summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Verifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/Verifier.cpp')
-rw-r--r--lib/VMCore/Verifier.cpp1770
1 files changed, 1770 insertions, 0 deletions
diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp
new file mode 100644
index 0000000..59ec3be
--- /dev/null
+++ b/lib/VMCore/Verifier.cpp
@@ -0,0 +1,1770 @@
+//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the function verifier interface, that can be used for some
+// sanity checking of input to the system.
+//
+// Note that this does not provide full `Java style' security and verifications,
+// instead it just tries to ensure that code is well-formed.
+//
+// * Both of a binary operator's parameters are of the same type
+// * Verify that the indices of mem access instructions match other operands
+// * Verify that arithmetic and other things are only performed on first-class
+// types. Verify that shifts & logicals only happen on integrals f.e.
+// * All of the constants in a switch statement are of the correct type
+// * The code is in valid SSA form
+// * It should be illegal to put a label into any other type (like a structure)
+// or to return one. [except constant arrays!]
+// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
+// * PHI nodes must have an entry for each predecessor, with no extras.
+// * PHI nodes must be the first thing in a basic block, all grouped together
+// * PHI nodes must have at least one entry
+// * All basic blocks should only end with terminator insts, not contain them
+// * The entry node to a function must not have predecessors
+// * All Instructions must be embedded into a basic block
+// * Functions cannot take a void-typed parameter
+// * Verify that a function's argument list agrees with it's declared type.
+// * It is illegal to specify a name for a void value.
+// * It is illegal to have a internal global value with no initializer
+// * It is illegal to have a ret instruction that returns a value that does not
+// agree with the function return value type.
+// * Function call argument types match the function prototype
+// * All other things that are tested by asserts spread about the code...
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/MDNode.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <sstream>
+#include <cstdarg>
+using namespace llvm;
+
+namespace { // Anonymous namespace for class
+ struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
+ static char ID; // Pass ID, replacement for typeid
+
+ PreVerifier() : FunctionPass(&ID) { }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ }
+
+ // Check that the prerequisites for successful DominatorTree construction
+ // are satisfied.
+ bool runOnFunction(Function &F) {
+ bool Broken = false;
+
+ for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ if (I->empty() || !I->back().isTerminator()) {
+ cerr << "Basic Block does not have terminator!\n";
+ WriteAsOperand(*cerr, I, true);
+ cerr << "\n";
+ Broken = true;
+ }
+ }
+
+ if (Broken)
+ abort();
+
+ return false;
+ }
+ };
+}
+
+char PreVerifier::ID = 0;
+static RegisterPass<PreVerifier>
+PreVer("preverify", "Preliminary module verification");
+static const PassInfo *const PreVerifyID = &PreVer;
+
+namespace {
+ struct VISIBILITY_HIDDEN
+ Verifier : public FunctionPass, InstVisitor<Verifier> {
+ static char ID; // Pass ID, replacement for typeid
+ bool Broken; // Is this module found to be broken?
+ bool RealPass; // Are we not being run by a PassManager?
+ VerifierFailureAction action;
+ // What to do if verification fails.
+ Module *Mod; // Module we are verifying right now
+ DominatorTree *DT; // Dominator Tree, caution can be null!
+ std::stringstream msgs; // A stringstream to collect messages
+
+ /// InstInThisBlock - when verifying a basic block, keep track of all of the
+ /// instructions we have seen so far. This allows us to do efficient
+ /// dominance checks for the case when an instruction has an operand that is
+ /// an instruction in the same block.
+ SmallPtrSet<Instruction*, 16> InstsInThisBlock;
+
+ Verifier()
+ : FunctionPass(&ID),
+ Broken(false), RealPass(true), action(AbortProcessAction),
+ DT(0), msgs( std::ios::app | std::ios::out ) {}
+ explicit Verifier(VerifierFailureAction ctn)
+ : FunctionPass(&ID),
+ Broken(false), RealPass(true), action(ctn), DT(0),
+ msgs( std::ios::app | std::ios::out ) {}
+ explicit Verifier(bool AB)
+ : FunctionPass(&ID),
+ Broken(false), RealPass(true),
+ action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
+ msgs( std::ios::app | std::ios::out ) {}
+ explicit Verifier(DominatorTree &dt)
+ : FunctionPass(&ID),
+ Broken(false), RealPass(false), action(PrintMessageAction),
+ DT(&dt), msgs( std::ios::app | std::ios::out ) {}
+
+
+ bool doInitialization(Module &M) {
+ Mod = &M;
+ verifyTypeSymbolTable(M.getTypeSymbolTable());
+
+ // If this is a real pass, in a pass manager, we must abort before
+ // returning back to the pass manager, or else the pass manager may try to
+ // run other passes on the broken module.
+ if (RealPass)
+ return abortIfBroken();
+ return false;
+ }
+
+ bool runOnFunction(Function &F) {
+ // Get dominator information if we are being run by PassManager
+ if (RealPass) DT = &getAnalysis<DominatorTree>();
+
+ Mod = F.getParent();
+
+ visit(F);
+ InstsInThisBlock.clear();
+
+ // If this is a real pass, in a pass manager, we must abort before
+ // returning back to the pass manager, or else the pass manager may try to
+ // run other passes on the broken module.
+ if (RealPass)
+ return abortIfBroken();
+
+ return false;
+ }
+
+ bool doFinalization(Module &M) {
+ // Scan through, checking all of the external function's linkage now...
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ visitGlobalValue(*I);
+
+ // Check to make sure function prototypes are okay.
+ if (I->isDeclaration()) visitFunction(*I);
+ }
+
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ visitGlobalVariable(*I);
+
+ for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
+ I != E; ++I)
+ visitGlobalAlias(*I);
+
+ // If the module is broken, abort at this time.
+ return abortIfBroken();
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequiredID(PreVerifyID);
+ if (RealPass)
+ AU.addRequired<DominatorTree>();
+ }
+
+ /// abortIfBroken - If the module is broken and we are supposed to abort on
+ /// this condition, do so.
+ ///
+ bool abortIfBroken() {
+ if (!Broken) return false;
+ msgs << "Broken module found, ";
+ switch (action) {
+ default: assert(0 && "Unknown action");
+ case AbortProcessAction:
+ msgs << "compilation aborted!\n";
+ cerr << msgs.str();
+ abort();
+ case PrintMessageAction:
+ msgs << "verification continues.\n";
+ cerr << msgs.str();
+ return false;
+ case ReturnStatusAction:
+ msgs << "compilation terminated.\n";
+ return true;
+ }
+ }
+
+
+ // Verification methods...
