summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/ConstantFold.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/ConstantFold.cpp')
-rw-r--r--lib/VMCore/ConstantFold.cpp1096
1 files changed, 658 insertions, 438 deletions
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index 3aab0cc..c1fcc5f 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -12,9 +12,8 @@
// ConstantExpr::get* methods to automatically fold constants when possible.
//
// The current constant folding implementation is implemented in two pieces: the
-// template-based folder for simple primitive constants like ConstantInt, and
-// the special case hackery that we use to symbolically evaluate expressions
-// that use ConstantExprs.
+// pieces that don't need TargetData, and the pieces that do. This is to avoid
+// a dependence in VMCore on Target.
//
//===----------------------------------------------------------------------===//
@@ -24,8 +23,11 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/LLVMContext.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
@@ -39,7 +41,7 @@ using namespace llvm;
/// BitCastConstantVector - Convert the specified ConstantVector node to the
/// specified vector type. At this point, we know that the elements of the
/// input vector constant are all simple integer or FP values.
-static Constant *BitCastConstantVector(ConstantVector *CV,
+static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
const VectorType *DstTy) {
// If this cast changes element count then we can't handle it here:
// doing so requires endianness information. This should be handled by
@@ -47,7 +49,7 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
unsigned NumElts = DstTy->getNumElements();
if (NumElts != CV->getNumOperands())
return 0;
-
+
// Check to verify that all elements of the input are simple.
for (unsigned i = 0; i != NumElts; ++i) {
if (!isa<ConstantInt>(CV->getOperand(i)) &&
@@ -59,7 +61,8 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
std::vector<Constant*> Result;
const Type *DstEltTy = DstTy->getElementType();
for (unsigned i = 0; i != NumElts; ++i)
- Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
+ Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
+ DstEltTy));
return ConstantVector::get(Result);
}
@@ -70,13 +73,13 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
static unsigned
foldConstantCastPair(
unsigned opc, ///< opcode of the second cast constant expression
- const ConstantExpr*Op, ///< the first cast constant expression
+ ConstantExpr *Op, ///< the first cast constant expression
const Type *DstTy ///< desintation type of the first cast
) {
assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
assert(CastInst::isCast(opc) && "Invalid cast opcode");
-
+
// The the types and opcodes for the two Cast constant expressions
const Type *SrcTy = Op->getOperand(0)->getType();
const Type *MidTy = Op->getType();
@@ -85,41 +88,45 @@ foldConstantCastPair(
// Let CastInst::isEliminableCastPair do the heavy lifting.
return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
- Type::Int64Ty);
+ Type::getInt64Ty(DstTy->getContext()));
}
-static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
+static Constant *FoldBitCast(LLVMContext &Context,
+ Constant *V, const Type *DestTy) {
const Type *SrcTy = V->getType();
if (SrcTy == DestTy)
return V; // no-op cast
-
+
// Check to see if we are casting a pointer to an aggregate to a pointer to
// the first element. If so, return the appropriate GEP instruction.
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
SmallVector<Value*, 8> IdxList;
- IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
+ Value *Zero = Constant::getNullValue(Type::getInt32Ty(Context));
+ IdxList.push_back(Zero);
const Type *ElTy = PTy->getElementType();
while (ElTy != DPTy->getElementType()) {
if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
if (STy->getNumElements() == 0) break;
ElTy = STy->getElementType(0);
- IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
+ IdxList.push_back(Zero);
} else if (const SequentialType *STy =
dyn_cast<SequentialType>(ElTy)) {
if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
ElTy = STy->getElementType();
- IdxList.push_back(IdxList[0]);
+ IdxList.push_back(Zero);
} else {
break;
}
}
-
+
if (ElTy == DPTy->getElementType())
- return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
+ // This GEP is inbounds because all indices are zero.
+ return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
+ IdxList.size());
}
-
+
// Handle casts from one vector constant to another. We know that the src
// and dest type have the same size (otherwise its an illegal cast).
if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
@@ -130,48 +137,50 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
// First, check for null. Undef is already handled.
if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(DestTy);
-
+
if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
- return BitCastConstantVector(CV, DestPTy);
+ return BitCastConstantVector(Context, CV, DestPTy);
}
// Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
// This allows for other simplifications (although some of them
// can only be handled by Analysis/ConstantFolding.cpp).
if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
- return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
+ return ConstantExpr::getBitCast(
+ ConstantVector::get(&V, 1), DestPTy);
}
-
+
// Finally, implement bitcast folding now. The code below doesn't handle
// bitcast right.
if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
return ConstantPointerNull::get(cast<PointerType>(DestTy));
-
+
// Handle integral constant input.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (DestTy->isInteger())
// Integral -> Integral. This is a no-op because the bit widths must
// be the same. Consequently, we just fold to V.
return V;
if (DestTy->isFloatingPoint())
- return ConstantFP::get(APFloat(CI->getValue(),
- DestTy != Type::PPC_FP128Ty));
+ return ConstantFP::get(Context, APFloat(CI->getValue(),
+ DestTy != Type::getPPC_FP128Ty(Context)));
// Otherwise, can't fold this (vector?)
return 0;
}
// Handle ConstantFP input.
- if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
+ if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
// FP -> Integral.
- return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
+ return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
return 0;
}
-Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
+Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
+ unsigned opc, Constant *V,
const Type *DestTy) {
if (isa<UndefValue>(V)) {
// zext(undef) = 0, because the top bits will be zero.
@@ -183,12 +192,12 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
return UndefValue::get(DestTy);
}
// No compile-time operations on this type yet.
- if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
+ if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
return 0;
// If the cast operand is a constant expression, there's a few things we can
// do to try to simplify it.
