summaryrefslogtreecommitdiffstats
path: root/lib/VMCore/AsmWriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/AsmWriter.cpp')
-rw-r--r--lib/VMCore/AsmWriter.cpp1880
1 files changed, 1880 insertions, 0 deletions
diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp
new file mode 100644
index 0000000..6b369b6
--- /dev/null
+++ b/lib/VMCore/AsmWriter.cpp
@@ -0,0 +1,1880 @@
+//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This library implements the functionality defined in llvm/Assembly/Writer.h
+//
+// Note that these routines must be extremely tolerant of various errors in the
+// LLVM code, because it can be used for debugging transformations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Assembly/PrintModulePass.h"
+#include "llvm/Assembly/AsmAnnotationWriter.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
+#include "llvm/MDNode.h"
+#include "llvm/Module.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cctype>
+using namespace llvm;
+
+// Make virtual table appear in this compilation unit.
+AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+static const Module *getModuleFromVal(const Value *V) {
+ if (const Argument *MA = dyn_cast<Argument>(V))
+ return MA->getParent() ? MA->getParent()->getParent() : 0;
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return BB->getParent() ? BB->getParent()->getParent() : 0;
+
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
+ return M ? M->getParent() : 0;
+ }
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return GV->getParent();
+ return 0;
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+static void PrintEscapedString(const char *Str, unsigned Length,
+ raw_ostream &Out) {
+ for (unsigned i = 0; i != Length; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '\\' && C != '"')
+ Out << C;
+ else
+ Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
+ }
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
+ PrintEscapedString(Str.c_str(), Str.size(), Out);
+}
+
+enum PrefixType {
+ GlobalPrefix,
+ LabelPrefix,
+ LocalPrefix,
+ NoPrefix
+};
+
+/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
+/// prefixed with % (if the string only contains simple characters) or is
+/// surrounded with ""'s (if it has special chars in it). Print it out.
+static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
+ unsigned NameLen, PrefixType Prefix) {
+ assert(NameStr && "Cannot get empty name!");
+ switch (Prefix) {
+ default: assert(0 && "Bad prefix!");
+ case NoPrefix: break;
+ case GlobalPrefix: OS << '@'; break;
+ case LabelPrefix: break;
+ case LocalPrefix: OS << '%'; break;
+ }
+
+ // Scan the name to see if it needs quotes first.
+ bool NeedsQuotes = isdigit(NameStr[0]);
+ if (!NeedsQuotes) {
+ for (unsigned i = 0; i != NameLen; ++i) {
+ char C = NameStr[i];
+ if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
+ NeedsQuotes = true;
+ break;
+ }
+ }
+ }
+
+ // If we didn't need any quotes, just write out the name in one blast.
+ if (!NeedsQuotes) {
+ OS.write(NameStr, NameLen);
+ return;
+ }
+
+ // Okay, we need quotes. Output the quotes and escape any scary characters as
+ // needed.
+ OS << '"';
+ PrintEscapedString(NameStr, NameLen, OS);
+ OS << '"';
+}
+
+/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
+/// prefixed with % (if the string only contains simple characters) or is
+/// surrounded with ""'s (if it has special chars in it). Print it out.
+static void PrintLLVMName(raw_ostream &OS, const Value *V) {
+ PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
+ isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
+}
+
+//===----------------------------------------------------------------------===//
+// TypePrinting Class: Type printing machinery
+//===----------------------------------------------------------------------===//
+
+static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
+ return *static_cast<DenseMap<const Type *, std::string>*>(M);
+}
+
+void TypePrinting::clear() {
+ getTypeNamesMap(TypeNames).clear();
+}
+
+bool TypePrinting::hasTypeName(const Type *Ty) const {
+ return getTypeNamesMap(TypeNames).count(Ty);
+}
+
+void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
+ getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
+}
+
+
+TypePrinting::TypePrinting() {
+ TypeNames = new DenseMap<const Type *, std::string>();
+}
+
+TypePrinting::~TypePrinting() {
+ delete &getTypeNamesMap(TypeNames);
+}
+
+/// CalcTypeName - Write the specified type to the specified raw_ostream, making
+/// use of type names or up references to shorten the type name where possible.
+void TypePrinting::CalcTypeName(const Type *Ty,
+ SmallVectorImpl<const Type *> &TypeStack,
+ raw_ostream &OS, bool IgnoreTopLevelName) {
+ // Check to see if the type is named.
+ if (!IgnoreTopLevelName) {
+ DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
+ DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
+ if (I != TM.end()) {
+ OS << I->second;
+ return;
+ }
+ }
+
+ // Check to see if the Type is already on the stack...
+ unsigned Slot = 0, CurSize = TypeStack.size();
+ while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
+
+ // This is another base case for the recursion. In this case, we know
+ // that we have looped back to a type that we have previously visited.
+ // Generate the appropriate upreference to handle this.
+ if (Slot < CurSize) {
+ OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
+ return;
+ }
+
+ TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
+
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: OS << "void"; break;
+ case Type::FloatTyID: OS << "float"; break;
+ case Type::DoubleTyID: OS << "double"; break;
+ case Type::X86_FP80TyID: OS << "x86_fp80"; break;
+ case Type::FP128TyID: OS << "fp128"; break;
+ case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
+ case Type::LabelTyID: OS << "label"; break;
+ case Type::MetadataTyID: OS << "metadata"; break;
+ case Type::IntegerTyID:
+ OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
+ break;
+
+ case Type::FunctionTyID: {
+ const FunctionType *FTy = cast<FunctionType>(Ty);
+ CalcTypeName(FTy->getReturnType(), TypeStack, OS);
+ OS << " (";
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ OS << ", ";
+ CalcTypeName(*I, TypeStack, OS);
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams()) OS << ", ";
+ OS << "...";
+ }
+ OS << ')';
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(Ty);
+ if (STy->isPacked())
+ OS << '<';
+ OS << "{ ";
+ for (StructType::element_iterator I = STy->element_begin(),
+ E = STy->element_end(); I != E; ++I) {
+ CalcTypeName(*I, TypeStack, OS);
+ if (next(I) != STy->element_end())
+ OS << ',';
+ OS << ' ';
+ }
+ OS << '}';
+ if (STy->isPacked())
+ OS << '>';
+ break;
+ }
+ case Type::PointerTyID: {
+ const PointerType *PTy = cast<PointerType>(Ty);
+ CalcTypeName(PTy->getElementType(), TypeStack, OS);
+ if (unsigned AddressSpace = PTy->getAddressSpace())
+ OS << " addrspace(" << AddressSpace << ')';
+ OS << '*';
+ break;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ OS << '[' << ATy->getNumElements() << " x ";
+ CalcTypeName(ATy->getElementType(), TypeStack, OS);
+ OS << ']';
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *PTy = cast<VectorType>(Ty);
+ OS << "<" << PTy->getNumElements() << " x ";
+ CalcTypeName(PTy->getElementType(), TypeStack, OS);
+ OS << '>';
+ break;
+ }
+ case Type::OpaqueTyID:
+ OS << "opaque";
+ break;
+ default:
+ OS << "<unrecognized-type>";
+ break;
+ }
+
+ TypeStack.pop_back(); // Remove self from stack.
