -of which is a NaN, and returns the appropriate NaN result. If either `a' or -`b' is a signaling NaN, the invalid exception is raised. -------------------------------------------------------------------------------- -*/ -static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = floatx80_is_nan( a ); - aIsSignalingNaN = floatx80_is_signaling_nan( a ); - bIsNaN = floatx80_is_nan( b ); - bIsSignalingNaN = floatx80_is_signaling_nan( b ); - a.low |= LIT64( 0xC000000000000000 ); - b.low |= LIT64( 0xC000000000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -#endif - -#ifdef FLOAT128 - -/* -------------------------------------------------------------------------------- -The pattern for a default generated quadruple-precision NaN. The `high' and -`low' values hold the most- and least-significant bits, respectively. -------------------------------------------------------------------------------- -*/ -#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF ) -#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is a NaN; -otherwise returns 0. -------------------------------------------------------------------------------- -*/ -flag float128_is_nan( float128 a ) -{ - - return - ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) - && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the quadruple-precision floating-point value `a' is a -signaling NaN; otherwise returns 0. -------------------------------------------------------------------------------- -*/ -flag float128_is_signaling_nan( float128 a ) -{ - - return - ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) - && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the quadruple-precision floating-point NaN -`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -exception is raised. -------------------------------------------------------------------------------- -*/ -static commonNaNT float128ToCommonNaN( float128 a ) -{ - commonNaNT z; - - if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); - z.sign = a.high>>63; - shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the canonical NaN `a' to the quadruple- -precision floating-point format. -------------------------------------------------------------------------------- -*/ -static float128 commonNaNToFloat128( commonNaNT a ) -{ - float128 z; - - shift128Right( a.high, a.low, 16, &z.high, &z.low ); - z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); - return z; - -} - -/* -------------------------------------------------------------------------------- -Takes two quadruple-precision floating-point values `a' and `b', one of -which is a NaN, and returns the appropriate NaN result. If either `a' or -`b' is a signaling NaN, the invalid exception is raised. -------------------------------------------------------------------------------- -*/ -static float128 propagateFloat128NaN( float128 a, float128 b ) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float128_is_nan( a ); - aIsSignalingNaN = float128_is_signaling_nan( a ); - bIsNaN = float128_is_nan( b ); - bIsSignalingNaN = float128_is_signaling_nan( b ); - a.high |= LIT64( 0x0000800000000000 ); - b.high |= LIT64( 0x0000800000000000 ); - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); - if ( aIsNaN ) { - return ( aIsSignalingNaN & bIsNaN ) ? b : a; - } - else { - return b; - } - -} - -#endif - diff --git a/lib/libc/softfloat/softfloat.txt b/lib/libc/softfloat/softfloat.txt deleted file mode 100644 index bd63324..0000000 --- a/lib/libc/softfloat/softfloat.txt +++ /dev/null @@ -1,373 +0,0 @@ -$NetBSD: softfloat.txt,v 1.1 2000/06/06 08:15:10 bjh21 Exp $ -$FreeBSD$ - -SoftFloat Release 2a General Documentation - -John R. Hauser -1998 December 13 - - -------------------------------------------------------------------------------- -Introduction - -SoftFloat is a software implementation of floating-point that conforms to -the IEC/IEEE Standard for Binary Floating-Point Arithmetic. As many as four -formats are supported: single precision, double precision, extended double -precision, and quadruple precision. All operations required by the standard -are implemented, except for conversions to and from decimal. - -This document gives information about the types defined and the routines -implemented by SoftFloat. It does not attempt to define or explain the -IEC/IEEE Floating-Point Standard. Details about the standard are available -elsewhere. - - -------------------------------------------------------------------------------- -Limitations - -SoftFloat is written in C and is designed to work with other C code. The -SoftFloat header files assume an ISO/ANSI-style C compiler. No attempt -has been made to accomodate compilers that are not ISO-conformant. In -particular, the distributed header files will not be acceptable to any -compiler that does not recognize function prototypes. - -Support for the extended double-precision and quadruple-precision formats -depends on a C compiler that implements 64-bit integer arithmetic. If the -largest integer format supported by the C compiler is 32 bits, SoftFloat is -limited to only single and double precisions. When that is the case, all -references in this document to the extended double precision, quadruple -precision, and 64-bit integers should be ignored. - - -------------------------------------------------------------------------------- -Contents - - Introduction - Limitations - Contents - Legal Notice - Types and Functions - Rounding Modes - Extended Double-Precision Rounding Precision - Exceptions and Exception Flags - Function Details - Conversion Functions - Standard Arithmetic Functions - Remainder Functions - Round-to-Integer Functions - Comparison Functions - Signaling NaN Test Functions - Raise-Exception Function - Contact Information - - - -------------------------------------------------------------------------------- -Legal Notice - -SoftFloat was written by John R. Hauser. This work was made possible in -part by the International Computer Science Institute, located at Suite 600, -1947 Center Street, Berkeley, California 94704. Funding was partially -provided by the National Science Foundation under grant MIP-9311980. The -original version of this code was written as part of a project to build -a fixed-point vector processor in collaboration with the University of -California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - - -------------------------------------------------------------------------------- -Types and Functions - -When 64-bit integers are supported by the compiler, the `softfloat.h' header -file defines four types: `float32' (single precision), `float64' (double -precision), `floatx80' (extended double precision), and `float128' -(quadruple precision). The `float32' and `float64' types are defined in -terms of 32-bit and 64-bit integer types, respectively, while the `float128' -type is defined as a structure of two 64-bit integers, taking into account -the byte order of the particular machine being used. The `floatx80' type -is defined as a structure containing one 16-bit and one 64-bit integer, with -the machine's byte order again determining the order of the `high' and `low' -fields. - -When 64-bit integers are _not_ supported by the compiler, the `softfloat.h' -header file defines only two types: `float32' and `float64'. Because -ISO/ANSI C guarantees at least one built-in integer type of 32 bits, -the `float32' type is identified with an appropriate integer type. The -`float64' type is defined as a structure of two 32-bit integers, with the -machine's byte order determining the order of the fields. - -In either case, the types in `softfloat.h' are defined such that if a system -implements the usual C `float' and `double' types according to the IEC/IEEE -Standard, then the `float32' and `float64' types should be indistinguishable -in memory from the native `float' and `double' types. (On the other hand, -when `float32' or `float64' values are placed in processor registers by -the compiler, the type of registers used may differ from those used for the -native `float' and `double' types.) - -SoftFloat implements the following arithmetic operations: - --- Conversions among all the floating-point formats, and also between - integers (32-bit and 64-bit) and any of the floating-point formats. - --- The usual add, subtract, multiply, divide, and square root operations - for all floating-point formats. - --- For each format, the floating-point remainder operation defined by the - IEC/IEEE Standard. - --- For each floating-point format, a ``round to integer'' operation that - rounds to the nearest integer value in the same format. (The floating- - point formats can hold integer values, of course.) - --- Comparisons between two values in the same floating-point format. - -The only functions required by the IEC/IEEE Standard that are not provided -are conversions to and from decimal. - - -------------------------------------------------------------------------------- -Rounding Modes - -All four rounding modes prescribed by the IEC/IEEE Standard are implemented -for all operations that require rounding. The rounding mode is selected -by the global variable `float_rounding_mode'. This variable may be set -to one of the values `float_round_nearest_even', `float_round_to_zero', -`float_round_down', or `float_round_up'. The rounding mode is initialized -to nearest/even. - - -------------------------------------------------------------------------------- -Extended Double-Precision Rounding Precision - -For extended double precision (`floatx80') only, the rounding precision -of the standard arithmetic operations is controlled by the global variable -`floatx80_rounding_precision'. The operations affected are: - - floatx80_add floatx80_sub floatx80_mul floatx80_div floatx80_sqrt - -When `floatx80_rounding_precision' is set to its default value of 80, these -operations are rounded (as usual) to the full precision of the extended -double-precision format. Setting `floatx80_rounding_precision' to 32 -or to 64 causes the operations listed to be rounded to reduced precision -equivalent to single precision (`float32') or to double precision -(`float64'), respectively. When rounding to reduced precision, additional -bits in the result significand beyond the rounding point are set to zero. -The consequences of setting `floatx80_rounding_precision' to a value other -than 32, 64, or 80 is not specified. Operations other than the ones listed -above are not affected by `floatx80_rounding_precision'. - - -------------------------------------------------------------------------------- -Exceptions and Exception Flags - -All five exception flags required by the IEC/IEEE Standard are -implemented. Each flag is stored as a unique bit in the global variable -`float_exception_flags'. The positions of the exception flag bits within -this variable are determined by the bit masks `float_flag_inexact', -`float_flag_underflow', `float_flag_overflow', `float_flag_divbyzero', and -`float_flag_invalid'. The exception flags variable is initialized to all 0, -meaning no exceptions. - -An individual exception flag can be cleared with the statement - - float_exception_flags &= ~ float_flag_<exception>; - -where `<exception>' is the appropriate name. To raise a floating-point -exception, the SoftFloat function `float_raise' should be used (see below). - -In the terminology of the IEC/IEEE Standard, SoftFloat can detect tininess -for underflow either before or after rounding. The choice is made by -the global variable `float_detect_tininess', which can be set to either -`float_tininess_before_rounding' or `float_tininess_after_rounding'. -Detecting tininess after rounding is better because it results in fewer -spurious underflow signals. The other option is provided for compatibility -with some systems. Like most systems, SoftFloat always detects loss of -accuracy for underflow as an inexact result. - - -------------------------------------------------------------------------------- -Function Details - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Conversion Functions - -All conversions among the floating-point formats are supported, as are all -conversions between a floating-point format and 32-bit and 64-bit signed -integers. The complete set of conversion functions is: - - int32_to_float32 int64_to_float32 - int32_to_float64 int64_to_float32 - int32_to_floatx80 int64_to_floatx80 - int32_to_float128 int64_to_float128 - - float32_to_int32 float32_to_int64 - float32_to_int32 float64_to_int64 - floatx80_to_int32 floatx80_to_int64 - float128_to_int32 float128_to_int64 - - float32_to_float64 float32_to_floatx80 float32_to_float128 - float64_to_float32 float64_to_floatx80 float64_to_float128 - floatx80_to_float32 floatx80_to_float64 floatx80_to_float128 - float128_to_float32 float128_to_float64 float128_to_floatx80 - -Each conversion function takes one operand of the appropriate type and -returns one result. Conversions from a smaller to a larger floating-point -format are always exact and so require no rounding. Conversions from 32-bit -integers to double precision and larger formats are also exact, and likewise -for conversions from 64-bit integers to extended double and quadruple -precisions. - -Conversions from floating-point to integer raise the invalid exception if -the source value cannot be rounded to a representable integer of the desired -size (32 or 64 bits). If the floating-point operand is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as the operand is returned. - -On conversions to integer, if the floating-point operand is not already an -integer value, the operand is rounded according to the current rounding -mode as specified by `float_rounding_mode'. Because C (and perhaps other -languages) require that conversions to integers be rounded toward zero, the -following functions are provided for improved speed and convenience: - - float32_to_int32_round_to_zero float32_to_int64_round_to_zero - float64_to_int32_round_to_zero float64_to_int64_round_to_zero - floatx80_to_int32_round_to_zero floatx80_to_int64_round_to_zero - float128_to_int32_round_to_zero float128_to_int64_round_to_zero - -These variant functions ignore `float_rounding_mode' and always round toward -zero. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Standard Arithmetic Functions - -The following standard arithmetic functions are provided: - - float32_add float32_sub float32_mul float32_div float32_sqrt - float64_add float64_sub float64_mul float64_div float64_sqrt - floatx80_add floatx80_sub floatx80_mul floatx80_div floatx80_sqrt - float128_add float128_sub float128_mul float128_div float128_sqrt - -Each function takes two operands, except for `sqrt' which takes only one. -The operands and result are all of the same type. - -Rounding of the extended double-precision (`floatx80') functions is affected -by the `floatx80_rounding_precision' variable, as explained above in the -section _Extended_Double-Precision_Rounding_Precision_. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Remainder Functions - -For each format, SoftFloat implements the remainder function according to -the IEC/IEEE Standard. The remainder functions are: - - float32_rem - float64_rem - floatx80_rem - float128_rem - -Each remainder function takes two operands. The operands and result are all -of the same type. Given operands x and y, the remainder functions return -the value x - n*y, where n is the integer closest to x/y. If x/y is exactly -halfway between two integers, n is the even integer closest to x/y. The -remainder functions are always exact and so require no rounding. - -Depending on the relative magnitudes of the operands, the remainder -functions can take considerably longer to execute than the other SoftFloat -functions. This is inherent in the remainder operation itself and is not a -flaw in the SoftFloat implementation. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Round-to-Integer Functions - -For each format, SoftFloat implements the round-to-integer function -specified by the IEC/IEEE Standard. The functions are: - - float32_round_to_int - float64_round_to_int - floatx80_round_to_int - float128_round_to_int - -Each function takes a single floating-point operand and returns a result of -the same type. (Note that the result is not an integer type.) The operand -is rounded to an exact integer according to the current rounding mode, and -the resulting integer value is returned in the same floating-point format. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Comparison Functions - -The following floating-point comparison functions are provided: - - float32_eq float32_le float32_lt - float64_eq float64_le float64_lt - floatx80_eq floatx80_le floatx80_lt - float128_eq float128_le float128_lt - -Each function takes two operands of the same type and returns a 1 or 0 -representing either _true_ or _false_. The abbreviation `eq' stands for -``equal'' (=); `le' stands for ``less than or equal'' (<=); and `lt' stands -for ``less than'' (<). - -The standard greater-than (>), greater-than-or-equal (>=), and not-equal -(!=) functions are easily obtained using the functions provided. The -not-equal function is just the logical complement of the equal function. -The greater-than-or-equal function is identical to the less-than-or-equal -function with the operands reversed; and the greater-than function can be -obtained from the less-than function in the same way. - -The IEC/IEEE Standard specifies that the less-than-or-equal and less-than -functions raise the invalid exception if either input is any kind of NaN. -The equal functions, on the other hand, are defined not to raise the invalid -exception on quiet NaNs. For completeness, SoftFloat provides the following -additional functions: - - float32_eq_signaling float32_le_quiet float32_lt_quiet - float64_eq_signaling float64_le_quiet float64_lt_quiet - floatx80_eq_signaling floatx80_le_quiet floatx80_lt_quiet - float128_eq_signaling float128_le_quiet float128_lt_quiet - -The `signaling' equal functions are identical to the standard functions -except that the invalid exception is raised for any NaN input. Likewise, -the `quiet' comparison functions are identical to their counterparts except -that the invalid exception is not raised for quiet NaNs. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Signaling NaN Test Functions - -The following functions test whether a floating-point value is a signaling -NaN: - - float32_is_signaling_nan - float64_is_signaling_nan - floatx80_is_signaling_nan - float128_is_signaling_nan - -The functions take one operand and return 1 if the operand is a signaling -NaN and 0 otherwise. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Raise-Exception Function - -SoftFloat provides a function for raising floating-point exceptions: - - float_raise - -The function takes a mask indicating the set of exceptions to raise. No -result is returned. In addition to setting the specified exception flags, -this function may cause a trap or abort appropriate for the current system. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------------------------------------------------------------------------------- -Contact Information - -At the time of this writing, the most up-to-date information about -SoftFloat and the latest release can be found at the Web page `http:// -HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'. - - diff --git a/lib/libc/softfloat/templates/milieu.h b/lib/libc/softfloat/templates/milieu.h deleted file mode 100644 index b7bd8e5..0000000 --- a/lib/libc/softfloat/templates/milieu.h +++ /dev/null @@ -1,49 +0,0 @@ -/* $FreeBSD$ */
-
-/*
-===============================================================================
-
-This C header file is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-Include common integer types and flags.
--------------------------------------------------------------------------------
-*/
-#include "../../../processors/!!!processor.h"
-
-/*
--------------------------------------------------------------------------------
-Symbolic Boolean literals.
--------------------------------------------------------------------------------
-*/
-enum {
- FALSE = 0,
- TRUE = 1
-};
-
diff --git a/lib/libc/softfloat/templates/softfloat-specialize b/lib/libc/softfloat/templates/softfloat-specialize deleted file mode 100644 index a1dc4de..0000000 --- a/lib/libc/softfloat/templates/softfloat-specialize +++ /dev/null @@ -1,465 +0,0 @@ -/* $FreeBSD$ */
-
-/*
-===============================================================================
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-Underflow tininess-detection mode, statically initialized to default value.
-(The declaration in `softfloat.h' must match the `int8' type here.)
--------------------------------------------------------------------------------
-*/
-int8 float_detect_tininess = float_tininess_after_rounding;
-
-/*
--------------------------------------------------------------------------------
-Raises the exceptions specified by `flags'. Floating-point traps can be
-defined here if desired. It is currently not possible for such a trap to
-substitute a result value. If traps are not implemented, this routine
-should be simply `float_exception_flags |= flags;'.
--------------------------------------------------------------------------------
-*/
-void float_raise( int8 flags )
-{
-
- float_exception_flags |= flags;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Internal canonical NaN format.
--------------------------------------------------------------------------------
-*/
-typedef struct {
- flag sign;
- bits64 high, low;
-} commonNaNT;
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated single-precision NaN.
--------------------------------------------------------------------------------
-*/
-#define float32_default_nan 0xFFFFFFFF
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is a NaN;
-otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float32_is_nan( float32 a )
-{
-
- return ( 0xFF000000 < (bits32) ( a<<1 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the single-precision floating-point value `a' is a signaling
-NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float32_is_signaling_nan( float32 a )
-{
-
- return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the single-precision floating-point NaN
-`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT float32ToCommonNaN( float32 a )
-{
- commonNaNT z;
-
- if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a>>31;
- z.low = 0;
- z.high = ( (bits64) a )<<41;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the single-
-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static float32 commonNaNToFloat32( commonNaNT a )
-{
-
- return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two single-precision floating-point values `a' and `b', one of which
-is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static float32 propagateFloat32NaN( float32 a, float32 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float32_is_nan( a );
- aIsSignalingNaN = float32_is_signaling_nan( a );
- bIsNaN = float32_is_nan( b );
- bIsSignalingNaN = float32_is_signaling_nan( b );
- a |= 0x00400000;
- b |= 0x00400000;
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated double-precision NaN.
--------------------------------------------------------------------------------
-*/
-#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is a NaN;
-otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float64_is_nan( float64 a )
-{
-
- return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the double-precision floating-point value `a' is a signaling
-NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float64_is_signaling_nan( float64 a )
-{
-
- return
- ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
- && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the double-precision floating-point NaN
-`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT float64ToCommonNaN( float64 a )
-{
- commonNaNT z;
-
- if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a>>63;
- z.low = 0;
- z.high = a<<12;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the double-
-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static float64 commonNaNToFloat64( commonNaNT a )
-{
-
- return
- ( ( (bits64) a.sign )<<63 )
- | LIT64( 0x7FF8000000000000 )
- | ( a.high>>12 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two double-precision floating-point values `a' and `b', one of which
-is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static float64 propagateFloat64NaN( float64 a, float64 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float64_is_nan( a );
- aIsSignalingNaN = float64_is_signaling_nan( a );
- bIsNaN = float64_is_nan( b );
- bIsSignalingNaN = float64_is_signaling_nan( b );
- a |= LIT64( 0x0008000000000000 );
- b |= LIT64( 0x0008000000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-#ifdef FLOATX80
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated extended double-precision NaN. The
-`high' and `low' values hold the most- and least-significant bits,
-respectively.
--------------------------------------------------------------------------------
-*/
-#define floatx80_default_nan_high 0xFFFF
-#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the extended double-precision floating-point value `a' is a
-NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag floatx80_is_nan( floatx80 a )
-{
-
- return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the extended double-precision floating-point value `a' is a
-signaling NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag floatx80_is_signaling_nan( floatx80 a )
-{
- bits64 aLow;
-
- aLow = a.low & ~ LIT64( 0x4000000000000000 );
- return
- ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (bits64) ( aLow<<1 )
- && ( a.low == aLow );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the extended double-precision floating-
-point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
-invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT floatx80ToCommonNaN( floatx80 a )
-{
- commonNaNT z;
-
- if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a.high>>15;
- z.low = 0;
- z.high = a.low<<1;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the extended
-double-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static floatx80 commonNaNToFloatx80( commonNaNT a )
-{
- floatx80 z;
-
- z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
- z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two extended double-precision floating-point values `a' and `b', one
-of which is a NaN, and returns the appropriate NaN result. If either `a' or
-`b' is a signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = floatx80_is_nan( a );
- aIsSignalingNaN = floatx80_is_signaling_nan( a );
- bIsNaN = floatx80_is_nan( b );
- bIsSignalingNaN = floatx80_is_signaling_nan( b );
- a.low |= LIT64( 0xC000000000000000 );
- b.low |= LIT64( 0xC000000000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*
--------------------------------------------------------------------------------
-The pattern for a default generated quadruple-precision NaN. The `high' and
-`low' values hold the most- and least-significant bits, respectively.
