diff options
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r-- | lib/VMCore/Constants.cpp | 2671 |
1 files changed, 0 insertions, 2671 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp deleted file mode 100644 index edd6a73..0000000 --- a/lib/VMCore/Constants.cpp +++ /dev/null @@ -1,2671 +0,0 @@ -//===-- Constants.cpp - Implement Constant nodes --------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the Constant* classes. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Constants.h" -#include "LLVMContextImpl.h" -#include "ConstantFold.h" -#include "llvm/DerivedTypes.h" -#include "llvm/GlobalValue.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/Operator.h" -#include "llvm/ADT/FoldingSet.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/ManagedStatic.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/STLExtras.h" -#include <algorithm> -#include <cstdarg> -using namespace llvm; - -//===----------------------------------------------------------------------===// -// Constant Class -//===----------------------------------------------------------------------===// - -void Constant::anchor() { } - -bool Constant::isNegativeZeroValue() const { - // Floating point values have an explicit -0.0 value. - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) - return CFP->isZero() && CFP->isNegative(); - - // Otherwise, just use +0.0. - return isNullValue(); -} - -bool Constant::isNullValue() const { - // 0 is null. - if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) - return CI->isZero(); - - // +0.0 is null. - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) - return CFP->isZero() && !CFP->isNegative(); - - // constant zero is zero for aggregates and cpnull is null for pointers. - return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); -} - -bool Constant::isAllOnesValue() const { - // Check for -1 integers - if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) - return CI->isMinusOne(); - - // Check for FP which are bitcasted from -1 integers - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) - return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); - - // Check for constant vectors which are splats of -1 values. - if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) - if (Constant *Splat = CV->getSplatValue()) - return Splat->isAllOnesValue(); - - // Check for constant vectors which are splats of -1 values. - if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) - if (Constant *Splat = CV->getSplatValue()) - return Splat->isAllOnesValue(); - - return false; -} - -// Constructor to create a '0' constant of arbitrary type... -Constant *Constant::getNullValue(Type *Ty) { - switch (Ty->getTypeID()) { - case Type::IntegerTyID: - return ConstantInt::get(Ty, 0); - case Type::HalfTyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEhalf)); - case Type::FloatTyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEsingle)); - case Type::DoubleTyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEdouble)); - case Type::X86_FP80TyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::x87DoubleExtended)); - case Type::FP128TyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEquad)); - case Type::PPC_FP128TyID: - return ConstantFP::get(Ty->getContext(), - APFloat(APInt::getNullValue(128))); - case Type::PointerTyID: - return ConstantPointerNull::get(cast<PointerType>(Ty)); - case Type::StructTyID: - case Type::ArrayTyID: - case Type::VectorTyID: - return ConstantAggregateZero::get(Ty); - default: - // Function, Label, or Opaque type? - llvm_unreachable("Cannot create a null constant of that type!"); - } -} - -Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { - Type *ScalarTy = Ty->getScalarType(); - - // Create the base integer constant. - Constant *C = ConstantInt::get(Ty->getContext(), V); - - // Convert an integer to a pointer, if necessary. - if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) - C = ConstantExpr::getIntToPtr(C, PTy); - - // Broadcast a scalar to a vector, if necessary. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - C = ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - -Constant *Constant::getAllOnesValue(Type *Ty) { - if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) - return ConstantInt::get(Ty->getContext(), - APInt::getAllOnesValue(ITy->getBitWidth())); - - if (Ty->isFloatingPointTy()) { - APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), - !Ty->isPPC_FP128Ty()); - return ConstantFP::get(Ty->getContext(), FL); - } - - VectorType *VTy = cast<VectorType>(Ty); - return ConstantVector::getSplat(VTy->getNumElements(), - getAllOnesValue(VTy->getElementType())); -} - -/// getAggregateElement - For aggregates (struct/array/vector) return the -/// constant that corresponds to the specified element if possible, or null if -/// not. This can return null if the element index is a ConstantExpr, or if -/// 'this' is a constant expr. -Constant *Constant::getAggregateElement(unsigned Elt) const { - if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) - return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; - - if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) - return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; - - if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) - return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; - - if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) - return CAZ->getElementValue(Elt); - - if (const UndefValue *UV = dyn_cast<UndefValue>(this)) - return UV->getElementValue(Elt); - - if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) - return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; - return 0; -} - -Constant *Constant::getAggregateElement(Constant *Elt) const { - assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); - if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) - return getAggregateElement(CI->getZExtValue()); - return 0; -} - - -void Constant::destroyConstantImpl() { - // When a Constant is destroyed, there may be lingering - // references to the constant by other constants in the constant pool. These - // constants are implicitly dependent on the module that is being deleted, - // but they don't know that. Because we only find out when the CPV is - // deleted, we must now notify all of our users (that should only be - // Constants) that they are, in fact, invalid now and should be deleted. - // - while (!use_empty()) { - Value *V = use_back(); -#ifndef NDEBUG // Only in -g mode... - if (!isa<Constant>(V)) { - dbgs() << "While deleting: " << *this - << "\n\nUse still stuck around after Def is destroyed: " - << *V << "\n\n"; - } -#endif - assert(isa<Constant>(V) && "References remain to Constant being destroyed"); - cast<Constant>(V)->destroyConstant(); - - // The constant should remove itself from our use list... - assert((use_empty() || use_back() != V) && "Constant not removed!"); - } - - // Value has no outstanding references it is safe to delete it now... - delete this; -} - -/// canTrap - Return true if evaluation of this constant could trap. This is -/// true for things like constant expressions that could divide by zero. -bool Constant::canTrap() const { - assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); - // The only thing that could possibly trap are constant exprs. - const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); - if (!CE) return false; - - // ConstantExpr traps if any operands can trap. - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (CE->getOperand(i)->canTrap()) - return true; - - // Otherwise, only specific operations can trap. - switch (CE->getOpcode()) { - default: - return false; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - // Div and rem can trap if the RHS is not known to be non-zero. - if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) - return true; - return false; - } -} - -/// isThreadDependent - Return true if the value can vary between threads. -bool Constant::isThreadDependent() const { - SmallPtrSet<const Constant*, 64> Visited; - SmallVector<const Constant*, 64> WorkList; - WorkList.push_back(this); - Visited.insert(this); - - while (!WorkList.empty()) { - const Constant *C = WorkList.pop_back_val(); - - if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { - if (GV->isThreadLocal()) - return true; - } - - for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { - const Constant *D = dyn_cast<Constant>(C->getOperand(I)); - if (!D) - continue; - if (Visited.insert(D)) - WorkList.push_back(D); - } - } - - return false; -} - -/// isConstantUsed - Return true if the constant has users other than constant -/// exprs and other dangling things. -bool Constant::isConstantUsed() const { - for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { - const Constant *UC = dyn_cast<Constant>(*UI); - if (UC == 0 || isa<GlobalValue>(UC)) - return true; - - if (UC->isConstantUsed()) - return true; - } - return false; -} - - - -/// getRelocationInfo - This method classifies the entry according to -/// whether or not it may generate a relocation entry. This must be -/// conservative, so if it might codegen to a relocatable entry, it should say -/// so. The return values are: -/// -/// NoRelocation: This constant pool entry is guaranteed to never have a -/// relocation applied to it (because it holds a simple constant like -/// '4'). -/// LocalRelocation: This entry has relocations, but the entries are -/// guaranteed to be resolvable by the static linker, so the dynamic -/// linker will never see them. -/// GlobalRelocations: This entry may have arbitrary relocations. -/// -/// FIXME: This really should not be in VMCore. -Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { - if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { - if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) - return LocalRelocation; // Local to this file/library. - return GlobalRelocations; // Global reference. - } - - if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) - return BA->getFunction()->getRelocationInfo(); - - // While raw uses of blockaddress need to be relocated, differences between - // two of them don't when they are for labels in the same function. This is a - // common idiom when creating a table for the indirect goto extension, so we - // handle it efficiently here. - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) - if (CE->getOpcode() == Instruction::Sub) { - ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); - ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); - if (LHS && RHS && - LHS->getOpcode() == Instruction::PtrToInt && - RHS->getOpcode() == Instruction::PtrToInt && - isa<BlockAddress>(LHS->getOperand(0)) && - isa<BlockAddress>(RHS->getOperand(0)) && - cast<BlockAddress>(LHS->getOperand(0))->getFunction() == - cast<BlockAddress>(RHS->getOperand(0))->getFunction()) - return NoRelocation; - } - - PossibleRelocationsTy Result = NoRelocation; - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - Result = std::max(Result, - cast<Constant>(getOperand(i))->getRelocationInfo()); - - return Result; -} - -/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove -/// it. This involves recursively eliminating any dead users of the -/// constantexpr. -static bool removeDeadUsersOfConstant(const Constant *C) { - if (isa<GlobalValue>(C)) return false; // Cannot remove this - - while (!C->use_empty()) { - const Constant *User = dyn_cast<Constant>(C->use_back()); - if (!User) return false; // Non-constant usage; - if (!removeDeadUsersOfConstant(User)) - return false; // Constant wasn't dead - } - - const_cast<Constant*>(C)->destroyConstant(); - return true; -} - - -/// removeDeadConstantUsers - If there are any dead constant users dangling -/// off of this constant, remove them. This method is useful for clients -/// that want to check to see if a global is unused, but don't want to deal -/// with potentially dead constants hanging off of the globals. -void Constant::removeDeadConstantUsers() const { - Value::const_use_iterator I = use_begin(), E = use_end(); - Value::const_use_iterator LastNonDeadUser = E; - while (I != E) { - const Constant *User = dyn_cast<Constant>(*I); - if (User == 0) { - LastNonDeadUser = I; - ++I; - continue; - } - - if (!removeDeadUsersOfConstant(User)) { - // If the constant wasn't dead, remember that this was the last live use - // and move on to the next constant. - LastNonDeadUser = I; - ++I; - continue; - } - - // If the constant was dead, then the iterator is invalidated. - if (LastNonDeadUser == E) { - I = use_begin(); - if (I == E) break; - } else { - I = LastNonDeadUser; - ++I; - } - } -} - - - -//===----------------------------------------------------------------------===// -// ConstantInt -//===----------------------------------------------------------------------===// - -void ConstantInt::anchor() { } - -ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) - : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { - assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); -} - -ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { - LLVMContextImpl *pImpl = Context.pImpl; - if (!pImpl->TheTrueVal) - pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); - return pImpl->TheTrueVal; -} - -ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { - LLVMContextImpl *pImpl = Context.pImpl; - if (!pImpl->TheFalseVal) - pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); - return pImpl->TheFalseVal; -} - -Constant *ConstantInt::getTrue(Type *Ty) { - VectorType *VTy = dyn_cast<VectorType>(Ty); - if (!VTy) { - assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); - return ConstantInt::getTrue(Ty->getContext()); - } - assert(VTy->getElementType()->isIntegerTy(1) && - "True must be vector of i1 or i1."); - return ConstantVector::getSplat(VTy->getNumElements(), - ConstantInt::getTrue(Ty->getContext())); -} - -Constant *ConstantInt::getFalse(Type *Ty) { - VectorType *VTy = dyn_cast<VectorType>(Ty); - if (!VTy) { - assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); - return ConstantInt::getFalse(Ty->getContext()); - } - assert(VTy->getElementType()->isIntegerTy(1) && - "False must be vector of i1 or i1."); - return ConstantVector::getSplat(VTy->getNumElements(), - ConstantInt::getFalse(Ty->getContext())); -} - - -// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap -// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the -// operator== and operator!= to ensure that the DenseMap doesn't attempt to -// compare APInt's of different widths, which would violate an APInt class -// invariant which generates an assertion. -ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { - // Get the corresponding integer type for the bit width of the value. - IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); - // get an existing value or the insertion position - DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); - ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; - if (!Slot) Slot = new ConstantInt(ITy, V); - return Slot; -} - -Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { - Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - -ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, - bool isSigned) { - return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); -} - -ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { - return get(Ty, V, true); -} - -Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { - return get(Ty, V, true); -} - -Constant *ConstantInt::get(Type *Ty, const APInt& V) { - ConstantInt *C = get(Ty->getContext(), V); - assert(C->getType() == Ty->getScalarType() && - "ConstantInt type doesn't match the type implied by its value!"); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - -ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, - uint8_t radix) { - return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); -} - -//===----------------------------------------------------------------------===// -// ConstantFP -//===----------------------------------------------------------------------===// - -static const fltSemantics *TypeToFloatSemantics(Type *Ty) { - if (Ty->isHalfTy()) - return &APFloat::IEEEhalf; - if (Ty->isFloatTy()) - return &APFloat::IEEEsingle; - if (Ty->isDoubleTy()) - return &APFloat::IEEEdouble; - if (Ty->isX86_FP80Ty()) - return &APFloat::x87DoubleExtended; - else if (Ty->isFP128Ty()) - return &APFloat::IEEEquad; - - assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); - return &APFloat::PPCDoubleDouble; -} - -void ConstantFP::anchor() { } - -/// get() - This returns a constant fp for the specified value in the -/// specified type. This should only be used for simple constant values like -/// 2.0/1.0 etc, that are known-valid both as double and as the target format. -Constant *ConstantFP::get(Type *Ty, double V) { - LLVMContext &Context = Ty->getContext(); - - APFloat FV(V); - bool ignored; - FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), - APFloat::rmNearestTiesToEven, &ignored); - Constant *C = get(Context, FV); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - - -Constant *ConstantFP::get(Type *Ty, StringRef Str) { - LLVMContext &Context = Ty->getContext(); - - APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); - Constant *C = get(Context, FV); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - - -ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { - LLVMContext &Context = Ty->getContext(); - APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); - apf.changeSign(); - return get(Context, apf); -} - - -Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { - Type *ScalarTy = Ty->getScalarType(); - if (ScalarTy->isFloatingPointTy()) { - Constant *C = getNegativeZero(ScalarTy); - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - return C; - } - - return Constant::getNullValue(Ty); -} - - -// ConstantFP accessors. -ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { - DenseMapAPFloatKeyInfo::KeyTy Key(V); - - LLVMContextImpl* pImpl = Context.pImpl; - - ConstantFP *&Slot = pImpl->FPConstants[Key]; - - if (!Slot) { - Type *Ty; - if (&V.getSemantics() == &APFloat::IEEEhalf) - Ty = Type::getHalfTy(Context); - else if (&V.getSemantics() == &APFloat::IEEEsingle) - Ty = Type::getFloatTy(Context); - else if (&V.getSemantics() == &APFloat::IEEEdouble) - Ty = Type::getDoubleTy(Context); - else if (&V.getSemantics() == &APFloat::x87DoubleExtended) - Ty = Type::getX86_FP80Ty(Context); - else if (&V.getSemantics() == &APFloat::IEEEquad) - Ty = Type::getFP128Ty(Context); - else { - assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && - "Unknown FP format"); - Ty = Type::getPPC_FP128Ty(Context); - } - Slot = new ConstantFP(Ty, V); - } - - return Slot; -} - -ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { - const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); - return ConstantFP::get(Ty->getContext(), - APFloat::getInf(Semantics, Negative)); -} - -ConstantFP::ConstantFP(Type *Ty, const APFloat& V) - : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { - assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && - "FP type Mismatch"); -} - -bool ConstantFP::isExactlyValue(const APFloat &V) const { - return Val.bitwiseIsEqual(V); -} - -//===----------------------------------------------------------------------===// -// ConstantAggregateZero Implementation -//===----------------------------------------------------------------------===// - -/// getSequentialElement - If this CAZ has array or vector type, return a zero -/// with the right element type. -Constant *ConstantAggregateZero::getSequentialElement() const { - return Constant::getNullValue(getType()->getSequentialElementType()); -} - -/// getStructElement - If this CAZ has struct type, return a zero with the -/// right element type for the specified element. -Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { - return Constant::getNullValue(getType()->getStructElementType(Elt)); -} - -/// getElementValue - Return a zero of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). -Constant *ConstantAggregateZero::getElementValue(Constant *C) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(cast<ConstantInt>(C)->getZExtValue()); -} - -/// getElementValue - Return a zero of the right value for the specified GEP -/// index. -Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(Idx); -} - - -//===----------------------------------------------------------------------===// -// UndefValue Implementation -//===----------------------------------------------------------------------===// - -/// getSequentialElement - If this undef has array or vector type, return an -/// undef with the right element