+}
+
+/// printTypeInt - The internal guts of printing out a type that has a
+/// potentially named portion.
+///
+void TypePrinting::print(const Type *Ty, raw_ostream &OS,
+ bool IgnoreTopLevelName) {
+ // Check to see if the type is named.
+ DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
+ if (!IgnoreTopLevelName) {
+ DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
+ if (I != TM.end()) {
+ OS << I->second;
+ return;
+ }
+ }
+
+ // Otherwise we have a type that has not been named but is a derived type.
+ // Carefully recurse the type hierarchy to print out any contained symbolic
+ // names.
+ SmallVector<const Type *, 16> TypeStack;
+ std::string TypeName;
+
+ raw_string_ostream TypeOS(TypeName);
+ CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
+ OS << TypeOS.str();
+
+ // Cache type name for later use.
+ if (!IgnoreTopLevelName)
+ TM.insert(std::make_pair(Ty, TypeOS.str()));
+}
+
+namespace {
+ class TypeFinder {
+ // To avoid walking constant expressions multiple times and other IR
+ // objects, we keep several helper maps.
+ DenseSet<const Value*> VisitedConstants;
+ DenseSet<const Type*> VisitedTypes;
+
+ TypePrinting &TP;
+ std::vector<const Type*> &NumberedTypes;
+ public:
+ TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
+ : TP(tp), NumberedTypes(numberedTypes) {}
+
+ void Run(const Module &M) {
+ // Get types from the type symbol table. This gets opaque types referened
+ // only through derived named types.
+ const TypeSymbolTable &ST = M.getTypeSymbolTable();
+ for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
+ TI != E; ++TI)
+ IncorporateType(TI->second);
+
+ // Get types from global variables.
+ for (Module::const_global_iterator I = M.global_begin(),
+ E = M.global_end(); I != E; ++I) {
+ IncorporateType(I->getType());
+ if (I->hasInitializer())
+ IncorporateValue(I->getInitializer());
+ }
+
+ // Get types from aliases.
+ for (Module::const_alias_iterator I = M.alias_begin(),
+ E = M.alias_end(); I != E; ++I) {
+ IncorporateType(I->getType());
+ IncorporateValue(I->getAliasee());
+ }
+
+ // Get types from functions.
+ for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
+ IncorporateType(FI->getType());
+
+ for (Function::const_iterator BB = FI->begin(), E = FI->end();
+ BB != E;++BB)
+ for (BasicBlock::const_iterator II = BB->begin(),
+ E = BB->end(); II != E; ++II) {
+ const Instruction &I = *II;
+ // Incorporate the type of the instruction and all its operands.
+ IncorporateType(I.getType());
+ for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
+ OI != OE; ++OI)
+ IncorporateValue(*OI);
+ }
+ }
+ }
+
+ private:
+ void IncorporateType(const Type *Ty) {
+ // Check to see if we're already visited this type.
+ if (!VisitedTypes.insert(Ty).second)
+ return;
+
+ // If this is a structure or opaque type, add a name for the type.
+ if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
+ || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
+ TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
+ NumberedTypes.push_back(Ty);
+ }
+
+ // Recursively walk all contained types.
+ for (Type::subtype_iterator I = Ty->subtype_begin(),
+ E = Ty->subtype_end(); I != E; ++I)
+ IncorporateType(*I);
+ }
+
+ /// IncorporateValue - This method is used to walk operand lists finding
+ /// types hiding in constant expressions and other operands that won't be
+ /// walked in other ways. GlobalValues, basic blocks, instructions, and
+ /// inst operands are all explicitly enumerated.
+ void IncorporateValue(const Value *V) {
+ if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
+
+ // Already visited?
+ if (!VisitedConstants.insert(V).second)
+ return;
+
+ // Check this type.
+ IncorporateType(V->getType());
+
+ // Look in operands for types.
+ const Constant *C = cast<Constant>(V);
+ for (Constant::const_op_iterator I = C->op_begin(),
+ E = C->op_end(); I != E;++I)
+ IncorporateValue(*I);
+ }
+ };
+} // end anonymous namespace
+
+
+/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
+/// the specified module to the TypePrinter and all numbered types to it and the
+/// NumberedTypes table.
+static void AddModuleTypesToPrinter(TypePrinting &TP,
+ std::vector<const Type*> &NumberedTypes,
+ const Module *M) {
+ if (M == 0) return;
+
+ // If the module has a symbol table, take all global types and stuff their
+ // names into the TypeNames map.
+ const TypeSymbolTable &ST = M->getTypeSymbolTable();
+ for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
+ TI != E; ++TI) {
+ const Type *Ty = cast<Type>(TI->second);
+
+ // As a heuristic, don't insert pointer to primitive types, because
+ // they are used too often to have a single useful name.
+ if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+ const Type *PETy = PTy->getElementType();
+ if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
+ !isa<OpaqueType>(PETy))
+ continue;
+ }
+
+ // Likewise don't insert primitives either.
+ if (Ty->isInteger() || Ty->isPrimitiveType())
+ continue;
+
+ // Get the name as a string and insert it into TypeNames.
+ std::string NameStr;
+ raw_string_ostream NameOS(NameStr);
+ PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
+ TP.addTypeName(Ty, NameOS.str());
+ }
+
+ // Walk the entire module to find references to unnamed structure and opaque
+ // types. This is required for correctness by opaque types (because multiple
+ // uses of an unnamed opaque type needs to be referred to by the same ID) and
+ // it shrinks complex recursive structure types substantially in some cases.
+ TypeFinder(TP, NumberedTypes).Run(*M);
+}
+
+
+/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
+/// type, iff there is an entry in the modules symbol table for the specified
+/// type or one of it's component types.
+///
+void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
+ TypePrinting Printer;
+ std::vector<const Type*> NumberedTypes;
+ AddModuleTypesToPrinter(Printer, NumberedTypes, M);
+ Printer.print(Ty, OS);
+}
+
+//===----------------------------------------------------------------------===//
+// SlotTracker Class: Enumerate slot numbers for unnamed values
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// This class provides computation of slot numbers for LLVM Assembly writing.