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->isCast()) {
// Try hard to fold cast of cast because they are often eliminable.
if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
@@ -211,7 +220,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
// If the cast operand is a constant vector, perform the cast by
// operating on each element. In the cast of bitcasts, the element
// count may be mismatched; don't attempt to handle that here.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
if (isa<VectorType>(DestTy) &&
cast<VectorType>(DestTy)->getNumElements() ==
CV->getType()->getNumElements()) {
@@ -229,21 +238,21 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
switch (opc) {
case Instruction::FPTrunc:
case Instruction::FPExt:
- if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
bool ignored;
APFloat Val = FPC->getValueAPF();
- Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
- DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
- DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
- DestTy == Type::FP128Ty ? APFloat::IEEEquad :
+ Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
+ DestTy->isDoubleTy() ? APFloat::IEEEdouble :
+ DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
+ DestTy->isFP128Ty() ? APFloat::IEEEquad :
APFloat::Bogus,
APFloat::rmNearestTiesToEven, &ignored);
- return ConstantFP::get(Val);
+ return ConstantFP::get(Context, Val);
}
return 0; // Can't fold.
case Instruction::FPToUI:
case Instruction::FPToSI:
- if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
const APFloat &V = FPC->getValueAPF();
bool ignored;
uint64_t x[2];
@@ -251,7 +260,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
(void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
APInt Val(DestBitWidth, 2, x);
- return ConstantInt::get(Val);
+ return ConstantInt::get(Context, Val);
}
return 0; // Can't fold.
case Instruction::IntToPtr: //always treated as unsigned
@@ -264,7 +273,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
return 0; // Other pointer types cannot be casted
case Instruction::UIToFP:
case Instruction::SIToFP:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
APInt api = CI->getValue();
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
@@ -272,67 +281,68 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
(void)apf.convertFromAPInt(api,
opc==Instruction::SIToFP,
APFloat::rmNearestTiesToEven);
- return ConstantFP::get(apf);
+ return ConstantFP::get(Context, apf);
}
return 0;
case Instruction::ZExt:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.zext(BitWidth);
- return ConstantInt::get(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::SExt:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.sext(BitWidth);
- return ConstantInt::get(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::Trunc:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.trunc(BitWidth);
- return ConstantInt::get(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::BitCast:
- return FoldBitCast(const_cast<Constant*>(V), DestTy);
+ return FoldBitCast(Context, V, DestTy);
default:
assert(!"Invalid CE CastInst opcode");
break;
}
- assert(0 && "Failed to cast constant expression");
+ llvm_unreachable("Failed to cast constant expression");
return 0;
}
-Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
- const Constant *V1,
- const Constant *V2) {
- if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
- return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
+Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
+ Constant *Cond,
+ Constant *V1, Constant *V2) {
+ if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
+ return CB->getZExtValue() ? V1 : V2;
- if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
- if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
- if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
- if (V1 == V2) return const_cast<Constant*>(V1);
+ if (isa<UndefValue>(V1)) return V2;
+ if (isa<UndefValue>(V2)) return V1;
+ if (isa<UndefValue>(Cond)) return V1;
+ if (V1 == V2) return V1;
return 0;
}
-Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
- const Constant *Idx) {
+Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
+ Constant *Val,
+ Constant *Idx) {
if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
if (Val->isNullValue()) // ee(zero, x) -> zero
return Constant::getNullValue(
cast<VectorType>(Val->getType())->getElementType());
-
- if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
- if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
+
+ if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
return CVal->getOperand(CIdx->getZExtValue());
} else if (isa<UndefValue>(Idx)) {
// ee({w,x,y,z}, undef) -> w (an arbitrary value).
@@ -342,17 +352,18 @@ Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
return 0;
}
-Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
- const Constant *Elt,
- const Constant *Idx) {
- const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
+Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
+ Constant *Val,
+ Constant *Elt,
+ Constant *Idx) {
+ ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
if (!CIdx) return 0;
APInt idxVal = CIdx->getValue();
if (isa<UndefValue>(Val)) {
// Insertion of scalar constant into vector undef
// Optimize away insertion of undef
if (isa<UndefValue>(Elt))
- return const_cast<Constant*>(Val);
+ return Val;
// Otherwise break the aggregate undef into multiple undefs and do
// the insertion
unsigned numOps =
@@ -360,9 +371,9 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
std::vector<Constant*> Ops;
Ops.reserve(numOps);
for (unsigned i = 0; i < numOps; ++i) {
- const Constant *Op =
+ Constant *Op =
(idxVal == i) ? Elt : UndefValue::get(Elt->getType());
- Ops.push_back(const_cast<Constant*>(Op));
+ Ops.push_back(Op);
}
return ConstantVector::get(Ops);
}
@@ -370,7 +381,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
// Insertion of scalar constant into vector aggregate zero
// Optimize away insertion of zero
if (Elt->isNullValue())
- return const_cast<Constant*>(Val);
+ return Val;
// Otherwise break the aggregate zero into multiple zeros and do
// the insertion
unsigned numOps =
@@ -378,20 +389,20 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
std::vector<Constant*> Ops;
Ops.reserve(numOps);
for (unsigned i = 0; i < numOps; ++i) {
- const Constant *Op =
+ Constant *Op =
(idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
- Ops.push_back(const_cast<Constant*>(Op));
+ Ops.push_back(Op);
}
return ConstantVector::get(Ops);
}
- if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
+ if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
// Insertion of scalar constant into vector constant
std::vector<Constant*> Ops;
Ops.reserve(CVal->getNumOperands());
for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
- const Constant *Op =
+ Constant *Op =
(idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
- Ops.push_back(const_cast<Constant*>(Op));
+ Ops.push_back(Op);
}
return ConstantVector::get(Ops);
}
@@ -401,10 +412,11 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
/// return the specified element value. Otherwise return null.
-static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
+static Constant *GetVectorElement(LLVMContext &Context, Constant *C,
+ unsigned EltNo) {
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
return CV->getOperand(EltNo);
-
+
const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
if (isa<ConstantAggregateZero>(C))
return Constant::getNullValue(EltTy);
@@ -413,9 +425,10 @@ static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
return 0;
}
-Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
- const Constant *V2,
- const Constant *Mask) {
+Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
+ Constant *V1,
+ Constant *V2,
+ Constant *Mask) {
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
@@ -426,7 +439,7 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
// Loop over the shuffle mask, evaluating each element.
SmallVector<Constant*, 32> Result;
for (unsigned i = 0; i != MaskNumElts; ++i) {
- Constant *InElt = GetVectorElement(Mask, i);
+ Constant *InElt = GetVectorElement(Context, Mask, i);
if (InElt == 0) return 0;
if (isa<UndefValue>(InElt))
@@ -436,9 +449,9 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
if (Elt >= SrcNumElts*2)
InElt = UndefValue::get(EltTy);
else if (Elt >= SrcNumElts)
- InElt = GetVectorElement(V2, Elt - SrcNumElts);
+ InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
else
- InElt = GetVectorElement(V1, Elt);
+ InElt = GetVectorElement(Context, V1, Elt);
if (InElt == 0) return 0;
} else {
// Unknown value.
