diff options
Diffstat (limited to 'lib/VMCore/Verifier.cpp')
-rw-r--r-- | lib/VMCore/Verifier.cpp | 1770 |
1 files changed, 1770 insertions, 0 deletions
diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp new file mode 100644 index 0000000..59ec3be --- /dev/null +++ b/lib/VMCore/Verifier.cpp @@ -0,0 +1,1770 @@ +//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the function verifier interface, that can be used for some +// sanity checking of input to the system. +// +// Note that this does not provide full `Java style' security and verifications, +// instead it just tries to ensure that code is well-formed. +// +// * Both of a binary operator's parameters are of the same type +// * Verify that the indices of mem access instructions match other operands +// * Verify that arithmetic and other things are only performed on first-class +// types. Verify that shifts & logicals only happen on integrals f.e. +// * All of the constants in a switch statement are of the correct type +// * The code is in valid SSA form +// * It should be illegal to put a label into any other type (like a structure) +// or to return one. [except constant arrays!] +// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad +// * PHI nodes must have an entry for each predecessor, with no extras. +// * PHI nodes must be the first thing in a basic block, all grouped together +// * PHI nodes must have at least one entry +// * All basic blocks should only end with terminator insts, not contain them +// * The entry node to a function must not have predecessors +// * All Instructions must be embedded into a basic block +// * Functions cannot take a void-typed parameter +// * Verify that a function's argument list agrees with it's declared type. +// * It is illegal to specify a name for a void value. +// * It is illegal to have a internal global value with no initializer +// * It is illegal to have a ret instruction that returns a value that does not +// agree with the function return value type. +// * Function call argument types match the function prototype +// * All other things that are tested by asserts spread about the code... +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Verifier.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/MDNode.h" +#include "llvm/Module.h" +#include "llvm/ModuleProvider.h" +#include "llvm/Pass.h" +#include "llvm/PassManager.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/Streams.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <sstream> +#include <cstdarg> +using namespace llvm; + +namespace { // Anonymous namespace for class + struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { + static char ID; // Pass ID, replacement for typeid + + PreVerifier() : FunctionPass(&ID) { } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + + // Check that the prerequisites for successful DominatorTree construction + // are satisfied. + bool runOnFunction(Function &F) { + bool Broken = false; + + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { + if (I->empty() || !I->back().isTerminator()) { + cerr << "Basic Block does not have terminator!\n"; + WriteAsOperand(*cerr, I, true); + cerr << "\n"; + Broken = true; + } + } + + if (Broken) + abort(); + + return false; + } + }; +} + +char PreVerifier::ID = 0; +static RegisterPass<PreVerifier> +PreVer("preverify", "Preliminary module verification"); +static const PassInfo *const PreVerifyID = &PreVer; + +namespace { + struct VISIBILITY_HIDDEN + Verifier : public FunctionPass, InstVisitor<Verifier> { + static char ID; // Pass ID, replacement for typeid + bool Broken; // Is this module found to be broken? + bool RealPass; // Are we not being run by a PassManager? + VerifierFailureAction action; + // What to do if verification fails. + Module *Mod; // Module we are verifying right now + DominatorTree *DT; // Dominator Tree, caution can be null! + std::stringstream msgs; // A stringstream to collect messages + + /// InstInThisBlock - when verifying a basic block, keep track of all of the + /// instructions we have seen so far. This allows us to do efficient + /// dominance checks for the case when an instruction has an operand that is + /// an instruction in the same block. + SmallPtrSet<Instruction*, 16> InstsInThisBlock; + + Verifier() + : FunctionPass(&ID), + Broken(false), RealPass(true), action(AbortProcessAction), + DT(0), msgs( std::ios::app | std::ios::out ) {} + explicit Verifier(VerifierFailureAction ctn) + : FunctionPass(&ID), + Broken(false), RealPass(true), action(ctn), DT(0), + msgs( std::ios::app | std::ios::out ) {} + explicit Verifier(bool AB) + : FunctionPass(&ID), + Broken(false), RealPass(true), + action( AB ? AbortProcessAction : PrintMessageAction), DT(0), + msgs( std::ios::app | std::ios::out ) {} + explicit Verifier(DominatorTree &dt) + : FunctionPass(&ID), + Broken(false), RealPass(false), action(PrintMessageAction), + DT(&dt), msgs( std::ios::app | std::ios::out ) {} + + + bool doInitialization(Module &M) { + Mod = &M; + verifyTypeSymbolTable(M.getTypeSymbolTable()); + + // If this is a real pass, in a pass manager, we must abort before + // returning back to the pass manager, or else the pass manager may try to + // run other passes on the broken module. + if (RealPass) + return abortIfBroken(); + return false; + } + + bool runOnFunction(Function &F) { + // Get dominator information if we are being run by PassManager + if (RealPass) DT = &getAnalysis<DominatorTree>(); + + Mod = F.getParent(); + + visit(F); + InstsInThisBlock.clear(); + + // If this is a real pass, in a pass manager, we must abort before + // returning back to the pass manager, or else the pass manager may try to + // run other passes on the broken module. + if (RealPass) + return abortIfBroken(); + + return false; + } + + bool doFinalization(Module &M) { + // Scan through, checking all of the external function's linkage now... + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { + visitGlobalValue(*I); + + // Check to make sure function prototypes are okay. + if (I->isDeclaration()) visitFunction(*I); + } + + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + visitGlobalVariable(*I); + + for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); + I != E; ++I) + visitGlobalAlias(*I); + + // If the module is broken, abort at this time. + return abortIfBroken(); + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredID(PreVerifyID); + if (RealPass) + AU.addRequired<DominatorTree>(); + } + + /// abortIfBroken - If the module is broken and we are supposed to abort on + /// this condition, do so. + /// + bool abortIfBroken() { + if (!Broken) return false; + msgs << "Broken module found, "; + switch (action) { + default: assert(0 && "Unknown action"); + case AbortProcessAction: + msgs << "compilation aborted!