+///
+class SlotTracker {
+public:
+ /// ValueMap - A mapping of Values to slot numbers
+ typedef DenseMap<const Value*, unsigned> ValueMap;
+
+private:
+ /// TheModule - The module for which we are holding slot numbers
+ const Module* TheModule;
+
+ /// TheFunction - The function for which we are holding slot numbers
+ const Function* TheFunction;
+ bool FunctionProcessed;
+
+ /// mMap - The TypePlanes map for the module level data
+ ValueMap mMap;
+ unsigned mNext;
+
+ /// fMap - The TypePlanes map for the function level data
+ ValueMap fMap;
+ unsigned fNext;
+
+public:
+ /// Construct from a module
+ explicit SlotTracker(const Module *M);
+ /// Construct from a function, starting out in incorp state.
+ explicit SlotTracker(const Function *F);
+
+ /// Return the slot number of the specified value in it's type
+ /// plane. If something is not in the SlotTracker, return -1.
+ int getLocalSlot(const Value *V);
+ int getGlobalSlot(const GlobalValue *V);
+
+ /// If you'd like to deal with a function instead of just a module, use
+ /// this method to get its data into the SlotTracker.
+ void incorporateFunction(const Function *F) {
+ TheFunction = F;
+ FunctionProcessed = false;
+ }
+
+ /// After calling incorporateFunction, use this method to remove the
+ /// most recently incorporated function from the SlotTracker. This
+ /// will reset the state of the machine back to just the module contents.
+ void purgeFunction();
+
+ // Implementation Details
+private:
+ /// This function does the actual initialization.
+ inline void initialize();
+
+ /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
+ void CreateModuleSlot(const GlobalValue *V);
+
+ /// CreateFunctionSlot - Insert the specified Value* into the slot table.
+ void CreateFunctionSlot(const Value *V);
+
+ /// Add all of the module level global variables (and their initializers)
+ /// and function declarations, but not the contents of those functions.
+ void processModule();
+
+ /// Add all of the functions arguments, basic blocks, and instructions
+ void processFunction();
+
+ SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
+ void operator=(const SlotTracker &); // DO NOT IMPLEMENT
+};
+
+} // end anonymous namespace
+
+
+static SlotTracker *createSlotTracker(const Value *V) {
+ if (const Argument *FA = dyn_cast<Argument>(V))
+ return new SlotTracker(FA->getParent());
+
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ return new SlotTracker(I->getParent()->getParent());
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return new SlotTracker(BB->getParent());
+
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return new SlotTracker(GV->getParent());
+
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return new SlotTracker(GA->getParent());
+
+ if (const Function *Func = dyn_cast<Function>(V))
+ return new SlotTracker(Func);
+
+ return 0;
+}
+
+#if 0
+#define ST_DEBUG(X) cerr << X
+#else
+#define ST_DEBUG(X)
+#endif
+
+// Module level constructor. Causes the contents of the Module (sans functions)
+// to be added to the slot table.
+SlotTracker::SlotTracker(const Module *M)
+ : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
+}
+
+// Function level constructor. Causes the contents of the Module and the one
+// function provided to be added to the slot table.
+SlotTracker::SlotTracker(const Function *F)
+ : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
+ mNext(0), fNext(0) {
+}
+
+inline void SlotTracker::initialize() {
+ if (TheModule) {
+ processModule();
+ TheModule = 0; ///< Prevent re-processing next time we're called.
+ }
+
+ if (TheFunction && !FunctionProcessed)
+ processFunction();
+}
+
+// Iterate through all the global variables, functions, and global
+// variable initializers and create slots for them.
+void SlotTracker::processModule() {
+ ST_DEBUG("begin processModule!\n");
+
+ // Add all of the unnamed global variables to the value table.
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I)
+ if (!I->hasName())
+ CreateModuleSlot(I);
+
+ // Add all the unnamed functions to the table.
+ for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
+ I != E; ++I)
+ if (!I->hasName())
+ CreateModuleSlot(I);
+
+ ST_DEBUG("end processModule!\n");
+}
+
+
+// Process the arguments, basic blocks, and instructions of a function.
+void SlotTracker::processFunction() {
+ ST_DEBUG("begin processFunction!\n");
+ fNext = 0;
+
+ // Add all the function arguments with no names.
+ for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
+ AE = TheFunction->arg_end(); AI != AE; ++AI)
+ if (!AI->hasName())
+ CreateFunctionSlot(AI);
+
+ ST_DEBUG("Inserting Instructions:\n");
+
+ // Add all of the basic blocks and instructions with no names.
+ for (Function::const_iterator BB = TheFunction->begin(),
+ E = TheFunction->end(); BB != E; ++BB) {
+ if (!BB->hasName())
+ CreateFunctionSlot(BB);
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (I->getType() != Type::VoidTy && !I->hasName())
+ CreateFunctionSlot(I);
+ }
+
+ FunctionProcessed = true;
+
+ ST_DEBUG("end processFunction!\n");
+}
+
+/// Clean up after incorporating a function. This is the only way to get out of
+/// the function incorporation state that affects get*Slot/Create*Slot. Function
+/// incorporation state is indicated by TheFunction != 0.
+void SlotTracker::purgeFunction() {
+ ST_DEBUG("begin purgeFunction!\n");
+ fMap.clear(); // Simply discard the function level map
+ TheFunction = 0;
+ FunctionProcessed = false;
+ ST_DEBUG("end purgeFunction!\n");
+}
+
+/// getGlobalSlot - Get the slot number of a global value.
+int SlotTracker::getGlobalSlot(const GlobalValue *V) {
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ // Find the type plane in the module map
+ ValueMap::iterator MI = mMap.find(V);
+ return MI == mMap.end() ? -1 : (int)MI->second;
+}
+
+
+/// getLocalSlot - Get the slot number for a value that is local to a function.
+int SlotTracker::getLocalSlot(const Value *V) {
+ assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
+
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ ValueMap::iterator FI = fMap.find(V);
+ return FI == fMap.end() ? -1 : (int)FI->second;
+}
+
+
+/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
+void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
+ assert(V && "Can't insert a null Value into SlotTracker!");
+ assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
+ assert(!V->hasName() && "Doesn't need a slot!");
+
+ unsigned DestSlot = mNext++;
+ mMap[V] = DestSlot;
+
+ ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
+ DestSlot << " [");
+ // G = Global, F = Function, A = Alias, o = other
+ ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
+ (isa<Function>(V) ? 'F' :
+ (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
+}
+
+
+/// CreateSlot - Create a new slot for the specified value if it has no name.
