summaryrefslogtreecommitdiffstats
path: root/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h12
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp294
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp32
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp17
-rw-r--r--lib/Transforms/InstCombine/InstCombinePHI.cpp2
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp26
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp575
-rw-r--r--lib/Transforms/Utils/BuildLibCalls.cpp324
-rw-r--r--lib/Transforms/Utils/CMakeLists.txt1
9 files changed, 550 insertions, 733 deletions
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index 09accb6..07fb15e 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -117,11 +117,11 @@ public:
Instruction *visitUDiv(BinaryOperator &I);
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
- Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
- Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
+ Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
+ Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
- Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
- Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
+ Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
+ Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Value *A, Value *B, Value *C);
Instruction *visitOr (BinaryOperator &I);
@@ -327,8 +327,8 @@ private:
Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
bool isSub, Instruction &I);
- Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
- bool isSigned, bool Inside, Instruction &IB);
+ Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
+ bool isSigned, bool Inside);
Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
Instruction *MatchBSwap(BinaryOperator &I);
bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 86673f8..3fb3de7 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -137,80 +137,44 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
/// opcode and two operands into either a constant true or false, or a brand
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in the new icmp instruction.
-static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS) {
+static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
+ InstCombiner::BuilderTy *Builder) {
+ CmpInst::Predicate Pred;
switch (Code) {
default: assert(0 && "Illegal ICmp code!");
- case 0:
- return ConstantInt::getFalse(LHS->getContext());
- case 1:
- if (Sign)
- return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
- return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
- case 2:
- return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
- case 3:
- if (Sign)
- return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
- return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
- case 4:
- if (Sign)
- return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
- return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
- case 5:
- return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
- case 6:
- if (Sign)
- return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
- return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
- case 7:
- return ConstantInt::getTrue(LHS->getContext());
+ case 0: // False.
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
+ case 1: Pred = Sign ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
+ case 2: Pred = ICmpInst::ICMP_EQ; break;
+ case 3: Pred = Sign ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
+ case 4: Pred = Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
+ case 5: Pred = ICmpInst::ICMP_NE; break;
+ case 6: Pred = Sign ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
+ case 7: // True.
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
}
+ return Builder->CreateICmp(Pred, LHS, RHS);
}
/// getFCmpValue - This is the complement of getFCmpCode, which turns an
/// opcode and two operands into either a FCmp instruction. isordered is passed
/// in to determine which kind of predicate to use in the new fcmp instruction.
static Value *getFCmpValue(bool isordered, unsigned code,
- Value *LHS, Value *RHS) {
+ Value *LHS, Value *RHS,
+ InstCombiner::BuilderTy *Builder) {
+ CmpInst::Predicate Pred;
switch (code) {
- default: llvm_unreachable("Illegal FCmp code!");
- case 0:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
- case 1:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
- case 2:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
- case 3:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
- case 4:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
- case 5:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
- case 6:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
- case 7: return ConstantInt::getTrue(LHS->getContext());
+ default: assert(0 && "Illegal FCmp code!");
+ case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
+ case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
+ case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
+ case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
+ case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
+ case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
+ case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
+ case 7: return ConstantInt::getTrue(LHS->getContext());
}
+ return Builder->CreateFCmp(Pred, LHS, RHS);
}
/// PredicatesFoldable - Return true if both predicates match sign or if at
@@ -355,40 +319,39 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
/// whether to treat the V, Lo and HI as signed or not. IB is the location to
/// insert new instructions.
-Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
- bool isSigned, bool Inside,
- Instruction &IB) {
+Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
+ bool isSigned, bool Inside) {
assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
if (Inside) {
if (Lo == Hi) // Trivially false.
- return new ICmpInst(ICmpInst::ICMP_NE, V, V);
+ return ConstantInt::getFalse(V->getContext());
// V >= Min && V < Hi --> V < Hi
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
- return new ICmpInst(pred, V, Hi);
+ return Builder->CreateICmp(pred, V, Hi);
}
// Emit V-Lo <u Hi-Lo
Constant *NegLo = ConstantExpr::getNeg(Lo);
Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
- return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
+ return Builder->CreateICmpULT(Add, UpperBound);
}
if (Lo == Hi) // Trivially true.
- return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
+ return ConstantInt::getTrue(V->getContext());
// V < Min || V >= Hi -> V > Hi-1
Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
- return new ICmpInst(pred, V, Hi);
+ return Builder->CreateICmp(pred, V, Hi);
}
// Emit V-Lo >u Hi-1-Lo
@@ -396,7 +359,7 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
- return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
+ return Builder->CreateICmpUGT(Add, LowerBound);
}
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
@@ -472,8 +435,7 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
}
/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
-Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
- ICmpInst *LHS, ICmpInst *RHS) {
+Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
// (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
@@ -486,11 +448,7 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
bool isSigned = LHS->isSigned() || RHS->isSigned();
- Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value.
- return ReplaceInstUsesWith(I, RV);
+ return getICmpValue(isSigned, Code, Op0, Op1, Builder);
}
}
@@ -506,13 +464,13 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
if (LHSCC == ICmpInst::ICMP_ULT &&
LHSCst->getValue().isPowerOf2()) {
Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
+ return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
// (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
+ return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
}
@@ -562,33 +520,32 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
}
case ICmpInst::ICMP_NE:
switch (RHSCC) {
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_ULT:
if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
- return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
+ return Builder->CreateICmpULT(Val, LHSCst);
break; // (X != 13 & X u< 15) -> no change
case ICmpInst::ICMP_SLT:
if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
- return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
+ return Builder->CreateICmpSLT(Val, LHSCst);
break; // (X != 13 & X s< 15) -> no change
case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
case ICmpInst::ICMP_NE:
if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- return new ICmpInst(ICmpInst::ICMP_UGT, Add,
- ConstantInt::get(Add->getType(), 1));
+ return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
}
break; // (X != 13 & X != 15) -> no change
}
@@ -598,12 +555,12 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
break;
}
@@ -613,12 +570,12 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
break;
}
@@ -628,16 +585,15 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
break;
case ICmpInst::ICMP_NE:
if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
- return new ICmpInst(LHSCC, Val, RHSCst);
+ return Builder->CreateICmp(LHSCC, Val, RHSCst);
break; // (X u> 13 & X != 15) -> no change
case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
- return InsertRangeTest(Val, AddOne(LHSCst),
- RHSCst, false, true, I);
+ return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
break;
}
@@ -647,16 +603,15 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
break;
case ICmpInst::ICMP_NE:
if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
- return new ICmpInst(LHSCC, Val, RHSCst);
+ return Builder->CreateICmp(LHSCC, Val, RHSCst);
break; // (X s> 13 & X != 15) -> no change
case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
- return InsertRangeTest(Val, AddOne(LHSCst),
- RHSCst, true, true, I);
+ return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
break;
}
@@ -666,9 +621,10 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
return 0;
}
-Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
- FCmpInst *RHS) {
-
+/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
+/// instcombine, this returns a Value which should already be inserted into the
+/// function.
+Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
RHS->getPredicate() == FCmpInst::FCMP_ORD) {
// (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
@@ -677,17 +633,15 @@ Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
// If either of the constants are nans, then the whole thing returns
// false.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
- return new FCmpInst(FCmpInst::FCMP_ORD,
- LHS->getOperand(0), RHS->getOperand(0));
+ return ConstantInt::getFalse(LHS->getContext());
+ return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
}
// Handle vector zeros. This occurs because the canonical form of
// "fcmp ord x,x" is "fcmp ord x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return new FCmpInst(FCmpInst::FCMP_ORD,
- LHS->getOperand(0), RHS->getOperand(0));
+ return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
return 0;
}
@@ -705,14 +659,13 @@ Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
// Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
-
+ return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
if (Op0CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
if (Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
bool Op0Ordered;
bool Op1Ordered;
@@ -727,14 +680,14 @@ Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
// uno && ueq -> uno && (uno || eq) -> ueq
// ord && olt -> ord && (ord && lt) -> olt
if (Op0Ordered == Op1Ordered)
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
// uno && oeq -> uno && (ord && eq) -> false
// uno && ord -> false
if (!Op0Ordered)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
// ord && ueq -> ord && (uno || eq) -> oeq
- return cast<Instruction>(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS));
+ return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
}
}
@@ -930,14 +883,14 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
- if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
- return Res;
+ if (Value *Res = FoldAndOfICmps(LHS, RHS))
+ return ReplaceInstUsesWith(I, Res);
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
- return Res;
+ if (Value *Res = FoldAndOfFCmps(LHS, RHS))
+ return ReplaceInstUsesWith(I, Res);
// fold (and (cast A), (cast B)) -> (cast (and A, B))
@@ -960,19 +913,15 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
- if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS)) {
- InsertNewInstBefore(Res, I);
+ if (Value *Res = FoldAndOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- }
// If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
- if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS)) {
- InsertNewInstBefore(Res, I);
+ if (Value *Res = FoldAndOfFCmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- }
}
}
@@ -1179,8 +1128,7 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
}
/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
-Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
- ICmpInst *LHS, ICmpInst *RHS) {
+Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
// (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
@@ -1193,11 +1141,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
bool isSigned = LHS->isSigned() || RHS->isSigned();
- Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value.
- return ReplaceInstUsesWith(I, RV);
+ return getICmpValue(isSigned, Code, Op0, Op1, Builder);
}
}
@@ -1211,7 +1155,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
if (LHSCst == RHSCst && LHSCC == RHSCC &&
LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
+ return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
// From here on, we only handle:
@@ -1263,7 +1207,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
- return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
+ return Builder->CreateICmpULT(Add, AddCST);
}
break; // (X == 13 | X == 15) -> no change
case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
@@ -1272,7 +1216,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
}
break;
case ICmpInst::ICMP_NE:
@@ -1281,11 +1225,11 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ConstantInt::getTrue(LHS->getContext());
}
break;
case ICmpInst::ICMP_ULT:
@@ -1297,14 +1241,13 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
// If RHSCst is [us]MAXINT, it is always false. Not handling
// this can cause overflow.
if (RHSCst->isMaxValue(false))
- return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
- false, false, I);
+ return LHS;
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
break;
}
@@ -1318,14 +1261,13 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
// If RHSCst is [us]MAXINT, it is always false. Not handling
// this can cause overflow.
if (RHSCst->isMaxValue(true))
- return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
- true, false, I);
+ return LHS;
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
break;
}
@@ -1335,12 +1277,12 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ConstantInt::getTrue(LHS->getContext());
case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
break;
}
@@ -1350,12 +1292,12 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ConstantInt::getTrue(LHS->getContext());
case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
break;
}
@@ -1364,8 +1306,10 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
return 0;
}
-Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
- FCmpInst *RHS) {
+/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
+/// instcombine, this returns a Value which should already be inserted into the
+/// function.
+Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
RHS->getPredicate() == FCmpInst::FCMP_UNO &&
LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
@@ -1374,20 +1318,18 @@ Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
// If either of the constants are nans, then the whole thing returns
// true.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ConstantInt::getTrue(LHS->getContext());
// Otherwise, no need to compare the two constants, compare the
// rest.
- return new FCmpInst(FCmpInst::FCMP_UNO,
- LHS->getOperand(0), RHS->getOperand(0));
+ return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
}
// Handle vector zeros. This occurs because the canonical form of
// "fcmp uno x,x" is "fcmp uno x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return new FCmpInst(FCmpInst::FCMP_UNO,
- LHS->getOperand(0), RHS->getOperand(0));
+ return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
return 0;
}
@@ -1404,14 +1346,13 @@ Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
// Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC,
- Op0LHS, Op0RHS);
+ return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
if (Op0CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, RHS);
+ return RHS;
if (Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, LHS);
+ return LHS;
bool Op0Ordered;
bool Op1Ordered;
unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
@@ -1419,11 +1360,7 @@ Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
if (Op0Ordered == Op1Ordered) {
// If both are ordered or unordered, return a new fcmp with
// or'ed predicates.
- Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value...
- return ReplaceInstUsesWith(I, RV);
+ return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
}
}
return 0;
@@ -1686,14 +1623,14 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
- if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
- return Res;
+ if (Value *Res = FoldOrOfICmps(LHS, RHS))
+ return ReplaceInstUsesWith(I, Res);
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
- return Res;
+ if (Value *Res = FoldOrOfFCmps(LHS, RHS))
+ return ReplaceInstUsesWith(I, Res);
// fold (or (cast A), (cast B)) -> (cast (or A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
@@ -1717,19 +1654,15 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
- if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS)) {
- InsertNewInstBefore(Res, I);
+ if (Value *Res = FoldOrOfICmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- }
// If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
// cast is otherwise not optimizable. This happens for vector sexts.
if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
- if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS)) {
- InsertNewInstBefore(Res, I);
+ if (Value *Res = FoldOrOfFCmps(LHS, RHS))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- }
}
}
}
@@ -2005,11 +1938,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
bool isSigned = LHS->isSigned() || RHS->isSigned();
- Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value.
- return ReplaceInstUsesWith(I, RV);
+ return ReplaceInstUsesWith(I,
+ getICmpValue(isSigned, Code, Op0, Op1, Builder));
}
}
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 835d149..a241f169 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -304,29 +304,39 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::objectsize: {
- const Type *ReturnTy = CI.getType();
- Value *Op1 = II->getOperand(1);
- bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
-
// We need target data for just about everything so depend on it.
if (!TD) break;
+ const Type *ReturnTy = CI.getType();
+ bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
+
// Get to the real allocated thing and offset as fast as possible.
- Op1 = Op1->stripPointerCasts();
+ Value *Op1 = II->getOperand(1)->stripPointerCasts();
// If we've stripped down to a single global variable that we
// can know the size of then just return that.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
if (GV->hasDefinitiveInitializer()) {
Constant *C = GV->getInitializer();
- uint64_t globalSize = TD->getTypeAllocSize(C->getType());
- return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, globalSize));
+ uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
+ return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
} else {
+ // Can't determine size of the GV.
Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
return ReplaceInstUsesWith(CI, RetVal);
}
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
-
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
+ // Get alloca size.
+ if (AI->getAllocatedType()->isSized()) {
+ uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
+ if (AI->isArrayAllocation()) {
+ const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
+ if (!C) break;
+ AllocaSize *= C->getZExtValue();
+ }
+ return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
+ }
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
// Only handle constant GEPs here.
if (CE->getOpcode() != Instruction::GetElementPtr) break;
GEPOperator *GEP = cast<GEPOperator>(CE);
@@ -361,6 +371,10 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return ReplaceInstUsesWith(CI, RetVal);
}
+
+ // Do not return "I don't know" here. Later optimization passes could
+ // make it possible to evaluate objectsize to a constant.
+ break;
}
case Intrinsic::bswap:
// bswap(bswap(x)) -> x
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index 518af74..72fd558 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -877,25 +877,26 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
- else if (HiOverflow)
+ if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
- else if (LoOverflow)
+ if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
- else
- return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
+ return ReplaceInstUsesWith(ICI,
+ InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
+ true));
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
- else if (HiOverflow)
+ if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
- else if (LoOverflow)
+ if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
- else
- return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
+ return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
+ DivIsSigned, false));
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
diff --git a/lib/Transforms/InstCombine/InstCombinePHI.cpp b/lib/Transforms/InstCombine/InstCombinePHI.cpp
index fba8354..65f0393 100644
--- a/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -266,6 +266,7 @@ Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
// and if TD isn't around, we can't handle the mixed case.
bool isVolatile = FirstLI->isVolatile();
unsigned LoadAlignment = FirstLI->getAlignment();
+ unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
// We can't sink the load if the loaded value could be modified between the
// load and the PHI.
@@ -290,6 +291,7 @@ Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
// the load and the PHI.
if (LI->isVolatile() != isVolatile ||
LI->getParent() != PN.getIncomingBlock(i) ||
+ LI->getPointerAddressSpace() != LoadAddrSpace ||
!isSafeAndProfitableToSinkLoad(LI))
return 0;
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index 12827b6..5aca9cdc 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -597,19 +597,35 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
/// add its operands as factors, otherwise add V to the list of factors.
+///
+/// Ops is the top-level list of add operands we're trying to factor.
static void FindSingleUseMultiplyFactors(Value *V,
- SmallVectorImpl<Value*> &Factors) {
+ SmallVectorImpl<Value*> &Factors,
+ const SmallVectorImpl<ValueEntry> &Ops,
+ bool IsRoot) {
BinaryOperator *BO;
- if ((!V->hasOneUse() && !V->use_empty()) ||
+ if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
!(BO = dyn_cast<BinaryOperator>(V)) ||
BO->getOpcode() != Instruction::Mul) {
Factors.push_back(V);
return;
}
+ // If this value has a single use because it is another input to the add
+ // tree we're reassociating and we dropped its use, it actually has two
+ // uses and we can't factor it.
+ if (!IsRoot) {
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (Ops[i].Op == V) {
+ Factors.push_back(V);
+ return;
+ }
+ }
+
+
// Otherwise, add the LHS and RHS to the list of factors.
- FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
- FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
+ FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
+ FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
}
/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
@@ -753,7 +769,7 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
// Compute all of the factors of this added value.
SmallVector<Value*, 8> Factors;
- FindSingleUseMultiplyFactors(BOp, Factors);
+ FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index cde214b..86ddeac 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -17,6 +17,7 @@
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
@@ -67,496 +68,14 @@ public:
Context = &CI->getCalledFunction()->getContext();
return CallOptimizer(CI->getCalledFunction(), CI, B);
}
-
- /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
- Value *CastToCStr(Value *V, IRBuilder<> &B);
-
- /// EmitStrLen - Emit a call to the strlen function to the builder, for the
- /// specified pointer. Ptr is required to be some pointer type, and the
- /// return value has 'intptr_t' type.
- Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
-
- /// EmitStrChr - Emit a call to the strchr function to the builder, for the
- /// specified pointer and character. Ptr is required to be some pointer type,
- /// and the return value has 'i8*' type.
- Value *EmitStrChr(Value *Ptr, char C, IRBuilder<> &B);
-
- /// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
- /// specified pointer arguments.
- Value *EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B);
-
- /// EmitMemCpy - Emit a call to the memcpy function to the builder. This
- /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
- Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
- unsigned Align, IRBuilder<> &B);
-
- /// EmitMemMove - Emit a call to the memmove function to the builder. This
- /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
- Value *EmitMemMove(Value *Dst, Value *Src, Value *Len,
- unsigned Align, IRBuilder<> &B);
-
- /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
- /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
- Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
-
- /// EmitMemCmp - Emit a call to the memcmp function.
- Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B);
-
- /// EmitMemSet - Emit a call to the memset function
- Value *EmitMemSet(Value *Dst, Value *Val, Value *Len, IRBuilder<> &B);
-
- /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name'
- /// (e.g. 'floor'). This function is known to take a single of type matching
- /// 'Op' and returns one value with the same type. If 'Op' is a long double,
- /// 'l' is added as the suffix of name, if 'Op' is a float, we add a 'f'
- /// suffix.
- Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B,
- const AttrListPtr &Attrs);
-
- /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
- /// is an integer.
- Value *EmitPutChar(Value *Char, IRBuilder<> &B);
-
- /// EmitPutS - Emit a call to the puts function. This assumes that Str is
- /// some pointer.
- void EmitPutS(Value *Str, IRBuilder<> &B);
-
- /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
- /// an i32, and File is a pointer to FILE.
- void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
-
- /// EmitFPutS - Emit a call to the puts function. Str is required to be a
- /// pointer and File is a pointer to FILE.
- void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
-
- /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
- /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
- void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
-
};
} // End anonymous namespace.
-/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
-Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) {
- return B.CreateBitCast(V, Type::getInt8PtrTy(*Context), "cstr");
-}
-
-/// EmitStrLen - Emit a call to the strlen function to the builder, for the
-/// specified pointer. This always returns an integer value of size intptr_t.
-Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
- Attribute::NoUnwind);
-
- Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2),
- TD->getIntPtrType(*Context),
- Type::getInt8PtrTy(*Context),
- NULL);
- CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
- if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
- return CI;
-}
-
-/// EmitStrChr - Emit a call to the strchr function to the builder, for the
-/// specified pointer and character. Ptr is required to be some pointer type,
-/// and the return value has 'i8*' type.
-Value *LibCallOptimization::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI =
- AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
-
- const Type *I8Ptr = Type::getInt8PtrTy(*Context);
- const Type *I32Ty = Type::getInt32Ty(*Context);
- Constant *StrChr = M->getOrInsertFunction("strchr", AttrListPtr::get(&AWI, 1),
- I8Ptr, I8Ptr, I32Ty, NULL);
- CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
- ConstantInt::get(I32Ty, C), "strchr");
- if (const Function *F = dyn_cast<Function>(StrChr->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
-}
-
-/// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
-/// specified pointer arguments.
-Value *LibCallOptimization::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
- const Type *I8Ptr = Type::getInt8PtrTy(*Context);
- Value *StrCpy = M->getOrInsertFunction("strcpy", AttrListPtr::get(AWI, 2),
- I8Ptr, I8Ptr, I8Ptr, NULL);
- CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
- "strcpy");
- if (const Function *F = dyn_cast<Function>(StrCpy->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
-}
-
-/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
-/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
-Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
- unsigned Align, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- const Type *Ty = Len->getType();
- Value *MemCpy = Intrinsic::getDeclaration(M, Intrinsic::memcpy, &Ty, 1);
- Dst = CastToCStr(Dst, B);
- Src = CastToCStr(Src, B);
- return B.CreateCall4(MemCpy, Dst, Src, Len,
- ConstantInt::get(Type::getInt32Ty(*Context), Align));
-}
-
-/// EmitMemMove - Emit a call to the memmove function to the builder. This
-/// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
-Value *LibCallOptimization::EmitMemMove(Value *Dst, Value *Src, Value *Len,
- unsigned Align, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- const Type *Ty = TD->getIntPtrType(*Context);
- Value *MemMove = Intrinsic::getDeclaration(M, Intrinsic::memmove, &Ty, 1);
- Dst = CastToCStr(Dst, B);
- Src = CastToCStr(Src, B);
- Value *A = ConstantInt::get(Type::getInt32Ty(*Context), Align);
- return B.CreateCall4(MemMove, Dst, Src, Len, A);
-}
-
-/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
-/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
-Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
- Value *Len, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI;
- AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
-
- Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1),
- Type::getInt8PtrTy(*Context),
- Type::getInt8PtrTy(*Context),
- Type::getInt32Ty(*Context),
- TD->getIntPtrType(*Context),
- NULL);
- CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
-
- if (const Function *F = dyn_cast<Function>(MemChr->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
- return CI;
-}
-
-/// EmitMemCmp - Emit a call to the memcmp function.
-Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2,
- Value *Len, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
- Attribute::NoUnwind);
-
- Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3),
- Type::getInt32Ty(*Context),
- Type::getInt8PtrTy(*Context),
- Type::getInt8PtrTy(*Context),
- TD->getIntPtrType(*Context), NULL);
- CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
- Len, "memcmp");
-
- if (const Function *F = dyn_cast<Function>(MemCmp->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
- return CI;
-}
-
-/// EmitMemSet - Emit a call to the memset function
-Value *LibCallOptimization::EmitMemSet(Value *Dst, Value *Val,
- Value *Len, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- Intrinsic::ID IID = Intrinsic::memset;
- const Type *Tys[1];
- Tys[0] = Len->getType();
- Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
- Value *Align = ConstantInt::get(Type::getInt32Ty(*Context), 1);
- return B.CreateCall4(MemSet, CastToCStr(Dst, B), Val, Len, Align);
-}
-
-/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
-/// 'floor'). This function is known to take a single of type matching 'Op' and
-/// returns one value with the same type. If 'Op' is a long double, 'l' is
-/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
-Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
- IRBuilder<> &B,
- const AttrListPtr &Attrs) {
- char NameBuffer[20];
- if (!Op->getType()->isDoubleTy()) {
- // If we need to add a suffix, copy into NameBuffer.
