diff options
Diffstat (limited to 'lib/libc/softfloat/bits32/softfloat.c')
-rw-r--r-- | lib/libc/softfloat/bits32/softfloat.c | 2347 |
1 files changed, 0 insertions, 2347 deletions
diff --git a/lib/libc/softfloat/bits32/softfloat.c b/lib/libc/softfloat/bits32/softfloat.c deleted file mode 100644 index 7785c4e..0000000 --- a/lib/libc/softfloat/bits32/softfloat.c +++ /dev/null @@ -1,2347 +0,0 @@ -/* $NetBSD: softfloat.c,v 1.1 2002/05/21 23:51:07 bjh21 Exp $ */ - -/* - * This version hacked for use with gcc -msoft-float by bjh21. - * (Mostly a case of #ifdefing out things GCC doesn't need or provides - * itself). - */ - -/* - * Things you may want to define: - * - * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with - * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them - * properly renamed. - */ - -/* - * This differs from the standard bits32/softfloat.c in that float64 - * is defined to be a 64-bit integer rather than a structure. The - * structure is float64s, with translation between the two going via - * float64u. - */ - -/* -=============================================================================== - -This C source file is part of the SoftFloat IEC/IEEE Floating-Point -Arithmetic Package, Release 2a. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) they include prominent notice that the work is derivative, and (2) they -include prominent notice akin to these four paragraphs for those parts of -this code that are retained. - -=============================================================================== -*/ - -#include <sys/cdefs.h> -__FBSDID("$FreeBSD$"); - -#ifdef SOFTFLOAT_FOR_GCC -#include "softfloat-for-gcc.h" -#endif - -#include "milieu.h" -#include "softfloat.h" - -/* - * Conversions between floats as stored in memory and floats as - * SoftFloat uses them - */ -#ifndef FLOAT64_DEMANGLE -#define FLOAT64_DEMANGLE(a) (a) -#endif -#ifndef FLOAT64_MANGLE -#define FLOAT64_MANGLE(a) (a) -#endif - -/* -------------------------------------------------------------------------------- -Floating-point rounding mode and exception flags. -------------------------------------------------------------------------------- -*/ -fp_rnd_t float_rounding_mode = float_round_nearest_even; -fp_except float_exception_flags = 0; - -/* -------------------------------------------------------------------------------- -Primitive arithmetic functions, including multi-word arithmetic, and -division and square root approximations. (Can be specialized to target if -desired.) -------------------------------------------------------------------------------- -*/ -#include "softfloat-macros" - -/* -------------------------------------------------------------------------------- -Functions and definitions to determine: (1) whether tininess for underflow -is detected before or after rounding by default, (2) what (if anything) -happens when exceptions are raised, (3) how signaling NaNs are distinguished -from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs -are propagated from function inputs to output. These details are target- -specific. -------------------------------------------------------------------------------- -*/ -#include "softfloat-specialize" - -/* -------------------------------------------------------------------------------- -Returns the fraction bits of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat32Frac( float32 a ) -{ - - return a & 0x007FFFFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int16 extractFloat32Exp( float32 a ) -{ - - return ( a>>23 ) & 0xFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the single-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat32Sign( float32 a ) -{ - - return a>>31; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal single-precision floating-point value represented -by the denormalized significand `aSig'. The normalized exponent and -significand are stored at the locations pointed to by `zExpPtr' and -`zSigPtr', respectively. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( aSig ) - 8; - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', exponent `zExp', and significand `zSig' into a -single-precision floating-point value, returning the result. After being -shifted into the proper positions, the three fields are simply added -together to form the result. This means that any integer portion of `zSig' -will be added into the exponent. Since a properly normalized significand -will have an integer portion equal to 1, the `zExp' input should be 1 less -than the desired result exponent whenever `zSig' is a complete, normalized -significand. -------------------------------------------------------------------------------- -*/ -INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - - return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper single-precision floating- -point value corresponding to the abstract input. Ordinarily, the abstract -value is simply rounded and packed into the single-precision format, with -the inexact exception raised if the abstract input cannot be represented -exactly. However, if the abstract value is too large, the overflow and -inexact exceptions are raised and an infinity or maximal finite value is -returned. If the abstract value is too small, the input value is rounded to -a subnormal number, and the underflow and inexact exceptions are raised if -the abstract input cannot be represented exactly as a subnormal single- -precision floating-point number. - The input significand `zSig' has its binary point between bits 30 -and 29, which is 7 bits to the left of the usual location. This shifted -significand must be normalized or smaller. If `zSig' is not normalized, -`zExp' must be 0; in that case, the result returned is a subnormal number, -and it must not require rounding. In the usual case that `zSig' is -normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. -The handling of underflow and overflow follows the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 roundingMode; - flag roundNearestEven; - int8 