+void SlotTracker::CreateFunctionSlot(const Value *V) {
+ assert(V->getType() != Type::VoidTy && !V->hasName() &&
+ "Doesn't need a slot!");
+
+ unsigned DestSlot = fNext++;
+ fMap[V] = DestSlot;
+
+ // G = Global, F = Function, o = other
+ ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
+ DestSlot << " [o]\n");
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// AsmWriter Implementation
+//===----------------------------------------------------------------------===//
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
+ TypePrinting &TypePrinter,
+ SlotTracker *Machine);
+
+
+
+static const char *getPredicateText(unsigned predicate) {
+ const char * pred = "unknown";
+ switch (predicate) {
+ case FCmpInst::FCMP_FALSE: pred = "false"; break;
+ case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
+ case FCmpInst::FCMP_OGT: pred = "ogt"; break;
+ case FCmpInst::FCMP_OGE: pred = "oge"; break;
+ case FCmpInst::FCMP_OLT: pred = "olt"; break;
+ case FCmpInst::FCMP_OLE: pred = "ole"; break;
+ case FCmpInst::FCMP_ONE: pred = "one"; break;
+ case FCmpInst::FCMP_ORD: pred = "ord"; break;
+ case FCmpInst::FCMP_UNO: pred = "uno"; break;
+ case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
+ case FCmpInst::FCMP_UGT: pred = "ugt"; break;
+ case FCmpInst::FCMP_UGE: pred = "uge"; break;
+ case FCmpInst::FCMP_ULT: pred = "ult"; break;
+ case FCmpInst::FCMP_ULE: pred = "ule"; break;
+ case FCmpInst::FCMP_UNE: pred = "une"; break;
+ case FCmpInst::FCMP_TRUE: pred = "true"; break;
+ case ICmpInst::ICMP_EQ: pred = "eq"; break;
+ case ICmpInst::ICMP_NE: pred = "ne"; break;
+ case ICmpInst::ICMP_SGT: pred = "sgt"; break;
+ case ICmpInst::ICMP_SGE: pred = "sge"; break;
+ case ICmpInst::ICMP_SLT: pred = "slt"; break;
+ case ICmpInst::ICMP_SLE: pred = "sle"; break;
+ case ICmpInst::ICMP_UGT: pred = "ugt"; break;
+ case ICmpInst::ICMP_UGE: pred = "uge"; break;
+ case ICmpInst::ICMP_ULT: pred = "ult"; break;
+ case ICmpInst::ICMP_ULE: pred = "ule"; break;
+ }
+ return pred;
+}
+
+static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
+ TypePrinting &TypePrinter, SlotTracker *Machine) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ if (CI->getType() == Type::Int1Ty) {
+ Out << (CI->getZExtValue() ? "true" : "false");
+ return;
+ }
+ Out << CI->getValue();
+ return;
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
+ &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
+ // We would like to output the FP constant value in exponential notation,
+ // but we cannot do this if doing so will lose precision. Check here to
+ // make sure that we only output it in exponential format if we can parse
+ // the value back and get the same value.
+ //
+ bool ignored;
+ bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
+ double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
+ CFP->getValueAPF().convertToFloat();
+ std::string StrVal = ftostr(CFP->getValueAPF());
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN, that atof will accept, but the lexer will not. Check
+ // that the string matches the "[-+]?[0-9]" regex.
+ //
+ if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
+ // Reparse stringized version!
+ if (atof(StrVal.c_str()) == Val) {
+ Out << StrVal;
+ return;
+ }
+ }
+ // Otherwise we could not reparse it to exactly the same value, so we must
+ // output the string in hexadecimal format! Note that loading and storing
+ // floating point types changes the bits of NaNs on some hosts, notably
+ // x86, so we must not use these types.
+ assert(sizeof(double) == sizeof(uint64_t) &&
+ "assuming that double is 64 bits!");
+ char Buffer[40];
+ APFloat apf = CFP->getValueAPF();
+ // Floats are represented in ASCII IR as double, convert.
+ if (!isDouble)
+ apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ &ignored);
+ Out << "0x" <<
+ utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
+ Buffer+40);
+ return;
+ }
+
+ // Some form of long double. These appear as a magic letter identifying
+ // the type, then a fixed number of hex digits.
+ Out << "0x";
+ if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
+ Out << 'K';
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t* p = api.getRawData();
+ uint64_t word = p[1];
+ int shiftcount=12;
+ int width = api.getBitWidth();
+ for (int j=0; j<width; j+=4, shiftcount-=4) {
+ unsigned int nibble = (word>>shiftcount) & 15;
+ if (nibble < 10)
+ Out << (unsigned char)(nibble + '0');
+ else
+ Out << (unsigned char)(nibble - 10 + 'A');
+ if (shiftcount == 0 && j+4 < width) {
+ word = *p;
+ shiftcount = 64;
+ if (width-j-4 < 64)
+ shiftcount = width-j-4;
+ }
+ }
+ return;
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
+ Out << 'L';
+ else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
+ Out << 'M';
+ else
+ assert(0 && "Unsupported floating point type");
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t* p = api.getRawData();
+ uint64_t word = *p;
+ int shiftcount=60;
+ int width = api.getBitWidth();
+ for (int j=0; j<width; j+=4, shiftcount-=4) {
+ unsigned int nibble = (word>>shiftcount) & 15;
+ if (nibble < 10)
+ Out << (unsigned char)(nibble + '0');
+ else
+ Out << (unsigned char)(nibble - 10 + 'A');
+ if (shiftcount == 0 && j+4 < width) {
+ word = *(++p);
+ shiftcount = 64;
+ if (width-j-4 < 64)
+ shiftcount = width-j-4;
+ }
+ }
+ return;
+ }
+
+ if (isa<ConstantAggregateZero>(CV)) {
+ Out << "zeroinitializer";
+ return;
+ }
+
+ if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ // As a special case, print the array as a string if it is an array of
+ // i8 with ConstantInt values.
+ //
+ const Type *ETy = CA->getType()->getElementType();
+ if (CA->isString()) {
+ Out << "c\"";
+ PrintEscapedString(CA->getAsString(), Out);
+ Out << '"';
+ } else { // Cannot output in string format...