+ void verifyTypeSymbolTable(TypeSymbolTable &ST);
+ void visitGlobalValue(GlobalValue &GV);
+ void visitGlobalVariable(GlobalVariable &GV);
+ void visitGlobalAlias(GlobalAlias &GA);
+ void visitFunction(Function &F);
+ void visitBasicBlock(BasicBlock &BB);
+ using InstVisitor<Verifier>::visit;
+
+ void visit(Instruction &I);
+
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitBitCastInst(BitCastInst &I);
+ void visitPHINode(PHINode &PN);
+ void visitBinaryOperator(BinaryOperator &B);
+ void visitICmpInst(ICmpInst &IC);
+ void visitFCmpInst(FCmpInst &FC);
+ void visitExtractElementInst(ExtractElementInst &EI);
+ void visitInsertElementInst(InsertElementInst &EI);
+ void visitShuffleVectorInst(ShuffleVectorInst &EI);
+ void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
+ void visitCallInst(CallInst &CI);
+ void visitInvokeInst(InvokeInst &II);
+ void visitGetElementPtrInst(GetElementPtrInst &GEP);
+ void visitLoadInst(LoadInst &LI);
+ void visitStoreInst(StoreInst &SI);
+ void visitInstruction(Instruction &I);
+ void visitTerminatorInst(TerminatorInst &I);
+ void visitReturnInst(ReturnInst &RI);
+ void visitSwitchInst(SwitchInst &SI);
+ void visitSelectInst(SelectInst &SI);
+ void visitUserOp1(Instruction &I);
+ void visitUserOp2(Instruction &I) { visitUserOp1(I); }
+ void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
+ void visitAllocationInst(AllocationInst &AI);
+ void visitExtractValueInst(ExtractValueInst &EVI);
+ void visitInsertValueInst(InsertValueInst &IVI);
+
+ void VerifyCallSite(CallSite CS);
+ bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
+ int VT, unsigned ArgNo, std::string &Suffix);
+ void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
+ unsigned RetNum, unsigned ParamNum, ...);
+ void VerifyAttrs(Attributes Attrs, const Type *Ty,
+ bool isReturnValue, const Value *V);
+ void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
+ const Value *V);
+ bool VerifyMDNode(const MDNode *N);
+
+ void WriteValue(const Value *V) {
+ if (!V) return;
+ if (isa<Instruction>(V)) {
+ msgs << *V;
+ } else {
+ WriteAsOperand(msgs, V, true, Mod);
+ msgs << "\n";
+ }
+ }
+
+ void WriteType(const Type *T) {
+ if (!T) return;
+ raw_os_ostream RO(msgs);
+ RO << ' ';
+ WriteTypeSymbolic(RO, T, Mod);
+ }
+
+
+ // CheckFailed - A check failed, so print out the condition and the message
+ // that failed. This provides a nice place to put a breakpoint if you want
+ // to see why something is not correct.
+ void CheckFailed(const std::string &Message,
+ const Value *V1 = 0, const Value *V2 = 0,
+ const Value *V3 = 0, const Value *V4 = 0) {
+ msgs << Message << "\n";
+ WriteValue(V1);
+ WriteValue(V2);
+ WriteValue(V3);
+ WriteValue(V4);
+ Broken = true;
+ }
+
+ void CheckFailed( const std::string& Message, const Value* V1,
+ const Type* T2, const Value* V3 = 0 ) {
+ msgs << Message << "\n";
+ WriteValue(V1);
+ WriteType(T2);
+ WriteValue(V3);
+ Broken = true;
+ }
+ };
+} // End anonymous namespace
+
+char Verifier::ID = 0;
+static RegisterPass<Verifier> X("verify", "Module Verifier");
+
+// Assert - We know that cond should be true, if not print an error message.
+#define Assert(C, M) \
+ do { if (!(C)) { CheckFailed(M); return; } } while (0)
+#define Assert1(C, M, V1) \
+ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
+#define Assert2(C, M, V1, V2) \
+ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
+#define Assert3(C, M, V1, V2, V3) \
+ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
+#define Assert4(C, M, V1, V2, V3, V4) \
+ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
+
+void Verifier::visit(Instruction &I) {
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Assert1(I.getOperand(i) != 0, "Operand is null", &I);
+ InstVisitor<Verifier>::visit(I);
+}
+
+
+void Verifier::visitGlobalValue(GlobalValue &GV) {
+ Assert1(!GV.isDeclaration() ||
+ GV.hasExternalLinkage() ||
+ GV.hasDLLImportLinkage() ||
+ GV.hasExternalWeakLinkage() ||
+ GV.hasGhostLinkage() ||
+ (isa<GlobalAlias>(GV) &&
+ (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
+ "Global is external, but doesn't have external or dllimport or weak linkage!",
+ &GV);
+
+ Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
+ "Global is marked as dllimport, but not external", &GV);
+
+ Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
+ "Only global variables can have appending linkage!", &GV);
+
+ if (GV.hasAppendingLinkage()) {
+ GlobalVariable &GVar = cast<GlobalVariable>(GV);
+ Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
+ "Only global arrays can have appending linkage!", &GV);
+ }
+}
+
+void Verifier::visitGlobalVariable(GlobalVariable &GV) {
+ if (GV.hasInitializer()) {
+ Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
+ "Global variable initializer type does not match global "
+ "variable type!", &GV);
+
+ // Verify that any metadata used in a global initializer points only to
+ // other globals.
+ if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) {
+ if (VerifyMDNode(FirstNode)) {
+ SmallVector<const MDNode *, 4> NodesToAnalyze;
+ NodesToAnalyze.push_back(FirstNode);
+ while (!NodesToAnalyze.empty()) {
+ const MDNode *N = NodesToAnalyze.back();
+ NodesToAnalyze.pop_back();
+
+ for (MDNode::const_elem_iterator I = N->elem_begin(),
+ E = N->elem_end(); I != E; ++I)
+ if (const Value *V = *I) {
+ if (const MDNode *Next = dyn_cast<MDNode>(V))
+ NodesToAnalyze.push_back(Next);
+ else
+ Assert3(isa<Constant>(V),
+ "reference to instruction from global metadata node",
+ &GV, N, V);
+ }
+ }
+ }
+ }
+ } else {
+ Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
+ GV.hasExternalWeakLinkage(),
+ "invalid linkage type for global declaration", &GV);
+ }
+
+ visitGlobalValue(GV);
+}
+
+void Verifier::visitGlobalAlias(GlobalAlias &GA) {
+ Assert1(!GA.getName().empty(),
+ "Alias name cannot be empty!", &GA);
+ Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
+ GA.hasWeakLinkage(),
+ "Alias should have external or external weak linkage!", &GA);
+ Assert1(GA.getAliasee(),
+ "Aliasee cannot be NULL!", &GA);
+ Assert1(GA.getType() == GA.getAliasee()->getType(),
+ "Alias and aliasee types should match!", &GA);
+
+ if (!isa<GlobalValue>(GA.getAliasee())) {
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
+ Assert1(CE &&
+ (CE->getOpcode() == Instruction::BitCast ||
+ CE->getOpcode() == Instruction::GetElementPtr) &&
+ isa<GlobalValue>(CE->getOperand(0)),
+ "Aliasee should be either GlobalValue or bitcast of GlobalValue",
+ &GA);
+ }
+
+ const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
+ Assert1(Aliasee,
+ "Aliasing chain should end with function or global variable", &GA);
+
+ visitGlobalValue(GA);
+}
+
+void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
+}
+
+// VerifyAttrs - Check the given parameter attributes for an argument or return
+// value of the specified type. The value V is printed in error messages.