roundIncrement, roundBits; - flag isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = roundingMode == float_round_nearest_even; - roundIncrement = 0x40; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x7F; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = zSig & 0x7F; - if ( 0xFD <= (bits16) zExp ) { - if ( ( 0xFD < zExp ) - || ( ( zExp == 0xFD ) - && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ( zSig + roundIncrement < 0x80000000 ); - shift32RightJamming( zSig, - zExp, &zSig ); - zExp = 0; - roundBits = zSig & 0x7F; - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); - } - } - if ( roundBits ) float_exception_flags |= float_flag_inexact; - zSig = ( zSig + roundIncrement )>>7; - zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand `zSig', and returns the proper single-precision floating- -point value corresponding to the abstract input. This routine is just like -`roundAndPackFloat32' except that `zSig' does not have to be normalized. -Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -floating-point exponent. -------------------------------------------------------------------------------- -*/ -static float32 - normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( zSig ) - 1; - return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); - -} - -/* -------------------------------------------------------------------------------- -Returns the least-significant 32 fraction bits of the double-precision -floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat64Frac1( float64 a ) -{ - - return FLOAT64_DEMANGLE(a) & LIT64( 0x00000000FFFFFFFF ); - -} - -/* -------------------------------------------------------------------------------- -Returns the most-significant 20 fraction bits of the double-precision -floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE bits32 extractFloat64Frac0( float64 a ) -{ - - return ( FLOAT64_DEMANGLE(a)>>32 ) & 0x000FFFFF; - -} - -/* -------------------------------------------------------------------------------- -Returns the exponent bits of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE int16 extractFloat64Exp( float64 a ) -{ - - return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF; - -} - -/* -------------------------------------------------------------------------------- -Returns the sign bit of the double-precision floating-point value `a'. -------------------------------------------------------------------------------- -*/ -INLINE flag extractFloat64Sign( float64 a ) -{ - - return FLOAT64_DEMANGLE(a)>>63; - -} - -/* -------------------------------------------------------------------------------- -Normalizes the subnormal double-precision floating-point value represented -by the denormalized significand formed by the concatenation of `aSig0' and -`aSig1'. The normalized exponent is stored at the location pointed to by -`zExpPtr'. The most significant 21 bits of the normalized significand are -stored at the location pointed to by `zSig0Ptr', and the least significant -32 bits of the normalized significand are stored at the location pointed to -by `zSig1Ptr'. -------------------------------------------------------------------------------- -*/ -static void - normalizeFloat64Subnormal( - bits32 aSig0, - bits32 aSig1, - int16 *zExpPtr, - bits32 *zSig0Ptr, - bits32 *zSig1Ptr - ) -{ - int8 shiftCount; - - if ( aSig0 == 0 ) { - shiftCount = countLeadingZeros32( aSig1 ) - 11; - if ( shiftCount < 0 ) { - *zSig0Ptr = aSig1>>( - shiftCount ); - *zSig1Ptr = aSig1<<( shiftCount & 31 ); - } - else { - *zSig0Ptr = aSig1<<shiftCount; - *zSig1Ptr = 0; - } - *zExpPtr = - shiftCount - 31; - } - else { - shiftCount = countLeadingZeros32( aSig0 ) - 11; - shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); - *zExpPtr = 1 - shiftCount; - } - -} - -/* -------------------------------------------------------------------------------- -Packs the sign `zSign', the exponent `zExp', and the significand formed by -the concatenation of `zSig0' and `zSig1' into a double-precision floating- -point value, returning the result. After being shifted into the proper -positions, the three fields `zSign', `zExp', and `zSig0' are simply added -together to form the most significant 32 bits of the result. This means -that any integer portion of `zSig0' will be added into the exponent. Since -a properly normalized significand will have an integer portion equal to 1, -the `zExp' input should be 1 less than the desired result exponent whenever -`zSig0' and `zSig1' concatenated form a complete, normalized significand. -------------------------------------------------------------------------------- -*/ -INLINE float64 - packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) -{ - - return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) + - ( ( (bits64) zExp )<<52 ) + - ( ( (bits64) zSig0 )<<32 ) + zSig1 ); - - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and extended significand formed by the concatenation of `zSig0', `zSig1', -and `zSig2', and returns the proper double-precision floating-point value -corresponding to the abstract input. Ordinarily, the abstract value is -simply rounded and packed into the double-precision format, with the inexact -exception raised if the abstract input cannot be represented exactly. -However, if the abstract value is too large, the overflow and inexact -exceptions are raised and an infinity or maximal finite value is returned. -If the abstract value is too small, the input value is rounded to a -subnormal number, and the underflow and inexact exceptions are raised if the -abstract input cannot be represented exactly as a subnormal double-precision -floating-point number. - The input significand must be normalized or smaller. If the input -significand is not normalized, `zExp' must be 0; in that case, the result -returned is a subnormal number, and it must not require rounding. In the -usual case that the input significand is normalized, `zExp' must be 1 less -than the ``true'' floating-point exponent. The handling of underflow