\n"; + cerr << msgs.str(); + abort(); + case PrintMessageAction: + msgs << "verification continues.\n"; + cerr << msgs.str(); + return false; + case ReturnStatusAction: + msgs << "compilation terminated.\n"; + return true; + } + } + + + // Verification methods... + void verifyTypeSymbolTable(TypeSymbolTable &ST); + void visitGlobalValue(GlobalValue &GV); + void visitGlobalVariable(GlobalVariable &GV); + void visitGlobalAlias(GlobalAlias &GA); + void visitFunction(Function &F); + void visitBasicBlock(BasicBlock &BB); + using InstVisitor<Verifier>::visit; + + void visit(Instruction &I); + + void visitTruncInst(TruncInst &I); + void visitZExtInst(ZExtInst &I); + void visitSExtInst(SExtInst &I); + void visitFPTruncInst(FPTruncInst &I); + void visitFPExtInst(FPExtInst &I); + void visitFPToUIInst(FPToUIInst &I); + void visitFPToSIInst(FPToSIInst &I); + void visitUIToFPInst(UIToFPInst &I); + void visitSIToFPInst(SIToFPInst &I); + void visitIntToPtrInst(IntToPtrInst &I); + void visitPtrToIntInst(PtrToIntInst &I); + void visitBitCastInst(BitCastInst &I); + void visitPHINode(PHINode &PN); + void visitBinaryOperator(BinaryOperator &B); + void visitICmpInst(ICmpInst &IC); + void visitFCmpInst(FCmpInst &FC); + void visitExtractElementInst(ExtractElementInst &EI); + void visitInsertElementInst(InsertElementInst &EI); + void visitShuffleVectorInst(ShuffleVectorInst &EI); + void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } + void visitCallInst(CallInst &CI); + void visitInvokeInst(InvokeInst &II); + void visitGetElementPtrInst(GetElementPtrInst &GEP); + void visitLoadInst(LoadInst &LI); + void visitStoreInst(StoreInst &SI); + void visitInstruction(Instruction &I); + void visitTerminatorInst(TerminatorInst &I); + void visitReturnInst(ReturnInst &RI); + void visitSwitchInst(SwitchInst &SI); + void visitSelectInst(SelectInst &SI); + void visitUserOp1(Instruction &I); + void visitUserOp2(Instruction &I) { visitUserOp1(I); } + void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); + void visitAllocationInst(AllocationInst &AI); + void visitExtractValueInst(ExtractValueInst &EVI); + void visitInsertValueInst(InsertValueInst &IVI); + + void VerifyCallSite(CallSite CS); + bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix); + void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, + unsigned RetNum, unsigned ParamNum, ...); + void VerifyAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V); + void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, + const Value *V); + bool VerifyMDNode(const MDNode *N); + + void WriteValue(const Value *V) { + if (!V) return; + if (isa<Instruction>(V)) { + msgs << *V; + } else { + WriteAsOperand(msgs, V, true, Mod); + msgs << "\n"; + } + } + + void WriteType(const Type *T) { + if (!T) return; + raw_os_ostream RO(msgs); + RO << ' '; + WriteTypeSymbolic(RO, T, Mod); + } + + + // CheckFailed - A check failed, so print out the condition and the message + // that failed. This provides a nice place to put a breakpoint if you want + // to see why something is not correct. + void CheckFailed(const std::string &Message, + const Value *V1 = 0, const Value *V2 = 0, + const Value *V3 = 0, const Value *V4 = 0) { + msgs << Message << "\n"; + WriteValue(V1); + WriteValue(V2); + WriteValue(V3); + WriteValue(V4); + Broken = true; + } + + void CheckFailed( const std::string& Message, const Value* V1, + const Type* T2, const Value* V3 = 0 ) { + msgs << Message << "\n"; + WriteValue(V1); + WriteType(T2); + WriteValue(V3); + Broken = true; + } + }; +} // End anonymous namespace + +char Verifier::ID = 0; +static RegisterPass<Verifier> X("verify", "Module Verifier"); + +// Assert - We know that cond should be true, if not print an error message. +#define Assert(C, M) \ + do { if (!(C)) { CheckFailed(M); return; } } while (0) +#define Assert1(C, M, V1) \ + do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) +#define Assert2(C, M, V1, V2) \ + do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) +#define Assert3(C, M, V1, V2, V3) \ + do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) +#define Assert4(C, M, V1, V2, V3, V4) \ + do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) + +void Verifier::visit(Instruction &I) { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Assert1(I.getOperand(i) != 0, "Operand is null", &I); + InstVisitor<Verifier>::visit(I); +} + + +void Verifier::visitGlobalValue(GlobalValue &GV) { + Assert1(!GV.isDeclaration() || + GV.hasExternalLinkage() || + GV.hasDLLImportLinkage() || + GV.hasExternalWeakLinkage() || + GV.hasGhostLinkage() || + (isa<GlobalAlias>(GV) && + (GV.hasLocalLinkage() || GV.hasWeakLinkage())), + "Global is external, but doesn't have external or dllimport or weak linkage!", + &GV); + + Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), + "Global is marked as dllimport, but not external", &GV); + + Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), + "Only global variables can have appending linkage!", &GV); + + if (GV.hasAppendingLinkage()) { + GlobalVariable &GVar = cast<GlobalVariable>(GV); + Assert1(isa<ArrayType>(GVar.getType()->getElementType()), + "Only global arrays can have appending linkage!", &GV); + } +} + +void Verifier::visitGlobalVariable(GlobalVariable &GV) { + if (GV.hasInitializer()) { + Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), + "Global variable initializer type does not match global " + "variable type!", &GV); + + // Verify that any metadata used in a global initializer points only to + // other globals. + if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) { + if (VerifyMDNode(FirstNode)) { + SmallVector<const MDNode *, 4> NodesToAnalyze; + NodesToAnalyze.push_back(FirstNode); + while (!NodesToAnalyze.empty()) { + const MDNode *N = NodesToAnalyze.back(); + NodesToAnalyze.pop_back(); + + for (MDNode::const_elem_iterator I = N->elem_begin(), + E = N->elem_end(); I != E; ++I) + if (const Value *V = *I) { + if (const MDNode *Next = dyn_cast<MDNode>(V)) + NodesToAnalyze.push_back(Next); + else + Assert3(isa<Constant>(V), + "reference to instruction from global metadata node", + &GV, N, V); + } + } + } + } + } else { + Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || + GV.hasExternalWeakLinkage(), + "invalid linkage type for global declaration", &GV); + } + + visitGlobalValue(GV); +} + +void Verifier::visitGlobalAlias(GlobalAlias &GA) { + Assert1(!GA.getName().empty(), + "Alias name cannot be empty!", &GA); + Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || + GA.hasWeakLinkage(), + "Alias should have external or external weak linkage!", &GA); + Assert1(GA.getAliasee(), + "Aliasee cannot be NULL!", &GA); + Assert1(GA.getType() == GA.getAliasee()->getType(), + "Alias and aliasee types should match!", &GA); + + if (!isa<GlobalValue>(GA.getAliasee())) { + const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee()); + Assert1(CE && + (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && + isa<GlobalValue>(CE->getOperand(0)), + "Aliasee should be either GlobalValue or bitcast of GlobalValue", + &GA); + } + + const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); + Assert1(Aliasee, + "Aliasing chain should end with function or global variable", &GA); + + visitGlobalValue(GA); +} + +void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { +} + +// VerifyAttrs - Check the given parameter attributes for an argument or return +// value of the specified type. The value V is printed in error messages. +void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V) { + if (Attrs == Attribute::None) + return; + + if (isReturnValue) { + Attributes RetI = Attrs & Attribute::ParameterOnly; + Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + + " does not apply to return values!", V); + } + Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; + Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + + " only applies to functions!", V); + + for (unsigned i = 0; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; + Assert1(!(MutI & (MutI - 1)), "Attributes " + + Attribute::getAsString(MutI) + " are incompatible!", V); + } + + Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); + Assert1(!TypeI, "Wrong type for attribute " + + Attribute::getAsString(TypeI), V); + + Attributes ByValI = Attrs & Attribute::ByVal; + if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { + Assert1(!ByValI || PTy->getElementType()->isSized(), + "Attribute " + Attribute::getAsString(ByValI) + + " does not support unsized types!", V); + } else { + Assert1(!ByValI, + "Attribute " + Attribute::getAsString(ByValI) + + " only applies to parameters with pointer type!", V); + } +} + +// VerifyFunctionAttrs - Check parameter attributes against a function type. +// The value V is printed in error messages. +void Verifier::VerifyFunctionAttrs(const FunctionType *FT, + const AttrListPtr &Attrs, + const Value *V) { + if (Attrs.isEmpty()) + return; + + bool SawNest = false; + + for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { + const AttributeWithIndex &Attr = Attrs.getSlot(i); + + const Type *Ty; + if (Attr.Index == 0) + Ty = FT->getReturnType(); + else if (Attr.Index-1 < FT->getNumParams()) + Ty = FT->getParamType(Attr.Index-1); + else + break; // VarArgs attributes, don't verify. + + VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); + + if (Attr.Attrs & Attribute::Nest) { + Assert1(!SawNest, "More than one parameter has attribute nest!", V); + SawNest = true; + } + + if (Attr.Attrs & Attribute::StructRet) + Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); + } + + Attributes FAttrs = Attrs.getFnAttributes(); + Assert1(!(FAttrs & (~Attribute::FunctionOnly)), + "Attribute " + Attribute::getAsString(FAttrs) + + " does not apply to function!", V); + + for (unsigned i = 0; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; + Assert1(!(MutI & (MutI - 1)), "Attributes " + + Attribute::getAsString(MutI) + " are incompatible!", V); + } +} + +static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { + if (Attrs.isEmpty()) + return true; + + unsigned LastSlot = Attrs.getNumSlots() - 1; + unsigned LastIndex = Attrs.getSlot(LastSlot).Index; + if (LastIndex <= Params + || (LastIndex == (unsigned)~0 + && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) + return true; + + return false; +} +// visitFunction - Verify that a function is ok. +// +void Verifier::visitFunction(Function &F) { + // Check function arguments. + const FunctionType *FT = F.getFunctionType(); + unsigned NumArgs = F.arg_size(); + + Assert2(FT->getNumParams() == NumArgs, + "# formal arguments must match # of arguments for function type!", + &F, FT); + Assert1(F.getReturnType()->isFirstClassType() || + F.getReturnType() == Type::VoidTy || + isa<StructType>(F.getReturnType()), + "Functions cannot return aggregate values!", &F); + + Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy, + "Invalid struct return type!", &F); + + const AttrListPtr &Attrs = F.getAttributes(); + + Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), + "Attributes after last parameter!", &F); + + // Check function attributes. + VerifyFunctionAttrs(FT, Attrs, &F); + + // Check that this function meets the restrictions on this calling convention. + switch (F.getCallingConv()) { + default: + break; + case CallingConv::C: + break; + case CallingConv::Fast: + case CallingConv::Cold: + case CallingConv::X86_FastCall: + Assert1(!F.isVarArg(), + "Varargs functions must have C calling conventions!", &F); + break; + } + + bool isLLVMdotName = F.getName().size() >= 5 && + F.getName().substr(0, 5) == "llvm."; + if (!isLLVMdotName) + Assert1(F.getReturnType() != Type::MetadataTy, + "Function may not return metadata unless it's an intrinsic", &F); + + // Check that the argument values match the function type for this function... + unsigned i = 0; + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I, ++i) { + Assert2(I->getType() == FT->getParamType(i), + "Argument value does not match function argument type!", + I, FT->getParamType(i)); + Assert1(I->getType()->isFirstClassType(), + "Function arguments must have first-class types!", I); + if (!isLLVMdotName) + Assert2(I->getType() != Type::MetadataTy, + "Function takes metadata but isn't an intrinsic", I, &F); + } + + if (F.isDeclaration()) { + Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || + F.hasExternalWeakLinkage() || F.hasGhostLinkage(), + "invalid linkage type for function declaration", &F); + } else { + // Verify that this function (which has a body) is not named "llvm.*". It + // is not legal to define intrinsics. + Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + + // Check the entry node + BasicBlock *Entry = &F.getEntryBlock(); + Assert1(pred_begin(Entry) == pred_end(Entry), + "Entry block to function must not have predecessors!", Entry); + } +} + + +// verifyBasicBlock - Verify that a basic block is well formed... +// +void Verifier::visitBasicBlock(BasicBlock &BB) { + InstsInThisBlock.clear(); + + // Ensure that basic blocks have terminators! + Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + + // Check constraints that this basic block imposes on all of the PHI nodes in + // it. + if (isa<PHINode>(BB.front())) { + SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); + SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; + std::sort(Preds.begin(), Preds.end()); + PHINode *PN; + for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { + + // Ensure that PHI nodes have at least one entry! + Assert1(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", PN); + Assert1(PN->getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", PN); + + // Get and sort all incoming values in the PHI