@@ -450,12 +463,13 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
return ConstantVector::get(&Result[0], Result.size());
}
-Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
+Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
+ Constant *Agg,
const unsigned *Idxs,
unsigned NumIdx) {
// Base case: no indices, so return the entire value.
if (NumIdx == 0)
- return const_cast<Constant *>(Agg);
+ return Agg;
if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef
return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
@@ -469,123 +483,111 @@ Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
Idxs + NumIdx));
// Otherwise recurse.
- return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
+ return ConstantFoldExtractValueInstruction(Context, Agg->getOperand(*Idxs),
Idxs+1, NumIdx-1);
}
-Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
- const Constant *Val,
+Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
+ Constant *Agg,
+ Constant *Val,
const unsigned *Idxs,
unsigned NumIdx) {
// Base case: no indices, so replace the entire value.
if (NumIdx == 0)
- return const_cast<Constant *>(Val);
+ return Val;
if (isa<UndefValue>(Agg)) {
// Insertion of constant into aggregate undef
- // Optimize away insertion of undef
+ // Optimize away insertion of undef.
if (isa<UndefValue>(Val))
- return const_cast<Constant*>(Agg);
+ return Agg;
+
// Otherwise break the aggregate undef into multiple undefs and do
- // the insertion
+ // the insertion.
const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
unsigned numOps;
if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
numOps = AR->getNumElements();
else
numOps = cast<StructType>(AggTy)->getNumElements();
+
std::vector<Constant*> Ops(numOps);
for (unsigned i = 0; i < numOps; ++i) {
const Type *MemberTy = AggTy->getTypeAtIndex(i);
- const Constant *Op =
+ Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
+ ConstantFoldInsertValueInstruction(Context, UndefValue::get(MemberTy),
Val, Idxs+1, NumIdx-1) :
UndefValue::get(MemberTy);
- Ops[i] = const_cast<Constant*>(Op);
+ Ops[i] = Op;
}
- if (isa<StructType>(AggTy))
- return ConstantStruct::get(Ops);
- else
- return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
+
+ if (const StructType* ST = dyn_cast<StructType>(AggTy))
+ return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
}
+
if (isa<ConstantAggregateZero>(Agg)) {
// Insertion of constant into aggregate zero
- // Optimize away insertion of zero
+ // Optimize away insertion of zero.
if (Val->isNullValue())
- return const_cast<Constant*>(Agg);
+ return Agg;
+
// Otherwise break the aggregate zero into multiple zeros and do
- // the insertion
+ // the insertion.
const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
unsigned numOps;
if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
numOps = AR->getNumElements();
else
numOps = cast<StructType>(AggTy)->getNumElements();
+
std::vector<Constant*> Ops(numOps);
for (unsigned i = 0; i < numOps; ++i) {
const Type *MemberTy = AggTy->getTypeAtIndex(i);
- const Constant *Op =
+ Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
+ ConstantFoldInsertValueInstruction(Context,
+ Constant::getNullValue(MemberTy),
Val, Idxs+1, NumIdx-1) :
Constant::getNullValue(MemberTy);
- Ops[i] = const_cast<Constant*>(Op);
+ Ops[i] = Op;
}
- if (isa<StructType>(AggTy))
- return ConstantStruct::get(Ops);
- else
- return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
+
+ if (const StructType* ST = dyn_cast<StructType>(AggTy))
+ return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
}
+
if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
- // Insertion of constant into aggregate constant
+ // Insertion of constant into aggregate constant.
std::vector<Constant*> Ops(Agg->getNumOperands());
for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
- const Constant *Op =
+ Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(Agg->getOperand(i),
+ ConstantFoldInsertValueInstruction(Context, Agg->getOperand(i),
Val, Idxs+1, NumIdx-1) :
Agg->getOperand(i);
- Ops[i] = const_cast<Constant*>(Op);
+ Ops[i] = Op;
}
- Constant *C;
- if (isa<StructType>(Agg->getType()))
- C = ConstantStruct::get(Ops);
- else
- C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
- return C;
+
+ if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
+ return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
}
return 0;
}
-/// EvalVectorOp - Given two vector constants and a function pointer, apply the
-/// function pointer to each element pair, producing a new ConstantVector
-/// constant. Either or both of V1 and V2 may be NULL, meaning a
-/// ConstantAggregateZero operand.
-static Constant *EvalVectorOp(const ConstantVector *V1,
- const ConstantVector *V2,
- const VectorType *VTy,
- Constant *(*FP)(Constant*, Constant*)) {
- std::vector<Constant*> Res;
- const Type *EltTy = VTy->getElementType();
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
- const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
- Res.push_back(FP(const_cast<Constant*>(C1),
- const_cast<Constant*>(C2)));
- }
- return ConstantVector::get(Res);
-}
-Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
- const Constant *C1,
- const Constant *C2) {
+Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
+ unsigned Opcode,
+ Constant *C1, Constant *C2) {
// No compile-time operations on this type yet.
- if (C1->getType() == Type::PPC_FP128Ty)
+ if (C1->getType()->isPPC_FP128Ty())
return 0;
- // Handle UndefValue up front
+ // Handle UndefValue up front.
if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
switch (Opcode) {
case Instruction::Xor:
@@ -606,23 +608,23 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
case Instruction::SRem:
if (!isa<UndefValue>(C2)) // undef / X -> 0
return Constant::getNullValue(C1->getType());
- return const_cast<Constant*>(C2); // X / undef -> undef
+ return C2; // X / undef -> undef
case Instruction::Or: // X | undef -> -1
if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
- return ConstantVector::getAllOnesValue(PTy);
- return ConstantInt::getAllOnesValue(C1->getType());
+ return Constant::getAllOnesValue(PTy);
+ return Constant::getAllOnesValue(C1->getType());
case Instruction::LShr:
if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
- return const_cast<Constant*>(C1); // undef lshr undef -> undef
+ return C1; // undef lshr undef -> undef
return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
// undef lshr X -> 0
case Instruction::AShr:
if (!isa<UndefValue>(C2))
- return const_cast<Constant*>(C1); // undef ashr X --> undef
+ return C1; // undef ashr X --> undef
else if (isa<UndefValue>(C1))
- return const_cast<Constant*>(C1); // undef ashr undef -> undef
+ return C1; // undef ashr undef -> undef
else
- return const_cast<Constant*>(C1); // X ashr undef --> X
+ return C1; // X ashr undef --> X
case Instruction::Shl:
// undef << X -> 0 or X << undef -> 0
return Constant::getNullValue(C1->getType());
@@ -630,23 +632,23 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
}
// Handle simplifications when the RHS is a constant int.