and -overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 - roundAndPackFloat64( - flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 ) -{ - int8 roundingMode; - flag roundNearestEven, increment, isTiny; - - roundingMode = float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - increment = ( (sbits32) zSig2 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig2; - } - else { - increment = ( roundingMode == float_round_up ) && zSig2; - } - } - } - if ( 0x7FD <= (bits16) zExp ) { - if ( ( 0x7FD < zExp ) - || ( ( zExp == 0x7FD ) - && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 ) - && increment - ) - ) { - float_raise( float_flag_overflow | float_flag_inexact ); - if ( ( roundingMode == float_round_to_zero ) - || ( zSign && ( roundingMode == float_round_up ) ) - || ( ! zSign && ( roundingMode == float_round_down ) ) - ) { - return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF ); - } - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( zExp < 0 ) { - isTiny = - ( float_detect_tininess == float_tininess_before_rounding ) - || ( zExp < -1 ) - || ! increment - || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF ); - shift64ExtraRightJamming( - zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); - zExp = 0; - if ( isTiny && zSig2 ) float_raise( float_flag_underflow ); - if ( roundNearestEven ) { - increment = ( (sbits32) zSig2 < 0 ); - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && zSig2; - } - else { - increment = ( roundingMode == float_round_up ) && zSig2; - } - } - } - } - if ( zSig2 ) float_exception_flags |= float_flag_inexact; - if ( increment ) { - add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); - zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); - } - else { - if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; - } - return packFloat64( zSign, zExp, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Takes an abstract floating-point value having sign `zSign', exponent `zExp', -and significand formed by the concatenation of `zSig0' and `zSig1', and -returns the proper double-precision floating-point value corresponding -to the abstract input. This routine is just like `roundAndPackFloat64' -except that the input significand has fewer bits and does not have to be -normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- -point exponent. -------------------------------------------------------------------------------- -*/ -static float64 - normalizeRoundAndPackFloat64( - flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) -{ - int8 shiftCount; - bits32 zSig2; - - if ( zSig0 == 0 ) { - zSig0 = zSig1; - zSig1 = 0; - zExp -= 32; - } - shiftCount = countLeadingZeros32( zSig0 ) - 11; - if ( 0 <= shiftCount ) { - zSig2 = 0; - shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - } - else { - shift64ExtraRightJamming( - zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); - } - zExp -= shiftCount; - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' to -the single-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 int32_to_float32( int32 a ) -{ - flag zSign; - - if ( a == 0 ) return 0; - if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); - zSign = ( a < 0 ); - return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the 32-bit two's complement integer `a' to -the double-precision floating-point format. The conversion is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 int32_to_float64( int32 a ) -{ - flag zSign; - bits32 absA; - int8 shiftCount; - bits32 zSig0, zSig1; - - if ( a == 0 ) return packFloat64( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros32( absA ) - 11; - if ( 0 <= shiftCount ) { - zSig0 = absA<<shiftCount; - zSig1 = 0; - } - else { - shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 ); - } - return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float32_to_int32( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig, aSigExtra; - int32 z; - int8 roundingMode; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0x96; - if ( 0 <= shiftCount ) { - if ( 0x9E <= aExp ) { - if ( a != 0xCF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return 0x7FFFFFFF; - } - } - return (sbits32) 0x80000000; - } - z = ( aSig | 0x00800000 )<<shiftCount; - if ( aSign ) z = - z; - } - else { - if ( aExp < 0x7E ) { - aSigExtra = aExp | aSig; - z = 0; - } - else { - aSig |= 0x00800000; - aSigExtra = aSig<<( shiftCount & 31 ); - z = aSig>>( - shiftCount ); - } - if ( aSigExtra ) float_exception_flags |= float_flag_inexact; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( (sbits32) aSigExtra < 0 ) { - ++z; - if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1; - } - if ( aSign ) z = - z; - } - else { - aSigExtra = ( aSigExtra != 0 ); - if ( aSign ) { - z += ( roundingMode == float_round_down ) & aSigExtra; - z = - z; - } - else { - z += ( roundingMode == float_round_up ) & aSigExtra; - } - } - } - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float32_to_int32_round_to_zero( float32 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - int32 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0x9E; - if ( 0 <= shiftCount ) { - if ( a != 0xCF000000 ) { - float_raise( float_flag_invalid ); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; - } - return (sbits32) 0x80000000; - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; - return 0; - } - aSig = ( aSig | 0x00800000 )<<8; - z = aSig>>( - shiftCount ); - if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { - float_exception_flags |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the single-precision floating-point value -`a' to the double-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float32_to_float64( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig, zSig0, zSig1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); - return packFloat64( aSign, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - shift64Right( aSig, 0, 3, &zSig0, &zSig1 ); - return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Rounds the single-precision floating-point value `a' to an integer, -and returns the result as a single-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_round_to_int( float32 a ) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - float32 z; - - aExp = extractFloat32Exp( a ); - if ( 0x96 <= aExp ) { - if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { - return propagateFloat32NaN( a, a ); - } - return a; - } - if ( aExp <= 0x7E ) { - if ( (bits32) ( a<<1 ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat32Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { - return packFloat32( aSign, 0x7F, 0 ); - } - break; - case float_round_to_zero: - break; - case float_round_down: - return aSign ? 