node... + Values.clear(); + Values.reserve(PN->getNumIncomingValues()); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + Values.push_back(std::make_pair(PN->getIncomingBlock(i), + PN->getIncomingValue(i))); + std::sort(Values.begin(), Values.end()); + + for (unsigned i = 0, e = Values.size(); i != e; ++i) { + // Check to make sure that if there is more than one entry for a + // particular basic block in this PHI node, that the incoming values are + // all identical. + // + Assert4(i == 0 || Values[i].first != Values[i-1].first || + Values[i].second == Values[i-1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", PN, Values[i].first, + Values[i].second, Values[i-1].second); + + // Check to make sure that the predecessors and PHI node entries are + // matched up. + Assert3(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); + } + } + } +} + +void Verifier::visitTerminatorInst(TerminatorInst &I) { + // Ensure that terminators only exist at the end of the basic block. + Assert1(&I == I.getParent()->getTerminator(), + "Terminator found in the middle of a basic block!", I.getParent()); + visitInstruction(I); +} + +void Verifier::visitReturnInst(ReturnInst &RI) { + Function *F = RI.getParent()->getParent(); + unsigned N = RI.getNumOperands(); + if (F->getReturnType() == Type::VoidTy) + Assert2(N == 0, + "Found return instr that returns non-void in Function of void " + "return type!", &RI, F->getReturnType()); + else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) { + // Exactly one return value and it matches the return type. Good. + } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { + // The return type is a struct; check for multiple return values. + Assert2(STy->getNumElements() == N, + "Incorrect number of return values in ret instruction!", + &RI, F->getReturnType()); + for (unsigned i = 0; i != N; ++i) + Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(), + "Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) { + // The return type is an array; check for multiple return values. + Assert2(ATy->getNumElements() == N, + "Incorrect number of return values in ret instruction!", + &RI, F->getReturnType()); + for (unsigned i = 0; i != N; ++i) + Assert2(ATy->getElementType() == RI.getOperand(i)->getType(), + "Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); + } else { + CheckFailed("Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); + } + + // Check to make sure that the return value has necessary properties for + // terminators... + visitTerminatorInst(RI); +} + +void Verifier::visitSwitchInst(SwitchInst &SI) { + // Check to make sure that all of the constants in the switch instruction + // have the same type as the switched-on value. + const Type *SwitchTy = SI.getCondition()->getType(); + for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) + Assert1(SI.getCaseValue(i)->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + + visitTerminatorInst(SI); +} + +void Verifier::visitSelectInst(SelectInst &SI) { + Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); + + Assert1(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); + visitInstruction(SI); +} + + +/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of +/// a pass, if any exist, it's an error. +/// +void Verifier::visitUserOp1(Instruction &I) { + Assert1(0, "User-defined operators should not live outside of a pass!", &I); +} + +void Verifier::visitTruncInst(TruncInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); + Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); + Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), + "trunc source and destination must both be a vector or neither", &I); + Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); + + visitInstruction(I); +} + +void Verifier::visitZExtInst(ZExtInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); + Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), + "zext source and destination must both be a vector or neither", &I); + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); + + visitInstruction(I); +} + +void Verifier::visitSExtInst(SExtInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); + Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), + "sext source and destination must both be a vector or neither", &I); + Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); + + visitInstruction(I); +} + +void Verifier::visitFPTruncInst(FPTruncInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); + Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); + Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), + "fptrunc source and destination must both be a vector or neither",&I); + Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); + + visitInstruction(I); +} + +void Verifier::visitFPExtInst(FPExtInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); + Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); + Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy), + "fpext source and destination must both be a vector or neither", &I); + Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); + + visitInstruction(I); +} + +void Verifier::visitUIToFPInst(UIToFPInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = isa<VectorType>(SrcTy); + bool DstVec = isa<VectorType>(DestTy); + + Assert1(SrcVec == DstVec, + "UIToFP source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isIntOrIntVector(), + "UIToFP source must be integer or integer vector", &I); + Assert1(DestTy->isFPOrFPVector(), + "UIToFP result must be FP or FP vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "UIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitSIToFPInst(SIToFPInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID; + bool DstVec = DestTy->getTypeID() == Type::VectorTyID; + + Assert1(SrcVec == DstVec, + "SIToFP source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isIntOrIntVector(), + "SIToFP source must be integer or integer vector", &I); + Assert1(DestTy->isFPOrFPVector(), + "SIToFP result must be FP or FP vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "SIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToUIInst(FPToUIInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = isa<VectorType>(SrcTy); + bool DstVec = isa<VectorType>(DestTy); + + Assert1(SrcVec == DstVec, + "FPToUI source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I); + Assert1(DestTy->isIntOrIntVector(), + "FPToUI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToUI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToSIInst(FPToSIInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + bool SrcVec = isa<VectorType>(SrcTy); + bool DstVec = isa<VectorType>(DestTy); + + Assert1(SrcVec == DstVec, + "FPToSI source and dest must both be vector or scalar", &I); + Assert1(SrcTy->isFPOrFPVector(), + "FPToSI source must be FP or FP