- unsigned NameLen = strlen(Name);
- assert(NameLen < sizeof(NameBuffer)-2);
- memcpy(NameBuffer, Name, NameLen);
- if (Op->getType()->isFloatTy())
- NameBuffer[NameLen] = 'f'; // floorf
- else
- NameBuffer[NameLen] = 'l'; // floorl
- NameBuffer[NameLen+1] = 0;
- Name = NameBuffer;
- }
-
- Module *M = Caller->getParent();
- Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
- Op->getType(), NULL);
- CallInst *CI = B.CreateCall(Callee, Op, Name);
- CI->setAttributes(Attrs);
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
- return CI;
-}
-
-/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
-/// is an integer.
-Value *LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- Value *PutChar = M->getOrInsertFunction("putchar", Type::getInt32Ty(*Context),
- Type::getInt32Ty(*Context), NULL);
- CallInst *CI = B.CreateCall(PutChar,
- B.CreateIntCast(Char,
- Type::getInt32Ty(*Context),
- /*isSigned*/true,
- "chari"),
- "putchar");
-
- if (const Function *F = dyn_cast<Function>(PutChar->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
-}
-
-/// EmitPutS - Emit a call to the puts function. This assumes that Str is
-/// some pointer.
-void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
-
- Value *PutS = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2),
- Type::getInt32Ty(*Context),
- Type::getInt8PtrTy(*Context),
- NULL);
- CallInst *CI = B.CreateCall(PutS, CastToCStr(Str, B), "puts");
- if (const Function *F = dyn_cast<Function>(PutS->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
-
-}
-
-/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
-/// an integer and File is a pointer to FILE.
-void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[2];
- AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
- Constant *F;
- if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2),
- Type::getInt32Ty(*Context),
- Type::getInt32Ty(*Context), File->getType(),
- NULL);
- else
- F = M->getOrInsertFunction("fputc",
- Type::getInt32Ty(*Context),
- Type::getInt32Ty(*Context),
- File->getType(), NULL);
- Char = B.CreateIntCast(Char, Type::getInt32Ty(*Context), /*isSigned*/true,
- "chari");
- CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
-
- if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
- CI->setCallingConv(Fn->getCallingConv());
-}
-
-/// EmitFPutS - Emit a call to the puts function. Str is required to be a
-/// pointer and File is a pointer to FILE.
-void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
- Constant *F;
- if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3),
- Type::getInt32Ty(*Context),
- Type::getInt8PtrTy(*Context),
- File->getType(), NULL);
- else
- F = M->getOrInsertFunction("fputs", Type::getInt32Ty(*Context),
- Type::getInt8PtrTy(*Context),
- File->getType(), NULL);
- CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
-
- if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
- CI->setCallingConv(Fn->getCallingConv());
-}
-
-/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
-/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
-void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
- IRBuilder<> &B) {
- Module *M = Caller->getParent();
- AttributeWithIndex AWI[3];
- AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
- AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture);
- AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
- Constant *F;
- if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3),
- TD->getIntPtrType(*Context),
- Type::getInt8PtrTy(*Context),
- TD->getIntPtrType(*Context),
- TD->getIntPtrType(*Context),
- File->getType(), NULL);
- else
- F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(*Context),
- Type::getInt8PtrTy(*Context),
- TD->getIntPtrType(*Context),
- TD->getIntPtrType(*Context),
- File->getType(), NULL);
- CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
- ConstantInt::get(TD->getIntPtrType(*Context), 1), File);
-
- if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
- CI->setCallingConv(Fn->getCallingConv());
-}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
-/// GetStringLengthH - If we can compute the length of the string pointed to by
-/// the specified pointer, return 'len+1'. If we can't, return 0.
-static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
- // Look through noop bitcast instructions.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- return GetStringLengthH(BCI->getOperand(0), PHIs);
-
- // If this is a PHI node, there are two cases: either we have already seen it
- // or we haven't.
- if (PHINode *PN = dyn_cast<PHINode>(V)) {
- if (!PHIs.insert(PN))
- return ~0ULL; // already in the set.
-
- // If it was new, see if all the input strings are the same length.
- uint64_t LenSoFar = ~0ULL;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
- if (Len == 0) return 0; // Unknown length -> unknown.
-
- if (Len == ~0ULL) continue;
-
- if (Len != LenSoFar && LenSoFar != ~0ULL)
- return 0; // Disagree -> unknown.
- LenSoFar = Len;
- }
-
- // Success, all agree.
- return LenSoFar;
- }
-
- // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
- if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
- if (Len1 == 0) return 0;
- uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
- if (Len2 == 0) return 0;
- if (Len1 == ~0ULL) return Len2;
- if (Len2 == ~0ULL) return Len1;
- if (Len1 != Len2) return 0;
- return Len1;
- }
-
- // If the value is not a GEP instruction nor a constant expression with a
- // GEP instruction, then return unknown.
- User *GEP = 0;
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
- GEP = GEPI;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() != Instruction::GetElementPtr)
- return 0;
- GEP = CE;
- } else {
- return 0;
- }
-
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return 0;
-
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
- if (!Idx->isZero())
- return 0;
- } else
- return 0;
-
- // If the second index isn't a ConstantInt, then this is a variable index
- // into the array. If this occurs, we can't say anything meaningful about
- // the string.
- uint64_t StartIdx = 0;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
- StartIdx = CI->getZExtValue();
- else
- return 0;
-
- // The GEP instruction, constant or instruction, must reference a global
- // variable that is a constant and is initialized. The referenced constant
- // initializer is the array that we'll use for optimization.
- GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
- GV->mayBeOverridden())
- return 0;
- Constant *GlobalInit = GV->getInitializer();
-
- // Handle the ConstantAggregateZero case, which is a degenerate case. The
- // initializer is constant zero so the length of the string must be zero.
- if (isa<ConstantAggregateZero>(GlobalInit))
- return 1; // Len = 0 offset by 1.
-
- // Must be a Constant Array
- ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
- return false;
-
- // Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getNumElements();
-
- // Traverse the constant array from StartIdx (derived above) which is
- // the place the GEP refers to in the array.
- for (unsigned i = StartIdx; i != NumElts; ++i) {
- Constant *Elt = Array->getOperand(i);
- ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
- if (!CI) // This array isn't suitable, non-int initializer.
- return 0;
- if (CI->isZero())
- return i-StartIdx+1; // We found end of string, success!
- }
-
- return 0; // The array isn't null terminated, conservatively return 'unknown'.
-}
-
-/// GetStringLength - If we can compute the length of the string pointed to by
-/// the specified pointer, return 'len+1'. If we can't, return 0.
-static uint64_t GetStringLength(Value *V) {
- if (!V->getType()->isPointerTy()) return 0;
-
- SmallPtrSet<PHINode*, 32> PHIs;
- uint64_t Len = GetStringLengthH(V, PHIs);
- // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
- // an empty string as a length.
- return Len == ~0ULL ? 1 : Len;
-}
-
/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero.
static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
@@ -613,7 +132,7 @@ struct StrCatOpt : public LibCallOptimization {
void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
- Value *DstLen = EmitStrLen(Dst, B);
+ Value *DstLen = EmitStrLen(Dst, B, TD);
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
@@ -623,7 +142,7 @@ struct StrCatOpt : public LibCallOptimization {
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(CpyDst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len+1), 1, B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len+1), 1, B, TD);
}
};
@@ -701,7 +220,8 @@ struct StrChrOpt : public LibCallOptimization {
return 0;
return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
- ConstantInt::get(TD->getIntPtrType(*Context), Len), B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len),
+ B, TD);
}
// Otherwise, the character is a constant, see if the first argument is
@@ -772,7 +292,7 @@ struct StrCmpOpt : public LibCallOptimization {
return EmitMemCmp(Str1P, Str2P,
ConstantInt::get(TD->getIntPtrType(*Context),
- std::min(Len1, Len2)), B);
+ std::min(Len1, Len2)), B, TD);
}
return 0;
@@ -852,7 +372,7 @@ struct StrCpyOpt : public LibCallOptimization {
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B, TD);
return Dst;
}
};
@@ -881,7 +401,7 @@ struct StrNCpyOpt : public LibCallOptimization {
if (SrcLen == 0) {
// strncpy(x, "", y) -> memset(x, '\0', y, 1)
EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'), LenOp,
- B);
+ B, TD);
return Dst;
}
@@ -901,7 +421,7 @@ struct StrNCpyOpt : public LibCallOptimization {
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
EmitMemCpy(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B, TD);
return Dst;
}
@@ -993,7 +513,7 @@ struct StrStrOpt : public LibCallOptimization {
// fold strstr(x, "y") -> strchr(x, 'y').
if (HasStr2 && ToFindStr.size() == 1)
- return B.CreateBitCast(EmitStrChr(CI->getOperand(1), ToFindStr[0], B),
+ return B.CreateBitCast(EmitStrChr(CI->getOperand(1), ToFindStr[0], B, TD),
CI->getType());
return 0;
}
@@ -1061,7 +581,8 @@ struct MemCpyOpt : public LibCallOptimization {
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
- EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
+ EmitMemCpy(CI->getOperand(1), CI->getOperand(2),
+ CI->getOperand(3), 1, B, TD);
return CI->getOperand(1);
}
};
@@ -1082,7 +603,8 @@ struct MemMoveOpt : public LibCallOptimization {
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
- EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
+ EmitMemMove(CI->getOperand(1), CI->getOperand(2),
+ CI->getOperand(3), 1, B, TD);
return CI->getOperand(1);
}
};
@@ -1105,7 +627,7 @@ struct MemSetOpt : public LibCallOptimization {
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context),
false);
- EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B);
+ EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B, TD);
return CI->getOperand(1);
}
};
@@ -1130,11 +652,14 @@ struct MemCpyChkOpt : public LibCallOptimization {
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
- ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
- if (!SizeCI)
+ ConstantInt *ObjSizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
+ if (!ObjSizeCI)
return 0;
- if (SizeCI->isAllOnesValue()) {
- EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
+ ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
+ if (ObjSizeCI->isAllOnesValue() ||
+ (SizeCI && ObjSizeCI->getValue().uge(SizeCI->getValue()))) {
+ EmitMemCpy(CI->getOperand(1), CI->getOperand(2),
+ CI->getOperand(3), 1, B, TD);
return CI->getOperand(1);
}
@@ -1158,13 +683,15 @@ struct MemSetChkOpt : public LibCallOptimization {
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
- ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
- if (!SizeCI)
+ ConstantInt *ObjSizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
+ if (!ObjSizeCI)
return 0;
- if (SizeCI->isAllOnesValue()) {
+ ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
+ if (ObjSizeCI->isAllOnesValue() ||
+ (SizeCI && ObjSizeCI->getValue().uge(SizeCI->getValue()))) {
Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context),
false);
- EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B);
+ EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B, TD);
return CI->getOperand(1);
}
@@ -1188,12 +715,14 @@ struct MemMoveChkOpt : public LibCallOptimization {
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
- ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
- if (!SizeCI)
+ ConstantInt *ObjSizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
+ if (!ObjSizeCI)
return 0;
- if (SizeCI->isAllOnesValue()) {
+ ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
+ if (ObjSizeCI->isAllOnesValue() ||
+ (SizeCI && ObjSizeCI->getValue().uge(SizeCI->getValue()))) {
EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
- 1, B);
+ 1, B, TD);
return CI->getOperand(1);
}
@@ -1209,8 +738,8 @@ struct StrCpyChkOpt : public LibCallOptimization {
!FT->getParamType(1)->isPointerTy())
return 0;
- ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
- if (!SizeCI)
+ ConstantInt *ObjSizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
+ if (!ObjSizeCI)
return 0;
// If a) we don't have any length information, or b) we know this will
@@ -1218,9 +747,9 @@ struct StrCpyChkOpt : public LibCallOptimization {
// strcpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
- if (SizeCI->isAllOnesValue() ||
- SizeCI->getZExtValue() >= GetStringLength(CI->getOperand(2)))
- return EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B);
+ if (ObjSizeCI->isAllOnesValue() ||
+ ObjSizeCI->getZExtValue() >= GetStringLength(CI->getOperand(2)))
+ return EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B, TD);
return 0;
}
@@ -1512,7 +1041,7 @@ struct PrintFOpt : public LibCallOptimization {
// in case there is an error writing to stdout.