+ Out << '[';
+ if (CA->getNumOperands()) {
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getOperand(0),
+ TypePrinter, Machine);
+ for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
+ }
+ }
+ Out << ']';
+ }
+ return;
+ }
+
+ if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ if (CS->getType()->isPacked())
+ Out << '<';
+ Out << '{';
+ unsigned N = CS->getNumOperands();
+ if (N) {
+ Out << ' ';
+ TypePrinter.print(CS->getOperand(0)->getType(), Out);
+ Out << ' ';
+
+ WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
+
+ for (unsigned i = 1; i < N; i++) {
+ Out << ", ";
+ TypePrinter.print(CS->getOperand(i)->getType(), Out);
+ Out << ' ';
+
+ WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
+ }
+ Out << ' ';
+ }
+
+ Out << '}';
+ if (CS->getType()->isPacked())
+ Out << '>';
+ return;
+ }
+
+ if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
+ const Type *ETy = CP->getType()->getElementType();
+ assert(CP->getNumOperands() > 0 &&
+ "Number of operands for a PackedConst must be > 0");
+ Out << '<';
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
+ for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
+ }
+ Out << '>';
+ return;
+ }
+
+ if (isa<ConstantPointerNull>(CV)) {
+ Out << "null";
+ return;
+ }
+
+ if (isa<UndefValue>(CV)) {
+ Out << "undef";
+ return;
+ }
+
+ if (const MDString *S = dyn_cast<MDString>(CV)) {
+ Out << "!\"";
+ PrintEscapedString(S->begin(), S->size(), Out);
+ Out << '"';
+ return;
+ }
+
+ if (const MDNode *N = dyn_cast<MDNode>(CV)) {
+ Out << "!{";
+ for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
+ I != E;) {
+ if (!*I) {
+ Out << "null";
+ } else {
+ TypePrinter.print((*I)->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, *I, TypePrinter, Machine);
+ }
+
+ if (++I != E)
+ Out << ", ";
+ }
+ Out << "}";
+ return;
+ }
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ Out << CE->getOpcodeName();
+ if (CE->isCompare())
+ Out << ' ' << getPredicateText(CE->getPredicate());
+ Out << " (";
+
+ for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+ TypePrinter.print((*OI)->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
+ if (OI+1 != CE->op_end())
+ Out << ", ";
+ }
+
+ if (CE->hasIndices()) {
+ const SmallVector<unsigned, 4> &Indices = CE->getIndices();
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ Out << ", " << Indices[i];
+ }
+
+ if (CE->isCast()) {
+ Out << " to ";
+ TypePrinter.print(CE->getType(), Out);
+ }
+
+ Out << ')';
+ return;
+ }
+
+ Out << "<placeholder or erroneous Constant>";
+}
+
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
+ TypePrinting &TypePrinter,
+ SlotTracker *Machine) {
+ if (V->hasName()) {
+ PrintLLVMName(Out, V);
+ return;
+ }
+
+ const Constant *CV = dyn_cast<Constant>(V);
+ if (CV && !isa<GlobalValue>(CV)) {
+ WriteConstantInt(Out, CV, TypePrinter, Machine);
+ return;
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Out << "asm ";
+ if (IA->hasSideEffects())
+ Out << "sideeffect ";
+ Out << '"';
+ PrintEscapedString(IA->getAsmString(), Out);
+ Out << "\", \"";
+ PrintEscapedString(IA->getConstraintString(), Out);
+ Out << '"';
+ return;
+ }
+
+ char Prefix = '%';
+ int Slot;
+ if (Machine) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Slot = Machine->getGlobalSlot(GV);
+ Prefix = '@';
+ } else {
+ Slot = Machine->getLocalSlot(V);
+ }
+ } else {
+ Machine = createSlotTracker(V);
+ if (Machine) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Slot = Machine->getGlobalSlot(GV);
+ Prefix = '@';
+ } else {
+ Slot = Machine->getLocalSlot(V);
+ }
+ } else {
+ Slot = -1;
+ }
+ delete Machine;
+ }
+
+ if (Slot != -1)
+ Out << Prefix << Slot;
+ else
+ Out << "<badref>";
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
+ const Module *Context) {
+ raw_os_ostream OS(Out);
+ WriteAsOperand(OS, V, PrintType, Context);
+}
+
+void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
+ const Module *Context) {
+ if (Context == 0) Context = getModuleFromVal(V);
+
+ TypePrinting TypePrinter;
+ std::vector<const Type*> NumberedTypes;
+ AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
+ if (PrintType) {
+ TypePrinter.print(V->getType(), Out);
+ Out << ' ';
+ }
+
+ WriteAsOperandInternal(Out, V, TypePrinter, 0);
+}
+
+
+namespace {
+
+class AssemblyWriter {
+ raw_ostream &Out;
+ SlotTracker &Machine;
+ const Module *TheModule;
+ TypePrinting TypePrinter;
+ AssemblyAnnotationWriter *AnnotationWriter;
+ std::vector<const Type*> NumberedTypes;
+public:
+ inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
+ AssemblyAnnotationWriter *AAW)
+ : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
+ AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
+ }
+
+ void write(const Module *M) { printModule(M); }
+
+ void write(const GlobalValue *G) {
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
+ printGlobal(GV);
+ else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
+ printAlias(GA);
+ else if (const Function *F = dyn_cast<Function>(G))
+ printFunction(F);
+ else
+ assert(0 && "Unknown global");
+ }
+
+ void write(const BasicBlock *BB) { printBasicBlock(BB); }
+ void write(const Instruction *I) { printInstruction(*I); }
+
+ void writeOperand(const Value *Op, bool PrintType);
+ void writeParamOperand(const Value *Operand, Attributes Attrs);
+
+ const Module* getModule() { return TheModule; }
+
+private:
+ void printModule(const Module *M);
+ void printTypeSymbolTable(const TypeSymbolTable &ST);
+ void printGlobal(const GlobalVariable *GV);
+ void printAlias(const GlobalAlias *GV);
+ void printFunction(const Function *F);
+ void printArgument(const Argument *FA, Attributes Attrs);
+ void printBasicBlock(const BasicBlock *BB);
+ void printInstruction(const Instruction &I);
+
+ // printInfoComment - Print a little comment after the instruction indicating
+ // which slot it occupies.
+ void printInfoComment(const Value &V);
+};
+} // end of anonymous namespace
+
+
+void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
+ if (Operand == 0) {
+ Out << "<null operand!>";
+ } else {
+ if (PrintType) {
+ TypePrinter.print(Operand->getType(), Out);
+ Out << ' ';
+ }
+ WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
+ }
+}
+
+void AssemblyWriter::writeParamOperand(const Value *Operand,
+ Attributes Attrs) {
+ if (Operand == 0) {
+ Out << "<null operand!>";
+ } else {
+ // Print the type
+ TypePrinter.print(Operand->getType(), Out);
+ // Print parameter attributes list
+ if (Attrs != Attribute::None)
+ Out << ' ' << Attribute::getAsString(Attrs);
+ Out << ' ';
+ // Print the operand
+ WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
+ }
+}
+
+void AssemblyWriter::printModule(const Module *M) {
+ if (!M->getModuleIdentifier().empty() &&
+ // Don't print the ID if it will start a new line (which would
+ // require a comment char before it).
+ M->getModuleIdentifier().find('\n') == std::string::npos)
+ Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
+
+ if (!M->getDataLayout().empty())
+ Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
+ if (!M->getTargetTriple().empty())
+ Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
+
+ if (!M->getModuleInlineAsm().empty()) {
+ // Split the string into lines, to make it easier to read the .ll file.
