diff options
Diffstat (limited to 'lib/VMCore/Dominators.cpp')
-rw-r--r-- | lib/VMCore/Dominators.cpp | 302 |
1 files changed, 0 insertions, 302 deletions
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp deleted file mode 100644 index 77b2403..0000000 --- a/lib/VMCore/Dominators.cpp +++ /dev/null @@ -1,302 +0,0 @@ -//===- Dominators.cpp - Dominator Calculation -----------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements simple dominator construction algorithms for finding -// forward dominators. Postdominators are available in libanalysis, but are not -// included in libvmcore, because it's not needed. Forward dominators are -// needed to support the Verifier pass. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/Dominators.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/DominatorInternals.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/Instructions.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Support/CommandLine.h" -#include <algorithm> -using namespace llvm; - -// Always verify dominfo if expensive checking is enabled. -#ifdef XDEBUG -static bool VerifyDomInfo = true; -#else -static bool VerifyDomInfo = false; -#endif -static cl::opt<bool,true> -VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), - cl::desc("Verify dominator info (time consuming)")); - -bool BasicBlockEdge::isSingleEdge() const { - const TerminatorInst *TI = Start->getTerminator(); - unsigned NumEdgesToEnd = 0; - for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { - if (TI->getSuccessor(i) == End) - ++NumEdgesToEnd; - if (NumEdgesToEnd >= 2) - return false; - } - assert(NumEdgesToEnd == 1); - return true; -} - -//===----------------------------------------------------------------------===// -// DominatorTree Implementation -//===----------------------------------------------------------------------===// -// -// Provide public access to DominatorTree information. Implementation details -// can be found in DominatorInternals.h. -// -//===----------------------------------------------------------------------===// - -TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>); -TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>); - -char DominatorTree::ID = 0; -INITIALIZE_PASS(DominatorTree, "domtree", - "Dominator Tree Construction", true, true) - -bool DominatorTree::runOnFunction(Function &F) { - DT->recalculate(F); - return false; -} - -void DominatorTree::verifyAnalysis() const { - if (!VerifyDomInfo) return; - - Function &F = *getRoot()->getParent(); - - DominatorTree OtherDT; - OtherDT.getBase().recalculate(F); - if (compare(OtherDT)) { - errs() << "DominatorTree is not up to date!\nComputed:\n"; - print(errs()); - errs() << "\nActual:\n"; - OtherDT.print(errs()); - abort(); - } -} - -void DominatorTree::print(raw_ostream &OS, const Module *) const { - DT->print(OS); -} - -// dominates - Return true if Def dominates a use in User. This performs -// the special checks necessary if Def and User are in the same basic block. -// Note that Def doesn't dominate a use in Def itself! -bool DominatorTree::dominates(const Instruction *Def, - const Instruction *User) const { - const BasicBlock *UseBB = User->getParent(); - const BasicBlock *DefBB = Def->getParent(); - - // Any unreachable use is dominated, even if Def == User. - if (!isReachableFromEntry(UseBB)) - return true; - - // Unreachable definitions don't dominate anything. - if (!isReachableFromEntry(DefBB)) - return false; - - // An instruction doesn't dominate a use in itself. - if (Def == User) - return false; - - // The value defined by an invoke dominates an instruction only if - // it dominates every instruction in UseBB. - // A PHI is dominated only if the instruction dominates every possible use - // in the UseBB. - if (isa<InvokeInst>(Def) || isa<PHINode>(User)) - return dominates(Def, UseBB); - - if (DefBB != UseBB) - return dominates(DefBB, UseBB); - - // Loop through the basic block until we find Def or User. - BasicBlock::const_iterator I = DefBB->begin(); - for (; &*I != Def && &*I != User; ++I) - /*empty*/; - - return &*I == Def; -} - -// true if Def would dominate a use in any instruction in UseBB. -// note that dominates(Def, Def->getParent()) is false. -bool DominatorTree::dominates(const Instruction *Def, - const BasicBlock *UseBB) const { - const BasicBlock *DefBB = Def->getParent(); - - // Any unreachable use is dominated, even if DefBB == UseBB. - if (!isReachableFromEntry(UseBB)) - return true; - - // Unreachable definitions don't dominate anything. - if (!isReachableFromEntry(DefBB)) - return false; - - if (DefBB == UseBB) - return false; - - const InvokeInst *II = dyn_cast<InvokeInst>(Def); - if (!II) - return dominates(DefBB, UseBB); - - // Invoke results are only usable in the normal destination, not in the - // exceptional destination. - BasicBlock *NormalDest = II->getNormalDest(); - BasicBlockEdge E(DefBB, NormalDest); - return