- if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
switch (Opcode) {
case Instruction::Add:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X
+ if (CI2->equalsInt(0)) return C1; // X + 0 == X
break;
case Instruction::Sub:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X
+ if (CI2->equalsInt(0)) return C1; // X - 0 == X
break;
case Instruction::Mul:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0
+ if (CI2->equalsInt(0)) return C2; // X * 0 == 0
if (CI2->equalsInt(1))
- return const_cast<Constant*>(C1); // X * 1 == X
+ return C1; // X * 1 == X
break;
case Instruction::UDiv:
case Instruction::SDiv:
if (CI2->equalsInt(1))
- return const_cast<Constant*>(C1); // X / 1 == X
+ return C1; // X / 1 == X
if (CI2->equalsInt(0))
return UndefValue::get(CI2->getType()); // X / 0 == undef
break;
@@ -658,11 +660,11 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
return UndefValue::get(CI2->getType()); // X % 0 == undef
break;
case Instruction::And:
- if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
+ if (CI2->isZero()) return C2; // X & 0 == 0
if (CI2->isAllOnesValue())
- return const_cast<Constant*>(C1); // X & -1 == X
-
- if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ return C1; // X & -1 == X
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
// (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
if (CE1->getOpcode() == Instruction::ZExt) {
unsigned DstWidth = CI2->getType()->getBitWidth();
@@ -670,19 +672,19 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
- return const_cast<Constant*>(C1);
+ return C1;
}
-
+
// If and'ing the address of a global with a constant, fold it.
if (CE1->getOpcode() == Instruction::PtrToInt &&
isa<GlobalValue>(CE1->getOperand(0))) {
GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
-
+
// Functions are at least 4-byte aligned.
unsigned GVAlign = GV->getAlignment();
if (isa<Function>(GV))
GVAlign = std::max(GVAlign, 4U);
-
+
if (GVAlign > 1) {
unsigned DstWidth = CI2->getType()->getBitWidth();
unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
@@ -696,26 +698,39 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
}
break;
case Instruction::Or:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X
+ if (CI2->equalsInt(0)) return C1; // X | 0 == X
if (CI2->isAllOnesValue())
- return const_cast<Constant*>(C2); // X | -1 == -1
+ return C2; // X | -1 == -1
break;
case Instruction::Xor:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X
+ if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ switch (CE1->getOpcode()) {
+ default: break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ // cmp pred ^ true -> cmp !pred
+ assert(CI2->equalsInt(1));
+ CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
+ pred = CmpInst::getInversePredicate(pred);
+ return ConstantExpr::getCompare(pred, CE1->getOperand(0),
+ CE1->getOperand(1));
+ }
+ }
break;
case Instruction::AShr:
// ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
- if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
- return ConstantExpr::getLShr(const_cast<Constant*>(C1),
- const_cast<Constant*>(C2));
+ return ConstantExpr::getLShr(C1, C2);
break;
}
}
-
+
// At this point we know neither constant is an UndefValue.
- if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
- if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
using namespace APIntOps;
const APInt &C1V = CI1->getValue();
const APInt &C2V = CI2->getValue();
@@ -723,51 +738,51 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
default:
break;
case Instruction::Add:
- return ConstantInt::get(C1V + C2V);
+ return ConstantInt::get(Context, C1V + C2V);
case Instruction::Sub:
- return ConstantInt::get(C1V - C2V);
+ return ConstantInt::get(Context, C1V - C2V);
case Instruction::Mul:
- return ConstantInt::get(C1V * C2V);
+ return ConstantInt::get(Context, C1V * C2V);
case Instruction::UDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return ConstantInt::get(C1V.udiv(C2V));
+ return ConstantInt::get(Context, C1V.udiv(C2V));
case Instruction::SDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
- return ConstantInt::get(C1V.sdiv(C2V));
+ return ConstantInt::get(Context, C1V.sdiv(C2V));
case Instruction::URem:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return ConstantInt::get(C1V.urem(C2V));
+ return ConstantInt::get(Context, C1V.urem(C2V));
case Instruction::SRem:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
- return ConstantInt::get(C1V.srem(C2V));
+ return ConstantInt::get(Context, C1V.srem(C2V));
case Instruction::And:
- return ConstantInt::get(C1V & C2V);
+ return ConstantInt::get(Context, C1V & C2V);
case Instruction::Or:
- return ConstantInt::get(C1V | C2V);
+ return ConstantInt::get(Context, C1V | C2V);
case Instruction::Xor:
- return ConstantInt::get(C1V ^ C2V);
+ return ConstantInt::get(Context, C1V ^ C2V);
case Instruction::Shl: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(C1V.shl(shiftAmt));
+ return ConstantInt::get(Context, C1V.shl(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
case Instruction::LShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(C1V.lshr(shiftAmt));
+ return ConstantInt::get(Context, C1V.lshr(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
case Instruction::AShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(C1V.ashr(shiftAmt));
+ return ConstantInt::get(Context, C1V.ashr(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
@@ -782,13 +797,13 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
- if (CI1->equalsInt(0)) return const_cast<Constant*>(C1);
+ if (CI1->equalsInt(0)) return C1;
break;
default:
break;
}
- } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
- if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
+ } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
+ if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
APFloat C1V = CFP1->getValueAPF();
APFloat C2V = CFP2->getValueAPF();
APFloat C3V = C1V; // copy for modification
@@ -797,65 +812,159 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
break;
case Instruction::FAdd:
(void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FSub:
(void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FMul:
(void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FDiv:
(void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FRem:
(void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
}
}
} else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
- const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
- const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
+ ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
+ ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
(CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
+ std::vector<Constant*> Res;
+ const Type* EltTy = VTy->getElementType();
+ Constant *C1 = 0;
+ Constant *C2 = 0;
switch (Opcode) {
default:
break;
case Instruction::Add:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getAdd(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FAdd:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFAdd);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFAdd(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::Sub:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getSub(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FSub:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFSub);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFSub(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::Mul:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getMul(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FMul:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFMul);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFMul(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::UDiv:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getUDiv(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::SDiv:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getSDiv(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FDiv:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFDiv(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::URem:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getURem(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::SRem:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getSRem(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FRem:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFRem(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::And:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
- case Instruction::Or:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
- case Instruction::Xor:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getAnd(C1, C2));
+ }
+ return ConstantVector::get(Res);
+ case Instruction::Or:
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getOr(C1, C2));
+ }
+ return ConstantVector::get(Res);
+ case Instruction::Xor:
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getXor(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::LShr:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getLShr);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getLShr(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::AShr:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAShr);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getAShr(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::Shl:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getShl);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getShl(C1, C2));
+ }
+ return ConstantVector::get(Res);
}
}
}
@@ -876,8 +985,8 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
case Instruction::Or:
case Instruction::Xor:
// No change of opcode required.