+ std::string Asm = M->getModuleInlineAsm();
+ size_t CurPos = 0;
+ size_t NewLine = Asm.find_first_of('\n', CurPos);
+ while (NewLine != std::string::npos) {
+ // We found a newline, print the portion of the asm string from the
+ // last newline up to this newline.
+ Out << "module asm \"";
+ PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
+ Out);
+ Out << "\"\n";
+ CurPos = NewLine+1;
+ NewLine = Asm.find_first_of('\n', CurPos);
+ }
+ Out << "module asm \"";
+ PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
+ Out << "\"\n";
+ }
+
+ // Loop over the dependent libraries and emit them.
+ Module::lib_iterator LI = M->lib_begin();
+ Module::lib_iterator LE = M->lib_end();
+ if (LI != LE) {
+ Out << "deplibs = [ ";
+ while (LI != LE) {
+ Out << '"' << *LI << '"';
+ ++LI;
+ if (LI != LE)
+ Out << ", ";
+ }
+ Out << " ]\n";
+ }
+
+ // Loop over the symbol table, emitting all id'd types.
+ printTypeSymbolTable(M->getTypeSymbolTable());
+
+ for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I)
+ printGlobal(I);
+
+ // Output all aliases.
+ if (!M->alias_empty()) Out << "\n";
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ printAlias(I);
+
+ // Output all of the functions.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ printFunction(I);
+}
+
+static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
+ switch (LT) {
+ case GlobalValue::PrivateLinkage: Out << "private "; break;
+ case GlobalValue::InternalLinkage: Out << "internal "; break;
+ case GlobalValue::AvailableExternallyLinkage:
+ Out << "available_externally ";
+ break;
+ case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
+ case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
+ case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
+ case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
+ case GlobalValue::CommonLinkage: Out << "common "; break;
+ case GlobalValue::AppendingLinkage: Out << "appending "; break;
+ case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
+ case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
+ case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
+ case GlobalValue::ExternalLinkage: break;
+ case GlobalValue::GhostLinkage:
+ Out << "GhostLinkage not allowed in AsmWriter!\n";
+ abort();
+ }
+}
+
+
+static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
+ raw_ostream &Out) {
+ switch (Vis) {
+ default: assert(0 && "Invalid visibility style!");
+ case GlobalValue::DefaultVisibility: break;
+ case GlobalValue::HiddenVisibility: Out << "hidden "; break;
+ case GlobalValue::ProtectedVisibility: Out << "protected "; break;
+ }
+}
+
+void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
+ if (GV->hasName()) {
+ PrintLLVMName(Out, GV);
+ Out << " = ";
+ }
+
+ if (!GV->hasInitializer() && GV->hasExternalLinkage())
+ Out << "external ";
+
+ PrintLinkage(GV->getLinkage(), Out);
+ PrintVisibility(GV->getVisibility(), Out);
+
+ if (GV->isThreadLocal()) Out << "thread_local ";
+ if (unsigned AddressSpace = GV->getType()->getAddressSpace())
+ Out << "addrspace(" << AddressSpace << ") ";
+ Out << (GV->isConstant() ? "constant " : "global ");
+ TypePrinter.print(GV->getType()->getElementType(), Out);
+
+ if (GV->hasInitializer()) {
+ Out << ' ';
+ writeOperand(GV->getInitializer(), false);
+ }
+
+ if (GV->hasSection())
+ Out << ", section \"" << GV->getSection() << '"';
+ if (GV->getAlignment())
+ Out << ", align " << GV->getAlignment();
+
+ printInfoComment(*GV);
+ Out << '\n';
+}
+
+void AssemblyWriter::printAlias(const GlobalAlias *GA) {
+ // Don't crash when dumping partially built GA
+ if (!GA->hasName())
+ Out << "<<nameless>> = ";
+ else {
+ PrintLLVMName(Out, GA);
+ Out << " = ";
+ }
+ PrintVisibility(GA->getVisibility(), Out);
+
+ Out << "alias ";
+
+ PrintLinkage(GA->getLinkage(), Out);
+
+ const Constant *Aliasee = GA->getAliasee();
+
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
+ TypePrinter.print(GV->getType(), Out);
+ Out << ' ';
+ PrintLLVMName(Out, GV);
+ } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
+ TypePrinter.print(F->getFunctionType(), Out);
+ Out << "* ";
+
+ WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
+ } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
+ TypePrinter.print(GA->getType(), Out);
+ Out << ' ';
+ PrintLLVMName(Out, GA);
+ } else {
+ const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
+ // The only valid GEP is an all zero GEP.
+ assert((CE->getOpcode() == Instruction::BitCast ||
+ CE->getOpcode() == Instruction::GetElementPtr) &&
+ "Unsupported aliasee");
+ writeOperand(CE, false);
+ }
+
+ printInfoComment(*GA);
+ Out << '\n';
+}
+
+void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
+ // Emit all numbered types.
+ for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
+ Out << "\ttype ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %2 = type %2
+ TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
+ Out << "\t\t; type %" << i << '\n';
+ }
+
+ // Print the named types.
+ for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
+ TI != TE; ++TI) {
+ Out << '\t';
+ PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
+ Out << " = type ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %FILE = type %FILE
+ TypePrinter.printAtLeastOneLevel(TI->second, Out);
+ Out << '\n';
+ }
+}
+
+/// printFunction - Print all aspects of a function.
+///
+void AssemblyWriter::printFunction(const Function *F) {
+ // Print out the return type and name.
+ Out << '\n';
+
+ if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
+
+ if (F->isDeclaration())
+ Out << "declare ";
+ else
+ Out << "define ";
+
+ PrintLinkage(F->getLinkage(), Out);
+ PrintVisibility(F->getVisibility(), Out);
+
+ // Print the calling convention.
+ switch (F->getCallingConv()) {
+ case CallingConv::C: break; // default
+ case CallingConv::Fast: Out << "fastcc "; break;
+ case CallingConv::Cold: Out << "coldcc "; break;
+ case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
+ case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
+ default: Out << "cc" << F->getCallingConv() << " "; break;
+ }
+
+ const FunctionType *FT = F->getFunctionType();
+ const AttrListPtr &Attrs = F->getAttributes();
+ Attributes RetAttrs = Attrs.getRetAttributes();
+ if (RetAttrs != Attribute::None)
+ Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
+ TypePrinter.print(F->getReturnType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
+ Out << '(';
+ Machine.incorporateFunction(F);
+
+ // Loop over the arguments, printing them...
+
+ unsigned Idx = 1;
+ if (!F->isDeclaration()) {
+ // If this isn't a declaration, print the argument names as well.
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (I != F->arg_begin()) Out << ", ";
+ printArgument(I, Attrs.getParamAttributes(Idx));
+ Idx++;
+ }
+ } else {
+ // Otherwise, print the types from the function type.