--------------------------------------------------------------------------------
-*/
-#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
-#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
-otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float128_is_nan( float128 a )
-{
-
- return
- ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
- && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns 1 if the quadruple-precision floating-point value `a' is a
-signaling NaN; otherwise returns 0.
--------------------------------------------------------------------------------
-*/
-flag float128_is_signaling_nan( float128 a )
-{
-
- return
- ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
- && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the quadruple-precision floating-point NaN
-`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-exception is raised.
--------------------------------------------------------------------------------
-*/
-static commonNaNT float128ToCommonNaN( float128 a )
-{
- commonNaNT z;
-
- if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a.high>>63;
- shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Returns the result of converting the canonical NaN `a' to the quadruple-
-precision floating-point format.
--------------------------------------------------------------------------------
-*/
-static float128 commonNaNToFloat128( commonNaNT a )
-{
- float128 z;
-
- shift128Right( a.high, a.low, 16, &z.high, &z.low );
- z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
- return z;
-
-}
-
-/*
--------------------------------------------------------------------------------
-Takes two quadruple-precision floating-point values `a' and `b', one of
-which is a NaN, and returns the appropriate NaN result. If either `a' or
-`b' is a signaling NaN, the invalid exception is raised.
--------------------------------------------------------------------------------
-*/
-static float128 propagateFloat128NaN( float128 a, float128 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float128_is_nan( a );
- aIsSignalingNaN = float128_is_signaling_nan( a );
- bIsNaN = float128_is_nan( b );
- bIsSignalingNaN = float128_is_signaling_nan( b );
- a.high |= LIT64( 0x0000800000000000 );
- b.high |= LIT64( 0x0000800000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- if ( aIsNaN ) {
- return ( aIsSignalingNaN & bIsNaN ) ? b : a;
- }
- else {
- return b;
- }
-
-}
-
-#endif
-
diff --git a/lib/libc/softfloat/templates/softfloat.h b/lib/libc/softfloat/templates/softfloat.h deleted file mode 100644 index 070aab2..0000000 --- a/lib/libc/softfloat/templates/softfloat.h +++ /dev/null @@ -1,291 +0,0 @@ -/* $FreeBSD$ */
-
-/*
-===============================================================================
-
-This C header file is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/*
--------------------------------------------------------------------------------
-The macro `FLOATX80' must be defined to enable the extended double-precision
-floating-point format `floatx80'. If this macro is not defined, the
-`floatx80' type will not be defined, and none of the functions that either
-input or output the `floatx80' type will be defined. The same applies to
-the `FLOAT128' macro and the quadruple-precision format `float128'.
--------------------------------------------------------------------------------
-*/
-#define FLOATX80
-#define FLOAT128
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point types.
--------------------------------------------------------------------------------
-*/
-typedef !!!bits32 float32;
-typedef !!!bits64 float64;
-#ifdef FLOATX80
-typedef struct {
- !!!bits16 high;
- !!!bits64 low;
-} floatx80;
-#endif
-#ifdef FLOAT128
-typedef struct {
- !!!bits64 high, low;
-} float128;
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point underflow tininess-detection mode.
--------------------------------------------------------------------------------
-*/
-extern !!!int8 float_detect_tininess;
-enum {
- float_tininess_after_rounding = 0,
- float_tininess_before_rounding = 1
-};
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point rounding mode.
--------------------------------------------------------------------------------
-*/
-extern !!!int8 float_rounding_mode;
-enum {
- float_round_nearest_even = 0,
- float_round_to_zero = 1,
- float_round_down = 2,
- float_round_up = 3
-};
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE floating-point exception flags.
--------------------------------------------------------------------------------
-*/
-extern !!!int8 float_exception_flags;
-enum {
- float_flag_inexact = 1,
- float_flag_underflow = 2,
- float_flag_overflow = 4,
- float_flag_divbyzero = 8,
- float_flag_invalid = 16
-};
-
-/*
--------------------------------------------------------------------------------
-Routine to raise any or all of the software IEC/IEEE floating-point
-exception flags.
--------------------------------------------------------------------------------
-*/
-void float_raise( !!!int8 );
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE integer-to-floating-point conversion routines.
--------------------------------------------------------------------------------
-*/
-float32 int32_to_float32( !!!int32 );
-float64 int32_to_float64( !!!int32 );
-#ifdef FLOATX80
-floatx80 int32_to_floatx80( !!!int32 );
-#endif
-#ifdef FLOAT128
-float128 int32_to_float128( !!!int32 );
-#endif
-float32 int64_to_float32( !!!int64 );
-float64 int64_to_float64( !!!int64 );
-#ifdef FLOATX80
-floatx80 int64_to_floatx80( !!!int64 );
-#endif
-#ifdef FLOAT128
-float128 int64_to_float128( !!!int64 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE single-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-!!!int32 float32_to_int32( float32 );
-!!!int32 float32_to_int32_round_to_zero( float32 );
-!!!int64 float32_to_int64( float32 );
-!!!int64 float32_to_int64_round_to_zero( float32 );
-float64 float32_to_float64( float32 );
-#ifdef FLOATX80
-floatx80 float32_to_floatx80( float32 );
-#endif
-#ifdef FLOAT128
-float128 float32_to_float128( float32 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE single-precision operations.
--------------------------------------------------------------------------------
-*/
-float32 float32_round_to_int( float32 );
-float32 float32_add( float32, float32 );
-float32 float32_sub( float32, float32 );
-float32 float32_mul( float32, float32 );
-float32 float32_div( float32, float32 );
-float32 float32_rem( float32, float32 );
-float32 float32_sqrt( float32 );
-!!!flag float32_eq( float32, float32 );
-!!!flag float32_le( float32, float32 );
-!!!flag float32_lt( float32, float32 );
-!!!flag float32_eq_signaling( float32, float32 );
-!!!flag float32_le_quiet( float32, float32 );
-!!!flag float32_lt_quiet( float32, float32 );
-!!!flag float32_is_signaling_nan( float32 );
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE double-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-!!!int32 float64_to_int32( float64 );
-!!!int32 float64_to_int32_round_to_zero( float64 );
-!!!int64 float64_to_int64( float64 );
-!!!int64 float64_to_int64_round_to_zero( float64 );
-float32 float64_to_float32( float64 );
-#ifdef FLOATX80
-floatx80 float64_to_floatx80( float64 );
-#endif
-#ifdef FLOAT128
-float128 float64_to_float128( float64 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE double-precision operations.
--------------------------------------------------------------------------------
-*/
-float64 float64_round_to_int( float64 );
-float64 float64_add( float64, float64 );
-float64 float64_sub( float64, float64 );
-float64 float64_mul( float64, float64 );
-float64 float64_div( float64, float64 );
-float64 float64_rem( float64, float64 );
-float64 float64_sqrt( float64 );
-!!!flag float64_eq( float64, float64 );
-!!!flag float64_le( float64, float64 );
-!!!flag float64_lt( float64, float64 );
-!!!flag float64_eq_signaling( float64, float64 );
-!!!flag float64_le_quiet( float64, float64 );
-!!!flag float64_lt_quiet( float64, float64 );
-!!!flag float64_is_signaling_nan( float64 );
-
-#ifdef FLOATX80
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE extended double-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-!!!int32 floatx80_to_int32( floatx80 );
-!!!int32 floatx80_to_int32_round_to_zero( floatx80 );
-!!!int64 floatx80_to_int64( floatx80 );
-!!!int64 floatx80_to_int64_round_to_zero( floatx80 );
-float32 floatx80_to_float32( floatx80 );
-float64 floatx80_to_float64( floatx80 );
-#ifdef FLOAT128
-float128 floatx80_to_float128( floatx80 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE extended double-precision rounding precision. Valid
-values are 32, 64, and 80.
--------------------------------------------------------------------------------
-*/
-extern !!!int8 floatx80_rounding_precision;
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE extended double-precision operations.
--------------------------------------------------------------------------------
-*/
-floatx80 floatx80_round_to_int( floatx80 );
-floatx80 floatx80_add( floatx80, floatx80 );
-floatx80 floatx80_sub( floatx80, floatx80 );
-floatx80 floatx80_mul( floatx80, floatx80 );
-floatx80 floatx80_div( floatx80, floatx80 );
-floatx80 floatx80_rem( floatx80, floatx80 );
-floatx80 floatx80_sqrt( floatx80 );
-!!!flag floatx80_eq( floatx80, floatx80 );
-!!!flag floatx80_le( floatx80, floatx80 );
-!!!flag floatx80_lt( floatx80, floatx80 );
-!!!flag floatx80_eq_signaling( floatx80, floatx80 );
-!!!flag floatx80_le_quiet( floatx80, floatx80 );
-!!!flag floatx80_lt_quiet( floatx80, floatx80 );
-!!!flag floatx80_is_signaling_nan( floatx80 );
-
-#endif
-
-#ifdef FLOAT128
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE quadruple-precision conversion routines.
--------------------------------------------------------------------------------
-*/
-!!!int32 float128_to_int32( float128 );
-!!!int32 float128_to_int32_round_to_zero( float128 );
-!!!int64 float128_to_int64( float128 );
-!!!int64 float128_to_int64_round_to_zero( float128 );
-float32 float128_to_float32( float128 );
-float64 float128_to_float64( float128 );
-#ifdef FLOATX80
-floatx80 float128_to_floatx80( float128 );
-#endif
-
-/*
--------------------------------------------------------------------------------
-Software IEC/IEEE quadruple-precision operations.