vector", &I); + Assert1(DestTy->isIntOrIntVector(), + "FPToSI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert1(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToSI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitPtrToIntInst(PtrToIntInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I); + Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I); + + visitInstruction(I); +} + +void Verifier::visitIntToPtrInst(IntToPtrInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I); + Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I); + + visitInstruction(I); +} + +void Verifier::visitBitCastInst(BitCastInst &I) { + // Get the source and destination types + const Type *SrcTy = I.getOperand(0)->getType(); + const Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + + // BitCast implies a no-op cast of type only. No bits change. + // However, you can't cast pointers to anything but pointers. + Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy), + "Bitcast requires both operands to be pointer or neither", &I); + Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I); + + // Disallow aggregates. + Assert1(!SrcTy->isAggregateType(), + "Bitcast operand must not be aggregate", &I); + Assert1(!DestTy->isAggregateType(), + "Bitcast type must not be aggregate", &I); + + visitInstruction(I); +} + +/// visitPHINode - Ensure that a PHI node is well formed. +/// +void Verifier::visitPHINode(PHINode &PN) { + // Ensure that the PHI nodes are all grouped together at the top of the block. + // This can be tested by checking whether the instruction before this is + // either nonexistent (because this is begin()) or is a PHI node. If not, + // then there is some other instruction before a PHI. + Assert2(&PN == &PN.getParent()->front() || + isa<PHINode>(--BasicBlock::iterator(&PN)), + "PHI nodes not grouped at top of basic block!", + &PN, PN.getParent()); + + // Check that all of the operands of the PHI node have the same type as the + // result. + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) + Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), + "PHI node operands are not the same type as the result!", &PN); + + // All other PHI node constraints are checked in the visitBasicBlock method. + + visitInstruction(PN); +} + +void Verifier::VerifyCallSite(CallSite CS) { + Instruction *I = CS.getInstruction(); + + Assert1(isa<PointerType>(CS.getCalledValue()->getType()), + "Called function must be a pointer!", I); + const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); + Assert1(isa<FunctionType>(FPTy->getElementType()), + "Called function is not pointer to function type!", I); + + const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); + + // Verify that the correct number of arguments are being passed + if (FTy->isVarArg()) + Assert1(CS.arg_size() >= FTy->getNumParams(), + "Called function requires more parameters than were provided!",I); + else + Assert1(CS.arg_size() == FTy->getNumParams(), + "Incorrect number of arguments passed to called function!", I); + + // Verify that all arguments to the call match the function type... + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), + "Call parameter type does not match function signature!", + CS.getArgument(i), FTy->getParamType(i), I); + + const AttrListPtr &Attrs = CS.getAttributes(); + + Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), + "Attributes after last parameter!", I); + + // Verify call attributes. + VerifyFunctionAttrs(FTy, Attrs, I); + + if (FTy->isVarArg()) + // Check attributes on the varargs part. + for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { + Attributes Attr = Attrs.getParamAttributes(Idx); + + VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); + + Attributes VArgI = Attr & Attribute::VarArgsIncompatible; + Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + + " cannot be used for vararg call arguments!", I); + } + + // Verify that there's no metadata unless it's a direct call to an intrinsic. + if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 || + CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") { + Assert1(FTy->getReturnType() != Type::MetadataTy, + "Only intrinsics may return metadata", I); + for (FunctionType::param_iterator PI = FTy->param_begin(), + PE = FTy->param_end(); PI != PE; ++PI) + Assert1(PI->get() != Type::MetadataTy, "Function has metadata parameter " + "but isn't an intrinsic", I); + } + + visitInstruction(*I); +} + +void Verifier::visitCallInst(CallInst &CI) { + VerifyCallSite(&CI); + + if (Function *F = CI.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) + visitIntrinsicFunctionCall(ID, CI); +} + +void Verifier::visitInvokeInst(InvokeInst &II) { + VerifyCallSite(&II); +} + +/// visitBinaryOperator - Check that both arguments to the binary operator are +/// of the same type! +/// +void Verifier::visitBinaryOperator(BinaryOperator &B) { + Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); + + switch (B.getOpcode()) { + // Check that logical operators are only used with integral operands. + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + Assert1(B.getType()->isInteger() || + (isa<VectorType>(B.getType()) && + cast<VectorType>(B.getType())->getElementType()->isInteger()), + "Logical operators only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + Assert1(B.getType()->isInteger() || + (isa<VectorType>(B.getType()) && + cast<VectorType>(B.getType())->getElementType()->isInteger()), + "Shifts only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Shift return type must be same as operands!", &B); + /* FALL THROUGH */ + default: + // Arithmetic operators only work on integer or fp values + Assert1(B.getType() == B.getOperand(0)->getType(), + "Arithmetic operators must have same type for operands and result!", + &B); + Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || + isa<VectorType>(B.getType()), + "Arithmetic operators must have integer, fp, or vector type!", &B); + break; + } + + visitInstruction(B); +} + +void Verifier::visitICmpInst(ICmpInst& IC) { + // Check that the operands are the same type + const Type* Op0Ty = IC.getOperand(0)->getType(); + const Type* Op1Ty = IC.getOperand(1)->getType(); + Assert1(Op0Ty == Op1Ty, + "Both operands to ICmp instruction are not of the same type!", &IC); + // Check that the operands are the right type + Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty), + "Invalid operand types for ICmp instruction", &IC); + + visitInstruction(IC); +} + +void Verifier::visitFCmpInst(FCmpInst& FC) { + // Check that the operands are the same type + const Type* Op0Ty = FC.getOperand(0)->getType(); + const Type* Op1Ty = FC.getOperand(1)->getType(); + Assert1(Op0Ty == Op1Ty, + "Both operands to FCmp instruction are not of the same type!", &FC); + // Check that the operands are the right type + Assert1(Op0Ty->isFPOrFPVector(), + "Invalid