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (i) Out << ", ";
+
+ // Output type...
+ TypePrinter.print(FT->getParamType(i), Out);
+
+ Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
+ if (ArgAttrs != Attribute::None)
+ Out << ' ' << Attribute::getAsString(ArgAttrs);
+ }
+ }
+
+ // Finish printing arguments...
+ if (FT->isVarArg()) {
+ if (FT->getNumParams()) Out << ", ";
+ Out << "..."; // Output varargs portion of signature!
+ }
+ Out << ')';
+ Attributes FnAttrs = Attrs.getFnAttributes();
+ if (FnAttrs != Attribute::None)
+ Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
+ if (F->hasSection())
+ Out << " section \"" << F->getSection() << '"';
+ if (F->getAlignment())
+ Out << " align " << F->getAlignment();
+ if (F->hasGC())
+ Out << " gc \"" << F->getGC() << '"';
+ if (F->isDeclaration()) {
+ Out << "\n";
+ } else {
+ Out << " {";
+
+ // Output all of its basic blocks... for the function
+ for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
+ printBasicBlock(I);
+
+ Out << "}\n";
+ }
+
+ Machine.purgeFunction();
+}
+
+/// printArgument - This member is called for every argument that is passed into
+/// the function. Simply print it out
+///
+void AssemblyWriter::printArgument(const Argument *Arg,
+ Attributes Attrs) {
+ // Output type...
+ TypePrinter.print(Arg->getType(), Out);
+
+ // Output parameter attributes list
+ if (Attrs != Attribute::None)
+ Out << ' ' << Attribute::getAsString(Attrs);
+
+ // Output name, if available...
+ if (Arg->hasName()) {
+ Out << ' ';
+ PrintLLVMName(Out, Arg);
+ }
+}
+
+/// printBasicBlock - This member is called for each basic block in a method.
+///
+void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
+ if (BB->hasName()) { // Print out the label if it exists...
+ Out << "\n";
+ PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
+ Out << ':';
+ } else if (!BB->use_empty()) { // Don't print block # of no uses...
+ Out << "\n; <label>:";
+ int Slot = Machine.getLocalSlot(BB);
+ if (Slot != -1)
+ Out << Slot;
+ else
+ Out << "<badref>";
+ }
+
+ if (BB->getParent() == 0)
+ Out << "\t\t; Error: Block without parent!";
+ else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
+ // Output predecessors for the block...
+ Out << "\t\t;";
+ pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ if (PI == PE) {
+ Out << " No predecessors!";
+ } else {
+ Out << " preds = ";
+ writeOperand(*PI, false);
+ for (++PI; PI != PE; ++PI) {
+ Out << ", ";
+ writeOperand(*PI, false);
+ }
+ }
+ }
+
+ Out << "\n";
+
+ if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
+
+ // Output all of the instructions in the basic block...
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ printInstruction(*I);
+
+ if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
+}
+
+
+/// printInfoComment - Print a little comment after the instruction indicating
+/// which slot it occupies.
+///
+void AssemblyWriter::printInfoComment(const Value &V) {
+ if (V.getType() != Type::VoidTy) {
+ Out << "\t\t; <";
+ TypePrinter.print(V.getType(), Out);
+ Out << '>';
+
+ if (!V.hasName() && !isa<Instruction>(V)) {
+ int SlotNum;
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
+ SlotNum = Machine.getGlobalSlot(GV);
+ else
+ SlotNum = Machine.getLocalSlot(&V);
+ if (SlotNum == -1)
+ Out << ":<badref>";
+ else
+ Out << ':' << SlotNum; // Print out the def slot taken.
+ }
+ Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
+ }
+}
+
+// This member is called for each Instruction in a function..
+void AssemblyWriter::printInstruction(const Instruction &I) {
+ if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
+
+ Out << '\t';
+
+ // Print out name if it exists...
+ if (I.hasName()) {
+ PrintLLVMName(Out, &I);
+ Out << " = ";
+ } else if (I.getType() != Type::VoidTy) {
+ // Print out the def slot taken.
+ int SlotNum = Machine.getLocalSlot(&I);
+ if (SlotNum == -1)
+ Out << "<badref> = ";
+ else
+ Out << '%' << SlotNum << " = ";
+ }
+
+ // If this is a volatile load or store, print out the volatile marker.
+ if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
+ (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
+ Out << "volatile ";
+ } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
+ // If this is a call, check if it's a tail call.
+ Out << "tail ";
+ }
+
+ // Print out the opcode...
+ Out << I.getOpcodeName();
+
+ // Print out the compare instruction predicates
+ if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
+ Out << ' ' << getPredicateText(CI->getPredicate());
+
+ // Print out the type of the operands...
+ const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
+
+ // Special case conditional branches to swizzle the condition out to the front
+ if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
+ BranchInst &BI(cast<BranchInst>(I));
+ Out << ' ';
+ writeOperand(BI.getCondition(), true);
+ Out << ", ";
+ writeOperand(BI.getSuccessor(0), true);
+ Out << ", ";
+ writeOperand(BI.getSuccessor(1), true);
+
+ } else if (isa<SwitchInst>(I)) {
+ // Special case switch statement to get formatting nice and correct...
+ Out << ' ';
+ writeOperand(Operand , true);
+ Out << ", ";
+ writeOperand(I.getOperand(1), true);
+ Out << " [";
+
+ for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
+ Out << "\n\t\t";
+ writeOperand(I.getOperand(op ), true);
+ Out << ", ";
+ writeOperand(I.getOperand(op+1), true);
+ }
+ Out << "\n\t]";
+ } else if (isa<PHINode>(I)) {
+ Out << ' ';
+ TypePrinter.print(I.getType(), Out);
+ Out << ' ';
+
+ for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
+ if (op) Out << ", ";
+ Out << "[ ";
+ writeOperand(I.getOperand(op ), false); Out << ", ";
+ writeOperand(I.getOperand(op+1), false); Out << " ]";
+ }
+ } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
+ Out << ' ';
+ writeOperand(I.getOperand(0), true);
+ for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
+ Out << ", " << *i;
+ } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
+ Out << ' ';
+ writeOperand(I.getOperand(0), true); Out << ", ";
+ writeOperand(I.getOperand(1), true);
+ for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
+ Out << ", " << *i;
+ } else if (isa<ReturnInst>(I) && !Operand) {
+ Out << " void";
+ } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Print the calling convention being used.