type. -UndefValue *UndefValue::getSequentialElement() const { - return UndefValue::get(getType()->getSequentialElementType()); -} - -/// getStructElement - If this undef has struct type, return a zero with the -/// right element type for the specified element. -UndefValue *UndefValue::getStructElement(unsigned Elt) const { - return UndefValue::get(getType()->getStructElementType(Elt)); -} - -/// getElementValue - Return an undef of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). -UndefValue *UndefValue::getElementValue(Constant *C) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(cast<ConstantInt>(C)->getZExtValue()); -} - -/// getElementValue - Return an undef of the right value for the specified GEP -/// index. -UndefValue *UndefValue::getElementValue(unsigned Idx) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(Idx); -} - - - -//===----------------------------------------------------------------------===// -// ConstantXXX Classes -//===----------------------------------------------------------------------===// - -template <typename ItTy, typename EltTy> -static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { - for (; Start != End; ++Start) - if (*Start != Elt) - return false; - return true; -} - -ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantArrayVal, - OperandTraits<ConstantArray>::op_end(this) - V.size(), - V.size()) { - assert(V.size() == T->getNumElements() && - "Invalid initializer vector for constant array"); - for (unsigned i = 0, e = V.size(); i != e; ++i) - assert(V[i]->getType() == T->getElementType() && - "Initializer for array element doesn't match array element type!"); - std::copy(V.begin(), V.end(), op_begin()); -} - -Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { - // Empty arrays are canonicalized to ConstantAggregateZero. - if (V.empty()) - return ConstantAggregateZero::get(Ty); - - for (unsigned i = 0, e = V.size(); i != e; ++i) { - assert(V[i]->getType() == Ty->getElementType() && - "Wrong type in array element initializer"); - } - LLVMContextImpl *pImpl = Ty->getContext().pImpl; - - // If this is an all-zero array, return a ConstantAggregateZero object. If - // all undef, return an UndefValue, if "all simple", then return a - // ConstantDataArray. - Constant *C = V[0]; - if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) - return UndefValue::get(Ty); - - if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) - return ConstantAggregateZero::get(Ty); - - // Check to see if all of the elements are ConstantFP or ConstantInt and if - // the element type is compatible with ConstantDataVector. If so, use it. - if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { - // We speculatively build the elements here even if it turns out that there - // is a constantexpr or something else weird in the array, since it is so - // uncommon for that to happen. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { - if (CI->getType()->isIntegerTy(8)) { - SmallVector<uint8_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(16)) { - SmallVector<uint16_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(32)) { - SmallVector<uint32_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(64)) { - SmallVector<uint64_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } - } - - if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->getType()->isFloatTy()) { - SmallVector<float, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) - Elts.push_back(CFP->getValueAPF().convertToFloat()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CFP->getType()->isDoubleTy()) { - SmallVector<double, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) - Elts.push_back(CFP->getValueAPF().convertToDouble()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } - } - } - - // Otherwise, we really do want to create a ConstantArray. - return pImpl->ArrayConstants.getOrCreate(Ty, V); -} - -/// getTypeForElements - Return an anonymous struct type to use for a constant -/// with the specified set of elements. The list must not be empty. -StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, - ArrayRef<Constant*> V, - bool Packed) { - unsigned VecSize = V.size(); - SmallVector<Type*, 16> EltTypes(VecSize); - for (unsigned i = 0; i != VecSize; ++i) - EltTypes[i] = V[i]->getType(); - - return StructType::get(Context, EltTypes, Packed); -} - - -StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, - bool Packed) { - assert(!V.empty() && - "ConstantStruct::getTypeForElements cannot be called on empty list"); - return getTypeForElements(V[0]->getContext(), V, Packed); -} - - -ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantStructVal, - OperandTraits<ConstantStruct>::op_end(this) - V.size(), - V.size()) { - assert(V.size() == T->getNumElements() && - "Invalid initializer vector for constant structure"); - for (unsigned i = 0, e = V.size(); i != e; ++i) - assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && - "Initializer for struct element doesn't match struct element type!"); - std::copy(V.begin(), V.end(), op_begin()); -} - -// ConstantStruct accessors. -Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { - assert((ST->isOpaque() || ST->getNumElements() == V.size()) && - "Incorrect # elements specified to ConstantStruct::get"); - - // Create a ConstantAggregateZero value if all elements are zeros. - bool isZero = true; - bool isUndef = false; - - if (!V.empty()) { - isUndef = isa<UndefValue>(V[0]); - isZero = V[0]->isNullValue(); - if (isUndef || isZero) { - for (unsigned i = 0, e = V.size(); i != e; ++i) { - if (!V[i]->isNullValue()) - isZero = false; - if (!isa<UndefValue>(V[i])) - isUndef = false; - } - } - } - if (isZero) - return ConstantAggregateZero::get(ST); - if (isUndef) - return UndefValue::get(ST); - - return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); -} - -Constant *ConstantStruct::get(StructType *T, ...) { - va_list ap; - SmallVector<Constant*, 8> Values; - va_start(ap, T); - while (Constant *Val = va_arg(ap, llvm::Constant*)) - Values.push_back(Val); - va_end(ap); - return get(T, Values); -} - -ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantVectorVal, - OperandTraits<ConstantVector>::op_end(this) - V.size(), - V.size()) { - for (size_t i = 0, e = V.size(); i != e; i++) - assert(V[i]->getType() == T->getElementType() && - "Initializer for vector element doesn't match vector element type!"); - std::copy(V.begin(), V.end(), op_begin()); -} - -// ConstantVector accessors. -Constant *ConstantVector::get(ArrayRef<Constant*> V) { - assert(!V.empty() && "Vectors can't be empty"); - VectorType *T = VectorType::get(V.front()->getType(), V.size()); - LLVMContextImpl *pImpl = T->getContext().pImpl; - - // If this is an all-undef or all-zero vector, return a - // ConstantAggregateZero or UndefValue. - Constant *C = V[0]; - bool isZero = C->isNullValue(); - bool isUndef = isa<UndefValue>(C); - - if (isZero || isUndef) { - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) { - isZero = isUndef = false; - break; - } - } - - if (isZero) - return ConstantAggregateZero::get(T); - if (isUndef) - return UndefValue::get(T); - - // Check to see if all of the elements are ConstantFP or ConstantInt and if - // the element type is compatible with ConstantDataVector. If so, use it. - if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { - // We speculatively build the elements here even if it turns out that there - // is a constantexpr or something else weird in the array, since it is so - // uncommon for that to happen. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { - if (CI->getType()->isIntegerTy(8)) { - SmallVector<uint8_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(16)) { - SmallVector<uint16_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(32)) { - SmallVector<uint32_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(64)) { - SmallVector<uint64_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } - } - - if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->getType()->isFloatTy()) { - SmallVector<float, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) - Elts.push_back(CFP->getValueAPF().convertToFloat()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CFP->getType()->isDoubleTy()) { - SmallVector<double, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) - Elts.push_back(CFP->getValueAPF().convertToDouble()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } - } - } - - // Otherwise, the element type isn't compatible with ConstantDataVector, or - // the operand list constants a ConstantExpr or something else strange. - return pImpl->VectorConstants.getOrCreate(T, V); -} - -Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { - // If this splat is compatible with ConstantDataVector, use it instead of - // ConstantVector. - if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && - ConstantDataSequential::isElementTypeCompatible(V->getType())) - return ConstantDataVector::getSplat(NumElts, V); - - SmallVector<Constant*, 32> Elts(NumElts, V); - return get(Elts); -} - - -// Utility function for determining if a ConstantExpr is a CastOp or not. This -// can't be inline because we don't want to #include Instruction.h into -// Constant.h -bool ConstantExpr::isCast() const { - return Instruction::isCast(getOpcode()); -} - -bool ConstantExpr::isCompare() const { - return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; -} - -bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { - if (getOpcode() != Instruction::GetElementPtr) return false; - - gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); - User::const_op_iterator OI = llvm::next(this->op_begin()); - - // Skip the first index, as it has no static limit. - ++GEPI; - ++OI; - - // The remaining indices must be compile-time known integers within the - // bounds of the corresponding notional static array types. - for (; GEPI != E; ++GEPI, ++OI) { - ConstantInt *CI = dyn_cast<ConstantInt>(*OI); - if (!CI) return false; - if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) - if (CI->getValue().getActiveBits() > 64 || - CI->getZExtValue() >= ATy->getNumElements()) - return false; - } - - // All the indices checked out. - return true; -} - -bool ConstantExpr::hasIndices() const { - return getOpcode() == Instruction::ExtractValue || - getOpcode() == Instruction::InsertValue; -} - -ArrayRef<unsigned> ConstantExpr::getIndices() const { - if (const ExtractValueConstantExpr *EVCE = - dyn_cast<ExtractValueConstantExpr>(this)) - return EVCE->Indices; - - return cast<InsertValueConstantExpr>(this)->Indices; -} - -unsigned ConstantExpr::getPredicate() const { - assert(isCompare()); - return ((const CompareConstantExpr*)this)->predicate; -} - -/// getWithOperandReplaced - Return a constant expression identical to this -/// one, but with the specified operand set to the specified value. -Constant * -ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { - assert(Op->getType() == getOperand(OpNo)->getType() && - "Replacing operand with value of different type!"); - if (getOperand(OpNo) == Op) - return const_cast<ConstantExpr*>(this); - - SmallVector<Constant*, 8> NewOps; - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - NewOps.push_back(i == OpNo ? Op : getOperand(i)); - - return getWithOperands(NewOps); -} - -/// getWithOperands - This returns the current constant expression with the -/// operands replaced with the specified values. The specified array must -/// have the same number of operands as our current one. -Constant *ConstantExpr:: -getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { - assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); - bool AnyChange = Ty != getType(); - for (unsigned i = 0; i != Ops.size(); ++i) - AnyChange |= Ops[i] != getOperand(i); - - if (!AnyChange) // No operands changed, return self. - return const_cast<ConstantExpr*>(this); - - switch (getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); - case Instruction::Select: - return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); - case Instruction::InsertElement: - return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); - case Instruction::ExtractElement: - return ConstantExpr::getExtractElement(Ops[0], Ops[1]); - case Instruction::InsertValue: - return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); - case Instruction::ExtractValue: - return ConstantExpr::getExtractValue(Ops[0], getIndices()); - case Instruction::ShuffleVector: - return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); - case Instruction::GetElementPtr: - return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), - cast<GEPOperator>(this)->isInBounds()); - case Instruction::ICmp: - case Instruction::FCmp: - return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); - default: - assert(getNumOperands() == 2 && "Must be binary operator?"); - return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); - } -} - - -//===----------------------------------------------------------------------===// -// isValueValidForType implementations - -bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { - unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay - if (Ty->isIntegerTy(1)) - return Val == 0 || Val == 1; - if (NumBits >= 64) - return true; // always true, has to fit in largest type - uint64_t Max = (1ll << NumBits) - 1; - return Val <= Max; -} - -bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { - unsigned NumBits = Ty->getIntegerBitWidth(); - if (Ty->isIntegerTy(1)) - return Val == 0 || Val == 1 || Val == -1; - if (NumBits >= 64) - return true; // always true, has to fit in largest type - int64_t Min = -(1ll << (NumBits-1)); - int64_t Max = (1ll << (NumBits-1)) - 1; - return (Val >= Min && Val <= Max); -} - -bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { - // convert modifies in place, so make a copy. - APFloat Val2 = APFloat(Val); - bool losesInfo; - switch (Ty->getTypeID()) { - default: - return false; // These can't be represented as floating point! - - // FIXME rounding mode needs to be more flexible - case Type::HalfTyID: { - if (&Val2.getSemantics() == &APFloat::IEEEhalf) - return true; - Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); - return !losesInfo; - } - case Type::FloatTyID: { - if (&Val2.getSemantics() == &APFloat::IEEEsingle) - return true; - Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); - return !losesInfo; - } - case Type::DoubleTyID: { - if (&Val2.getSemantics() == &APFloat::IEEEhalf || - &Val2.getSemantics() == &APFloat::IEEEsingle || - &Val2.getSemantics() == &APFloat::IEEEdouble) - return true; - Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); - return !losesInfo; - } - case Type::X86_FP80TyID: - return &Val2.getSemantics() == &APFloat::IEEEhalf || - &Val2.getSemantics() == &APFloat::IEEEsingle || - &Val2.getSemantics() == &APFloat::IEEEdouble || - &Val2.getSemantics() == &APFloat::x87DoubleExtended; - case Type::FP128TyID: - return &Val2.getSemantics() == &APFloat::IEEEhalf || - &Val2.getSemantics() == &APFloat::IEEEsingle || - &Val2.getSemantics() == &APFloat::IEEEdouble || - &Val2.getSemantics() == &APFloat::IEEEquad; - case Type::PPC_FP128TyID: - return &Val2.getSemantics() == &APFloat::IEEEhalf || - &Val2.getSemantics() == &APFloat::IEEEsingle || - &Val2.getSemantics() == &APFloat::IEEEdouble || - &Val2.getSemantics() == &APFloat::PPCDoubleDouble; - } -} - - -//===----------------------------------------------------------------------===// -// Factory Function Implementation - -ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { - assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && - "Cannot create an aggregate zero of non-aggregate type!"); - - ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; - if (Entry == 0) - Entry = new ConstantAggregateZero(Ty); - - return Entry; -} - -/// destroyConstant - Remove the constant from the constant table. -/// -void ConstantAggregateZero::destroyConstant() { - getContext().pImpl->CAZConstants.erase(getType()); - destroyConstantImpl(); -} - -/// destroyConstant - Remove the constant from the constant table... -/// -void ConstantArray::destroyConstant() { - getType()->getContext().pImpl->ArrayConstants.remove(this); - destroyConstantImpl(); -} - - -//---- ConstantStruct::get() implementation... -// - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantStruct::destroyConstant() { - getType()->getContext().pImpl->StructConstants.remove(this); - destroyConstantImpl(); -} - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantVector::destroyConstant() { - getType()->getContext().pImpl->VectorConstants.remove(this); - destroyConstantImpl(); -} - -/// getSplatValue - If this is a splat constant, where all of the -/// elements have the same value, return that value. Otherwise return null. -Constant *ConstantVector::getSplatValue() const { - // Check out first element. - Constant *Elt = getOperand(0); - // Then make sure all remaining elements point to the same value. - for (unsigned I = 1, E = getNumOperands(); I < E; ++I) - if (getOperand(I) != Elt) - return 0; - return Elt; -} - -//---- ConstantPointerNull::get() implementation. -// - -ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { - ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; - if (Entry == 0) - Entry = new ConstantPointerNull(Ty); - - return Entry; -} - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantPointerNull::destroyConstant() { - getContext().pImpl->CPNConstants.erase(getType()); - // Free the constant and any dangling references to it. - destroyConstantImpl(); -} - - -//---- UndefValue::get() implementation. -// - -UndefValue *UndefValue::get(Type *Ty) { - UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; - if (Entry == 0) - Entry = new UndefValue(Ty); - - return Entry; -} - -// destroyConstant - Remove the constant from the constant table. -// -void UndefValue::destroyConstant() { - // Free the constant and any dangling references to it. - getContext().pImpl->UVConstants.erase(getType()); - destroyConstantImpl(); -} - -//---- BlockAddress::get() implementation. -// - -BlockAddress *BlockAddress::get(BasicBlock *BB) { - assert(BB->getParent() != 0 && "Block must have a parent"); - return get(BB->getParent(), BB); -} - -BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { - BlockAddress *&BA = - F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; - if (BA == 0) - BA = new BlockAddress(F, BB); - - assert(BA->getFunction() == F && "Basic block moved between functions"); - return BA; -} - -BlockAddress::BlockAddress(Function *F, BasicBlock *BB) -: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, - &Op<0>(), 2) { - setOperand(0, F); - setOperand(1, BB); - BB->AdjustBlockAddressRefCount(1); -} - - -// destroyConstant - Remove the constant from the constant table. -// -void BlockAddress::destroyConstant() { - getFunction()->getType()->getContext().pImpl - ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); - getBasicBlock()->AdjustBlockAddressRefCount(-1); - destroyConstantImpl(); -} - -void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { - // This could be replacing either the Basic Block or the Function. In either - // case, we have to remove the map entry. - Function *NewF = getFunction(); - BasicBlock *NewBB = getBasicBlock(); - - if (U == &Op<0>()) - NewF = cast<Function>(To); - else - NewBB = cast<BasicBlock>(To); - - // See if the 'new' entry already exists, if not, just update this in place - // and return early. - BlockAddress *&NewBA = - getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; - if (NewBA == 0) { - getBasicBlock()->AdjustBlockAddressRefCount(-1); - - // Remove the old entry, this can't cause the map to rehash (just a - // tombstone will get added). - getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), - getBasicBlock())); - NewBA = this; - setOperand(0, NewF); - setOperand(1, NewBB); - getBasicBlock()->AdjustBlockAddressRefCount(1); - return; - } - - // Otherwise, I do need to replace this with an existing value. - assert(NewBA != this && "I didn't contain From!"); - - // Everyone using this now uses the replacement. - replaceAllUsesWith(NewBA); - - destroyConstant(); -} - -//---- ConstantExpr::get() implementations. -// - -/// This is a utility function to handle folding of casts and lookup of the -/// cast in the ExprConstants map. It is used by the various get* methods below. -static inline Constant *getFoldedCast( - Instruction::CastOps opc, Constant *C, Type *Ty) { - assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); - // Fold a few common cases - if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) - return FC; - - LLVMContextImpl *pImpl = Ty->getContext().pImpl; - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> argVec(1, C); - ExprMapKeyType Key(opc, argVec); - - return pImpl->ExprConstants.getOrCreate(Ty, Key); -} - -Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { - Instruction::CastOps opc = Instruction::CastOps(oc); - assert(Instruction::isCast(opc) && "opcode out of range"); - assert(C && Ty && "Null arguments to getCast"); - assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); - - switch (opc) { - default: - llvm_unreachable("Invalid cast opcode"); - case Instruction::Trunc: return getTrunc(C, Ty); - case Instruction::ZExt: return getZExt(C, Ty); - case Instruction::SExt: return getSExt(C, Ty); - case Instruction::FPTrunc: return getFPTrunc(C, Ty); - case Instruction::FPExt: return getFPExtend(C, Ty); - case Instruction::UIToFP: return getUIToFP(C, Ty); - case Instruction::SIToFP: return getSIToFP(C, Ty); - case Instruction::FPToUI: return getFPToUI(C, Ty); - case Instruction::FPToSI: return getFPToSI(C, Ty); - case Instruction::PtrToInt: return getPtrToInt(C, Ty); - case Instruction::IntToPtr: return getIntToPtr(C, Ty); - case Instruction::BitCast: return getBitCast(C, Ty); - } -} - -Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { - if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) - return getBitCast(C, Ty); - return getZExt(C, Ty); -} - -Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { - if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) - return getBitCast(C, Ty); - return getSExt(C, Ty); -} - -Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { - if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) - return getBitCast(C, Ty); - return getTrunc(C, Ty); -} - -Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { - assert(S->getType()->isPointerTy() && "Invalid cast"); - assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); - - if (Ty->isIntegerTy()) - return getPtrToInt(S, Ty); - return getBitCast(S, Ty); -} - -Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, - bool isSigned) { - assert(C->getType()->isIntOrIntVectorTy() && - Ty->isIntOrIntVectorTy() && "Invalid cast"); - unsigned SrcBits = C->getType()->getScalarSizeInBits(); - unsigned DstBits = Ty->getScalarSizeInBits(); - Instruction::CastOps opcode = - (SrcBits == DstBits ? Instruction::BitCast : - (SrcBits > DstBits ? Instruction::Trunc : - (isSigned ? Instruction::SExt : Instruction::ZExt))); - return getCast(opcode, C, Ty); -} - -Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { - assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && - "Invalid cast"); - unsigned SrcBits = C->getType()->getScalarSizeInBits(); - unsigned DstBits = Ty->getScalarSizeInBits(); - if (SrcBits == DstBits) - return C; // Avoid a useless cast - Instruction::CastOps opcode = - (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); - return getCast(opcode, C, Ty); -} - -Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); - assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); - assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& - "SrcTy must be larger than DestTy for Trunc!"); - - return getFoldedCast(Instruction::Trunc, C, Ty); -} - -Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); - assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); - assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& - "SrcTy must be smaller than DestTy for SExt!"); - - return getFoldedCast(Instruction::SExt, C, Ty); -} - -Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); - assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); - assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& - "SrcTy must be smaller than DestTy for ZExt!"); - - return getFoldedCast(Instruction::ZExt, C, Ty); -} - -Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && - C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& - "This is an illegal floating point truncation!"); - return getFoldedCast(Instruction::FPTrunc, C, Ty); -} - -Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && - C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& - "This is an illegal floating point extension!"); - return getFoldedCast(Instruction::FPExt, C, Ty); -} - -Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && - "This is an illegal uint to floating point cast!"); - return getFoldedCast(Instruction::UIToFP, C, Ty); -} - -Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && - "This is an illegal sint to floating point cast!"); - return getFoldedCast(Instruction::SIToFP, C, Ty); -} - -Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && - "This is an illegal floating point to uint cast!"); - return getFoldedCast(Instruction::FPToUI, C, Ty); -} - -Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { -#ifndef NDEBUG - bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; - bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif - assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); - assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && - "This is an illegal floating point to sint cast!"); - return getFoldedCast(Instruction::FPToSI, C, Ty); -} - -Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { - assert(C->getType()->getScalarType()->isPointerTy() && - "PtrToInt source must be pointer or pointer vector"); - assert(DstTy->getScalarType()->isIntegerTy() && - "PtrToInt destination must be integer or integer vector"); - assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); - if (isa<VectorType>(C->getType())) - assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& - "Invalid cast between a different number of vector elements"); - return getFoldedCast(Instruction::PtrToInt, C, DstTy); -} - -Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { - assert(C->getType()->getScalarType()->isIntegerTy() && - "IntToPtr source must be integer or integer vector"); - assert(DstTy->getScalarType()->isPointerTy() && - "IntToPtr destination must be a pointer or pointer vector"); - assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); - if (isa<VectorType>(C->getType())) - assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& - "Invalid cast between a different number of vector elements"); - return getFoldedCast(Instruction::IntToPtr, C, DstTy); -} - -Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { - assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && - "Invalid constantexpr bitcast!"); - - // It is common to ask for a bitcast of a value to its own type, handle this - // speedily. - if (C->getType() == DstTy) return C; - - return getFoldedCast(Instruction::BitCast, C, DstTy); -} - -Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, - unsigned Flags) { - // Check the operands for consistency first. - assert(Opcode >= Instruction::BinaryOpsBegin && - Opcode < Instruction::BinaryOpsEnd && - "Invalid opcode in binary constant expression"); - assert(C1->getType() == C2->getType() && - "Operand types in binary constant expression should match"); - -#ifndef NDEBUG - switch (Opcode) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVectorTy() && - "Tried to create an integer operation on a non-integer type!"); - break; - case Instruction::FAdd: - case Instruction::FSub: - case Instruction::FMul: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isFPOrFPVectorTy() && - "Tried to create a floating-point operation on a " - "non-floating-point type!"); - break; - case Instruction::UDiv: - case Instruction::SDiv: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVectorTy() && - "Tried to create an arithmetic operation on a non-arithmetic type!"); - break; - case Instruction::FDiv: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isFPOrFPVectorTy() && - "Tried to create an arithmetic operation on a non-arithmetic type!"); - break; - case Instruction::URem: - case Instruction::SRem: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVectorTy() && - "Tried to create an arithmetic operation on a non-arithmetic type!"); - break; - case Instruction::FRem: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isFPOrFPVectorTy() && - "Tried to create an arithmetic operation on a non-arithmetic type!"); - break; - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVectorTy() && - "Tried to create a logical operation on a non-integral type!"); - break; - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert(C1->getType()->isIntOrIntVectorTy() && - "Tried to create a shift operation on a non-integer type!"); - break; - default: - break; - } -#endif - - if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) - return FC; // Fold a few common cases. - - std::vector<Constant*> argVec(1, C1); - argVec.push_back(C2); - ExprMapKeyType Key(Opcode, argVec, 0, Flags); - - LLVMContextImpl *pImpl = C1->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); -} - -Constant *ConstantExpr::getSizeOf(Type* Ty) { - // sizeof is implemented as: (i64) gep (Ty*)null, 1 - // Note that a non-inbounds gep is used, as null isn't within any object. - Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); - Constant *GEP = getGetElementPtr( - Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); - return getPtrToInt(GEP, - Type::getInt64Ty(Ty->getContext())); -} - -Constant *ConstantExpr::getAlignOf(Type* Ty) { - // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 - // Note that a non-inbounds gep is used, as null isn't within any object. - Type *AligningTy = - StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); - Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); - Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); - Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); - Constant *Indices[2] = { Zero, One }; - Constant *GEP = getGetElementPtr(NullPtr, Indices); - return getPtrToInt(GEP, - Type::getInt64Ty(Ty->getContext())); -} - -Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { - return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), - FieldNo)); -} - -Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { - // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo - // Note that a non-inbounds gep is used, as null isn't within any object. - Constant *GEPIdx[] = { - ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), - FieldNo - }; - Constant *GEP = getGetElementPtr( - Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); - return