operand types for FCmp instruction", &FC); + visitInstruction(FC); +} + +void Verifier::visitExtractElementInst(ExtractElementInst &EI) { + Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), + EI.getOperand(1)), + "Invalid extractelement operands!", &EI); + visitInstruction(EI); +} + +void Verifier::visitInsertElementInst(InsertElementInst &IE) { + Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), + IE.getOperand(1), + IE.getOperand(2)), + "Invalid insertelement operands!", &IE); + visitInstruction(IE); +} + +void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { + Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), + SV.getOperand(2)), + "Invalid shufflevector operands!", &SV); + + const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType()); + Assert1(VTy, "Operands are not a vector type", &SV); + + // Check to see if Mask is valid. + if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) { + for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { + if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { + Assert1(!CI->uge(VTy->getNumElements()*2), + "Invalid shufflevector shuffle mask!", &SV); + } else { + Assert1(isa<UndefValue>(MV->getOperand(i)), + "Invalid shufflevector shuffle mask!", &SV); + } + } + } else { + Assert1(isa<UndefValue>(SV.getOperand(2)) || + isa<ConstantAggregateZero>(SV.getOperand(2)), + "Invalid shufflevector shuffle mask!", &SV); + } + + visitInstruction(SV); +} + +void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { + SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); + const Type *ElTy = + GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), + Idxs.begin(), Idxs.end()); + Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); + Assert2(isa<PointerType>(GEP.getType()) && + cast<PointerType>(GEP.getType())->getElementType() == ElTy, + "GEP is not of right type for indices!", &GEP, ElTy); + visitInstruction(GEP); +} + +void Verifier::visitLoadInst(LoadInst &LI) { + const Type *ElTy = + cast<PointerType>(LI.getOperand(0)->getType())->getElementType(); + Assert2(ElTy == LI.getType(), + "Load result type does not match pointer operand type!", &LI, ElTy); + Assert1(ElTy != Type::MetadataTy, "Can't load metadata!", &LI); + visitInstruction(LI); +} + +void Verifier::visitStoreInst(StoreInst &SI) { + const Type *ElTy = + cast<PointerType>(SI.getOperand(1)->getType())->getElementType(); + Assert2(ElTy == SI.getOperand(0)->getType(), + "Stored value type does not match pointer operand type!", &SI, ElTy); + Assert1(ElTy != Type::MetadataTy, "Can't store metadata!", &SI); + visitInstruction(SI); +} + +void Verifier::visitAllocationInst(AllocationInst &AI) { + const PointerType *PTy = AI.getType(); + Assert1(PTy->getAddressSpace() == 0, + "Allocation instruction pointer not in the generic address space!", + &AI); + Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", + &AI); + visitInstruction(AI); +} + +void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { + Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.idx_begin(), EVI.idx_end()) == + EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); + + visitInstruction(EVI); +} + +void Verifier::visitInsertValueInst(InsertValueInst &IVI) { + Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.idx_begin(), IVI.idx_end()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); + + visitInstruction(IVI); +} + +/// verifyInstruction - Verify that an instruction is well formed. +/// +void Verifier::visitInstruction(Instruction &I) { + BasicBlock *BB = I.getParent(); + Assert1(BB, "Instruction not embedded in basic block!", &I); + + if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); + UI != UE; ++UI) + Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), + "Only PHI nodes may reference their own value!", &I); + } + + // Verify that if this is a terminator that it is at the end of the block. + if (isa<TerminatorInst>(I)) + Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I); + + + // Check that void typed values don't have names + Assert1(I.getType() != Type::VoidTy || !I.hasName(), + "Instruction has a name, but provides a void value!", &I); + + // Check that the return value of the instruction is either void or a legal + // value type. + Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType() + || ((isa<CallInst>(I) || isa<InvokeInst>(I)) + && isa<StructType>(I.getType())), + "Instruction returns a non-scalar type!", &I); + + // Check that the instruction doesn't produce metadata or metadata*. Calls + // all already checked against the callee type. + Assert1(I.getType() != Type::MetadataTy || + isa<CallInst>(I) || isa<InvokeInst>(I), + "Invalid use of metadata!", &I); + + if (const PointerType *PTy = dyn_cast<PointerType>(I.getType())) + Assert1(PTy->getElementType() != Type::MetadataTy, + "Instructions may not produce pointer to metadata.", &I); + + + // Check that all uses of the instruction, if they are instructions + // themselves, actually have parent basic blocks. If the use is not an + // instruction, it is an error! + for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); + UI != UE; ++UI) { + Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!", + *UI); + Instruction *Used = cast<Instruction>(*UI); + Assert2(Used->getParent() != 0, "Instruction referencing instruction not" + " embedded in a basic block!", &I, Used); + } + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); + + // Check to make sure that only first-class-values are operands to + // instructions. + if (!I.getOperand(i)->getType()->isFirstClassType()) { + Assert1(0, "Instruction operands must be first-class values!", &I); + } + + if (const PointerType *PTy = + dyn_cast<PointerType>(I.getOperand(i)->getType())) + Assert1(PTy->getElementType() != Type::MetadataTy, + "Invalid use of metadata pointer.", &I); + + if (Function *F = dyn_cast<Function>(I.getOperand(i))) { + // Check to make sure that the "address of" an intrinsic function is never + // taken. + Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)), + "Cannot take the address of an intrinsic!", &I); + Assert1(F->getParent() == Mod, "Referencing function in another module!", + &I); + } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { + Assert1(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); + } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { + Assert1(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { + Assert1(GV->getParent() == Mod, "Referencing global in another module!", + &I); + } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) { + BasicBlock *OpBlock = Op->getParent(); + + // Check that a definition dominates all of its uses. + if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { + // Invoke results are only usable in the normal destination, not in the + // exceptional