- return ConstantFoldBinaryInstruction(Opcode, C2, C1);
-
+ return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
+
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
@@ -893,7 +1002,36 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
break;
}
}
-
+
+ // i1 can be simplified in many cases.
+ if (C1->getType() == Type::getInt1Ty(Context)) {
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ return ConstantExpr::getXor(C1, C2);
+ case Instruction::Mul:
+ return ConstantExpr::getAnd(C1, C2);
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ // We can assume that C2 == 0. If it were one the result would be
+ // undefined because the shift value is as large as the bitwidth.
+ return C1;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ // We can assume that C2 == 1. If it were zero the result would be
+ // undefined through division by zero.
+ return C1;
+ case Instruction::URem:
+ case Instruction::SRem:
+ // We can assume that C2 == 1. If it were zero the result would be
+ // undefined through division by zero.
+ return ConstantInt::getFalse(Context);
+ default:
+ break;
+ }
+ }
+
// We don't know how to fold this.
return 0;
}
@@ -922,7 +1060,8 @@ static bool isMaybeZeroSizedType(const Type *Ty) {
/// first is less than the second, return -1, if the second is less than the
/// first, return 1. If the constants are not integral, return -2.
///
-static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
+static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
+ const Type *ElTy) {
if (C1 == C2) return 0;
// Ok, we found a different index. If they are not ConstantInt, we can't do
@@ -932,11 +1071,11 @@ static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
- if (C1->getType() != Type::Int64Ty)
- C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
+ if (C1->getType() != Type::getInt64Ty(Context))
+ C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
- if (C2->getType() != Type::Int64Ty)
- C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
+ if (C2->getType() != Type::getInt64Ty(Context))
+ C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
if (C1 == C2) return 0; // They are equal
@@ -965,13 +1104,13 @@ static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two. We consider ConstantFP
/// to be the simplest, and ConstantExprs to be the most complex.
-static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
- const Constant *V2) {
+static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
+ Constant *V1, Constant *V2) {
assert(V1->getType() == V2->getType() &&
"Cannot compare values of different types!");
// No compile-time operations on this type yet.
- if (V1->getType() == Type::PPC_FP128Ty)
+ if (V1->getType()->isPPC_FP128Ty())
return FCmpInst::BAD_FCMP_PREDICATE;
// Handle degenerate case quickly
@@ -981,33 +1120,31 @@ static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
if (!isa<ConstantExpr>(V2)) {
// We distilled thisUse the standard constant folder for a few cases
ConstantInt *R = 0;
- Constant *C1 = const_cast<Constant*>(V1);
- Constant *C2 = const_cast<Constant*>(V2);
R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
if (R && !R->isZero())
return FCmpInst::FCMP_OEQ;
R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
if (R && !R->isZero())
return FCmpInst::FCMP_OLT;
R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
if (R && !R->isZero())
return FCmpInst::FCMP_OGT;
// Nothing more we can do
return FCmpInst::BAD_FCMP_PREDICATE;
}
-
+
// If the first operand is simple and second is ConstantExpr, swap operands.
- FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
+ FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
return FCmpInst::getSwappedPredicate(SwappedRelation);
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
// constantexpr or a simple constant.
- const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ ConstantExpr *CE1 = cast<ConstantExpr>(V1);
switch (CE1->getOpcode()) {
case Instruction::FPTrunc:
case Instruction::FPExt:
@@ -1036,8 +1173,9 @@ static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
-static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
- const Constant *V2,
+static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
+ Constant *V1,
+ Constant *V2,
bool isSigned) {
assert(V1->getType() == V2->getType() &&
"Cannot compare different types of values!");
@@ -1048,35 +1186,33 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
// We distilled this down to a simple case, use the standard constant
// folder.
ConstantInt *R = 0;
- Constant *C1 = const_cast<Constant*>(V1);
- Constant *C2 = const_cast<Constant*>(V2);
ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
if (R && !R->isZero())
return pred;
pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
if (R && !R->isZero())
return pred;
- pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
+ pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
if (R && !R->isZero())
return pred;
-
+
// If we couldn't figure it out, bail.
return ICmpInst::BAD_ICMP_PREDICATE;
}
-
+
// If the first operand is simple, swap operands.
ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
+ evaluateICmpRelation(Context, V2, V1, isSigned);
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
return ICmpInst::getSwappedPredicate(SwappedRelation);
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
+ evaluateICmpRelation(Context, V2, V1, isSigned);
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
return ICmpInst::getSwappedPredicate(SwappedRelation);
else
@@ -1099,8 +1235,8 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
// constantexpr, a CPR, or a simple constant.
- const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
- const Constant *CE1Op0 = CE1->getOperand(0);
+ ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ Constant *CE1Op0 = CE1->getOperand(0);
switch (CE1->getOpcode()) {
case Instruction::Trunc:
@@ -1119,28 +1255,12 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
(isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
- bool sgnd = isSigned;
if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
- return evaluateICmpRelation(CE1Op0,
+ return evaluateICmpRelation(Context, CE1Op0,
Constant::getNullValue(CE1Op0->getType()),
- sgnd);
+ isSigned);
}
-
- // If the dest type is a pointer type, and the RHS is a constantexpr cast
- // from the same type as the src of the LHS, evaluate the inputs. This is
- // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
- // which happens a lot in compilers with tagged integers.