getPtrToInt(GEP, - Type::getInt64Ty(Ty->getContext())); -} - -Constant *ConstantExpr::getCompare(unsigned short Predicate, - Constant *C1, Constant *C2) { - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - - switch (Predicate) { - default: llvm_unreachable("Invalid CmpInst predicate"); - case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: - case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: - case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: - case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: - case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: - case CmpInst::FCMP_TRUE: - return getFCmp(Predicate, C1, C2); - - case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: - case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: - case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: - case CmpInst::ICMP_SLE: - return getICmp(Predicate, C1, C2); - } -} - -Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { - assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); - - if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) - return SC; // Fold common cases - - std::vector<Constant*> argVec(3, C); - argVec[1] = V1; - argVec[2] = V2; - ExprMapKeyType Key(Instruction::Select, argVec); - - LLVMContextImpl *pImpl = C->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); -} - -Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, - bool InBounds) { - if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) - return FC; // Fold a few common cases. - - // Get the result type of the getelementptr! - Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); - assert(Ty && "GEP indices invalid!"); - unsigned AS = C->getType()->getPointerAddressSpace(); - Type *ReqTy = Ty->getPointerTo(AS); - - assert(C->getType()->isPointerTy() && - "Non-pointer type for constant GetElementPtr expression"); - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.reserve(1 + Idxs.size()); - ArgVec.push_back(C); - for (unsigned i = 0, e = Idxs.size(); i != e; ++i) - ArgVec.push_back(cast<Constant>(Idxs[i])); - const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, - InBounds ? GEPOperator::IsInBounds : 0); - - LLVMContextImpl *pImpl = C->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ReqTy, Key); -} - -Constant * -ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { - assert(LHS->getType() == RHS->getType()); - assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && - pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); - - if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) - return FC; // Fold a few common cases... - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.push_back(LHS); - ArgVec.push_back(RHS); - // Get the key type with both the opcode and predicate - const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); - - Type *ResultTy = Type::getInt1Ty(LHS->getContext()); - if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) - ResultTy = VectorType::get(ResultTy, VT->getNumElements()); - - LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ResultTy, Key); -} - -Constant * -ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { - assert(LHS->getType() == RHS->getType()); - assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); - - if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) - return FC; // Fold a few common cases... - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec; - ArgVec.push_back(LHS); - ArgVec.push_back(RHS); - // Get the key type with both the opcode and predicate - const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); - - Type *ResultTy = Type::getInt1Ty(LHS->getContext()); - if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) - ResultTy = VectorType::get(ResultTy, VT->getNumElements()); - - LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ResultTy, Key); -} - -Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { - assert(Val->getType()->isVectorTy() && - "Tried to create extractelement operation on non-vector type!"); - assert(Idx->getType()->isIntegerTy(32) && - "Extractelement index must be i32 type!"); - - if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) - return FC; // Fold a few common cases. - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec(1, Val); - ArgVec.push_back(Idx); - const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); - - LLVMContextImpl *pImpl = Val->getContext().pImpl; - Type *ReqTy = Val->getType()->getVectorElementType(); - return pImpl->ExprConstants.getOrCreate(ReqTy, Key); -} - -Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, - Constant *Idx) { - assert(Val->getType()->isVectorTy() && - "Tried to create insertelement operation on non-vector type!"); - assert(Elt->getType() == Val->getType()->getVectorElementType() && - "Insertelement types must match!"); - assert(Idx->getType()->isIntegerTy(32) && - "Insertelement index must be i32 type!"); - - if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) - return FC; // Fold a few common cases. - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec(1, Val); - ArgVec.push_back(Elt); - ArgVec.push_back(Idx); - const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); - - LLVMContextImpl *pImpl = Val->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); -} - -Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, - Constant *Mask) { - assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && - "Invalid shuffle vector constant expr operands!"); - - if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) - return FC; // Fold a few common cases. - - unsigned NElts = Mask->getType()->getVectorNumElements(); - Type *EltTy = V1->getType()->getVectorElementType(); - Type *ShufTy = VectorType::get(EltTy, NElts); - - // Look up the constant in the table first to ensure uniqueness - std::vector<Constant*> ArgVec(1, V1); - ArgVec.push_back(V2); - ArgVec.push_back(Mask); - const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); - - LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ShufTy, Key); -} - -Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, - ArrayRef<unsigned> Idxs) { - assert(ExtractValueInst::getIndexedType(Agg->getType(), - Idxs) == Val->getType() && - "insertvalue indices invalid!"); - assert(Agg->getType()->isFirstClassType() && - "Non-first-class type for constant insertvalue expression"); - Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); - assert(FC && "insertvalue constant expr couldn't be folded!"); - return FC; -} - -Constant *ConstantExpr::getExtractValue(Constant *Agg, - ArrayRef<unsigned> Idxs) { - assert(Agg->getType()->isFirstClassType() && - "Tried to create extractelement operation on non-first-class type!"); - - Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); - (void)ReqTy; - assert(ReqTy && "extractvalue indices invalid!"); - - assert(Agg->getType()->isFirstClassType() && - "Non-first-class type for constant extractvalue expression"); - Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); - assert(FC && "ExtractValue constant expr couldn't be folded!"); - return FC; -} - -Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { - assert(C->getType()->isIntOrIntVectorTy() && - "Cannot NEG a nonintegral value!"); - return getSub(ConstantFP::getZeroValueForNegation(C->getType()), - C, HasNUW, HasNSW); -} - -Constant *ConstantExpr::getFNeg(Constant *C) { - assert(C->getType()->isFPOrFPVectorTy() && - "Cannot FNEG a non-floating-point value!"); - return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); -} - -Constant *ConstantExpr::getNot(Constant *C) { - assert(C->getType()->isIntOrIntVectorTy() && - "Cannot NOT a nonintegral value!"); - return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); -} - -Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, - bool HasNUW, bool HasNSW) { - unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | - (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); - return get(Instruction::Add, C1, C2, Flags); -} - -Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { - return get(Instruction::FAdd, C1, C2); -} - -Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, - bool HasNUW, bool HasNSW) { - unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | - (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); - return get(Instruction::Sub, C1, C2, Flags); -} - -Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { - return get(Instruction::FSub, C1, C2); -} - -Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, - bool HasNUW, bool HasNSW) { - unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | - (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); - return get(Instruction::Mul, C1, C2, Flags); -} - -Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { - return get(Instruction::FMul, C1, C2); -} - -Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { - return get(Instruction::UDiv, C1, C2, - isExact ? PossiblyExactOperator::IsExact : 0); -} - -Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { - return get(Instruction::SDiv, C1, C2, - isExact ? PossiblyExactOperator::IsExact : 0); -} - -Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { - return get(Instruction::FDiv, C1, C2); -} - -Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { - return get(Instruction::URem, C1, C2); -} - -Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { - return get(Instruction::SRem, C1, C2); -} - -Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { - return get(Instruction::FRem, C1, C2); -} - -Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { - return get(Instruction::And, C1, C2); -} - -Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { - return get(Instruction::Or, C1, C2); -} - -Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { - return get(Instruction::Xor, C1, C2); -} - -Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, - bool HasNUW, bool HasNSW) { - unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | - (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); - return get(Instruction::Shl, C1, C2, Flags); -} - -Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { - return get(Instruction::LShr, C1, C2, - isExact ? PossiblyExactOperator::IsExact : 0); -} - -Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { - return get(Instruction::AShr, C1, C2, - isExact ? PossiblyExactOperator::IsExact : 0); -} - -/// getBinOpIdentity - Return the identity for the given binary operation, -/// i.e. a constant C such that X op C = X and C op X = X for every X. It -/// returns null if the operator doesn't have an identity. -Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { - switch (Opcode) { - default: - // Doesn't have an identity. - return 0; - - case Instruction::Add: - case Instruction::Or: - case Instruction::Xor: - return Constant::getNullValue(Ty); - - case Instruction::Mul: - return ConstantInt::get(Ty, 1); - - case Instruction::And: - return Constant::getAllOnesValue(Ty); - } -} - -/// getBinOpAbsorber - Return the absorbing element for the given binary -/// operation, i.e. a constant C such that X op C = C and C op X = C for -/// every X. For example, this returns zero for integer multiplication. -/// It returns null if the operator doesn't have an absorbing element. -Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { - switch (Opcode) { - default: - // Doesn't have an absorber. - return 0; - - case Instruction::Or: - return Constant::getAllOnesValue(Ty); - - case Instruction::And: - case Instruction::Mul: - return Constant::getNullValue(Ty); - } -} - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantExpr::destroyConstant() { - getType()->getContext().pImpl->ExprConstants.remove(this); - destroyConstantImpl(); -} - -const char *ConstantExpr::getOpcodeName() const { - return Instruction::getOpcodeName(getOpcode()); -} - - - -GetElementPtrConstantExpr:: -GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, - Type *DestTy) - : ConstantExpr(DestTy, Instruction::GetElementPtr, - OperandTraits<GetElementPtrConstantExpr>::op_end(this) - - (IdxList.size()+1), IdxList.size()+1) { - OperandList[0] = C; - for (unsigned i = 0, E = IdxList.size(); i != E; ++i) - OperandList[i+1] = IdxList[i]; -} - -//===----------------------------------------------------------------------===// -// ConstantData* implementations - -void ConstantDataArray::anchor() {} -void ConstantDataVector::anchor() {} - -/// getElementType - Return the element type of the array/vector. -Type *ConstantDataSequential::getElementType() const { - return getType()->getElementType(); -} - -StringRef ConstantDataSequential::getRawDataValues() const { - return StringRef(DataElements, getNumElements()*getElementByteSize()); -} - -/// isElementTypeCompatible - Return true if a ConstantDataSequential can be -/// formed with a vector or array of the specified element type. -/// ConstantDataArray only works with normal float and int types that are -/// stored densely in memory, not with things like i42 or x86_f80. -bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { - if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; - if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { - switch (IT->getBitWidth()) { - case 8: - case 16: - case 32: - case 64: - return true; - default: break; - } - } - return false; -} - -/// getNumElements - Return the number of elements in the array or vector. -unsigned ConstantDataSequential::getNumElements() const { - if (ArrayType *AT = dyn_cast<ArrayType>(getType())) - return AT->getNumElements(); - return getType()->getVectorNumElements(); -} - - -/// getElementByteSize - Return the size in bytes of the elements in the data. -uint64_t ConstantDataSequential::getElementByteSize() const { - return getElementType()->getPrimitiveSizeInBits()/8; -} - -/// getElementPointer - Return the start of the specified element. -const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { - assert(Elt < getNumElements() && "Invalid Elt"); - return DataElements+Elt*getElementByteSize(); -} - - -/// isAllZeros - return true if the array is empty or all zeros. -static bool isAllZeros(StringRef Arr) { - for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) - if (*I != 0) - return false; - return true; -} - -/// getImpl - This is the underlying implementation of all of the -/// ConstantDataSequential::get methods. They all thunk down to here, providing -/// the correct element type. We take the bytes in as a StringRef because -/// we *want* an underlying "char*" to avoid TBAA type punning violations. -Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { - assert(isElementTypeCompatible(Ty->getSequentialElementType())); - // If the elements are all zero or there are no elements, return a CAZ, which - // is more dense and canonical. - if (isAllZeros(Elements)) - return ConstantAggregateZero::get(Ty); - - // Do a lookup to see if we have already formed one of these. - StringMap<ConstantDataSequential*>::MapEntryTy &Slot = - Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); - - // The bucket can point to a linked list of different CDS's that have the same - // body but different types. For example, 0,0,0,1 could be a 4 element array - // of i8, or a 1-element array of i32. They'll both end up in the same - /// StringMap bucket, linked up by their Next pointers. Walk the list. - ConstantDataSequential **Entry = &Slot.getValue(); - for (ConstantDataSequential *Node = *Entry; Node != 0; - Entry = &Node->Next, Node = *Entry) - if (Node->getType() == Ty) - return Node; - - // Okay, we didn't get a hit. Create a node of the right class, link it in, - // and return it. - if (isa<ArrayType>(Ty)) - return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); - - assert(isa<VectorType>(Ty)); - return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); -} - -void ConstantDataSequential::destroyConstant() { - // Remove the constant from the StringMap. - StringMap<ConstantDataSequential*> &CDSConstants = - getType()->getContext().pImpl->CDSConstants; - - StringMap<ConstantDataSequential*>::iterator Slot = - CDSConstants.find(getRawDataValues()); - - assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); - - ConstantDataSequential **Entry = &Slot->getValue(); - - // Remove the entry from the hash table. - if ((*Entry)->Next == 0) { - // If there is only one value in the bucket (common case) it must be this - // entry, and removing the entry should remove the bucket completely. - assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); - getContext().pImpl->CDSConstants.erase(Slot); - } else { - // Otherwise, there are multiple entries linked off the bucket, unlink the - // node we care about but keep the bucket around. - for (ConstantDataSequential *Node = *Entry; ; - Entry = &Node->Next, Node = *Entry) { - assert(Node && "Didn't find entry in its uniquing hash table!"); - // If we found our entry, unlink it from the list and we're done. - if (Node == this) { - *Entry = Node->Next; - break; - } - } - } - - // If we were part of a list, make sure that we don't delete the list that is - // still owned by the uniquing map. - Next = 0; - - // Finally, actually delete it. - destroyConstantImpl(); -} - -/// get() constructors - Return a constant with array type with an element -/// count and element type matching the ArrayRef passed in. Note that this -/// can return a ConstantAggregateZero object. -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { - Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ - Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ - Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ - Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { - Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { - Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} - -/// getString - This method constructs a CDS and initializes it with a text -/// string. The default behavior (AddNull==true) causes a null terminator to -/// be placed at the end of the array (increasing the length of the string by -/// one more than the StringRef would normally indicate. Pass AddNull=false -/// to disable this behavior. -Constant *ConstantDataArray::getString(LLVMContext &Context, - StringRef Str, bool AddNull) { - if (!AddNull) { - const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); - return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data), - Str.size())); - } - - SmallVector<uint8_t, 64> ElementVals; - ElementVals.append(Str.begin(), Str.end()); - ElementVals.push_back(0); - return get(Context, ElementVals); -} - -/// get() constructors - Return a constant with vector type with an element -/// count and element type matching the ArrayRef passed in. Note that this -/// can return a ConstantAggregateZero object. -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ - Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ - Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ - Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ - Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { - Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { - Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); - const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} - -Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { - assert(isElementTypeCompatible(V->getType()) && - "Element type not compatible with ConstantData"); - if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - if (CI->getType()->isIntegerTy(8)) { - SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); - return get(V->getContext(), Elts); - } - if (CI->getType()->isIntegerTy(16)) { - SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); - return get(V->getContext(), Elts); - } - if (CI->getType()->isIntegerTy(32)) { - SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); - return get(V->getContext(), Elts); - } - assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); - SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); - return get(V->getContext(), Elts); - } - - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { - if (CFP->getType()->isFloatTy()) { - SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); - return get(V->getContext(), Elts); - } - if (CFP->getType()->isDoubleTy()) { - SmallVector<double, 16> Elts(NumElts, - CFP->getValueAPF().convertToDouble()); - return get(V->getContext(), Elts); - } - } - return ConstantVector::getSplat(NumElts, V); -} - - -/// getElementAsInteger - If this is a sequential container of integers (of -/// any size), return the specified element in the low bits of a uint64_t. -uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { - assert(isa<IntegerType>(getElementType()) && - "Accessor can only be used when element is an integer"); - const char *EltPtr = getElementPointer(Elt); - - // The data is stored in host byte order, make sure to cast back to the right - // type to load with the right endianness. - switch (getElementType()->getIntegerBitWidth()) { - default: llvm_unreachable("Invalid bitwidth for CDS"); - case 8: - return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); - case 16: - return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); - case 32: - return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); - case 64: - return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); - } -} - -/// getElementAsAPFloat - If this is a sequential container of floating point -/// type, return the specified element as an APFloat. -APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { - const char *EltPtr = getElementPointer(Elt); - - switch (getElementType()->getTypeID()) { - default: - llvm_unreachable("Accessor can only be used when element is float/double!"); - case Type::FloatTyID: { - const float *FloatPrt = reinterpret_cast<const float *>(EltPtr); - return APFloat(*const_cast<float *>(FloatPrt)); - } - case Type::DoubleTyID: { - const double *DoublePtr = reinterpret_cast<const double *>(EltPtr); - return APFloat(*const_cast<double *>(DoublePtr)); - } - } -} - -/// getElementAsFloat - If this is an sequential container of floats, return -/// the specified element as a float. -float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { - assert(getElementType()->isFloatTy() && - "Accessor can only be used when element is a 'float'"); - const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); - return *const_cast<float *>(EltPtr); -} - -/// getElementAsDouble - If this is an sequential container of doubles, return -/// the specified element as a float. -double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { - assert(getElementType()->isDoubleTy() && - "Accessor can only be used when element is a 'float'"); - const double *EltPtr = - reinterpret_cast<const double *>(getElementPointer(Elt)); - return *const_cast<double *>(EltPtr); -} - -/// getElementAsConstant - Return a Constant for a specified index's element. -/// Note that this has to compute a new constant to return, so it isn't as -/// efficient as getElementAsInteger/Float/Double. -Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { - if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) - return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); - - return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); -} - -/// isString - This method returns true if this is an array of i8. -bool ConstantDataSequential::isString() const { - return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); -} - -/// isCString - This method returns true if the array "isString", ends with a -/// nul byte, and does not contains any other nul bytes. -bool ConstantDataSequential::isCString() const { - if (!isString()) - return false; - - StringRef Str = getAsString(); - - // The last value must be nul. - if (Str.back() != 0) return false; - - // Other elements must be non-nul. - return Str.drop_back().find(0) == StringRef::npos; -} - -/// getSplatValue - If this is a splat constant, meaning that all of the -/// elements have the same value, return that value. Otherwise return NULL. -Constant *ConstantDataVector::getSplatValue() const { - const char *Base = getRawDataValues().data(); - - // Compare elements 1+ to the 0'th element. - unsigned EltSize = getElementByteSize(); - for (unsigned i = 1, e = getNumElements(); i != e; ++i) - if (memcmp(Base, Base+i*EltSize, EltSize)) - return 0; - - // If they're all the same, return the 0th one as a representative. - return getElementAsConstant(0); -} - -//===----------------------------------------------------------------------===// -// replaceUsesOfWithOnConstant implementations - -/// replaceUsesOfWithOnConstant - Update this constant array to change uses of -/// 'From' to be uses of 'To'. This must update the uniquing data structures -/// etc. -/// -/// Note that we intentionally replace all uses of From with To here. Consider -/// a large array that uses 'From' 1000 times. By handling this case all here, -/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that -/// single invocation handles all 1000 uses. Handling them one at a time would -/// work, but would be really slow because it would have to unique each updated -/// array instance. -/// -void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, - Use *U) { - assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); - Constant *ToC = cast<Constant>(To); - - LLVMContextImpl *pImpl = getType()->getContext().pImpl; - - SmallVector<Constant*, 8> Values; - LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; - Lookup.first = cast<ArrayType>(getType()); - Values.reserve(getNumOperands()); // Build replacement array. - - // Fill values with the modified operands of the constant array. Also, - // compute whether this turns into an all-zeros array. - unsigned NumUpdated = 0; - - // Keep track of whether all the values in the array are "ToC". - bool AllSame = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - if (Val == From) { - Val = ToC; - ++NumUpdated; - } - Values.push_back(Val); - AllSame &= Val == ToC; - } - - Constant *Replacement = 0; - if (AllSame && ToC->isNullValue()) { - Replacement = ConstantAggregateZero::get(getType()); - } else if (AllSame && isa<UndefValue>(ToC)) { - Replacement = UndefValue::get(getType()); - } else { - // Check to see if we have this array type already. - Lookup.second = makeArrayRef(Values); - LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = - pImpl->ArrayConstants.find(Lookup); - - if (I != pImpl->ArrayConstants.map_end()) { - Replacement = I->first; - } else { - // Okay, the new shape doesn't exist in the system yet. Instead of - // creating a new constant array, inserting it, replaceallusesof'ing the - // old with the new, then deleting the old... just update the current one - // in place! - pImpl->ArrayConstants.remove(this); - - // Update to the new value. Optimize for the case when we have a single - // operand that we're changing, but handle bulk updates efficiently. - if (NumUpdated == 1) { - unsigned OperandToUpdate = U - OperandList; - assert(getOperand(OperandToUpdate) == From && - "ReplaceAllUsesWith broken!"); - setOperand(OperandToUpdate, ToC); - } else { - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (getOperand(i) == From) - setOperand(i, ToC); - } - pImpl->ArrayConstants.insert(this); - return; - } - } - - // Otherwise, I do need to replace this with an existing value. - assert(Replacement != this && "I didn't contain From!"); - - // Everyone using this now uses the replacement. - replaceAllUsesWith(Replacement); - - // Delete the old constant! - destroyConstant(); -} - -void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, - Use *U) { - assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); - Constant *ToC = cast<Constant>(To); - - unsigned OperandToUpdate = U-OperandList; - assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - - SmallVector<Constant*, 8> Values; - LLVMContextImpl::StructConstantsTy::LookupKey Lookup; - Lookup.first = cast<StructType>(getType()); - Values.reserve(getNumOperands()); // Build replacement struct. - - // Fill values with the modified operands of the constant struct. Also, - // compute whether this turns into an all-zeros struct. - bool isAllZeros = false; - bool isAllUndef = false; - if (ToC->isNullValue()) { - isAllZeros = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - Values.push_back(Val); - if (isAllZeros) isAllZeros = Val->isNullValue(); - } - } else if (isa<UndefValue>(ToC)) { - isAllUndef = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - Values.push_back(Val); - if (isAllUndef) isAllUndef = isa<UndefValue>(Val); - } - } else { - for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) - Values.push_back(cast<Constant>(O->get())); - } - Values[OperandToUpdate] = ToC; - - LLVMContextImpl *pImpl = getContext().pImpl; - - Constant *Replacement = 0; - if (isAllZeros) { - Replacement = ConstantAggregateZero::get(getType()); - } else if (isAllUndef) { - Replacement = UndefValue::get(getType()); - } else { - // Check to see if we have this struct type already. - Lookup.second = makeArrayRef(Values); - LLVMContextImpl::StructConstantsTy::MapTy::iterator I = - pImpl->StructConstants.find(Lookup); - - if (I != pImpl->StructConstants.map_end()) { - Replacement = I->first; - } else { - // Okay, the new shape doesn't exist in the system yet. Instead of - // creating a new constant struct, inserting it, replaceallusesof'ing the - // old with the new, then deleting the old... just update the current one - // in place! - pImpl->StructConstants.remove(this); - - // Update to the new value. - setOperand(OperandToUpdate, ToC); - pImpl->StructConstants.insert(this); - return; - } - } - - assert(Replacement != this && "I didn't contain From!"); - - // Everyone using this now uses the replacement. - replaceAllUsesWith(Replacement); - - // Delete the old constant! - destroyConstant(); -} - -void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, - Use *U) { - assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); - - SmallVector<Constant*, 8> Values; - Values.reserve(getNumOperands()); // Build replacement array... - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - Constant *Val = getOperand(i); - if (Val == From) Val = cast<Constant>(To); - Values.push_back(Val); - } - - Constant *Replacement = get(Values); - assert(Replacement != this && "I didn't contain From!"); - - // Everyone using this now uses the replacement. - replaceAllUsesWith(Replacement); - - // Delete the old constant! - destroyConstant(); -} - -void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, - Use *U) { - assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); - Constant *To = cast<Constant>(ToV); - - SmallVector<Constant*, 8> NewOps; - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - Constant *Op = getOperand(i); - NewOps.push_back(Op == From ? To : Op); - } - - Constant *Replacement = getWithOperands(NewOps); - assert(Replacement != this && "I didn't contain From!"); - - // Everyone using this now uses the replacement. - replaceAllUsesWith(Replacement); - - // Delete the old constant! - destroyConstant(); -} |