destination. + BasicBlock *NormalDest = II->getNormalDest(); + + Assert2(NormalDest != II->getUnwindDest(), + "No uses of invoke possible due to dominance structure!", + Op, &I); + + // PHI nodes differ from other nodes because they actually "use" the + // value in the predecessor basic blocks they correspond to. + BasicBlock *UseBlock = BB; + if (isa<PHINode>(I)) + UseBlock = cast<BasicBlock>(I.getOperand(i+1)); + + if (isa<PHINode>(I) && UseBlock == OpBlock) { + // Special case of a phi node in the normal destination or the unwind + // destination. + Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), + "Invoke result not available in the unwind destination!", + Op, &I); + } else { + Assert2(DT->dominates(NormalDest, UseBlock) || + !DT->isReachableFromEntry(UseBlock), + "Invoke result does not dominate all uses!", Op, &I); + + // If the normal successor of an invoke instruction has multiple + // predecessors, then the normal edge from the invoke is critical, + // so the invoke value can only be live if the destination block + // dominates all of it's predecessors (other than the invoke). + if (!NormalDest->getSinglePredecessor() && + DT->isReachableFromEntry(UseBlock)) + // If it is used by something non-phi, then the other case is that + // 'NormalDest' dominates all of its predecessors other than the + // invoke. In this case, the invoke value can still be used. + for (pred_iterator PI = pred_begin(NormalDest), + E = pred_end(NormalDest); PI != E; ++PI) + if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) && + DT->isReachableFromEntry(*PI)) { + CheckFailed("Invoke result does not dominate all uses!", Op,&I); + return; + } + } + } else if (isa<PHINode>(I)) { + // PHI nodes are more difficult than other nodes because they actually + // "use" the value in the predecessor basic blocks they correspond to. + BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1)); + Assert2(DT->dominates(OpBlock, PredBB) || + !DT->isReachableFromEntry(PredBB), + "Instruction does not dominate all uses!", Op, &I); + } else { + if (OpBlock == BB) { + // If they are in the same basic block, make sure that the definition + // comes before the use. + Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB), + "Instruction does not dominate all uses!", Op, &I); + } + + // Definition must dominate use unless use is unreachable! + Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) || + !DT->isReachableFromEntry(BB), + "Instruction does not dominate all uses!", Op, &I); + } + } else if (isa<InlineAsm>(I.getOperand(i))) { + Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)), + "Cannot take the address of an inline asm!", &I); + } + } + InstsInThisBlock.insert(&I); +} + +// Flags used by TableGen to mark intrinsic parameters with the +// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. +static const unsigned ExtendedElementVectorType = 0x40000000; +static const unsigned TruncatedElementVectorType = 0x20000000; + +/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. +/// +void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { + Function *IF = CI.getCalledFunction(); + Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", + IF); + +#define GET_INTRINSIC_VERIFIER +#include "llvm/Intrinsics.gen" +#undef GET_INTRINSIC_VERIFIER + + switch (ID) { + default: + break; + case Intrinsic::dbg_declare: // llvm.dbg.declare + if (Constant *C = dyn_cast<Constant>(CI.getOperand(1))) + Assert1(C && !isa<ConstantPointerNull>(C), + "invalid llvm.dbg.declare intrinsic call", &CI); + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: + Assert1(isa<ConstantInt>(CI.getOperand(4)), + "alignment argument of memory intrinsics must be a constant int", + &CI); + break; + case Intrinsic::gcroot: + case Intrinsic::gcwrite: + case Intrinsic::gcread: + if (ID == Intrinsic::gcroot) { + AllocaInst *AI = + dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts()); + Assert1(AI && isa<PointerType>(AI->getType()->getElementType()), + "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); + Assert1(isa<Constant>(CI.getOperand(2)), + "llvm.gcroot parameter #2 must be a constant.", &CI); + } + + Assert1(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); + break; + case Intrinsic::init_trampoline: + Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()), + "llvm.init_trampoline parameter #2 must resolve to a function.", + &CI); + break; + case Intrinsic::prefetch: + Assert1(isa<ConstantInt>(CI.getOperand(2)) && + isa<ConstantInt>(CI.getOperand(3)) && + cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 && + cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", + &CI); + break; + case Intrinsic::stackprotector: + Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", + &CI); + break; + } +} + +/// Produce a string to identify an intrinsic parameter or return value. +/// The ArgNo value numbers the return values from 0 to NumRets-1 and the +/// parameters beginning with NumRets. +/// +static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { + if (ArgNo < NumRets) { + if (NumRets == 1) + return "Intrinsic result type"; + else + return "Intrinsic result type #" + utostr(ArgNo); + } else + return "Intrinsic parameter #" + utostr(ArgNo - NumRets); +} + +bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix) { + const FunctionType *FTy = F->getFunctionType(); + + unsigned NumElts = 0; + const Type *EltTy = Ty; + const VectorType *VTy = dyn_cast<VectorType>(Ty); + if (VTy) { + EltTy = VTy->getElementType(); + NumElts = VTy->getNumElements(); + } + + const Type *RetTy = FTy->getReturnType(); + const StructType *ST = dyn_cast<StructType>(RetTy); + unsigned NumRets = 1; + if (ST) + NumRets = ST->getNumElements(); + + if (VT < 0) { + int Match = ~VT; + + // Check flags that indicate a type that is an integral vector type with + // elements that are larger or smaller than the elements of the matched + // type. + if ((Match & (ExtendedElementVectorType | + TruncatedElementVectorType)) != 0) { + const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy); + if (!VTy || !IEltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "an integral vector type.", F); + return false; + } + // Adjust the current Ty (in the opposite direction) rather than + // the type being matched against. + if ((Match & ExtendedElementVectorType) != 0) { + if ((IEltTy->getBitWidth() & 1) != 0) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " + "element bit-width is odd.", F); + return false; + } + Ty = VectorType::getTruncatedElementVectorType(VTy); + } else + Ty = VectorType::getExtendedElementVectorType(VTy); + Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); + } + + if (Match <= static_cast<int>(NumRets - 1)) { + if (ST) + RetTy = ST->getElementType(Match); + + if (Ty != RetTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + "match return