- if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
- if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
- CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
- CE1->getOperand(0)->getType()->isInteger()) {
- bool sgnd = isSigned;
- if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
- if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
- return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
- sgnd);
- }
break;
case Instruction::GetElementPtr:
@@ -1157,7 +1277,7 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
else
// If its not weak linkage, the GVal must have a non-zero address
// so the result is greater-than
- return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
} else if (isa<ConstantPointerNull>(CE1Op0)) {
// If we are indexing from a null pointer, check to see if we have any
// non-zero indices.
@@ -1196,8 +1316,8 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
}
}
} else {
- const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
- const Constant *CE2Op0 = CE2->getOperand(0);
+ ConstantExpr *CE2 = cast<ConstantExpr>(V2);
+ Constant *CE2Op0 = CE2->getOperand(0);
// There are MANY other foldings that we could perform here. They will
// probably be added on demand, as they seem needed.
@@ -1214,12 +1334,20 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
// ordering of the resultant pointers.
unsigned i = 1;
+ // The logic below assumes that the result of the comparison
+ // can be determined by finding the first index that differs.
+ // This doesn't work if there is over-indexing in any
+ // subsequent indices, so check for that case first.
+ if (!CE1->isGEPWithNoNotionalOverIndexing() ||
+ !CE2->isGEPWithNoNotionalOverIndexing())
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
+
// Compare all of the operands the GEP's have in common.
gep_type_iterator GTI = gep_type_begin(CE1);
for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
++i, ++GTI)
- switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
- GTI.getIndexedType())) {
+ switch (IdxCompare(Context, CE1->getOperand(i),
+ CE2->getOperand(i), GTI.getIndexedType())) {
case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
case -2: return ICmpInst::BAD_ICMP_PREDICATE;
@@ -1254,36 +1382,28 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
return ICmpInst::BAD_ICMP_PREDICATE;
}
-Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
- const Constant *C1,
- const Constant *C2) {
+Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
+ unsigned short pred,
+ Constant *C1, Constant *C2) {
+ const Type *ResultTy;
+ if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
+ ResultTy = VectorType::get(Type::getInt1Ty(Context), VT->getNumElements());
+ else
+ ResultTy = Type::getInt1Ty(Context);
+
// Fold FCMP_FALSE/FCMP_TRUE unconditionally.
- if (pred == FCmpInst::FCMP_FALSE) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
- return Constant::getNullValue(VectorType::getInteger(VT));
- else
- return ConstantInt::getFalse();
- }
-
- if (pred == FCmpInst::FCMP_TRUE) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
- return Constant::getAllOnesValue(VectorType::getInteger(VT));
- else
- return ConstantInt::getTrue();
- }
-
+ if (pred == FCmpInst::FCMP_FALSE)
+ return Constant::getNullValue(ResultTy);
+
+ if (pred == FCmpInst::FCMP_TRUE)
+ return Constant::getAllOnesValue(ResultTy);
+
// Handle some degenerate cases first
- if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
- // vicmp/vfcmp -> [vector] undef
- if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
- return UndefValue::get(VectorType::getInteger(VTy));
-
- // icmp/fcmp -> i1 undef
- return UndefValue::get(Type::Int1Ty);
- }
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
+ return UndefValue::get(ResultTy);
// No compile-time operations on this type yet.
- if (C1->getType() == Type::PPC_FP128Ty)
+ if (C1->getType()->isPPC_FP128Ty())
return 0;
// icmp eq/ne(null,GV) -> false/true
@@ -1292,9 +1412,9 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
// Don't try to evaluate aliases. External weak GV can be null.
if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
if (pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse();
+ return ConstantInt::getFalse(Context);
else if (pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue();
+ return ConstantInt::getTrue(Context);
}
// icmp eq/ne(GV,null) -> false/true
} else if (C2->isNullValue()) {
@@ -1302,114 +1422,115 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
// Don't try to evaluate aliases. External weak GV can be null.
if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
if (pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse();
+ return ConstantInt::getFalse(Context);
else if (pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue();
+ return ConstantInt::getTrue(Context);
}
}
+ // If the comparison is a comparison between two i1's, simplify it.
+ if (C1->getType() == Type::getInt1Ty(Context)) {
+ switch(pred) {
+ case ICmpInst::ICMP_EQ:
+ if (isa<ConstantInt>(C2))
+ return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
+ return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
+ case ICmpInst::ICMP_NE:
+ return ConstantExpr::getXor(C1, C2);
+ default:
+ break;
+ }
+ }
+
if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
APInt V1 = cast<ConstantInt>(C1)->getValue();
APInt V2 = cast<ConstantInt>(C2)->getValue();
switch (pred) {
- default: assert(0 && "Invalid ICmp Predicate"); return 0;
- case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
- case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
- case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
- case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
- case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
- case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
- case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
- case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
- case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
- case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
+ default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
+ case ICmpInst::ICMP_EQ:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1 == V2);
+ case ICmpInst::ICMP_NE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1 != V2);
+ case ICmpInst::ICMP_SLT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.slt(V2));
+ case ICmpInst::ICMP_SGT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.sgt(V2));
+ case ICmpInst::ICMP_SLE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.sle(V2));
+ case ICmpInst::ICMP_SGE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.sge(V2));
+ case ICmpInst::ICMP_ULT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.ult(V2));
+ case ICmpInst::ICMP_UGT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.ugt(V2));
+ case ICmpInst::ICMP_ULE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.ule(V2));
+ case ICmpInst::ICMP_UGE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.uge(V2));
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
APFloat::cmpResult R = C1V.compare(C2V);
switch (pred) {
- default: assert(0 && "Invalid FCmp Predicate"); return 0;
- case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
- case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
+ default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
+ case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(Context);
+ case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue(Context);
case FCmpInst::FCMP_UNO:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered);
case FCmpInst::FCMP_ORD:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpUnordered);
case FCmpInst::FCMP_UEQ:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_OEQ:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpEqual);
case FCmpInst::FCMP_UNE:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpEqual);
case FCmpInst::FCMP_ONE:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan);
case FCmpInst::FCMP_OLT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan);
case FCmpInst::FCMP_UGT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OGT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULE:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OLE:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_UGE:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpLessThan);
case FCmpInst::FCMP_OGE:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual);
}
} else if (isa<VectorType>(C1->getType())) {
SmallVector<Constant*, 16> C1Elts, C2Elts;
- C1->getVectorElements(C1Elts);
- C2->getVectorElements(C2Elts);
-
+ C1->getVectorElements(Context, C1Elts);
+ C2->getVectorElements(Context, C2Elts);
+
// If we can constant fold the comparison of each element, constant fold
// the whole vector comparison.