+ switch (CI->getCallingConv()) {
+ case CallingConv::C: break; // default
+ case CallingConv::Fast: Out << " fastcc"; break;
+ case CallingConv::Cold: Out << " coldcc"; break;
+ case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
+ case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
+ default: Out << " cc" << CI->getCallingConv(); break;
+ }
+
+ const PointerType *PTy = cast<PointerType>(Operand->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const Type *RetTy = FTy->getReturnType();
+ const AttrListPtr &PAL = CI->getAttributes();
+
+ if (PAL.getRetAttributes() != Attribute::None)
+ Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
+
+ // If possible, print out the short form of the call instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ if (!FTy->isVarArg() &&
+ (!isa<PointerType>(RetTy) ||
+ !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+ TypePrinter.print(RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ } else {
+ writeOperand(Operand, true);
+ }
+ Out << '(';
+ for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
+ if (op > 1)
+ Out << ", ";
+ writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
+ }
+ Out << ')';
+ if (PAL.getFnAttributes() != Attribute::None)
+ Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ const PointerType *PTy = cast<PointerType>(Operand->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const Type *RetTy = FTy->getReturnType();
+ const AttrListPtr &PAL = II->getAttributes();
+
+ // Print the calling convention being used.
+ switch (II->getCallingConv()) {
+ case CallingConv::C: break; // default
+ case CallingConv::Fast: Out << " fastcc"; break;
+ case CallingConv::Cold: Out << " coldcc"; break;
+ case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
+ case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
+ default: Out << " cc" << II->getCallingConv(); break;
+ }
+
+ if (PAL.getRetAttributes() != Attribute::None)
+ Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
+
+ // If possible, print out the short form of the invoke instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ if (!FTy->isVarArg() &&
+ (!isa<PointerType>(RetTy) ||
+ !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+ TypePrinter.print(RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ } else {
+ writeOperand(Operand, true);
+ }
+ Out << '(';
+ for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
+ if (op > 3)
+ Out << ", ";
+ writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
+ }
+
+ Out << ')';
+ if (PAL.getFnAttributes() != Attribute::None)
+ Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
+
+ Out << "\n\t\t\tto ";
+ writeOperand(II->getNormalDest(), true);
+ Out << " unwind ";
+ writeOperand(II->getUnwindDest(), true);
+
+ } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(AI->getType()->getElementType(), Out);
+ if (AI->isArrayAllocation()) {
+ Out << ", ";
+ writeOperand(AI->getArraySize(), true);
+ }
+ if (AI->getAlignment()) {
+ Out << ", align " << AI->getAlignment();
+ }
+ } else if (isa<CastInst>(I)) {
+ if (Operand) {
+ Out << ' ';
+ writeOperand(Operand, true); // Work with broken code
+ }
+ Out << " to ";
+ TypePrinter.print(I.getType(), Out);
+ } else if (isa<VAArgInst>(I)) {
+ if (Operand) {
+ Out << ' ';
+ writeOperand(Operand, true); // Work with broken code
+ }
+ Out << ", ";
+ TypePrinter.print(I.getType(), Out);
+ } else if (Operand) { // Print the normal way.
+
+ // PrintAllTypes - Instructions who have operands of all the same type
+ // omit the type from all but the first operand. If the instruction has
+ // different type operands (for example br), then they are all printed.
+ bool PrintAllTypes = false;
+ const Type *TheType = Operand->getType();
+
+ // Select, Store and ShuffleVector always print all types.
+ if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
+ || isa<ReturnInst>(I)) {
+ PrintAllTypes = true;
+ } else {
+ for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
+ Operand = I.getOperand(i);
+ // note that Operand shouldn't be null, but the test helps make dump()
+ // more tolerant of malformed IR
+ if (Operand && Operand->getType() != TheType) {
+ PrintAllTypes = true; // We have differing types! Print them all!
+ break;
+ }
+ }
+ }
+
+ if (!PrintAllTypes) {
+ Out << ' ';
+ TypePrinter.print(TheType, Out);
+ }
+
+ Out << ' ';
+ for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
+ if (i) Out << ", ";
+ writeOperand(I.getOperand(i), PrintAllTypes);
+ }
+ }
+
+ // Print post operand alignment for load/store
+ if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
+ Out << ", align " << cast<LoadInst>(I).getAlignment();
+ } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
+ Out << ", align " << cast<StoreInst>(I).getAlignment();
+ }
+
+ printInfoComment(I);
+ Out << '\n';
+}
+
+
+//===----------------------------------------------------------------------===//
+// External Interface declarations
+//===----------------------------------------------------------------------===//
+
+void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
+ raw_os_ostream OS(o);
+ print(OS, AAW);
+}
+void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
+ SlotTracker SlotTable(this);
+ AssemblyWriter W(OS, SlotTable, this, AAW);
+ W.write(this);
+}
+
+void Type::print(std::ostream &o) const {
+ raw_os_ostream OS(o);
+ print(OS);
+}
+
+void Type::print(raw_ostream &OS) const {
+ if (this == 0) {
+ OS << "<null Type>";
+ return;
+ }
+ TypePrinting().print(this, OS);
+}
+
+void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
+ if (this == 0) {
+ OS << "printing a <null> value\n";
+ return;
+ }
+
+ if (const Instruction *I = dyn_cast<Instruction>(this)) {
+ const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
+ SlotTracker SlotTable(F);
+ AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
+ W.write(I);
+ } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
+ SlotTracker SlotTable(BB->getParent());
+ AssemblyWriter W(OS, SlotTable,
+ BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
+ W.write(BB);
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
+ SlotTracker SlotTable(GV->getParent());
+ AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
+ W.write(GV);
+ } else if (const Constant *C = dyn_cast<Constant>(this)) {
+ TypePrinting TypePrinter;
+ TypePrinter.print(C->getType(), OS);
+ OS << ' ';
+ WriteConstantInt(OS, C, TypePrinter, 0);
+ } else if (const Argument *A = dyn_cast<Argument>(this)) {
+ WriteAsOperand(OS, this, true,
+ A->getParent() ? A->getParent()->getParent() : 0);
+ } else if (isa<InlineAsm>(this)) {
+ WriteAsOperand(OS, this, true, 0);
+ } else {
+ assert(0 && "Unknown value to print out!");
+ }
+}
+
+void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
+ raw_os_ostream OS(O);
+ print(OS, AAW);
+}
+
+// Value::dump - allow easy printing of Values from the debugger.
+void Value::dump() const { print(errs()); errs() << '\n'; }
+
+// Type::dump - allow easy printing of Types from the debugger.
+// This one uses type names from the given context module
+void Type::dump(const Module *Context) const {
+ WriteTypeSymbolic(errs(), this, Context);
+ errs() << '\n';
+}
+
+// Type::dump - allow easy printing of Types from the debugger.
+void Type::dump() const { dump(0); }
+
+// Module::dump() - Allow printing of Modules from the debugger.
+void Module::dump() const { print(errs(), 0); }
OpenPOWER on IntegriCloud