+void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty,
+ bool isReturnValue, const Value *V) {
+ if (Attrs == Attribute::None)
+ return;
+
+ if (isReturnValue) {
+ Attributes RetI = Attrs & Attribute::ParameterOnly;
+ Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
+ " does not apply to return values!", V);
+ }
+ Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
+ Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
+ " only applies to functions!", V);
+
+ for (unsigned i = 0;
+ i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
+ Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
+ Assert1(!(MutI & (MutI - 1)), "Attributes " +
+ Attribute::getAsString(MutI) + " are incompatible!", V);
+ }
+
+ Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
+ Assert1(!TypeI, "Wrong type for attribute " +
+ Attribute::getAsString(TypeI), V);
+
+ Attributes ByValI = Attrs & Attribute::ByVal;
+ if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+ Assert1(!ByValI || PTy->getElementType()->isSized(),
+ "Attribute " + Attribute::getAsString(ByValI) +
+ " does not support unsized types!", V);
+ } else {
+ Assert1(!ByValI,
+ "Attribute " + Attribute::getAsString(ByValI) +
+ " only applies to parameters with pointer type!", V);
+ }
+}
+
+// VerifyFunctionAttrs - Check parameter attributes against a function type.
+// The value V is printed in error messages.
+void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
+ const AttrListPtr &Attrs,
+ const Value *V) {
+ if (Attrs.isEmpty())
+ return;
+
+ bool SawNest = false;
+
+ for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
+ const AttributeWithIndex &Attr = Attrs.getSlot(i);
+
+ const Type *Ty;
+ if (Attr.Index == 0)
+ Ty = FT->getReturnType();
+ else if (Attr.Index-1 < FT->getNumParams())
+ Ty = FT->getParamType(Attr.Index-1);
+ else
+ break; // VarArgs attributes, don't verify.
+
+ VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
+
+ if (Attr.Attrs & Attribute::Nest) {
+ Assert1(!SawNest, "More than one parameter has attribute nest!", V);
+ SawNest = true;
+ }
+
+ if (Attr.Attrs & Attribute::StructRet)
+ Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
+ }
+
+ Attributes FAttrs = Attrs.getFnAttributes();
+ Assert1(!(FAttrs & (~Attribute::FunctionOnly)),
+ "Attribute " + Attribute::getAsString(FAttrs) +
+ " does not apply to function!", V);
+
+ for (unsigned i = 0;
+ i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
+ Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
+ Assert1(!(MutI & (MutI - 1)), "Attributes " +
+ Attribute::getAsString(MutI) + " are incompatible!", V);
+ }
+}
+
+static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
+ if (Attrs.isEmpty())
+ return true;
+
+ unsigned LastSlot = Attrs.getNumSlots() - 1;
+ unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
+ if (LastIndex <= Params
+ || (LastIndex == (unsigned)~0
+ && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
+ return true;
+
+ return false;
+}
+// visitFunction - Verify that a function is ok.
+//
+void Verifier::visitFunction(Function &F) {
+ // Check function arguments.
+ const FunctionType *FT = F.getFunctionType();
+ unsigned NumArgs = F.arg_size();
+
+ Assert2(FT->getNumParams() == NumArgs,
+ "# formal arguments must match # of arguments for function type!",
+ &F, FT);
+ Assert1(F.getReturnType()->isFirstClassType() ||
+ F.getReturnType() == Type::VoidTy ||
+ isa<StructType>(F.getReturnType()),
+ "Functions cannot return aggregate values!", &F);
+
+ Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
+ "Invalid struct return type!", &F);
+
+ const AttrListPtr &Attrs = F.getAttributes();
+
+ Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
+ "Attributes after last parameter!", &F);
+
+ // Check function attributes.
+ VerifyFunctionAttrs(FT, Attrs, &F);
+
+ // Check that this function meets the restrictions on this calling convention.
+ switch (F.getCallingConv()) {
+ default:
+ break;
+ case CallingConv::C:
+ break;
+ case CallingConv::Fast:
+ case CallingConv::Cold:
+ case CallingConv::X86_FastCall:
+ Assert1(!F.isVarArg(),
+ "Varargs functions must have C calling conventions!", &F);
+ break;
+ }
+
+ bool isLLVMdotName = F.getName().size() >= 5 &&
+ F.getName().substr(0, 5) == "llvm.";
+ if (!isLLVMdotName)
+ Assert1(F.getReturnType() != Type::MetadataTy,
+ "Function may not return metadata unless it's an intrinsic", &F);
+
+ // Check that the argument values match the function type for this function...
+ unsigned i = 0;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I, ++i) {
+ Assert2(I->getType() == FT->getParamType(i),
+ "Argument value does not match function argument type!",
+ I, FT->getParamType(i));
+ Assert1(I->getType()->isFirstClassType(),
+ "Function arguments must have first-class types!", I);
+ if (!isLLVMdotName)
+ Assert2(I->getType() != Type::MetadataTy,
+ "Function takes metadata but isn't an intrinsic", I, &F);
+ }
+
+ if (F.isDeclaration()) {
+ Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
+ F.hasExternalWeakLinkage() || F.hasGhostLinkage(),
+ "invalid linkage type for function declaration", &F);
+ } else {
+ // Verify that this function (which has a body) is not named "llvm.*". It
+ // is not legal to define intrinsics.
+ Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
+
+ // Check the entry node
+ BasicBlock *Entry = &F.getEntryBlock();
+ Assert1(pred_begin(Entry) == pred_end(Entry),
+ "Entry block to function must not have predecessors!", Entry);
+ }
+}
+
+
+// verifyBasicBlock - Verify that a basic block is well formed...
+//
+void Verifier::visitBasicBlock(BasicBlock &BB) {
+ InstsInThisBlock.clear();
+
+ // Ensure that basic blocks have terminators!
+ Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
+
+ // Check constraints that this basic block imposes on all of the PHI nodes in
+ // it.
+ if (isa<PHINode>(BB.front())) {
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
+ std::sort(Preds.begin(), Preds.end());
+ PHINode *PN;
+ for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
+
+ // Ensure that PHI nodes have at least one entry!
+ Assert1(PN->getNumIncomingValues() != 0,
+ "PHI nodes must have at least one entry. If the block is dead, "
+ "the PHI should be removed!", PN);
+ Assert1(PN->getNumIncomingValues() == Preds.size(),
+ "PHINode should have one entry for each predecessor of its "
+ "parent basic block!", PN);
+
+ // Get and sort all incoming values in the PHI node...
+ Values.clear();
+ Values.reserve(PN->getNumIncomingValues());
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ Values.push_back(std::make_pair(PN->getIncomingBlock(i),
+ PN->getIncomingValue(i)));
+ std::sort(Values.begin(), Values.end());
+
+ for (unsigned i = 0, e = Values.size(); i != e; ++i) {
+ // Check to make sure that if there is more than one entry for a
+ // particular basic block in this PHI node, that the incoming values are
+ // all identical.
+ //
+ Assert4(i == 0 || Values[i].first != Values[i-1].first ||
+ Values[i].second == Values[i-1].second,
+ "PHI node has multiple entries for the same basic block with "
+ "different incoming values!", PN, Values[i].first,
+ Values[i].second, Values[i-1].second);
+
+ // Check to make sure that the predecessors and PHI node entries are
+ // matched up.
+ Assert3(Values[i].first == Preds[i],
+ "PHI node entries do not match predecessors!", PN,
+ Values[i].first, Preds[i]);
+ }
+ }
+ }
+}
+
+void Verifier::visitTerminatorInst(TerminatorInst &I) {
+ // Ensure that terminators only exist at the end of the basic block.
+ Assert1(&I == I.getParent()->getTerminator(),
+ "Terminator found in the middle of a basic block!", I.getParent());
+ visitInstruction(I);
+}
+
+void Verifier::visitReturnInst(ReturnInst &RI) {
+ Function *F = RI.getParent()->getParent();
+ unsigned N = RI.getNumOperands();
+ if (F->getReturnType() == Type::VoidTy)
+ Assert2(N == 0,
+ "Found return instr that returns non-void in Function of void "
+ "return type!", &RI, F->getReturnType());
+ else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
+ // Exactly one return value and it matches the return type. Good.
+ } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
+ // The return type is a struct; check for multiple return values.
+ Assert2(STy->getNumElements() == N,
+ "Incorrect number of return values in ret instruction!",
+ &RI, F->getReturnType());
+ for (unsigned i = 0; i != N; ++i)
+ Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
+ "Function return type does not match operand "
+ "type of return inst!", &RI, F->getReturnType());
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
+ // The return type is an array; check for multiple return values.
+ Assert2(ATy->getNumElements() == N,
+ "Incorrect number of return values in ret instruction!",
+ &RI, F->getReturnType());
+ for (unsigned i = 0; i != N; ++i)
+ Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
+ "Function return type does not match operand "
+ "type of return inst!", &RI, F->getReturnType());
+ } else {
+ CheckFailed("Function return type does not match operand "
+ "type of return inst!", &RI, F->getReturnType());
+ }
+
+ // Check to make sure that the return value has necessary properties for
+ // terminators...
+ visitTerminatorInst(RI);
+}
+
+void Verifier::visitSwitchInst(SwitchInst &SI) {
+ // Check to make sure that all of the constants in the switch instruction
+ // have the same type as the switched-on value.
+ const Type *SwitchTy = SI.getCondition()->getType();
+ for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
+ Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
+ "Switch constants must all be same type as switch value!", &SI);
+
+ visitTerminatorInst(SI);
+}
+
+void Verifier::visitSelectInst(SelectInst &SI) {
+ Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
+ SI.getOperand(2)),
+ "Invalid operands for select instruction!", &SI);
+
+ Assert1(SI.getTrueValue()->getType() == SI.getType(),
+ "Select values must have same type as select instruction!", &SI);
+ visitInstruction(SI);
+}
+
+
+/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
+/// a pass, if any exist, it's an error.
+///
+void Verifier::visitUserOp1(Instruction &I) {
+ Assert1(0, "User-defined operators should not live outside of a pass!", &I);
+}
+
+void Verifier::visitTruncInst(TruncInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I);
+ Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I);
+ Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
+ "trunc source and destination must both be a vector or neither", &I);
+ Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitZExtInst(ZExtInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I);
+ Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I);
+ Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
+ "zext source and destination must both be a vector or neither", &I);
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSExtInst(SExtInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I);
+ Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I);
+ Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
+ "sext source and destination must both be a vector or neither", &I);
+ Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPTruncInst(FPTruncInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I);
+ Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I);
+ Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
+ "fptrunc source and destination must both be a vector or neither",&I);
+ Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPExtInst(FPExtInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I);
+ Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I);
+ Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
+ "fpext source and destination must both be a vector or neither", &I);
+ Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitUIToFPInst(UIToFPInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ bool SrcVec = isa<VectorType>(SrcTy);
+ bool DstVec = isa<VectorType>(DestTy);
+
+ Assert1(SrcVec == DstVec,
+ "UIToFP source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isIntOrIntVector(),
+ "UIToFP source must be integer or integer vector", &I);
+ Assert1(DestTy->isFPOrFPVector(),
+ "UIToFP result must be FP or FP vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "UIToFP source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSIToFPInst(SIToFPInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
+ bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
+
+ Assert1(SrcVec == DstVec,
+ "SIToFP source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isIntOrIntVector(),
+ "SIToFP source must be integer or integer vector", &I);
+ Assert1(DestTy->isFPOrFPVector(),
+ "SIToFP result must be FP or FP vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "SIToFP source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToUIInst(FPToUIInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ bool SrcVec = isa<VectorType>(SrcTy);
+ bool DstVec = isa<VectorType>(DestTy);
+
+ Assert1(SrcVec == DstVec,
+ "FPToUI source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
+ Assert1(DestTy->isIntOrIntVector(),
+ "FPToUI result must be integer or integer vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToUI source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToSIInst(FPToSIInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ bool SrcVec = isa<VectorType>(SrcTy);
+ bool DstVec = isa<VectorType>(DestTy);
+
+ Assert1(SrcVec == DstVec,
+ "FPToSI source and dest must both be vector or scalar", &I);
+ Assert1(SrcTy->isFPOrFPVector(),
+ "FPToSI source must be FP or FP vector", &I);
+ Assert1(DestTy->isIntOrIntVector(),
+ "FPToSI result must be integer or integer vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToSI source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
+ Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
+ Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitBitCastInst(BitCastInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ // BitCast implies a no-op cast of type only. No bits change.