0xBF800000 : 0; - case float_round_up: - return aSign ? 0x80000000 : 0x3F800000; - } - return packFloat32( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x96 - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != a ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the single-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 6; - bSig <<= 6; - if ( 0 < expDiff ) { - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x20000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x20000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); - zSig = 0x40000000 + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= 0x20000000; - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits32) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the single- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 7; - bSig <<= 7; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign ^ 1, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x40000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - bSig |= 0x40000000; - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x40000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - aSig |= 0x40000000; - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the single-precision floating-point values `a' -and `b'. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_add( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return addFloat32Sigs( a, b, aSign ); - } - else { - return subFloat32Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the single-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_sub( float32 a, float32 b ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return subFloat32Sigs( a, b, aSign ); - } - else { - return addFloat32Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the single-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_mul( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig0, zSig1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x7F; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - mul32To64( aSig, bSig, &zSig0, &zSig1 ); - zSig0 |= ( zSig1 != 0 ); - if ( 0 <= (sbits32) ( zSig0<<1 ) ) { - zSig0 <<= 1; - --zExp; - } - return roundAndPackFloat32( zSign, zExp, zSig0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the single-precision floating-point value `a' -by the corresponding value `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_div( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig, rem0, rem1, term0, term1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b ); - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - float_raise( float_flag_invalid ); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return packFloat32( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat32( zSign, 0xFF, 0 ); - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x7D; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = estimateDiv64To32( aSig, 0, bSig ); - if ( ( zSig & 0x3F ) <= 2 ) { - mul32To64( bSig, zSig, &term0, &term1 ); - sub64( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits32) rem0 < 0 ) { - --zSig; - add64( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig |= ( rem1 != 0 ); - } - return roundAndPackFloat32( zSign, zExp, zSig ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the remainder of the single-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_rem( float32 a, float32 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig, bSig, q, allZero, alternateASig; - sbits32 sigMean; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid ); - return float32_default_nan; - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig = ( aSig | 0x00800000 )<<8; - bSig = ( bSig | 0x00800000 )<<8; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - expDiff -= 32; - while ( 0 < expDiff ) { - q = estimateDiv64To32( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - aSig = - ( ( bSig>>2 ) * q ); - expDiff -= 30; - } - expDiff += 32; - if ( 0 < expDiff ) { - q = estimateDiv64To32( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 32 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits32) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits32) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); - -} -#endif - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the square root of the single-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float32_sqrt( float32 a ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig, zSig, rem0, rem1, term0, term1; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, 0 ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid ); - return float32_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return 0; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; - aSig = ( aSig | 0x00800000 )<<8; - zSig = estimateSqrt32( aExp, aSig ) + 2; - if ( ( zSig & 0x7F ) <= 5 ) { - if ( zSig < 2 ) { - zSig = 0x7FFFFFFF; - goto roundAndPack; - } - else { - aSig >>= aExp & 1; - mul32To64( zSig, zSig, &term0, &term1 ); - sub64( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits32) rem0 < 0 ) { - --zSig; - shortShift64Left( 0, zSig, 1, &term0, &term1 ); - term1 |= 1; - add64( rem0, rem1, term0, term1, &rem0, &rem1 ); - } - zSig |= ( ( rem0 | rem1 ) != 0 ); - } - } - shift32RightJamming( zSig, 1, &zSig ); - roundAndPack: - return roundAndPackFloat32( 0, zExp, zSig ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_eq( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_le( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_lt( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_eq_signaling( float32 a, float32 b ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_le_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - int16 aExp, bExp; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the single-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float32_lt_quiet( float32 a, float32 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic---which means in particular that the conversion is rounded -according to the current rounding mode. If `a' is a NaN, the largest -positive integer is returned. Otherwise, if the conversion overflows, the -largest integer with the same sign as `a' is returned. -------------------------------------------------------------------------------- -*/ -int32 float64_to_int32( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig0, aSig1, absZ, aSigExtra; - int32 z; - int8 roundingMode; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - shiftCount = aExp - 0x413; - if ( 0 <= shiftCount ) { - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; - goto invalid; - } - shortShift64Left( - aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); - if ( 0x80000000 < absZ ) goto invalid; - } - else { - aSig1 = ( aSig1 != 0 ); - if ( aExp < 0x3FE ) { - aSigExtra = aExp | aSig0 | aSig1; - absZ = 0; - } - else { - aSig0 |= 0x00100000; - aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; - absZ = aSig0>>( - shiftCount ); - } - } - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( (sbits32) aSigExtra < 0 ) { - ++absZ; - if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1; - } - z = aSign ? - absZ : absZ; - } - else { - aSigExtra = ( aSigExtra != 0 ); - if ( aSign ) { - z = - ( absZ - + ( ( roundingMode == float_round_down ) & aSigExtra ) ); - } - else { - z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra ); - } - } - if ( ( aSign ^ ( z < 0 ) ) && z ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( aSigExtra ) float_exception_flags |= float_flag_inexact; - return z; - -} -#endif /* !SOFTFLOAT_FOR_GCC */ - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the 32-bit two's complement integer format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic, except that the conversion is always rounded toward zero. -If `a' is a NaN, the largest positive integer is returned. Otherwise, if -the conversion overflows, the largest integer with the same sign as `a' is -returned. -------------------------------------------------------------------------------- -*/ -int32 float64_to_int32_round_to_zero( float64 a ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig0, aSig1, absZ, aSigExtra; - int32 z; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - shiftCount = aExp - 0x413; - if ( 0 <= shiftCount ) { - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; - goto invalid; - } - shortShift64Left( - aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); - } - else { - if ( aExp < 0x3FF ) { - if ( aExp | aSig0 | aSig1 ) { - float_exception_flags |= float_flag_inexact; - } - return 0; - } - aSig0 |= 0x00100000; - aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; - absZ = aSig0>>( - shiftCount ); - } - z = aSign ? - absZ : absZ; - if ( ( aSign ^ ( z < 0 ) ) && z ) { - invalid: - float_raise( float_flag_invalid ); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( aSigExtra ) float_exception_flags |= float_flag_inexact; - return z; - -} - -/* -------------------------------------------------------------------------------- -Returns the result of converting the double-precision floating-point value -`a' to the single-precision floating-point format. The conversion is -performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -float32 float64_to_float32( float64 a ) -{ - flag aSign; - int16 aExp; - bits32 aSig0, aSig1, zSig; - bits32 allZero; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat32( float64ToCommonNaN( a ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig ); - if ( aExp ) zSig |= 0x40000000; - return roundAndPackFloat32( aSign, aExp - 0x381, zSig ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Rounds the double-precision floating-point value `a' to an integer, -and returns the result as a double-precision floating-point value. The -operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_round_to_int( float64 a ) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - float64 z; - - aExp = extractFloat64Exp( a ); - if ( 0x413 <= aExp ) { - if ( 0x433 <= aExp ) { - if ( ( aExp == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) { - return propagateFloat64NaN( a, a ); - } - return a; - } - lastBitMask = 1; - lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - if ( lastBitMask ) { - add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else { - if ( (sbits32) z.low < 0 ) { - ++z.high; - if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1; - } - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); - } - } - z.low &= ~ roundBitsMask; - } - else { - if ( aExp <= 0x3FE ) { - if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a; - float_exception_flags |= float_flag_inexact; - aSign = extractFloat64Sign( a ); - switch ( float_rounding_mode ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FE ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) - ) { - return packFloat64( aSign, 0x3FF, 0, 0 ); - } - break; - case float_round_down: - return - aSign ? packFloat64( 1, 0x3FF, 0, 0 ) - : packFloat64( 0, 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloat64( 1, 0, 0, 0 ) - : packFloat64( 0, 0x3FF, 0, 0 ); - } - return packFloat64( aSign, 0, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x413 - aExp; - roundBitsMask = lastBitMask - 1; - z.low = 0; - z.high = a.high; - roundingMode = float_rounding_mode; - if ( roundingMode == float_round_nearest_even ) { - z.high += lastBitMask>>1; - if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { - z.high &= ~ lastBitMask; - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - z.high |= ( a.low != 0 ); - z.high += roundBitsMask; - } - } - z.high &= ~ roundBitsMask; - } - if ( ( z.low != a.low ) || ( z.high != a.high ) ) { - float_exception_flags |= float_flag_inexact; - } - return z; - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns the result of adding the absolute values of the double-precision -floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -before being returned. `zSign' is ignored if the result is a NaN. -The addition is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - int16 expDiff; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= 0x00100000; - } - shift64ExtraRightJamming( - bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= 0x00100000; - } - shift64ExtraRightJamming( - aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat64NaN( a, b ); - } - return a; - } - add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 ); - zSig2 = 0; - zSig0 |= 0x00200000; - zExp = aExp; - goto shiftRight1; - } - aSig0 |= 0x00100000; - add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - --zExp; - if ( zSig0 < 0x00200000 ) goto roundAndPack; - ++zExp; - shiftRight1: - shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - roundAndPack: - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the absolute values of the double- -precision floating-point values `a' and `b'. If `zSign' is 1, the -difference is negated before being returned. `zSign' is ignored if the -result is a NaN. The subtraction is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) -{ - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; - int16 expDiff; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 ); - shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 ); - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat64NaN( a, b ); - } - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig0 < aSig0 ) goto aBigger; - if ( aSig0 < bSig0 ) goto bBigger; - if ( bSig1 < aSig1 ) goto aBigger; - if ( aSig1 < bSig1 ) goto bBigger; - return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign ^ 1, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= 0x40000000; - } - shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - bSig0 |= 0x40000000; - bBigger: - sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= 0x40000000; - } - shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); - aSig0 |= 0x40000000; - aBigger: - sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of adding the double-precision floating-point values `a' -and `b'. The operation is performed according to the IEC/IEEE Standard for -Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_add( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return addFloat64Sigs( a, b, aSign ); - } - else { - return subFloat64Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of subtracting the double-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_sub( float64 a, float64 b ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return subFloat64Sigs( a, b, aSign ); - } - else { - return addFloat64Sigs( a, b, aSign ); - } - -} - -/* -------------------------------------------------------------------------------- -Returns the result of multiplying the double-precision floating-point values -`a' and `b'. The operation is performed according to the IEC/IEEE Standard -for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_mul( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat64NaN( a, b ); - } - if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); - normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - zExp = aExp + bExp - 0x400; - aSig0 |= 0x00100000; - shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 ); - mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); - add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zSig2 |= ( zSig3 != 0 ); - if ( 0x00200000 <= zSig0 ) { - shift64ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - ++zExp; - } - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -/* -------------------------------------------------------------------------------- -Returns the result of dividing the double-precision floating-point value `a' -by the corresponding value `b'. The operation is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_div( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - goto invalid; - } - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return packFloat64( zSign, 0, 0, 0 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - float_raise( float_flag_divbyzero ); - return packFloat64( zSign, 0x7FF, 0, 0 ); - } - normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = aExp - bExp + 0x3FD; - shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 ); - shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); - if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) { - shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); - ++zExp; - } - zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 ); - mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); - sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); - while ( (sbits32) rem0 < 0 ) { - --zSig0; - add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); - } - zSig1 = estimateDiv64To32( rem1, rem2, bSig0 ); - if ( ( zSig1 & 0x3FF ) <= 4 ) { - mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); - sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits32) rem1 < 0 ) { - --zSig1; - add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the remainder of the double-precision floating-point value `a' -with respect to the corresponding value `b'. The operation is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_rem( float64 a, float64 b ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; - bits32 allZero, alternateASig0, alternateASig1, sigMean1; - sbits32 sigMean0; - float64 z; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig1 = extractFloat64Frac1( b ); - bSig0 = extractFloat64Frac0( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - if ( aExp == 0x7FF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat64NaN( a, b ); - } - goto invalid; - } - if ( bExp == 0x7FF ) { - if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); - return a; - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return a; - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - expDiff = aExp - bExp; - if ( expDiff < -1 ) return a; - shortShift64Left( - aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 ); - shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); - q = le64( bSig0, bSig1, aSig0, aSig1 ); - if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - expDiff -= 32; - while ( 0 < expDiff ) { - q = estimateDiv64To32( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); - shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero ); - shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero ); - sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 ); - expDiff -= 29; - } - if ( -32 < expDiff ) { - q = estimateDiv64To32( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - q >>= - expDiff; - shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); - expDiff += 24; - if ( expDiff < 0 ) { - shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - } - else { - shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); - } - mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); - sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); - } - else { - shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 ); - shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); - } - do { - alternateASig0 = aSig0; - alternateASig1 = aSig1; - ++q; - sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - } while ( 0 <= (sbits32) aSig0 ); - add64( - aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); - if ( ( sigMean0 < 0 ) - || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - } - zSign = ( (sbits32) aSig0 < 0 ); - if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); - return - normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); - -} -#endif - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns the square root of the double-precision floating-point value `a'. -The operation is performed according to the IEC/IEEE Standard for Binary -Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -float64 float64_sqrt( float64 a ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; - bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float64 z; - - aSig1 = extractFloat64Frac1( a ); - aSig0 = extractFloat64Frac0( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid ); - return float64_default_nan; - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; - aSig0 |= 0x00100000; - shortShift64Left( aSig0, aSig1, 11, &term0, &term1 ); - zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1; - if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF; - doubleZSig0 = zSig0 + zSig0; - shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 ); - mul32To64( zSig0, zSig0, &term0, &term1 ); - sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits32) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & 0x1FF ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul32To64( doubleZSig0, zSig1, &term1, &term2 ); - sub64( rem1, 0, term1, term2, &rem1, &rem2 ); - mul32To64( zSig1, zSig1, &term2, &term3 ); - sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits32) rem1 < 0 ) { - --zSig1; - shortShift64Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 ); - -} -#endif - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_eq( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - return ( a == b ) || - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -or equal to the corresponding value `b', and 0 otherwise. The comparison -is performed according to the IEC/IEEE Standard for Binary Floating-Point -Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_le( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) - return aSign || - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == - 0 ); - return ( a == b ) || - ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. The comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_lt( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) - return aSign && - ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != - 0 ); - return ( a != b ) && - ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); - -} - -#ifndef SOFTFLOAT_FOR_GCC -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is equal to -the corresponding value `b', and 0 otherwise. The invalid exception is -raised if either operand is a NaN. Otherwise, the comparison is performed -according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_eq_signaling( float64 a, float64 b ) -{ - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid ); - return 0; - } - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than or -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -cause an exception. Otherwise, the comparison is performed according to the -IEC/IEEE Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_le_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); - return ( a == b ) || ( aSign ^ ( a < b ) ); - -} - -/* -------------------------------------------------------------------------------- -Returns 1 if the double-precision floating-point value `a' is less than -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -exception. Otherwise, the comparison is performed according to the IEC/IEEE -Standard for Binary Floating-Point Arithmetic. -------------------------------------------------------------------------------- -*/ -flag float64_lt_quiet( float64 a, float64 b ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) - && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) - && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid ); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); - return ( a != b ) && ( aSign ^ ( a < b ) ); - -} - -#endif |