--------------------------------------------------------------------------------
-*/
-float128 float128_round_to_int( float128 );
-float128 float128_add( float128, float128 );
-float128 float128_sub( float128, float128 );
-float128 float128_mul( float128, float128 );
-float128 float128_div( float128, float128 );
-float128 float128_rem( float128, float128 );
-float128 float128_sqrt( float128 );
-!!!flag float128_eq( float128, float128 );
-!!!flag float128_le( float128, float128 );
-!!!flag float128_lt( float128, float128 );
-!!!flag float128_eq_signaling( float128, float128 );
-!!!flag float128_le_quiet( float128, float128 );
-!!!flag float128_lt_quiet( float128, float128 );
-!!!flag float128_is_signaling_nan( float128 );
-
-#endif
-
diff --git a/lib/libc/softfloat/timesoftfloat.c b/lib/libc/softfloat/timesoftfloat.c deleted file mode 100644 index 98b6ba2..0000000 --- a/lib/libc/softfloat/timesoftfloat.c +++ /dev/null @@ -1,2639 +0,0 @@ -/* $NetBSD: timesoftfloat.c,v 1.1 2000/06/06 08:15:11 bjh21 Exp $ */ - -/* -=============================================================================== - -This C source file is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#include <stdlib.h> -#include <stdarg.h> -#include <string.h> -#include <stdio.h> -#include <time.h> -#include "milieu.h" -#include "softfloat.h" - -enum { - minIterations = 1000 -}; - -static void fail( const char *message, ... ) -{ - va_list varArgs; - - fputs( "timesoftfloat: ", stderr ); - va_start( varArgs, message ); - vfprintf( stderr, message, varArgs ); - va_end( varArgs ); - fputs( ".\n", stderr ); - exit( EXIT_FAILURE ); - -} - -static char *functionName; -static char *roundingPrecisionName, *roundingModeName, *tininessModeName; - -static void reportTime( int32 count, long clocks ) -{ - - printf( - "%8.1f kops/s: %s", - ( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000, - functionName - ); - if ( roundingModeName ) { - if ( roundingPrecisionName ) { - fputs( ", precision ", stdout ); - fputs( roundingPrecisionName, stdout ); - } - fputs( ", rounding ", stdout ); - fputs( roundingModeName, stdout ); - if ( tininessModeName ) { - fputs( ", tininess ", stdout ); - fputs( tininessModeName, stdout ); - fputs( " rounding", stdout ); - } - } - fputc( '\n', stdout ); - -} - -enum { - numInputs_int32 = 32 -}; - -static const int32 inputs_int32[ numInputs_int32 ] = { - 0xFFFFBB79, 0x405CF80F, 0x00000000, 0xFFFFFD04, - 0xFFF20002, 0x0C8EF795, 0xF00011FF, 0x000006CA, - 0x00009BFE, 0xFF4862E3, 0x9FFFEFFE, 0xFFFFFFB7, - 0x0BFF7FFF, 0x0000F37A, 0x0011DFFE, 0x00000006, - 0xFFF02006, 0xFFFFF7D1, 0x10200003, 0xDE8DF765, - 0x00003E02, 0x000019E8, 0x0008FFFE, 0xFFFFFB5C, - 0xFFDF7FFE, 0x07C42FBF, 0x0FFFE3FF, 0x040B9F13, - 0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A -}; - -static void time_a_int32_z_float32( float32 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_int32_z_float64( float64 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_int32_z_floatx80( floatx80 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_int32_z_float128( float128 function( int32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -enum { - numInputs_int64 = 32 -}; - -static const int64 inputs_int64[ numInputs_int64 ] = { - LIT64( 0xFBFFC3FFFFFFFFFF ), - LIT64( 0x0000000003C589BC ), - LIT64( 0x00000000400013FE ), - LIT64( 0x0000000000186171 ), - LIT64( 0xFFFFFFFFFFFEFBFA ), - LIT64( 0xFFFFFD79E6DFFC73 ), - LIT64( 0x0000000010001DFF ), - LIT64( 0xDD1A0F0C78513710 ), - LIT64( 0xFFFF83FFFFFEFFFE ), - LIT64( 0x00756EBD1AD0C1C7 ), - LIT64( 0x0003FDFFFFFFFFBE ), - LIT64( 0x0007D0FB2C2CA951 ), - LIT64( 0x0007FC0007FFFFFE ), - LIT64( 0x0000001F942B18BB ), - LIT64( 0x0000080101FFFFFE ), - LIT64( 0xFFFFFFFFFFFF0978 ), - LIT64( 0x000000000008BFFF ), - LIT64( 0x0000000006F5AF08 ), - LIT64( 0xFFDEFF7FFFFFFFFE ), - LIT64( 0x0000000000000003 ), - LIT64( 0x3FFFFFFFFF80007D ), - LIT64( 0x0000000000000078 ), - LIT64( 0xFFF80000007FDFFD ), - LIT64( 0x1BBC775B78016AB0 ), - LIT64( 0xFFF9001FFFFFFFFE ), - LIT64( 0xFFFD4767AB98E43F ), - LIT64( 0xFFFFFEFFFE00001E ), - LIT64( 0xFFFFFFFFFFF04EFD ), - LIT64( 0x07FFFFFFFFFFF7FF ), - LIT64( 0xFFFC9EAA38F89050 ), - LIT64( 0x00000020FBFFFFFE ), - LIT64( 0x0000099AE6455357 ) -}; - -static void time_a_int64_z_float32( float32 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_int64_z_float64( float64 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_int64_z_floatx80( floatx80 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_int64_z_float128( float128 function( int64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_int64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -enum { - numInputs_float32 = 32 -}; - -static const float32 inputs_float32[ numInputs_float32 ] = { - 0x4EFA0000, 0xC1D0B328, 0x80000000, 0x3E69A31E, - 0xAF803EFF, 0x3F800000, 0x17BF8000, 0xE74A301A, - 0x4E010003, 0x7EE3C75D, 0xBD803FE0, 0xBFFEFF00, - 0x7981F800, 0x431FFFFC, 0xC100C000, 0x3D87EFFF, - 0x4103FEFE, 0xBC000007, 0xBF01F7FF, 0x4E6C6B5C, - 0xC187FFFE, 0xC58B9F13, 0x4F88007F, 0xDF004007, - 0xB7FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000, - 0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE -}; - -static void time_a_float32_z_int32( int32 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float32_z_int64( int64 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float32_z_float64( float64 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_float32_z_floatx80( floatx80 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_float32_z_float128( float128 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_float32( float32 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_float32_z_flag( flag function( float32, float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_float32( float32 function( float32, float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const float32 inputs_float32_pos[ numInputs_float32 ] = { - 0x4EFA0000, 0x41D0B328, 0x00000000, 0x3E69A31E, - 0x2F803EFF, 0x3F800000, 0x17BF8000, 0x674A301A, - 0x4E010003, 0x7EE3C75D, 0x3D803FE0, 0x3FFEFF00, - 0x7981F800, 0x431FFFFC, 0x4100C000, 0x3D87EFFF, - 0x4103FEFE, 0x3C000007, 0x3F01F7FF, 0x4E6C6B5C, - 0x4187FFFE, 0x458B9F13, 0x4F88007F, 0x5F004007, - 0x37FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000, - 0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE -}; - -static void time_az_float32_pos( float32 function( float32 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float32_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float32_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -enum { - numInputs_float64 = 32 -}; - -static const float64 inputs_float64[ numInputs_float64 ] = { - LIT64( 0x422FFFC008000000 ), - LIT64( 0xB7E0000480000000 ), - LIT64( 0xF3FD2546120B7935 ), - LIT64( 0x3FF0000000000000 ), - LIT64( 0xCE07F766F09588D6 ), - LIT64( 0x8000000000000000 ), - LIT64( 0x3FCE000400000000 ), - LIT64( 0x8313B60F0032BED8 ), - LIT64( 0xC1EFFFFFC0002000 ), - LIT64( 0x3FB3C75D224F2B0F ), - LIT64( 0x7FD00000004000FF ), - LIT64( 0xA12FFF8000001FFF ), - LIT64( 0x3EE0000000FE0000 ), - LIT64( 0x0010000080000004 ), - LIT64( 0x41CFFFFE00000020 ), - LIT64( 0x40303FFFFFFFFFFD ), - LIT64( 0x3FD000003FEFFFFF ), - LIT64( 0xBFD0000010000000 ), - LIT64( 0xB7FC6B5C16CA55CF ), - LIT64( 0x413EEB940B9D1301 ), - LIT64( 0xC7E00200001FFFFF ), - LIT64( 0x47F00021FFFFFFFE ), - LIT64( 0xBFFFFFFFF80000FF ), - LIT64( 0xC07FFFFFE00FFFFF ), - LIT64( 0x001497A63740C5E8 ), - LIT64( 0xC4BFFFE0001FFFFF ), - LIT64( 0x96FFDFFEFFFFFFFF ), - LIT64( 0x403FC000000001FE ), - LIT64( 0xFFD00000000001F6 ), - LIT64( 0x0640400002000000 ), - LIT64( 0x479CEE1E4F789FE0 ), - LIT64( 0xC237FFFFFFFFFDFE ) -}; - -static void time_a_float64_z_int32( int32 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float64_z_int64( int64 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float64_z_float32( float32 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_float64_z_floatx80( floatx80 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -static void time_a_float64_z_float128( float128 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_float64( float64 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_float64_z_flag( flag function( float64, float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_float64( float64 function( float64, float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( - inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const float64 inputs_float64_pos[ numInputs_float64 ] = { - LIT64( 0x422FFFC008000000 ), - LIT64( 0x37E0000480000000 ), - LIT64( 0x73FD2546120B7935 ), - LIT64( 0x3FF0000000000000 ), - LIT64( 0x4E07F766F09588D6 ), - LIT64( 0x0000000000000000 ), - LIT64( 0x3FCE000400000000 ), - LIT64( 0x0313B60F0032BED8 ), - LIT64( 0x41EFFFFFC0002000 ), - LIT64( 0x3FB3C75D224F2B0F ), - LIT64( 0x7FD00000004000FF ), - LIT64( 0x212FFF8000001FFF ), - LIT64( 0x3EE0000000FE0000 ), - LIT64( 0x0010000080000004 ), - LIT64( 0x41CFFFFE00000020 ), - LIT64( 0x40303FFFFFFFFFFD ), - LIT64( 0x3FD000003FEFFFFF ), - LIT64( 0x3FD0000010000000 ), - LIT64( 0x37FC6B5C16CA55CF ), - LIT64( 0x413EEB940B9D1301 ), - LIT64( 0x47E00200001FFFFF ), - LIT64( 0x47F00021FFFFFFFE ), - LIT64( 0x3FFFFFFFF80000FF ), - LIT64( 0x407FFFFFE00FFFFF ), - LIT64( 0x001497A63740C5E8 ), - LIT64( 0x44BFFFE0001FFFFF ), - LIT64( 0x16FFDFFEFFFFFFFF ), - LIT64( 0x403FC000000001FE ), - LIT64( 0x7FD00000000001F6 ), - LIT64( 0x0640400002000000 ), - LIT64( 0x479CEE1E4F789FE0 ), - LIT64( 0x4237FFFFFFFFFDFE ) -}; - -static void time_az_float64_pos( float64 function( float64 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - function( inputs_float64_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - function( inputs_float64_pos[ inputNum ] ); - inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -enum { - numInputs_floatx80 = 32 -}; - -static const struct { - bits16 high; - bits64 low; -} inputs_floatx80[ numInputs_floatx80 ] = { - { 0xC03F, LIT64( 0xA9BE15A19C1E8B62 ) }, - { 0x8000, LIT64( 0x0000000000000000 ) }, - { 0x75A8, LIT64( 0xE59591E4788957A5 ) }, - { 0xBFFF, LIT64( 0xFFF0000000000040 ) }, - { 0x0CD8, LIT64( 0xFC000000000007FE ) }, - { 0x43BA, LIT64( 0x99A4000000000000 ) }, - { 0x3FFF, LIT64( 0x8000000000000000 ) }, - { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) }, - { 0x403E, LIT64( 0xFFF0000000002000 ) }, - { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) }, - { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) }, - { 0x737A, LIT64( 0x800000007FFDFFFE ) }, - { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) }, - { 0xBBFE, LIT64( 0x8000040000001FFE ) }, - { 0xC002, LIT64( 0xFF80000000000020 ) }, - { 0xDE8D, LIT64( 0xFFFFFFFFFFE00004 ) }, - { 0xC004, LIT64( 0x8000000000003FFB ) }, - { 0x407F, LIT64( 0x800000000003FFFE ) }, - { 0xC000, LIT64( 0xA459EE6A5C16CA55 ) }, - { 0x8003, LIT64( 0xC42CBF7399AEEB94 ) }, - { 0xBF7F, LIT64( 0xF800000000000006 ) }, - { 0xC07F, LIT64( 0xBF56BE8871F28FEA ) }, - { 0xC07E, LIT64( 0xFFFF77FFFFFFFFFE ) }, - { 0xADC9, LIT64( 0x8000000FFFFFFFDE ) }, - { 0xC001, LIT64( 0xEFF7FFFFFFFFFFFF ) }, - { 0x4001, LIT64( 0xBE84F30125C497A6 ) }, - { 0xC06B, LIT64( 0xEFFFFFFFFFFFFFFF ) }, - { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) }, - { 0x87E9, LIT64( 0x81FFFFFFFFFFFBFF ) }, - { 0xA63F, LIT64( 0x801FFFFFFEFFFFFE ) }, - { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) }, - { 0x4018, LIT64( 0x8000000000080003 ) } -}; - -static void time_a_floatx80_z_int32( int32 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_floatx80_z_int64( int64 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_floatx80_z_float32( float32 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_floatx80_z_float64( float64 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOAT128 - -static void time_a_floatx80_z_float128( float128 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_floatx80( floatx80 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNum ].low; - a.high = inputs_floatx80[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_floatx80_z_flag( flag function( floatx80, floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - floatx80 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_floatx80( floatx80 function( floatx80, floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - floatx80 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80[ inputNumA ].low; - a.high = inputs_floatx80[ inputNumA ].high; - b.low = inputs_floatx80[ inputNumB ].low; - b.high = inputs_floatx80[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const struct { - bits16 high; - bits64 low; -} inputs_floatx80_pos[ numInputs_floatx80 ] = { - { 0x403F, LIT64( 0xA9BE15A19C1E8B62 ) }, - { 0x0000, LIT64( 0x0000000000000000 ) }, - { 0x75A8, LIT64( 0xE59591E4788957A5 ) }, - { 0x3FFF, LIT64( 0xFFF0000000000040 ) }, - { 0x0CD8, LIT64( 0xFC000000000007FE ) }, - { 0x43BA, LIT64( 0x99A4000000000000 ) }, - { 0x3FFF, LIT64( 0x8000000000000000 ) }, - { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) }, - { 0x403E, LIT64( 0xFFF0000000002000 ) }, - { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) }, - { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) }, - { 0x737A, LIT64( 0x800000007FFDFFFE ) }, - { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) }, - { 0x3BFE, LIT64( 0x8000040000001FFE ) }, - { 0x4002, LIT64( 0xFF80000000000020 ) }, - { 0x5E8D, LIT64( 0xFFFFFFFFFFE00004 ) }, - { 0x4004, LIT64( 0x8000000000003FFB ) }, - { 0x407F, LIT64( 0x800000000003FFFE ) }, - { 0x4000, LIT64( 0xA459EE6A5C16CA55 ) }, - { 0x0003, LIT64( 0xC42CBF7399AEEB94 ) }, - { 0x3F7F, LIT64( 0xF800000000000006 ) }, - { 0x407F, LIT64( 0xBF56BE8871F28FEA ) }, - { 0x407E, LIT64( 0xFFFF77FFFFFFFFFE ) }, - { 0x2DC9, LIT64( 0x8000000FFFFFFFDE ) }, - { 0x4001, LIT64( 0xEFF7FFFFFFFFFFFF ) }, - { 0x4001, LIT64( 0xBE84F30125C497A6 ) }, - { 0x406B, LIT64( 0xEFFFFFFFFFFFFFFF ) }, - { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) }, - { 0x07E9, LIT64( 0x81FFFFFFFFFFFBFF ) }, - { 0x263F, LIT64( 0x801FFFFFFEFFFFFE ) }, - { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) }, - { 0x4018, LIT64( 0x8000000000080003 ) } -}; - -static void time_az_floatx80_pos( floatx80 function( floatx80 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - floatx80 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_floatx80_pos[ inputNum ].low; - a.high = inputs_floatx80_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_floatx80_pos[ inputNum ].low; - a.high = inputs_floatx80_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -#ifdef FLOAT128 - -enum { - numInputs_float128 = 32 -}; - -static const struct { - bits64 high, low; -} inputs_float128[ numInputs_float128 ] = { - { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x85F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) }, - { LIT64( 0xF2B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) }, - { LIT64( 0x8000000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0xBFFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) }, - { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) }, - { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) }, - { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) }, - { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) }, - { LIT64( 0xBF7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) }, - { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) }, - { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) }, - { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) }, - { LIT64( 0xBFFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) }, - { LIT64( 0xBDB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) }, - { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) }, - { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) }, - { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) }, - { LIT64( 0x8001000000000000 ), LIT64( 0x0000001000000001 ) }, - { LIT64( 0xC036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) }, - { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) }, - { LIT64( 0xBFFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) }, - { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) }, - { LIT64( 0xB5CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) }, - { LIT64( 0xE228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) }, - { LIT64( 0xC1AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) }, - { LIT64( 0xC96F000000000000 ), LIT64( 0x00000001FFFBFFFF ) }, - { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) }, - { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) } -}; - -static void time_a_float128_z_int32( int32 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float128_z_int64( int64 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float128_z_float32( float32 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_a_float128_z_float64( float64 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#ifdef FLOATX80 - -static void time_a_float128_z_floatx80( floatx80 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -static void time_az_float128( float128 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNum ].low; - a.high = inputs_float128[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_ab_float128_z_flag( flag function( float128, float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - float128 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static void time_abz_float128( float128 function( float128, float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNumA, inputNumB; - float128 a, b; - - count = 0; - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNumA = 0; - inputNumB = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128[ inputNumA ].low; - a.high = inputs_float128[ inputNumA ].high; - b.low = inputs_float128[ inputNumB ].low; - b.high = inputs_float128[ inputNumB ].high; - function( a, b ); - inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); - if ( inputNumA == 0 ) ++inputNumB; - inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -static const struct { - bits64 high, low; -} inputs_float128_pos[ numInputs_float128 ] = { - { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x05F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) }, - { LIT64( 0x72B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) }, - { LIT64( 0x0000000000000000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3FFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) }, - { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) }, - { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) }, - { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) }, - { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) }, - { LIT64( 0x3F7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) }, - { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) }, - { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) }, - { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) }, - { LIT64( 0x3FFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) }, - { LIT64( 0x3DB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) }, - { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) }, - { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) }, - { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) }, - { LIT64( 0x0001000000000000 ), LIT64( 0x0000001000000001 ) }, - { LIT64( 0x4036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) }, - { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) }, - { LIT64( 0x3FFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) }, - { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) }, - { LIT64( 0x35CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) }, - { LIT64( 0x6228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) }, - { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) }, - { LIT64( 0x41AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) }, - { LIT64( 0x496F000000000000 ), LIT64( 