+ // However, you can't cast pointers to anything but pointers.
+ Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
+ "Bitcast requires both operands to be pointer or neither", &I);
+ Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
+
+ // Disallow aggregates.
+ Assert1(!SrcTy->isAggregateType(),
+ "Bitcast operand must not be aggregate", &I);
+ Assert1(!DestTy->isAggregateType(),
+ "Bitcast type must not be aggregate", &I);
+
+ visitInstruction(I);
+}
+
+/// visitPHINode - Ensure that a PHI node is well formed.
+///
+void Verifier::visitPHINode(PHINode &PN) {
+ // Ensure that the PHI nodes are all grouped together at the top of the block.
+ // This can be tested by checking whether the instruction before this is
+ // either nonexistent (because this is begin()) or is a PHI node. If not,
+ // then there is some other instruction before a PHI.
+ Assert2(&PN == &PN.getParent()->front() ||
+ isa<PHINode>(--BasicBlock::iterator(&PN)),
+ "PHI nodes not grouped at top of basic block!",
+ &PN, PN.getParent());
+
+ // Check that all of the operands of the PHI node have the same type as the
+ // result.
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
+ "PHI node operands are not the same type as the result!", &PN);
+
+ // All other PHI node constraints are checked in the visitBasicBlock method.
+
+ visitInstruction(PN);
+}
+
+void Verifier::VerifyCallSite(CallSite CS) {
+ Instruction *I = CS.getInstruction();
+
+ Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
+ "Called function must be a pointer!", I);
+ const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
+ Assert1(isa<FunctionType>(FPTy->getElementType()),
+ "Called function is not pointer to function type!", I);
+
+ const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
+
+ // Verify that the correct number of arguments are being passed
+ if (FTy->isVarArg())
+ Assert1(CS.arg_size() >= FTy->getNumParams(),
+ "Called function requires more parameters than were provided!",I);
+ else
+ Assert1(CS.arg_size() == FTy->getNumParams(),
+ "Incorrect number of arguments passed to called function!", I);
+
+ // Verify that all arguments to the call match the function type...
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
+ "Call parameter type does not match function signature!",
+ CS.getArgument(i), FTy->getParamType(i), I);
+
+ const AttrListPtr &Attrs = CS.getAttributes();
+
+ Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
+ "Attributes after last parameter!", I);
+
+ // Verify call attributes.
+ VerifyFunctionAttrs(FTy, Attrs, I);
+
+ if (FTy->isVarArg())
+ // Check attributes on the varargs part.
+ for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
+ Attributes Attr = Attrs.getParamAttributes(Idx);
+
+ VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
+
+ Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
+ Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
+ " cannot be used for vararg call arguments!", I);
+ }
+
+ // Verify that there's no metadata unless it's a direct call to an intrinsic.
+ if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 ||
+ CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") {
+ Assert1(FTy->getReturnType() != Type::MetadataTy,
+ "Only intrinsics may return metadata", I);
+ for (FunctionType::param_iterator PI = FTy->param_begin(),
+ PE = FTy->param_end(); PI != PE; ++PI)
+ Assert1(PI->get() != Type::MetadataTy, "Function has metadata parameter "
+ "but isn't an intrinsic", I);
+ }
+
+ visitInstruction(*I);
+}
+
+void Verifier::visitCallInst(CallInst &CI) {
+ VerifyCallSite(&CI);
+
+ if (Function *F = CI.getCalledFunction())
+ if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
+ visitIntrinsicFunctionCall(ID, CI);
+}
+
+void Verifier::visitInvokeInst(InvokeInst &II) {
+ VerifyCallSite(&II);
+}
+
+/// visitBinaryOperator - Check that both arguments to the binary operator are
+/// of the same type!
+///
+void Verifier::visitBinaryOperator(BinaryOperator &B) {
+ Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
+ "Both operands to a binary operator are not of the same type!", &B);
+
+ switch (B.getOpcode()) {
+ // Check that logical operators are only used with integral operands.
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ Assert1(B.getType()->isInteger() ||
+ (isa<VectorType>(B.getType()) &&
+ cast<VectorType>(B.getType())->getElementType()->isInteger()),
+ "Logical operators only work with integral types!", &B);
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Logical operators must have same type for operands and result!",
+ &B);
+ break;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ Assert1(B.getType()->isInteger() ||
+ (isa<VectorType>(B.getType()) &&
+ cast<VectorType>(B.getType())->getElementType()->isInteger()),
+ "Shifts only work with integral types!", &B);
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Shift return type must be same as operands!", &B);
+ /* FALL THROUGH */
+ default:
+ // Arithmetic operators only work on integer or fp values
+ Assert1(B.getType() == B.getOperand(0)->getType(),
+ "Arithmetic operators must have same type for operands and result!",
+ &B);
+ Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
+ isa<VectorType>(B.getType()),
+ "Arithmetic operators must have integer, fp, or vector type!", &B);
+ break;
+ }
+
+ visitInstruction(B);
+}
+
+void Verifier::visitICmpInst(ICmpInst& IC) {
+ // Check that the operands are the same type
+ const Type* Op0Ty = IC.getOperand(0)->getType();
+ const Type* Op1Ty = IC.getOperand(1)->getType();
+ Assert1(Op0Ty == Op1Ty,
+ "Both operands to ICmp instruction are not of the same type!", &IC);
+ // Check that the operands are the right type
+ Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty),
+ "Invalid operand types for ICmp instruction", &IC);
+
+ visitInstruction(IC);
+}
+
+void Verifier::visitFCmpInst(FCmpInst& FC) {
+ // Check that the operands are the same type
+ const Type* Op0Ty = FC.getOperand(0)->getType();
+ const Type* Op1Ty = FC.getOperand(1)->getType();
+ Assert1(Op0Ty == Op1Ty,
+ "Both operands to FCmp instruction are not of the same type!", &FC);
+ // Check that the operands are the right type
+ Assert1(Op0Ty->isFPOrFPVector(),
+ "Invalid operand types for FCmp instruction", &FC);
+ visitInstruction(FC);
+}
+
+void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
+ Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
+ EI.getOperand(1)),
+ "Invalid extractelement operands!", &EI);
+ visitInstruction(EI);
+}
+
+void Verifier::visitInsertElementInst(InsertElementInst &IE) {
+ Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
+ IE.getOperand(1),
+ IE.getOperand(2)),
+ "Invalid insertelement operands!", &IE);
+ visitInstruction(IE);
+}
+
+void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
+ Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
+ SV.getOperand(2)),
+ "Invalid shufflevector operands!", &SV);
+
+ const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType());
+ Assert1(VTy, "Operands are not a vector type", &SV);
+
+ // Check to see if Mask is valid.