type.", F); + return false; + } + } else { + if (Ty != FTy->getParamType(Match - 1)) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + "match parameter %" + utostr(Match - 1) + ".", F); + return false; + } + } + } else if (VT == MVT::iAny) { + if (!EltTy->isInteger()) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "an integer type.", F); + return false; + } + + unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth(); + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += "i" + utostr(GotBits); + + // Check some constraints on various intrinsics. + switch (ID) { + default: break; // Not everything needs to be checked. + case Intrinsic::bswap: + if (GotBits < 16 || GotBits % 16 != 0) { + CheckFailed("Intrinsic requires even byte width argument", F); + return false; + } + break; + } + } else if (VT == MVT::fAny) { + if (!EltTy->isFloatingPoint()) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "a floating-point type.", F); + return false; + } + + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += MVT::getMVT(EltTy).getMVTString(); + } else if (VT == MVT::iPTR) { + if (!isa<PointerType>(Ty)) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (VT == MVT::iPTRAny) { + // Outside of TableGen, we don't distinguish iPTRAny (to any address space) + // and iPTR. In the verifier, we can not distinguish which case we have so + // allow either case to be legal. + if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) { + Suffix += ".p" + utostr(PTyp->getAddressSpace()) + + MVT::getMVT(PTyp->getElementType()).getMVTString(); + } else { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (MVT((MVT::SimpleValueType)VT).isVector()) { + MVT VVT = MVT((MVT::SimpleValueType)VT); + + // If this is a vector argument, verify the number and type of elements. + if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) { + CheckFailed("Intrinsic prototype has incorrect vector element type!", F); + return false; + } + + if (VVT.getVectorNumElements() != NumElts) { + CheckFailed("Intrinsic prototype has incorrect number of " + "vector elements!", F); + return false; + } + } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); + return false; + } else if (EltTy != Ty) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " + "and a scalar is required.", F); + return false; + } + + return true; +} + +/// VerifyIntrinsicPrototype - TableGen emits calls to this function into +/// Intrinsics.gen. This implements a little state machine that verifies the +/// prototype of intrinsics. +void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, + unsigned RetNum, + unsigned ParamNum, ...) { + va_list VA; + va_start(VA, ParamNum); + const FunctionType *FTy = F->getFunctionType(); + + // For overloaded intrinsics, the Suffix of the function name must match the + // types of the arguments. This variable keeps track of the expected + // suffix, to be checked at the end. + std::string Suffix; + + if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { + CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); + return; + } + + const Type *Ty = FTy->getReturnType(); + const StructType *ST = dyn_cast<StructType>(Ty); + + // Verify the return types. + if (ST && ST->getNumElements() != RetNum) { + CheckFailed("Intrinsic prototype has incorrect number of return types!", F); + return; + } + + for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. + + if (ST) Ty = ST->getElementType(ArgNo); + + if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) + break; + } + + // Verify the parameter types. + for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. + + if (VT == MVT::isVoid && ArgNo > 0) { + if (!FTy->isVarArg()) + CheckFailed("Intrinsic prototype has no '...'!", F); + break; + } + + if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, + Suffix)) + break; + } + + va_end(VA); + + // For intrinsics without pointer arguments, if we computed a Suffix then the + // intrinsic is overloaded and we need to make sure that the name of the + // function is correct. We add the suffix to the name of the intrinsic and + // compare against the given function name. If they are not the same, the + // function name is invalid. This ensures that overloading of intrinsics + // uses a sane and consistent naming convention. Note that intrinsics with + // pointer argument may or may not be overloaded so we will check assuming it + // has a suffix and not. + if (!Suffix.empty()) { + std::string Name(Intrinsic::getName(ID)); + if (Name + Suffix != F->getName()) { + CheckFailed("Overloaded intrinsic has incorrect suffix: '" + + F->getName().substr(Name.length()) + "'. It should be '" + + Suffix + "'", F); + } + } + + // Check parameter attributes. + Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), + "Intrinsic has wrong parameter attributes!", F); +} + +/// Verify that an MDNode is not cyclic. +bool Verifier::VerifyMDNode(const MDNode *N) { + if (N->elem_empty()) return true; + + // The current DFS path through the nodes. Node and element number. + typedef std::pair<const MDNode *, MDNode::const_elem_iterator> Edge; + SmallVector<Edge, 8> Path; + + Path.push_back(std::make_pair(N, N->elem_begin())); + while (!Path.empty()) { + Edge &e = Path.back(); + const MDNode *&e_N = e.first; + MDNode::const_elem_iterator &e_I = e.second; + + if (e_N->elem_end() == e_I) { + Path.pop_back(); + continue; + } + + for (MDNode::const_elem_iterator e_E = e_N->elem_end(); e_I != e_E; ++e_I) { + if (const MDNode *C = dyn_cast_or_null<MDNode>(e_I->operator Value*())) { + // Is child MDNode C already in the Path? + for (SmallVectorImpl<Edge>::iterator I = Path.begin(), E = Path.end(); + I != E; ++I) { + if (I->first != C) { + CheckFailed("MDNode is cyclic.", C); + return false; + } + } + + Path.push_back(std::make_pair(C, C->elem_begin())); + break; + } + } + } + return true; +} + + +//===----------------------------------------------------------------------===// +// Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { + return new Verifier(action); +} + + +// verifyFunction - Create +bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { + Function &F = const_cast<Function&>(f); + assert(!F.isDeclaration() && "Cannot verify external functions"); + + ExistingModuleProvider MP(F.getParent()); + FunctionPassManager FPM(&MP); + Verifier *V = new Verifier(action); + FPM.add(V); + FPM.run(F); + MP.releaseModule(); + return V->Broken; +} + +/// verifyModule - Check a module for errors, printing messages on stderr. +/// Return true if the module is corrupt. +/// +bool llvm::verifyModule(const Module &M, VerifierFailureAction action, + std::string *ErrorInfo) { + PassManager PM; + Verifier *V = new Verifier(action); + PM.add(V); + PM.run(const_cast<Module&>(M)); + + if (ErrorInfo && V->Broken) + *ErrorInfo = V->msgs.str(); + return V->Broken; +} + +// vim: sw=2 |