0x00000001FFFBFFFF ) }, - { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) }, - { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) } -}; - -static void time_az_float128_pos( float128 function( float128 ) ) -{ - clock_t startClock, endClock; - int32 count, i; - int8 inputNum; - float128 a; - - count = 0; - inputNum = 0; - startClock = clock(); - do { - for ( i = minIterations; i; --i ) { - a.low = inputs_float128_pos[ inputNum ].low; - a.high = inputs_float128_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - count += minIterations; - } while ( clock() - startClock < CLOCKS_PER_SEC ); - inputNum = 0; - startClock = clock(); - for ( i = count; i; --i ) { - a.low = inputs_float128_pos[ inputNum ].low; - a.high = inputs_float128_pos[ inputNum ].high; - function( a ); - inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); - } - endClock = clock(); - reportTime( count, endClock - startClock ); - -} - -#endif - -enum { - INT32_TO_FLOAT32 = 1, - INT32_TO_FLOAT64, -#ifdef FLOATX80 - INT32_TO_FLOATX80, -#endif -#ifdef FLOAT128 - INT32_TO_FLOAT128, -#endif - INT64_TO_FLOAT32, - INT64_TO_FLOAT64, -#ifdef FLOATX80 - INT64_TO_FLOATX80, -#endif -#ifdef FLOAT128 - INT64_TO_FLOAT128, -#endif - FLOAT32_TO_INT32, - FLOAT32_TO_INT32_ROUND_TO_ZERO, - FLOAT32_TO_INT64, - FLOAT32_TO_INT64_ROUND_TO_ZERO, - FLOAT32_TO_FLOAT64, -#ifdef FLOATX80 - FLOAT32_TO_FLOATX80, -#endif -#ifdef FLOAT128 - FLOAT32_TO_FLOAT128, -#endif - FLOAT32_ROUND_TO_INT, - FLOAT32_ADD, - FLOAT32_SUB, - FLOAT32_MUL, - FLOAT32_DIV, - FLOAT32_REM, - FLOAT32_SQRT, - FLOAT32_EQ, - FLOAT32_LE, - FLOAT32_LT, - FLOAT32_EQ_SIGNALING, - FLOAT32_LE_QUIET, - FLOAT32_LT_QUIET, - FLOAT64_TO_INT32, - FLOAT64_TO_INT32_ROUND_TO_ZERO, - FLOAT64_TO_INT64, - FLOAT64_TO_INT64_ROUND_TO_ZERO, - FLOAT64_TO_FLOAT32, -#ifdef FLOATX80 - FLOAT64_TO_FLOATX80, -#endif -#ifdef FLOAT128 - FLOAT64_TO_FLOAT128, -#endif - FLOAT64_ROUND_TO_INT, - FLOAT64_ADD, - FLOAT64_SUB, - FLOAT64_MUL, - FLOAT64_DIV, - FLOAT64_REM, - FLOAT64_SQRT, - FLOAT64_EQ, - FLOAT64_LE, - FLOAT64_LT, - FLOAT64_EQ_SIGNALING, - FLOAT64_LE_QUIET, - FLOAT64_LT_QUIET, -#ifdef FLOATX80 - FLOATX80_TO_INT32, - FLOATX80_TO_INT32_ROUND_TO_ZERO, - FLOATX80_TO_INT64, - FLOATX80_TO_INT64_ROUND_TO_ZERO, - FLOATX80_TO_FLOAT32, - FLOATX80_TO_FLOAT64, -#ifdef FLOAT128 - FLOATX80_TO_FLOAT128, -#endif - FLOATX80_ROUND_TO_INT, - FLOATX80_ADD, - FLOATX80_SUB, - FLOATX80_MUL, - FLOATX80_DIV, - FLOATX80_REM, - FLOATX80_SQRT, - FLOATX80_EQ, - FLOATX80_LE, - FLOATX80_LT, - FLOATX80_EQ_SIGNALING, - FLOATX80_LE_QUIET, - FLOATX80_LT_QUIET, -#endif -#ifdef FLOAT128 - FLOAT128_TO_INT32, - FLOAT128_TO_INT32_ROUND_TO_ZERO, - FLOAT128_TO_INT64, - FLOAT128_TO_INT64_ROUND_TO_ZERO, - FLOAT128_TO_FLOAT32, - FLOAT128_TO_FLOAT64, -#ifdef FLOATX80 - FLOAT128_TO_FLOATX80, -#endif - FLOAT128_ROUND_TO_INT, - FLOAT128_ADD, - FLOAT128_SUB, - FLOAT128_MUL, - FLOAT128_DIV, - FLOAT128_REM, - FLOAT128_SQRT, - FLOAT128_EQ, - FLOAT128_LE, - FLOAT128_LT, - FLOAT128_EQ_SIGNALING, - FLOAT128_LE_QUIET, - FLOAT128_LT_QUIET, -#endif - NUM_FUNCTIONS -}; - -static struct { - char *name; - int8 numInputs; - flag roundingPrecision, roundingMode; - flag tininessMode, tininessModeAtReducedPrecision; -} functions[ NUM_FUNCTIONS ] = { - { 0, 0, 0, 0, 0, 0 }, - { "int32_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, - { "int32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, -#ifdef FLOATX80 - { "int32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "int32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "int64_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, - { "int64_to_float64", 1, FALSE, TRUE, FALSE, FALSE }, -#ifdef FLOATX80 - { "int64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "int64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "float32_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float32_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, -#ifdef FLOATX80 - { "float32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "float32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "float32_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_add", 2, FALSE, TRUE, FALSE, FALSE }, - { "float32_sub", 2, FALSE, TRUE, FALSE, FALSE }, - { "float32_mul", 2, FALSE, TRUE, TRUE, FALSE }, - { "float32_div", 2, FALSE, TRUE, FALSE, FALSE }, - { "float32_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, - { "float32_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float32_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float64_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float64_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, -#ifdef FLOATX80 - { "float64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "float64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "float64_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_add", 2, FALSE, TRUE, FALSE, FALSE }, - { "float64_sub", 2, FALSE, TRUE, FALSE, FALSE }, - { "float64_mul", 2, FALSE, TRUE, TRUE, FALSE }, - { "float64_div", 2, FALSE, TRUE, FALSE, FALSE }, - { "float64_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, - { "float64_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float64_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, -#ifdef FLOATX80 - { "floatx80_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "floatx80_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "floatx80_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, - { "floatx80_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, -#ifdef FLOAT128 - { "floatx80_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, -#endif - { "floatx80_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "floatx80_add", 2, TRUE, TRUE, FALSE, TRUE }, - { "floatx80_sub", 2, TRUE, TRUE, FALSE, TRUE }, - { "floatx80_mul", 2, TRUE, TRUE, TRUE, TRUE }, - { "floatx80_div", 2, TRUE, TRUE, FALSE, TRUE }, - { "floatx80_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_sqrt", 1, TRUE, TRUE, FALSE, FALSE }, - { "floatx80_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "floatx80_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, -#endif -#ifdef FLOAT128 - { "float128_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float128_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, - { "float128_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, - { "float128_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, -#ifdef FLOATX80 - { "float128_to_floatx80", 1, FALSE, TRUE, TRUE, FALSE }, -#endif - { "float128_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_add", 2, FALSE, TRUE, FALSE, FALSE }, - { "float128_sub", 2, FALSE, TRUE, FALSE, FALSE }, - { "float128_mul", 2, FALSE, TRUE, TRUE, FALSE }, - { "float128_div", 2, FALSE, TRUE, FALSE, FALSE }, - { "float128_rem", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, - { "float128_eq", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_le", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_lt", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, - { "float128_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, -#endif -}; - -enum { - ROUND_NEAREST_EVEN = 1, - ROUND_TO_ZERO, - ROUND_DOWN, - ROUND_UP, - NUM_ROUNDINGMODES -}; -enum { - TININESS_BEFORE_ROUNDING = 1, - TININESS_AFTER_ROUNDING, - NUM_TININESSMODES -}; - -static void - timeFunctionVariety( - uint8 functionCode, - int8 roundingPrecision, - int8 roundingMode, - int8 tininessMode - ) -{ - uint8 roundingCode; - int8 tininessCode; - - functionName = functions[ functionCode ].name; - if ( roundingPrecision == 32 ) { - roundingPrecisionName = "32"; - } - else if ( roundingPrecision == 64 ) { - roundingPrecisionName = "64"; - } - else if ( roundingPrecision == 80 ) { - roundingPrecisionName = "80"; - } - else { - roundingPrecisionName = 0; - } -#ifdef FLOATX80 - floatx80_rounding_precision = roundingPrecision; -#endif - switch ( roundingMode ) { - case 0: - roundingModeName = 0; - roundingCode = float_round_nearest_even; - break; - case ROUND_NEAREST_EVEN: - roundingModeName = "nearest_even"; - roundingCode = float_round_nearest_even; - break; - case ROUND_TO_ZERO: - roundingModeName = "to_zero"; - roundingCode = float_round_to_zero; - break; - case ROUND_DOWN: - roundingModeName = "down"; - roundingCode = float_round_down; - break; - case ROUND_UP: - roundingModeName = "up"; - roundingCode = float_round_up; - break; - } - float_rounding_mode = roundingCode; - switch ( tininessMode ) { - case 0: - tininessModeName = 0; - tininessCode = float_tininess_after_rounding; - break; - case TININESS_BEFORE_ROUNDING: - tininessModeName = "before"; - tininessCode = float_tininess_before_rounding; - break; - case TININESS_AFTER_ROUNDING: - tininessModeName = "after"; - tininessCode = float_tininess_after_rounding; - break; - } - float_detect_tininess = tininessCode; - switch ( functionCode ) { - case INT32_TO_FLOAT32: - time_a_int32_z_float32( int32_to_float32 ); - break; - case INT32_TO_FLOAT64: - time_a_int32_z_float64( int32_to_float64 ); - break; -#ifdef FLOATX80 - case INT32_TO_FLOATX80: - time_a_int32_z_floatx80( int32_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case INT32_TO_FLOAT128: - time_a_int32_z_float128( int32_to_float128 ); - break; -#endif - case INT64_TO_FLOAT32: - time_a_int64_z_float32( int64_to_float32 ); - break; - case INT64_TO_FLOAT64: - time_a_int64_z_float64( int64_to_float64 ); - break; -#ifdef FLOATX80 - case INT64_TO_FLOATX80: - time_a_int64_z_floatx80( int64_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case INT64_TO_FLOAT128: - time_a_int64_z_float128( int64_to_float128 ); - break; -#endif - case FLOAT32_TO_INT32: - time_a_float32_z_int32( float32_to_int32 ); - break; - case FLOAT32_TO_INT32_ROUND_TO_ZERO: - time_a_float32_z_int32( float32_to_int32_round_to_zero ); - break; - case FLOAT32_TO_INT64: - time_a_float32_z_int64( float32_to_int64 ); - break; - case FLOAT32_TO_INT64_ROUND_TO_ZERO: - time_a_float32_z_int64( float32_to_int64_round_to_zero ); - break; - case