+ if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
+ for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
+ if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
+ Assert1(!CI->uge(VTy->getNumElements()*2),
+ "Invalid shufflevector shuffle mask!", &SV);
+ } else {
+ Assert1(isa<UndefValue>(MV->getOperand(i)),
+ "Invalid shufflevector shuffle mask!", &SV);
+ }
+ }
+ } else {
+ Assert1(isa<UndefValue>(SV.getOperand(2)) ||
+ isa<ConstantAggregateZero>(SV.getOperand(2)),
+ "Invalid shufflevector shuffle mask!", &SV);
+ }
+
+ visitInstruction(SV);
+}
+
+void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
+ const Type *ElTy =
+ GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
+ Idxs.begin(), Idxs.end());
+ Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
+ Assert2(isa<PointerType>(GEP.getType()) &&
+ cast<PointerType>(GEP.getType())->getElementType() == ElTy,
+ "GEP is not of right type for indices!", &GEP, ElTy);
+ visitInstruction(GEP);
+}
+
+void Verifier::visitLoadInst(LoadInst &LI) {
+ const Type *ElTy =
+ cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
+ Assert2(ElTy == LI.getType(),
+ "Load result type does not match pointer operand type!", &LI, ElTy);
+ Assert1(ElTy != Type::MetadataTy, "Can't load metadata!", &LI);
+ visitInstruction(LI);
+}
+
+void Verifier::visitStoreInst(StoreInst &SI) {
+ const Type *ElTy =
+ cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
+ Assert2(ElTy == SI.getOperand(0)->getType(),
+ "Stored value type does not match pointer operand type!", &SI, ElTy);
+ Assert1(ElTy != Type::MetadataTy, "Can't store metadata!", &SI);
+ visitInstruction(SI);
+}
+
+void Verifier::visitAllocationInst(AllocationInst &AI) {
+ const PointerType *PTy = AI.getType();
+ Assert1(PTy->getAddressSpace() == 0,
+ "Allocation instruction pointer not in the generic address space!",
+ &AI);
+ Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
+ &AI);
+ visitInstruction(AI);
+}
+
+void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
+ Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
+ EVI.idx_begin(), EVI.idx_end()) ==
+ EVI.getType(),
+ "Invalid ExtractValueInst operands!", &EVI);
+
+ visitInstruction(EVI);
+}
+
+void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
+ Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
+ IVI.idx_begin(), IVI.idx_end()) ==
+ IVI.getOperand(1)->getType(),
+ "Invalid InsertValueInst operands!", &IVI);
+
+ visitInstruction(IVI);
+}
+
+/// verifyInstruction - Verify that an instruction is well formed.
+///
+void Verifier::visitInstruction(Instruction &I) {
+ BasicBlock *BB = I.getParent();
+ Assert1(BB, "Instruction not embedded in basic block!", &I);
+
+ if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
+ UI != UE; ++UI)
+ Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
+ "Only PHI nodes may reference their own value!", &I);
+ }
+
+ // Verify that if this is a terminator that it is at the end of the block.
+ if (isa<TerminatorInst>(I))
+ Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
+
+
+ // Check that void typed values don't have names
+ Assert1(I.getType() != Type::VoidTy || !I.hasName(),
+ "Instruction has a name, but provides a void value!", &I);
+
+ // Check that the return value of the instruction is either void or a legal
+ // value type.
+ Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
+ || ((isa<CallInst>(I) || isa<InvokeInst>(I))
+ && isa<StructType>(I.getType())),
+ "Instruction returns a non-scalar type!", &I);
+
+ // Check that the instruction doesn't produce metadata or metadata*. Calls
+ // all already checked against the callee type.
+ Assert1(I.getType() != Type::MetadataTy ||
+ isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Invalid use of metadata!", &I);
+
+ if (const PointerType *PTy = dyn_cast<PointerType>(I.getType()))
+ Assert1(PTy->getElementType() != Type::MetadataTy,
+ "Instructions may not produce pointer to metadata.", &I);
+
+
+ // Check that all uses of the instruction, if they are instructions
+ // themselves, actually have parent basic blocks. If the use is not an
+ // instruction, it is an error!
+ for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
+ UI != UE; ++UI) {
+ Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
+ *UI);
+ Instruction *Used = cast<Instruction>(*UI);
+ Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
+ " embedded in a basic block!", &I, Used);
+ }
+
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
+
+ // Check to make sure that only first-class-values are operands to
+ // instructions.
+ if (!I.getOperand(i)->getType()->isFirstClassType()) {
+ Assert1(0, "Instruction operands must be first-class values!", &I);
+ }
+
+ if (const PointerType *PTy =
+ dyn_cast<PointerType>(I.getOperand(i)->getType()))
+ Assert1(PTy->getElementType() != Type::MetadataTy,
+ "Invalid use of metadata pointer.", &I);
+
+ if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
+ // Check to make sure that the "address of" an intrinsic function is never
+ // taken.
+ Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
+ "Cannot take the address of an intrinsic!", &I);
+ Assert1(F->getParent() == Mod, "Referencing function in another module!",
+ &I);
+ } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
+ Assert1(OpBB->getParent() == BB->getParent(),
+ "Referring to a basic block in another function!", &I);
+ } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
+ Assert1(OpArg->getParent() == BB->getParent(),
+ "Referring to an argument in another function!", &I);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
+ Assert1(GV->getParent() == Mod, "Referencing global in another module!",
+ &I);
+ } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
+ BasicBlock *OpBlock = Op->getParent();
+
+ // Check that a definition dominates all of its uses.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
+ // Invoke results are only usable in the normal destination, not in the
+ // exceptional destination.
+ BasicBlock *NormalDest = II->getNormalDest();
+
+ Assert2(NormalDest != II->getUnwindDest(),
+ "No uses of invoke possible due to dominance structure!",
+ Op, &I);
+
+ // PHI nodes differ from other nodes because they actually "use" the
+ // value in the predecessor basic blocks they correspond to.
+ BasicBlock *UseBlock = BB;
+ if (isa<PHINode>(I))
+ UseBlock = cast<BasicBlock>(I.getOperand(i+1));
+
+ if (isa<PHINode>(I) && UseBlock == OpBlock) {
+ // Special case of a phi node in the normal destination or the unwind
+ // destination.
+ Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
+ "Invoke result not available in the unwind destination!",
+ Op, &I);
+ } else {
+ Assert2(DT->dominates(NormalDest, UseBlock) ||
+ !DT->isReachableFromEntry(UseBlock),
+ "Invoke result does not dominate all uses!", Op, &I);
+
+ // If the normal successor of an invoke instruction has multiple
+ // predecessors, then the normal edge from the invoke is critical,
+ // so the invoke value can only be live if the destination block
+ // dominates all of it's predecessors (other than the invoke).
+ if (!NormalDest->getSinglePredecessor() &&
+ DT->isReachableFromEntry(UseBlock))
+ // If it is used by something non-phi, then the other case is that
+ // 'NormalDest' dominates all of its predecessors other than the
+ // invoke. In this case, the invoke value can still be used.
+ for (pred_iterator PI = pred_begin(NormalDest),
+ E = pred_end(NormalDest); PI != E; ++PI)
+ if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
+ DT->isReachableFromEntry(*PI)) {
+ CheckFailed("Invoke result does not dominate all uses!", Op,&I);
+ return;
+ }
+ }
+ } else if (isa<PHINode>(I)) {
+ // PHI nodes are more difficult than other nodes because they actually
+ // "use" the value in the predecessor basic blocks they correspond to.
+ BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
+ Assert2(DT->dominates(OpBlock, PredBB) ||
+ !DT->isReachableFromEntry(PredBB),
+ "Instruction does not dominate all uses!", Op, &I);
+ } else {
+ if (OpBlock == BB) {
+ // If they are in the same basic block, make sure that the definition
+ // comes before the use.
+ Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
+ "Instruction does not dominate all uses!", Op, &I);
+ }
+
+ // Definition must dominate use unless use is unreachable!
+ Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
+ !DT->isReachableFromEntry(BB),
+ "Instruction does not dominate all uses!", Op, &I);
+ }
+ } else if (isa<InlineAsm>(I.getOperand(i))) {
+ Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
+ "Cannot take the address of an inline asm!", &I);
+ }
+ }
+ InstsInThisBlock.insert(&I);
+}
+
+// Flags used by TableGen to mark intrinsic parameters with the
+// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
+static const unsigned ExtendedElementVectorType = 0x40000000;
+static const unsigned TruncatedElementVectorType = 0x20000000;
+
+/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
+///
+void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
+ Function *IF = CI.getCalledFunction();
+ Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
+ IF);
+
+#define GET_INTRINSIC_VERIFIER
+#include "llvm/Intrinsics.gen"
+#undef GET_INTRINSIC_VERIFIER
+
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::dbg_declare: // llvm.dbg.declare
+ if (Constant *C = dyn_cast<Constant>(CI.getOperand(1)))
+ Assert1(C && !isa<ConstantPointerNull>(C),
+ "invalid llvm.dbg.declare intrinsic call", &CI);
+ break;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ Assert1(isa<ConstantInt>(CI.getOperand(4)),
+ "alignment argument of memory intrinsics must be a constant int",
+ &CI);
+ break;
+ case Intrinsic::gcroot:
+ case Intrinsic::gcwrite:
+ case Intrinsic::gcread:
+ if (ID == Intrinsic::gcroot) {
+ AllocaInst *AI =
+ dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts());
+ Assert1(AI && isa<PointerType>(AI->getType()->getElementType()),
+ "llvm.gcroot parameter #1 must be a pointer alloca.", &CI);
+ Assert1(isa<Constant>(CI.getOperand(2)),
+ "llvm.gcroot parameter #2 must be a constant.", &CI);
+ }
+
+ Assert1(CI.getParent()->getParent()->hasGC(),
+ "Enclosing function does not use GC.", &CI);
+ break;
+ case Intrinsic::init_trampoline:
+ Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
+ "llvm.init_trampoline parameter #2 must resolve to a function.",
+ &CI);
+ break;
+ case Intrinsic::prefetch:
+ Assert1(isa<ConstantInt>(CI.getOperand(2)) &&
+ isa<ConstantInt>(CI.getOperand(3)) &&
+ cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 &&
+ cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4,
+ "invalid arguments to llvm.prefetch",
+ &CI);
+ break;
+ case Intrinsic::stackprotector:
+ Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()),
+ "llvm.stackprotector parameter #2 must resolve to an alloca.",
+ &CI);
+ break;
+ }
+}
+
+/// Produce a string to identify an intrinsic parameter or return value.
+/// The ArgNo value numbers the return values from 0 to NumRets-1 and the
+/// parameters beginning with NumRets.
+///
+static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
+ if (ArgNo < NumRets) {
+ if (NumRets == 1)
+ return "Intrinsic result type";
+ else
+ return "Intrinsic result type #" + utostr(ArgNo);
+ } else
+ return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
+}
+
+bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
+ int VT, unsigned ArgNo, std::string &Suffix) {
+ const FunctionType *FTy = F->getFunctionType();
+
+ unsigned NumElts = 0;
+ const Type *EltTy = Ty;
+ const VectorType *VTy = dyn_cast<VectorType>(Ty);
+ if (VTy) {
+ EltTy = VTy->getElementType();
+ NumElts = VTy->getNumElements();
+ }
+
+ const Type *RetTy = FTy->getReturnType();
+ const StructType *ST = dyn_cast<StructType>(RetTy);
+ unsigned NumRets = 1;
+ if (ST)
+ NumRets = ST->getNumElements();
+
+ if (VT < 0) {
+ int Match = ~VT;
+
+ // Check flags that indicate a type that is an integral vector type with
+ // elements that are larger or smaller than the elements of the matched
+ // type.
+ if ((Match & (ExtendedElementVectorType |
+ TruncatedElementVectorType)) != 0) {
+ const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
+ if (!VTy || !IEltTy) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
+ "an integral vector type.", F);
+ return false;
+ }
+ // Adjust the current Ty (in the opposite direction) rather than
+ // the type being matched against.
+ if ((Match & ExtendedElementVectorType) != 0) {
+ if ((IEltTy->getBitWidth() & 1) != 0) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector "
+ "element bit-width is odd.", F);
+ return false;
+ }
+ Ty = VectorType::getTruncatedElementVectorType(VTy);
+ } else
+ Ty = VectorType::getExtendedElementVectorType(VTy);
+ Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
+ }
+
+ if (Match <= static_cast<int>(NumRets - 1)) {
+ if (ST)
+ RetTy = ST->getElementType(Match);
+
+ if (Ty != RetTy) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
+ "match return type.", F);
+ return false;
+ }
+ } else {
+ if (Ty != FTy->getParamType(Match - 1)) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
+ "match parameter %" + utostr(Match - 1) + ".", F);
+ return false;
+ }
+ }
+ } else if (VT == MVT::iAny) {
+ if (!EltTy->isInteger()) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
+ "an integer type.", F);
+ return false;
+ }
+
+ unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
+ Suffix += ".";
+
+ if (EltTy != Ty)
+ Suffix += "v" + utostr(NumElts);
+
+ Suffix += "i" + utostr(GotBits);
+
+ // Check some constraints on various intrinsics.