dominates(E, UseBB); -} - -bool DominatorTree::dominates(const BasicBlockEdge &BBE, - const BasicBlock *UseBB) const { - // Assert that we have a single edge. We could handle them by simply - // returning false, but since isSingleEdge is linear on the number of - // edges, the callers can normally handle them more efficiently. - assert(BBE.isSingleEdge()); - - // If the BB the edge ends in doesn't dominate the use BB, then the - // edge also doesn't. - const BasicBlock *Start = BBE.getStart(); - const BasicBlock *End = BBE.getEnd(); - if (!dominates(End, UseBB)) - return false; - - // Simple case: if the end BB has a single predecessor, the fact that it - // dominates the use block implies that the edge also does. - if (End->getSinglePredecessor()) - return true; - - // The normal edge from the invoke is critical. Conceptually, what we would - // like to do is split it and check if the new block dominates the use. - // With X being the new block, the graph would look like: - // - // DefBB - // /\ . . - // / \ . . - // / \ . . - // / \ | | - // A X B C - // | \ | / - // . \|/ - // . NormalDest - // . - // - // Given the definition of dominance, NormalDest is dominated by X iff X - // dominates all of NormalDest's predecessors (X, B, C in the example). X - // trivially dominates itself, so we only have to find if it dominates the - // other predecessors. Since the only way out of X is via NormalDest, X can - // only properly dominate a node if NormalDest dominates that node too. - for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); - PI != E; ++PI) { - const BasicBlock *BB = *PI; - if (BB == Start) - continue; - - if (!dominates(End, BB)) - return false; - } - return true; -} - -bool DominatorTree::dominates(const BasicBlockEdge &BBE, - const Use &U) const { - // Assert that we have a single edge. We could handle them by simply - // returning false, but since isSingleEdge is linear on the number of - // edges, the callers can normally handle them more efficiently. - assert(BBE.isSingleEdge()); - - Instruction *UserInst = cast<Instruction>(U.getUser()); - // A PHI in the end of the edge is dominated by it. - PHINode *PN = dyn_cast<PHINode>(UserInst); - if (PN && PN->getParent() == BBE.getEnd() && - PN->getIncomingBlock(U) == BBE.getStart()) - return true; - - // Otherwise use the edge-dominates-block query, which - // handles the crazy critical edge cases properly. - const BasicBlock *UseBB; - if (PN) - UseBB = PN->getIncomingBlock(U); - else - UseBB = UserInst->getParent(); - return dominates(BBE, UseBB); -} - -bool DominatorTree::dominates(const Instruction *Def, - const Use &U) const { - Instruction *UserInst = cast<Instruction>(U.getUser()); - const BasicBlock *DefBB = Def->getParent(); - - // Determine the block in which the use happens. PHI nodes use - // their operands on edges; simulate this by thinking of the use - // happening at the end of the predecessor block. - const BasicBlock *UseBB; - if (PHINode *PN = dyn_cast<PHINode>(UserInst)) - UseBB = PN->getIncomingBlock(U); - else - UseBB = UserInst->getParent(); - - // Any unreachable use is dominated, even if Def == User. - if (!isReachableFromEntry(UseBB)) - return true; - - // Unreachable definitions don't dominate anything. - if (!isReachableFromEntry(DefBB)) - return false; - - // Invoke instructions define their return values on the edges - // to their normal successors, so we have to handle them specially. - // Among other things, this means they don't dominate anything in - // their own block, except possibly a phi, so we don't need to - // walk the block in any case. - if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { - BasicBlock *NormalDest = II->getNormalDest(); - BasicBlockEdge E(DefBB, NormalDest); - return dominates(E, U); - } - - // If the def and use are in different blocks, do a simple CFG dominator - // tree query. - if (DefBB != UseBB) - return dominates(DefBB, UseBB); - - // Ok, def and use are in the same block. If the def is an invoke, it - // doesn't dominate anything in the block. If it's a PHI, it dominates - // everything in the block. - if (isa<PHINode>(UserInst)) - return true; - - // Otherwise, just loop through the basic block until we find Def or User. - BasicBlock::const_iterator I = DefBB->begin(); - for (; &*I != Def && &*I != UserInst; ++I) - /*empty*/; - - return &*I != UserInst; -} - -bool DominatorTree::isReachableFromEntry(const Use &U) const { - Instruction *I = dyn_cast<Instruction>(U.getUser()); - - // ConstantExprs aren't really reachable from the entry block, but they - // don't need to be treated like unreachable code either. - if (!I) return true; - - // PHI nodes use their operands on their incoming edges. - if (PHINode *PN = dyn_cast<PHINode>(I)) - return isReachableFromEntry(PN->getIncomingBlock(U)); - - // Everything else uses their operands in their own block. - return isReachableFromEntry(I->getParent()); -} |