FLOAT32_TO_FLOAT64: - time_a_float32_z_float64( float32_to_float64 ); - break; -#ifdef FLOATX80 - case FLOAT32_TO_FLOATX80: - time_a_float32_z_floatx80( float32_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case FLOAT32_TO_FLOAT128: - time_a_float32_z_float128( float32_to_float128 ); - break; -#endif - case FLOAT32_ROUND_TO_INT: - time_az_float32( float32_round_to_int ); - break; - case FLOAT32_ADD: - time_abz_float32( float32_add ); - break; - case FLOAT32_SUB: - time_abz_float32( float32_sub ); - break; - case FLOAT32_MUL: - time_abz_float32( float32_mul ); - break; - case FLOAT32_DIV: - time_abz_float32( float32_div ); - break; - case FLOAT32_REM: - time_abz_float32( float32_rem ); - break; - case FLOAT32_SQRT: - time_az_float32_pos( float32_sqrt ); - break; - case FLOAT32_EQ: - time_ab_float32_z_flag( float32_eq ); - break; - case FLOAT32_LE: - time_ab_float32_z_flag( float32_le ); - break; - case FLOAT32_LT: - time_ab_float32_z_flag( float32_lt ); - break; - case FLOAT32_EQ_SIGNALING: - time_ab_float32_z_flag( float32_eq_signaling ); - break; - case FLOAT32_LE_QUIET: - time_ab_float32_z_flag( float32_le_quiet ); - break; - case FLOAT32_LT_QUIET: - time_ab_float32_z_flag( float32_lt_quiet ); - break; - case FLOAT64_TO_INT32: - time_a_float64_z_int32( float64_to_int32 ); - break; - case FLOAT64_TO_INT32_ROUND_TO_ZERO: - time_a_float64_z_int32( float64_to_int32_round_to_zero ); - break; - case FLOAT64_TO_INT64: - time_a_float64_z_int64( float64_to_int64 ); - break; - case FLOAT64_TO_INT64_ROUND_TO_ZERO: - time_a_float64_z_int64( float64_to_int64_round_to_zero ); - break; - case FLOAT64_TO_FLOAT32: - time_a_float64_z_float32( float64_to_float32 ); - break; -#ifdef FLOATX80 - case FLOAT64_TO_FLOATX80: - time_a_float64_z_floatx80( float64_to_floatx80 ); - break; -#endif -#ifdef FLOAT128 - case FLOAT64_TO_FLOAT128: - time_a_float64_z_float128( float64_to_float128 ); - break; -#endif - case FLOAT64_ROUND_TO_INT: - time_az_float64( float64_round_to_int ); - break; - case FLOAT64_ADD: - time_abz_float64( float64_add ); - break; - case FLOAT64_SUB: - time_abz_float64( float64_sub ); - break; - case FLOAT64_MUL: - time_abz_float64( float64_mul ); - break; - case FLOAT64_DIV: - time_abz_float64( float64_div ); - break; - case FLOAT64_REM: - time_abz_float64( float64_rem ); - break; - case FLOAT64_SQRT: - time_az_float64_pos( float64_sqrt ); - break; - case FLOAT64_EQ: - time_ab_float64_z_flag( float64_eq ); - break; - case FLOAT64_LE: - time_ab_float64_z_flag( float64_le ); - break; - case FLOAT64_LT: - time_ab_float64_z_flag( float64_lt ); - break; - case FLOAT64_EQ_SIGNALING: - time_ab_float64_z_flag( float64_eq_signaling ); - break; - case FLOAT64_LE_QUIET: - time_ab_float64_z_flag( float64_le_quiet ); - break; - case FLOAT64_LT_QUIET: - time_ab_float64_z_flag( float64_lt_quiet ); - break; -#ifdef FLOATX80 - case FLOATX80_TO_INT32: - time_a_floatx80_z_int32( floatx80_to_int32 ); - break; - case FLOATX80_TO_INT32_ROUND_TO_ZERO: - time_a_floatx80_z_int32( floatx80_to_int32_round_to_zero ); - break; - case FLOATX80_TO_INT64: - time_a_floatx80_z_int64( floatx80_to_int64 ); - break; - case FLOATX80_TO_INT64_ROUND_TO_ZERO: - time_a_floatx80_z_int64( floatx80_to_int64_round_to_zero ); - break; - case FLOATX80_TO_FLOAT32: - time_a_floatx80_z_float32( floatx80_to_float32 ); - break; - case FLOATX80_TO_FLOAT64: - time_a_floatx80_z_float64( floatx80_to_float64 ); - break; -#ifdef FLOAT128 - case FLOATX80_TO_FLOAT128: - time_a_floatx80_z_float128( floatx80_to_float128 ); - break; -#endif - case FLOATX80_ROUND_TO_INT: - time_az_floatx80( floatx80_round_to_int ); - break; - case FLOATX80_ADD: - time_abz_floatx80( floatx80_add ); - break; - case FLOATX80_SUB: - time_abz_floatx80( floatx80_sub ); - break; - case FLOATX80_MUL: - time_abz_floatx80( floatx80_mul ); - break; - case FLOATX80_DIV: - time_abz_floatx80( floatx80_div ); - break; - case FLOATX80_REM: - time_abz_floatx80( floatx80_rem ); - break; - case FLOATX80_SQRT: - time_az_floatx80_pos( floatx80_sqrt ); - break; - case FLOATX80_EQ: - time_ab_floatx80_z_flag( floatx80_eq ); - break; - case FLOATX80_LE: - time_ab_floatx80_z_flag( floatx80_le ); - break; - case FLOATX80_LT: - time_ab_floatx80_z_flag( floatx80_lt ); - break; - case FLOATX80_EQ_SIGNALING: - time_ab_floatx80_z_flag( floatx80_eq_signaling ); - break; - case FLOATX80_LE_QUIET: - time_ab_floatx80_z_flag( floatx80_le_quiet ); - break; - case FLOATX80_LT_QUIET: - time_ab_floatx80_z_flag( floatx80_lt_quiet ); - break; -#endif -#ifdef FLOAT128 - case FLOAT128_TO_INT32: - time_a_float128_z_int32( float128_to_int32 ); - break; - case FLOAT128_TO_INT32_ROUND_TO_ZERO: - time_a_float128_z_int32( float128_to_int32_round_to_zero ); - break; - case FLOAT128_TO_INT64: - time_a_float128_z_int64( float128_to_int64 ); - break; - case FLOAT128_TO_INT64_ROUND_TO_ZERO: - time_a_float128_z_int64( float128_to_int64_round_to_zero ); - break; - case FLOAT128_TO_FLOAT32: - time_a_float128_z_float32( float128_to_float32 ); - break; - case FLOAT128_TO_FLOAT64: - time_a_float128_z_float64( float128_to_float64 ); - break; -#ifdef FLOATX80 - case FLOAT128_TO_FLOATX80: - time_a_float128_z_floatx80( float128_to_floatx80 ); - break; -#endif - case FLOAT128_ROUND_TO_INT: - time_az_float128( float128_round_to_int ); - break; - case FLOAT128_ADD: - time_abz_float128( float128_add ); - break; - case FLOAT128_SUB: - time_abz_float128( float128_sub ); - break; - case FLOAT128_MUL: - time_abz_float128( float128_mul ); - break; - case FLOAT128_DIV: - time_abz_float128( float128_div ); - break; - case FLOAT128_REM: - time_abz_float128( float128_rem ); - break; - case FLOAT128_SQRT: - time_az_float128_pos( float128_sqrt ); - break; - case FLOAT128_EQ: - time_ab_float128_z_flag( float128_eq ); - break; - case FLOAT128_LE: - time_ab_float128_z_flag( float128_le ); - break; - case FLOAT128_LT: - time_ab_float128_z_flag( float128_lt ); - break; - case FLOAT128_EQ_SIGNALING: - time_ab_float128_z_flag( float128_eq_signaling ); - break; - case FLOAT128_LE_QUIET: - time_ab_float128_z_flag( float128_le_quiet ); - break; - case FLOAT128_LT_QUIET: - time_ab_float128_z_flag( float128_lt_quiet ); - break; -#endif - } - -} - -static void - timeFunction( - uint8 functionCode, - int8 roundingPrecisionIn, - int8 roundingModeIn, - int8 tininessModeIn - ) -{ - int8 roundingPrecision, roundingMode, tininessMode; - - roundingPrecision = 32; - for (;;) { - if ( ! functions[ functionCode ].roundingPrecision ) { - roundingPrecision = 0; - } - else if ( roundingPrecisionIn ) { - roundingPrecision = roundingPrecisionIn; - } - for ( roundingMode = 1; - roundingMode < NUM_ROUNDINGMODES; - ++roundingMode - ) { - if ( ! functions[ functionCode ].roundingMode ) { - roundingMode = 0; - } - else if ( roundingModeIn ) { - roundingMode = roundingModeIn; - } - for ( tininessMode = 1; - tininessMode < NUM_TININESSMODES; - ++tininessMode - ) { - if ( ( roundingPrecision == 32 ) - || ( roundingPrecision == 64 ) ) { - if ( ! functions[ functionCode ] - .tininessModeAtReducedPrecision - ) { - tininessMode = 0; - } - else if ( tininessModeIn ) { - tininessMode = tininessModeIn; - } - } - else { - if ( ! functions[ functionCode ].tininessMode ) { - tininessMode = 0; - } - else if ( tininessModeIn ) { - tininessMode = tininessModeIn; - } - } - timeFunctionVariety( - functionCode, roundingPrecision, roundingMode, tininessMode - ); - if ( tininessModeIn || ! tininessMode ) break; - } - if ( roundingModeIn || ! roundingMode ) break; - } - if ( roundingPrecisionIn || ! roundingPrecision ) break; - if ( roundingPrecision == 80 ) { - break; - } - else if ( roundingPrecision == 64 ) { - roundingPrecision = 80; - } - else if ( roundingPrecision == 32 ) { - roundingPrecision = 64; - } - } - -} - -main( int argc, char **argv ) -{ - char *argPtr; - flag functionArgument; - uint8 functionCode; - int8 operands, roundingPrecision, roundingMode, tininessMode; - - if ( argc <= 1 ) goto writeHelpMessage; - functionArgument = FALSE; - functionCode = 0; - operands = 0; - roundingPrecision = 0; - roundingMode = 0; - tininessMode = 0; - --argc; - ++argv; - while ( argc && ( argPtr = argv[ 0 ] ) ) { - if ( argPtr[ 0 ] == '-' ) ++argPtr; - if ( strcmp( argPtr, "help" ) == 0 ) { - writeHelpMessage: - fputs( -"timesoftfloat [<option>...] <function>\n" -" <option>: (* is default)\n" -" -help --Write this message and exit.\n" -#ifdef FLOATX80 -" -precision32 --Only time rounding precision equivalent to float32.\n" -" -precision64 --Only time rounding precision equivalent to float64.\n" -" -precision80 --Only time maximum rounding precision.\n" -#endif -" -nearesteven --Only time rounding to nearest/even.\n" -" -tozero --Only time rounding to zero.\n" -" -down --Only time rounding down.\n" -" -up --Only time rounding up.\n" -" -tininessbefore --Only time underflow tininess before rounding.\n" -" -tininessafter --Only time underflow tininess after rounding.\n" -" <function>:\n" -" int32_to_<float> <float>_add <float>_eq\n" -" <float>_to_int32 <float>_sub <float>_le\n" -" <float>_to_int32_round_to_zero <float>_mul <float>_lt\n" -" int64_to_<float> <float>_div <float>_eq_signaling\n" -" <float>_to_int64 <float>_rem <float>_le_quiet\n" -" <float>_to_int64_round_to_zero <float>_lt_quiet\n" -" <float>_to_<float>\n" -" <float>_round_to_int\n" -" <float>_sqrt\n" -" -all1 --All 1-operand functions.\n" -" -all2 --All 2-operand functions.\n" -" -all --All functions.\n" -" <float>:\n" -" float32 --Single precision.\n" -" float64 --Double precision.\n" -#ifdef FLOATX80 -" floatx80 --Extended double precision.\n" -#endif -#ifdef FLOAT128 -" float128 --Quadruple precision.