SmallVector<Constant*, 4> ResElts;
- const Type *InEltTy = C1Elts[0]->getType();
- bool isFP = InEltTy->isFloatingPoint();
- const Type *ResEltTy = InEltTy;
- if (isFP)
- ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
-
for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
// Compare the elements, producing an i1 result or constant expr.
- Constant *C;
- if (isFP)
- C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
- else
- C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
-
- // If it is a bool or undef result, convert to the dest type.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->isZero())
- ResElts.push_back(Constant::getNullValue(ResEltTy));
- else
- ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
- } else if (isa<UndefValue>(C)) {
- ResElts.push_back(UndefValue::get(ResEltTy));
- } else {
- break;
- }
+ ResElts.push_back(
+ ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
}
-
- if (ResElts.size() == C1Elts.size())
- return ConstantVector::get(&ResElts[0], ResElts.size());
+ return ConstantVector::get(&ResElts[0], ResElts.size());
}
if (C1->getType()->isFloatingPoint()) {
int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateFCmpRelation(C1, C2)) {
- default: assert(0 && "Unknown relation!");
+ switch (evaluateFCmpRelation(Context, C1, C2)) {
+ default: llvm_unreachable("Unknown relation!");
case FCmpInst::FCMP_UNO:
case FCmpInst::FCMP_ORD:
case FCmpInst::FCMP_UEQ:
@@ -1459,110 +1580,115 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
Result = 1;
break;
}
-
+
// If we evaluated the result, return it now.
- if (Result != -1) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
- if (Result == 0)
- return Constant::getNullValue(VectorType::getInteger(VT));
- else
- return Constant::getAllOnesValue(VectorType::getInteger(VT));
- }
- return ConstantInt::get(Type::Int1Ty, Result);
- }
-
+ if (Result != -1)
+ return ConstantInt::get(Type::getInt1Ty(Context), Result);
+
} else {
// Evaluate the relation between the two constants, per the predicate.
int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
- default: assert(0 && "Unknown relational!");
+ switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
+ default: llvm_unreachable("Unknown relational!");
case ICmpInst::BAD_ICMP_PREDICATE:
break; // Couldn't determine anything about these constants.
case ICmpInst::ICMP_EQ: // We know the constants are equal!
// If we know the constants are equal, we can decide the result of this
// computation precisely.
- Result = (pred == ICmpInst::ICMP_EQ ||
- pred == ICmpInst::ICMP_ULE ||
- pred == ICmpInst::ICMP_SLE ||
- pred == ICmpInst::ICMP_UGE ||
- pred == ICmpInst::ICMP_SGE);
+ Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
break;
case ICmpInst::ICMP_ULT:
- // If we know that C1 < C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_ULT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_ULE);
+ switch (pred) {
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
+ Result = 1; break;
+ case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_SLT:
- // If we know that C1 < C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_SLT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_SLE);
+ switch (pred) {
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
+ Result = 1; break;
+ case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_UGT:
- // If we know that C1 > C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_UGT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_UGE);
+ switch (pred) {
+ case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
+ Result = 1; break;
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_SGT:
- // If we know that C1 > C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_SGT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_SGE);
+ switch (pred) {
+ case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
+ Result = 1; break;
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_ULE:
- // If we know that C1 <= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_UGT) Result = 0;
- if (pred == ICmpInst::ICMP_ULT) Result = 1;
+ if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
break;
case ICmpInst::ICMP_SLE:
- // If we know that C1 <= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_SGT) Result = 0;
- if (pred == ICmpInst::ICMP_SLT) Result = 1;
+ if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
break;
-
case ICmpInst::ICMP_UGE:
- // If we know that C1 >= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_ULT) Result = 0;
- if (pred == ICmpInst::ICMP_UGT) Result = 1;
+ if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
break;
case ICmpInst::ICMP_SGE:
- // If we know that C1 >= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_SLT) Result = 0;
- if (pred == ICmpInst::ICMP_SGT) Result = 1;
+ if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
break;
-
case ICmpInst::ICMP_NE:
- // If we know that C1 != C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_EQ) Result = 0;
if (pred == ICmpInst::ICMP_NE) Result = 1;
break;
}
-
+
// If we evaluated the result, return it now.
- if (Result != -1) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
- if (Result == 0)
- return Constant::getNullValue(VT);
- else
- return Constant::getAllOnesValue(VT);
+ if (Result != -1)
+ return ConstantInt::get(Type::getInt1Ty(Context), Result);
+
+ // If the right hand side is a bitcast, try using its inverse to simplify
+ // it by moving it to the left hand side.
+ if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
+ if (CE2->getOpcode() == Instruction::BitCast) {
+ Constant *CE2Op0 = CE2->getOperand(0);
+ Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
+ return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
}
- return ConstantInt::get(Type::Int1Ty, Result);
}
-
+
+ // If the left hand side is an extension, try eliminating it.
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ if (CE1->getOpcode() == Instruction::SExt ||
+ CE1->getOpcode() == Instruction::ZExt) {
+ Constant *CE1Op0 = CE1->getOperand(0);
+ Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
+ if (CE1Inverse == CE1Op0) {
+ // Check whether we can safely truncate the right hand side.
+ Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
+ if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
+ return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
+ }
+ }
+ }
+ }
+
if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
- // If C2 is a constant expr and C1 isn't, flop them around and fold the
+ // If C2 is a constant expr and C1 isn't, flip them around and fold the
// other way if possible.
switch (pred) {
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
// No change of predicate required.