+ switch (ID) {
+ default: break; // Not everything needs to be checked.
+ case Intrinsic::bswap:
+ if (GotBits < 16 || GotBits % 16 != 0) {
+ CheckFailed("Intrinsic requires even byte width argument", F);
+ return false;
+ }
+ break;
+ }
+ } else if (VT == MVT::fAny) {
+ if (!EltTy->isFloatingPoint()) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
+ "a floating-point type.", F);
+ return false;
+ }
+
+ Suffix += ".";
+
+ if (EltTy != Ty)
+ Suffix += "v" + utostr(NumElts);
+
+ Suffix += MVT::getMVT(EltTy).getMVTString();
+ } else if (VT == MVT::iPTR) {
+ if (!isa<PointerType>(Ty)) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
+ "pointer and a pointer is required.", F);
+ return false;
+ }
+ } else if (VT == MVT::iPTRAny) {
+ // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
+ // and iPTR. In the verifier, we can not distinguish which case we have so
+ // allow either case to be legal.
+ if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
+ Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
+ MVT::getMVT(PTyp->getElementType()).getMVTString();
+ } else {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
+ "pointer and a pointer is required.", F);
+ return false;
+ }
+ } else if (MVT((MVT::SimpleValueType)VT).isVector()) {
+ MVT VVT = MVT((MVT::SimpleValueType)VT);
+
+ // If this is a vector argument, verify the number and type of elements.
+ if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) {
+ CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
+ return false;
+ }
+
+ if (VVT.getVectorNumElements() != NumElts) {
+ CheckFailed("Intrinsic prototype has incorrect number of "
+ "vector elements!", F);
+ return false;
+ }
+ } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F);
+ return false;
+ } else if (EltTy != Ty) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector "
+ "and a scalar is required.", F);
+ return false;
+ }
+
+ return true;
+}
+
+/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
+/// Intrinsics.gen. This implements a little state machine that verifies the
+/// prototype of intrinsics.
+void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
+ unsigned RetNum,
+ unsigned ParamNum, ...) {
+ va_list VA;
+ va_start(VA, ParamNum);
+ const FunctionType *FTy = F->getFunctionType();
+
+ // For overloaded intrinsics, the Suffix of the function name must match the
+ // types of the arguments. This variable keeps track of the expected
+ // suffix, to be checked at the end.
+ std::string Suffix;
+
+ if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) {
+ CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
+ return;
+ }
+
+ const Type *Ty = FTy->getReturnType();
+ const StructType *ST = dyn_cast<StructType>(Ty);
+
+ // Verify the return types.
+ if (ST && ST->getNumElements() != RetNum) {
+ CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
+ return;
+ }
+
+ for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) {
+ int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
+
+ if (ST) Ty = ST->getElementType(ArgNo);
+
+ if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
+ break;
+ }
+
+ // Verify the parameter types.
+ for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) {
+ int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
+
+ if (VT == MVT::isVoid && ArgNo > 0) {
+ if (!FTy->isVarArg())
+ CheckFailed("Intrinsic prototype has no '...'!", F);
+ break;
+ }
+
+ if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum,
+ Suffix))
+ break;
+ }
+
+ va_end(VA);
+
+ // For intrinsics without pointer arguments, if we computed a Suffix then the
+ // intrinsic is overloaded and we need to make sure that the name of the
+ // function is correct. We add the suffix to the name of the intrinsic and
+ // compare against the given function name. If they are not the same, the
+ // function name is invalid. This ensures that overloading of intrinsics
+ // uses a sane and consistent naming convention. Note that intrinsics with
+ // pointer argument may or may not be overloaded so we will check assuming it
+ // has a suffix and not.
+ if (!Suffix.empty()) {
+ std::string Name(Intrinsic::getName(ID));
+ if (Name + Suffix != F->getName()) {
+ CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
+ F->getName().substr(Name.length()) + "'. It should be '" +
+ Suffix + "'", F);
+ }
+ }
+
+ // Check parameter attributes.
+ Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
+ "Intrinsic has wrong parameter attributes!", F);
+}
+
+/// Verify that an MDNode is not cyclic.
+bool Verifier::VerifyMDNode(const MDNode *N) {
+ if (N->elem_empty()) return true;
+
+ // The current DFS path through the nodes. Node and element number.
+ typedef std::pair<const MDNode *, MDNode::const_elem_iterator> Edge;
+ SmallVector<Edge, 8> Path;
+
+ Path.push_back(std::make_pair(N, N->elem_begin()));
+ while (!Path.empty()) {
+ Edge &e = Path.back();
+ const MDNode *&e_N = e.first;
+ MDNode::const_elem_iterator &e_I = e.second;
+
+ if (e_N->elem_end() == e_I) {
+ Path.pop_back();
+ continue;
+ }
+
+ for (MDNode::const_elem_iterator e_E = e_N->elem_end(); e_I != e_E; ++e_I) {
+ if (const MDNode *C = dyn_cast_or_null<MDNode>(e_I->operator Value*())) {
+ // Is child MDNode C already in the Path?
+ for (SmallVectorImpl<Edge>::iterator I = Path.begin(), E = Path.end();
+ I != E; ++I) {
+ if (I->first != C) {
+ CheckFailed("MDNode is cyclic.", C);
+ return false;
+ }
+ }
+
+ Path.push_back(std::make_pair(C, C->elem_begin()));
+ break;
+ }
+ }
+ }
+ return true;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Implement the public interfaces to this file...
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
+ return new Verifier(action);
+}
+
+
+// verifyFunction - Create
+bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
+ Function &F = const_cast<Function&>(f);
+ assert(!F.isDeclaration() && "Cannot verify external functions");
+
+ ExistingModuleProvider MP(F.getParent());
+ FunctionPassManager FPM(&MP);
+ Verifier *V = new Verifier(action);
+ FPM.add(V);
+ FPM.run(F);
+ MP.releaseModule();
+ return V->Broken;
+}
+
+/// verifyModule - Check a module for errors, printing messages on stderr.
+/// Return true if the module is corrupt.
+///
+bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
+ std::string *ErrorInfo) {
+ PassManager PM;
+ Verifier *V = new Verifier(action);
+ PM.add(V);
+ PM.run(const_cast<Module&>(M));
+
+ if (ErrorInfo && V->Broken)
+ *ErrorInfo = V->msgs.str();
+ return V->Broken;
+}
+
+// vim: sw=2
OpenPOWER on IntegriCloud