\n" -#endif - , - stdout - ); - return EXIT_SUCCESS; - } -#ifdef FLOATX80 - else if ( strcmp( argPtr, "precision32" ) == 0 ) { - roundingPrecision = 32; - } - else if ( strcmp( argPtr, "precision64" ) == 0 ) { - roundingPrecision = 64; - } - else if ( strcmp( argPtr, "precision80" ) == 0 ) { - roundingPrecision = 80; - } -#endif - else if ( ( strcmp( argPtr, "nearesteven" ) == 0 ) - || ( strcmp( argPtr, "nearest_even" ) == 0 ) ) { - roundingMode = ROUND_NEAREST_EVEN; - } - else if ( ( strcmp( argPtr, "tozero" ) == 0 ) - || ( strcmp( argPtr, "to_zero" ) == 0 ) ) { - roundingMode = ROUND_TO_ZERO; - } - else if ( strcmp( argPtr, "down" ) == 0 ) { - roundingMode = ROUND_DOWN; - } - else if ( strcmp( argPtr, "up" ) == 0 ) { - roundingMode = ROUND_UP; - } - else if ( strcmp( argPtr, "tininessbefore" ) == 0 ) { - tininessMode = TININESS_BEFORE_ROUNDING; - } - else if ( strcmp( argPtr, "tininessafter" ) == 0 ) { - tininessMode = TININESS_AFTER_ROUNDING; - } - else if ( strcmp( argPtr, "all1" ) == 0 ) { - functionArgument = TRUE; - functionCode = 0; - operands = 1; - } - else if ( strcmp( argPtr, "all2" ) == 0 ) { - functionArgument = TRUE; - functionCode = 0; - operands = 2; - } - else if ( strcmp( argPtr, "all" ) == 0 ) { - functionArgument = TRUE; - functionCode = 0; - operands = 0; - } - else { - for ( functionCode = 1; - functionCode < NUM_FUNCTIONS; - ++functionCode - ) { - if ( strcmp( argPtr, functions[ functionCode ].name ) == 0 ) { - break; - } - } - if ( functionCode == NUM_FUNCTIONS ) { - fail( "Invalid option or function `%s'", argv[ 0 ] ); - } - functionArgument = TRUE; - } - --argc; - ++argv; - } - if ( ! functionArgument ) fail( "Function argument required" ); - if ( functionCode ) { - timeFunction( - functionCode, roundingPrecision, roundingMode, tininessMode ); - } - else if ( operands == 1 ) { - for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode - ) { - if ( functions[ functionCode ].numInputs == 1 ) { - timeFunction( - functionCode, roundingPrecision, roundingMode, tininessMode - ); - } - } - } - else if ( operands == 2 ) { - for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode - ) { - if ( functions[ functionCode ].numInputs == 2 ) { - timeFunction( - functionCode, roundingPrecision, roundingMode, tininessMode - ); - } - } - } - else { - for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode - ) { - timeFunction( - functionCode, roundingPrecision, roundingMode, tininessMode ); - } - } - return EXIT_SUCCESS; - -} - diff --git a/lib/libc/softfloat/timesoftfloat.txt b/lib/libc/softfloat/timesoftfloat.txt deleted file mode 100644 index addc647..0000000 --- a/lib/libc/softfloat/timesoftfloat.txt +++ /dev/null @@ -1,150 +0,0 @@ -$NetBSD: timesoftfloat.txt,v 1.1 2000/06/06 08:15:11 bjh21 Exp $ -$FreeBSD$ - -Documentation for the `timesoftfloat' Program of SoftFloat Release 2a - -John R. Hauser -1998 December 14 - - -------------------------------------------------------------------------------- -Introduction - -The `timesoftfloat' program evaluates the speed of SoftFloat's floating- -point routines. Each routine can be evaluated for every relevant rounding -mode, tininess mode, and/or rounding precision. - - -------------------------------------------------------------------------------- -Contents - - Introduction - Contents - Legal Notice - Executing `timesoftfloat' - Options - -help - -precision32, -precision64, -precision80 - -nearesteven, -tozero, -down, -up - -tininessbefore, -tininessafter - Function Sets - - - -------------------------------------------------------------------------------- -Legal Notice - -The `timesoftfloat' program was written by John R. Hauser. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - - -------------------------------------------------------------------------------- -Executing `timesoftfloat' - -The `timesoftfloat' program is intended to be invoked from a command line -interpreter as follows: - - timesoftfloat [<option>...] <function> - -Here square brackets ([]) indicate optional items, while angled brackets -(<>) denote parameters to be filled in. The `<function>' argument is -the name of the SoftFloat routine to evaluate, such as `float32_add' or -`float64_to_int32'. The allowed options are detailed in the next section, -_Options_. If `timesoftfloat' is executed without any arguments, a summary -of usage is written. It is also possible to evaluate all machine functions -in a single invocation as explained in the section _Function_Sets_ later in -this document. - -Ordinarily, a function's speed will be evaulated separately for each of -the four rounding modes, one after the other. If the rounding mode is not -supposed to have any affect on the results of a function--for instance, -some operations do not require rounding--only the nearest/even rounding mode -is timed. In the same way, if a function is affected by the way in which -underflow tininess is detected, `timesoftfloat' times the function both with -tininess detected before rounding and after rounding. For extended double- -precision operations affected by rounding precision control, `timesoftfloat' -also times the function for all three rounding precision modes, one after -the other. Evaluation of a function can be limited to a single rounding -mode, a single tininess mode, and/or a single rounding precision with -appropriate options (see _Options_). - -For each function and mode evaluated, `timesoftfloat' reports the speed of -the function in kops/s, or ``thousands of operations per second''. This -unit of measure differs from the traditional MFLOPS (``millions of floating- -point operations per second'') only in being a factor of 1000 smaller. -(1000 kops/s is exactly 1 MFLOPS.) Speeds are reported in thousands instead -of millions because software floating-point often executes at less than -1 MFLOPS. - -The speeds reported by `timesoftfloat' may be affected somewhat by other -programs executing at the same time as `timesoftfloat'. - -Note that the remainder operations (`float32_rem', `float64_rem', -`floatx80_rem' and `float128_rem') will be markedly slower than other -operations, particularly for extended double precision (`floatx80') and -quadruple precision (`float128'). This is inherent to the remainder -function itself and is not a failing of the SoftFloat implementation. - - -------------------------------------------------------------------------------- -Options - -The `timesoftfloat' program accepts several command options. If mutually -contradictory options are given, the last one has priority. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --help - -The `-help' option causes a summary of program usage to be written, after -which the program exits. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --precision32, -precision64, -precision80 - -For extended double-precision functions affected by rounding precision -control, the `-precision32' option restricts evaluation to only the cases -in which rounding precision is equivalent to single precision. The other -rounding precision options are not timed. Likewise, the `-precision64' -and `-precision80' options fix the rounding precision equivalent to double -precision or extended double precision, respectively. These options are -ignored for functions not affected by rounding precision control. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --nearesteven, -tozero, -down, -up - -The `-nearesteven' option restricts evaluation to only the cases in which -the rounding mode is nearest/even. The other rounding mode options are not -timed. Likewise, `-tozero' forces rounding to zero; `-down' forces rounding -down; and `-up' forces rounding up. These options are ignored for functions -that are exact and thus do not round. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --tininessbefore, -tininessafter - -The `-tininessbefore' option restricts evaluation to only the cases -detecting underflow tininess before rounding. Tininess after rounding -is not timed. Likewise, `-tininessafter' forces underflow tininess to be -detected after rounding only. These options are ignored for functions not -affected by the way in which underflow tininess is detected. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------------------------------------------------------------------------------- -Function Sets - -Just as `timesoftfloat' can test an operation for all four rounding modes in -sequence, multiple operations can also be tested with a single invocation. -Three sets are recognized: `-all1', `-all2', and `-all'. The set `-all1' -comprises all one-operand functions; `-all2' is all two-operand functions; -and `-all' is all functions. A function set can be used in place of a -function name in the command line, as in - - timesoftfloat [<option>...] -all - - diff --git a/lib/libc/softfloat/unorddf2.c b/lib/libc/softfloat/unorddf2.c deleted file mode 100644 index 2986c82..0000000 --- a/lib/libc/softfloat/unorddf2.c +++ /dev/null @@ -1,26 +0,0 @@ -/* $NetBSD: unorddf2.c,v 1.1 2003/05/06 08:58:19 rearnsha Exp $ */ - -/* - * Written by Richard Earnshaw, 2003. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __unorddf2(float64, float64); - -flag -__unorddf2(float64 a, float64 b) -{ - /* - * The comparison is unordered if either input is a NaN. - * Test for this by comparing each operand with itself. - * We must perform both comparisons to correctly check for - * signalling NaNs. - */ - return 1 ^ (float64_eq(a, a) & float64_eq(b, b)); -} diff --git a/lib/libc/softfloat/unordsf2.c b/lib/libc/softfloat/unordsf2.c deleted file mode 100644 index e2f4c8f..0000000 --- a/lib/libc/softfloat/unordsf2.c +++ /dev/null @@ -1,26 +0,0 @@ -/* $NetBSD: unordsf2.c,v 1.1 2003/05/06 08:58:20 rearnsha Exp $ */ - -/* - * Written by Richard Earnshaw, 2003. This file is in the Public Domain. - */ - -#include "softfloat-for-gcc.h" -#include "milieu.h" -#include "softfloat.h" - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -flag __unordsf2(float32, float32); - -flag -__unordsf2(float32 a, float32 b) -{ - /* - * The comparison is unordered if either input is a NaN. - * Test for this by comparing each operand with itself. - * We must perform both comparisons to correctly check for - * signalling NaNs. - */ - return 1 ^ (float32_eq(a, a) & float32_eq(b, b)); -} |