- return ConstantFoldCompareInstruction(pred, C2, C1);
+ return ConstantFoldCompareInstruction(Context, pred, C2, C1);
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
@@ -1574,7 +1700,7 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case ICmpInst::ICMP_SGE:
// Change the predicate as necessary to swap the operands.
pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
- return ConstantFoldCompareInstruction(pred, C2, C1);
+ return ConstantFoldCompareInstruction(Context, pred, C2, C1);
default: // These predicates cannot be flopped around.
break;
@@ -1584,12 +1710,33 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
return 0;
}
-Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
+/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
+/// is "inbounds".
+static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
+ // No indices means nothing that could be out of bounds.
+ if (NumIdx == 0) return true;
+
+ // If the first index is zero, it's in bounds.
+ if (Idxs[0]->isNullValue()) return true;
+
+ // If the first index is one and all the rest are zero, it's in bounds,
+ // by the one-past-the-end rule.
+ if (!cast<ConstantInt>(Idxs[0])->isOne())
+ return false;
+ for (unsigned i = 1, e = NumIdx; i != e; ++i)
+ if (!Idxs[i]->isNullValue())
+ return false;
+ return true;
+}
+
+Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
+ Constant *C,
+ bool inBounds,
Constant* const *Idxs,
unsigned NumIdx) {
if (NumIdx == 0 ||
(NumIdx == 1 && Idxs[0]->isNullValue()))
- return const_cast<Constant*>(C);
+ return C;
if (isa<UndefValue>(C)) {
const PointerType *Ptr = cast<PointerType>(C->getType());
@@ -1614,12 +1761,12 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
(Value**)Idxs,
(Value**)Idxs+NumIdx);
assert(Ty != 0 && "Invalid indices for GEP!");
- return
- ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
+ return ConstantPointerNull::get(
+ PointerType::get(Ty,Ptr->getAddressSpace()));
}
}
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
@@ -1643,9 +1790,10 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
if (!Idx0->isNullValue()) {
const Type *IdxTy = Combined->getType();
if (IdxTy != Idx0->getType()) {
- Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
+ Constant *C1 =
+ ConstantExpr::getSExtOrBitCast(Idx0, Type::getInt64Ty(Context));
Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
- Type::Int64Ty);
+ Type::getInt64Ty(Context));
Combined = ConstantExpr::get(Instruction::Add, C1, C2);
} else {
Combined =
@@ -1655,8 +1803,13 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
NewIndices.push_back(Combined);
NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
- return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
- NewIndices.size());
+ return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
+ ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
+ &NewIndices[0],
+ NewIndices.size()) :
+ ConstantExpr::getGetElementPtr(CE->getOperand(0),
+ &NewIndices[0],
+ NewIndices.size());
}
}
@@ -1672,19 +1825,23 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
if (const ArrayType *CAT =
dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
if (CAT->getElementType() == SAT->getElementType())
- return ConstantExpr::getGetElementPtr(
+ return inBounds ?
+ ConstantExpr::getInBoundsGetElementPtr(
+ (Constant*)CE->getOperand(0), Idxs, NumIdx) :
+ ConstantExpr::getGetElementPtr(
(Constant*)CE->getOperand(0), Idxs, NumIdx);
}
-
+
// Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
// Into: inttoptr (i64 0 to i8*)
// This happens with pointers to member functions in C++.
if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
- cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
+ cast<PointerType>(CE->getType())->getElementType() ==
+ Type::getInt8Ty(Context)) {
Constant *Base = CE->getOperand(0);
Constant *Offset = Idxs[0];
-
+
// Convert the smaller integer to the larger type.
if (Offset->getType()->getPrimitiveSizeInBits() <
Base->getType()->getPrimitiveSizeInBits())
@@ -1692,11 +1849,74 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
else if (Base->getType()->getPrimitiveSizeInBits() <
Offset->getType()->getPrimitiveSizeInBits())
Base = ConstantExpr::getZExt(Base, Offset->getType());
-
+
Base = ConstantExpr::getAdd(Base, Offset);
return ConstantExpr::getIntToPtr(Base, CE->getType());
}
}
+
+ // Check to see if any array indices are not within the corresponding
+ // notional array bounds. If so, try to determine if they can be factored
+ // out into preceding dimensions.
+ bool Unknown = false;
+ SmallVector<Constant *, 8> NewIdxs;
+ const Type *Ty = C->getType();
+ const Type *Prev = 0;
+ for (unsigned i = 0; i != NumIdx;
+ Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
+ if (ATy->getNumElements() <= INT64_MAX &&
+ ATy->getNumElements() != 0 &&
+ CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
+ if (isa<SequentialType>(Prev)) {
+ // It's out of range, but we can factor it into the prior
+ // dimension.
+ NewIdxs.resize(NumIdx);
+ ConstantInt *Factor = ConstantInt::get(CI->getType(),
+ ATy->getNumElements());
+ NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
+
+ Constant *PrevIdx = Idxs[i-1];
+ Constant *Div = ConstantExpr::getSDiv(CI, Factor);
+
+ // Before adding, extend both operands to i64 to avoid
+ // overflow trouble.
+ if (PrevIdx->getType() != Type::getInt64Ty(Context))
+ PrevIdx = ConstantExpr::getSExt(PrevIdx,
+ Type::getInt64Ty(Context));
+ if (Div->getType() != Type::getInt64Ty(Context))
+ Div = ConstantExpr::getSExt(Div,
+ Type::getInt64Ty(Context));
+
+ NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
+ } else {
+ // It's out of range, but the prior dimension is a struct
+ // so we can't do anything about it.
+ Unknown = true;
+ }
+ }
+ } else {
+ // We don't know if it's in range or not.
+ Unknown = true;
+ }
+ }
+
+ // If we did any factoring, start over with the adjusted indices.
+ if (!NewIdxs.empty()) {
+ for (unsigned i = 0; i != NumIdx; ++i)
+ if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
+ return inBounds ?
+ ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
+ NewIdxs.size()) :
+ ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
+ }
+
+ // If all indices are known integers and normalized, we can do a simple
+ // check for the "inbounds" property.
+ if (!Unknown && !inBounds &&
+ isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
+ return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
+
return 0;
}
-
OpenPOWER on IntegriCloud