if (FormatStr.size() == 1) {
Value *Res = EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context),
- FormatStr[0]), B);
+ FormatStr[0]), B, TD);
if (CI->use_empty()) return CI;
return B.CreateIntCast(Res, CI->getType(), true);
}
@@ -1526,7 +1055,7 @@ struct PrintFOpt : public LibCallOptimization {
Constant *C = ConstantArray::get(*Context, FormatStr, true);
C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
GlobalVariable::InternalLinkage, C, "str");
- EmitPutS(C, B);
+ EmitPutS(C, B, TD);
return CI->use_empty() ? (Value*)CI :
ConstantInt::get(CI->getType(), FormatStr.size()+1);
}
@@ -1535,7 +1064,7 @@ struct PrintFOpt : public LibCallOptimization {
// printf("%c", chr) --> putchar(*(i8*)dst)
if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
CI->getOperand(2)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getOperand(2), B);
+ Value *Res = EmitPutChar(CI->getOperand(2), B, TD);
if (CI->use_empty()) return CI;
return B.CreateIntCast(Res, CI->getType(), true);
@@ -1545,7 +1074,7 @@ struct PrintFOpt : public LibCallOptimization {
if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
CI->getOperand(2)->getType()->isPointerTy() &&
CI->use_empty()) {
- EmitPutS(CI->getOperand(2), B);
+ EmitPutS(CI->getOperand(2), B, TD);
return CI;
}
return 0;
@@ -1582,8 +1111,8 @@ struct SPrintFOpt : public LibCallOptimization {
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
- ConstantInt::get
- (TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
+ ConstantInt::get(TD->getIntPtrType(*Context),
+ FormatStr.size()+1), 1, B, TD);
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1614,11 +1143,11 @@ struct SPrintFOpt : public LibCallOptimization {
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!CI->getOperand(3)->getType()->isPointerTy()) return 0;
- Value *Len = EmitStrLen(CI->getOperand(3), B);
+ Value *Len = EmitStrLen(CI->getOperand(3), B, TD);
Value *IncLen = B.CreateAdd(Len,
ConstantInt::get(Len->getType(), 1),
"leninc");
- EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
+ EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B, TD);
// The sprintf result is the unincremented number of bytes in the string.
return B.CreateIntCast(Len, CI->getType(), false);
@@ -1654,7 +1183,7 @@ struct FWriteOpt : public LibCallOptimization {
// If this is writing one byte, turn it into fputc.
if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
- EmitFPutC(Char, CI->getOperand(4), B);
+ EmitFPutC(Char, CI->getOperand(4), B, TD);
return ConstantInt::get(CI->getType(), 1);
}
@@ -1682,7 +1211,7 @@ struct FPutsOpt : public LibCallOptimization {
if (!Len) return 0;
EmitFWrite(CI->getOperand(1),
ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
- CI->getOperand(2), B);
+ CI->getOperand(2), B, TD);
return CI; // Known to have no uses (see above).
}
};
@@ -1716,7 +1245,7 @@ struct FPrintFOpt : public LibCallOptimization {
EmitFWrite(CI->getOperand(2),
ConstantInt::get(TD->getIntPtrType(*Context),
FormatStr.size()),
- CI->getOperand(1), B);
+ CI->getOperand(1), B, TD);
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1729,7 +1258,7 @@ struct FPrintFOpt : public LibCallOptimization {
if (FormatStr[1] == 'c') {
// fprintf(F, "%c", chr) --> *(i8*)dst = chr
if (!CI->getOperand(3)->getType()->isIntegerTy()) return 0;
- EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
+ EmitFPutC(CI->getOperand(3), CI->getOperand(1), B, TD);
return ConstantInt::get(CI->getType(), 1);
}
@@ -1737,7 +1266,7 @@ struct FPrintFOpt : public LibCallOptimization {
// fprintf(F, "%s", str) -> fputs(str, F)
if (!CI->getOperand(3)->getType()->isPointerTy() || !CI->use_empty())
return 0;
- EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
+ EmitFPutS(CI->getOperand(3), CI->getOperand(1), B, TD);
return CI;
}
return 0;
diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp
new file mode 100644
index 0000000..2ea4bb6
--- /dev/null
+++ b/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -0,0 +1,324 @@
+//===- BuildLibCalls.cpp - Utility builder for libcalls -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some functions that will create standard C libcalls.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Type.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/Module.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Intrinsics.h"
+
+using namespace llvm;
+
+/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
+Value *llvm::CastToCStr(Value *V, IRBuilder<> &B) {
+ return B.CreateBitCast(V, B.getInt8PtrTy(), "cstr");
+}
+
+/// EmitStrLen - Emit a call to the strlen function to the builder, for the
+/// specified pointer. This always returns an integer value of size intptr_t.
+Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[2];
+ AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
+ Attribute::NoUnwind);
+
+ LLVMContext &Context = B.GetInsertBlock()->getContext();
+ Constant *StrLen = M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2),
+ TD->getIntPtrType(Context),
+ B.getInt8PtrTy(),
+ NULL);
+ CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
+ if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+}
+
+/// EmitStrChr - Emit a call to the strchr function to the builder, for the
+/// specified pointer and character. Ptr is required to be some pointer type,
+/// and the return value has 'i8*' type.
+Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
+ const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI =
+ AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
+
+ const Type *I8Ptr = B.getInt8PtrTy();
+ const Type *I32Ty = B.getInt32Ty();
+ Constant *StrChr = M->getOrInsertFunction("strchr", AttrListPtr::get(&AWI, 1),
+ I8Ptr, I8Ptr, I32Ty, NULL);
+ CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
+ ConstantInt::get(I32Ty, C), "strchr");
+ if (const Function *F = dyn_cast<Function>(StrChr->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+ return CI;
+}
+
+/// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
+/// specified pointer arguments.
+Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
+ const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[2];
+ AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ const Type *I8Ptr = B.getInt8PtrTy();
+ Value *StrCpy = M->getOrInsertFunction("strcpy", AttrListPtr::get(AWI, 2),
+ I8Ptr, I8Ptr, I8Ptr, NULL);
+ CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
+ "strcpy");
+ if (const Function *F = dyn_cast<Function>(StrCpy->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+ return CI;
+}
+
+/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
+/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
+Value *llvm::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
+ unsigned Align, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ const Type *Ty = Len->getType();
+ Value *MemCpy = Intrinsic::getDeclaration(M, Intrinsic::memcpy, &Ty, 1);
+ Dst = CastToCStr(Dst, B);
+ Src = CastToCStr(Src, B);
+ return B.CreateCall4(MemCpy, Dst, Src, Len,
+ ConstantInt::get(B.getInt32Ty(), Align));
+}
+
+/// EmitMemMove - Emit a call to the memmove function to the builder. This
+/// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
+Value *llvm::EmitMemMove(Value *Dst, Value *Src, Value *Len,
+ unsigned Align, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ LLVMContext &Context = B.GetInsertBlock()->getContext();
+ const Type *Ty = TD->getIntPtrType(Context);
+ Value *MemMove = Intrinsic::getDeclaration(M, Intrinsic::memmove, &Ty, 1);
+ Dst = CastToCStr(Dst, B);
+ Src = CastToCStr(Src, B);
+ Value *A = ConstantInt::get(B.getInt32Ty(), Align);
+ return B.CreateCall4(MemMove, Dst, Src, Len, A);
+}
+
+/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
+/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
+Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
+ Value *Len, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI;
+ AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
+ LLVMContext &Context = B.GetInsertBlock()->getContext();
+ Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1),
+ B.getInt8PtrTy(),
+ B.getInt8PtrTy(),
+ B.getInt32Ty(),
+ TD->getIntPtrType(Context),
+ NULL);
+ CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
+
+ if (const Function *F = dyn_cast<Function>(MemChr->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+}
+
+/// EmitMemCmp - Emit a call to the memcmp function.
+Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
+ Value *Len, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[3];
+ AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
+ AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
+ Attribute::NoUnwind);
+
+ LLVMContext &Context = B.GetInsertBlock()->getContext();
+ Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3),
+ B.getInt32Ty(),
+ B.getInt8PtrTy(),
+ B.getInt8PtrTy(),
+ TD->getIntPtrType(Context), NULL);
+ CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
+ Len, "memcmp");
+
+ if (const Function *F = dyn_cast<Function>(MemCmp->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+}
+
+/// EmitMemSet - Emit a call to the memset function
+Value *llvm::EmitMemSet(Value *Dst, Value *Val,
+ Value *Len, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Intrinsic::ID IID = Intrinsic::memset;
+ const Type *Tys[1];
+ Tys[0] = Len->getType();
+ Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
+ Value *Align = ConstantInt::get(B.getInt32Ty(), 1);
+ return B.CreateCall4(MemSet, CastToCStr(Dst, B), Val, Len, Align);
+}
+
+/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
+/// 'floor'). This function is known to take a single of type matching 'Op' and
+/// returns one value with the same type. If 'Op' is a long double, 'l' is
+/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
+Value *llvm::EmitUnaryFloatFnCall(Value *Op, const char *Name,
+ IRBuilder<> &B, const AttrListPtr &Attrs) {
+ char NameBuffer[20];
+ if (!Op->getType()->isDoubleTy()) {
+ // If we need to add a suffix, copy into NameBuffer.
+ unsigned NameLen = strlen(Name);
+ assert(NameLen < sizeof(NameBuffer)-2);
+ memcpy(NameBuffer, Name, NameLen);
+ if (Op->getType()->isFloatTy())
+ NameBuffer[NameLen] = 'f'; // floorf
+ else
+ NameBuffer[NameLen] = 'l'; // floorl
+ NameBuffer[NameLen+1] = 0;
+ Name = NameBuffer;
+ }
+
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
+ Op->getType(), NULL);
+ CallInst *CI = B.CreateCall(Callee, Op, Name);
+ CI->setAttributes(Attrs);
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+}
+
+/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
+/// is an integer.
+Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Value *PutChar = M->getOrInsertFunction("putchar", B.getInt32Ty(),
+ B.getInt32Ty(), NULL);
+ CallInst *CI = B.CreateCall(PutChar,
+ B.CreateIntCast(Char,
+ B.getInt32Ty(),
+ /*isSigned*/true,
+ "chari"),
+ "putchar");
+
+ if (const Function *F = dyn_cast<Function>(PutChar->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+ return CI;
+}
+
+/// EmitPutS - Emit a call to the puts function. This assumes that Str is
+/// some pointer.
+void llvm::EmitPutS(Value *Str, IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[2];
+ AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+
+ Value *PutS = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2),
+ B.getInt32Ty(),
+ B.getInt8PtrTy(),
+ NULL);
+ CallInst *CI = B.CreateCall(PutS, CastToCStr(Str, B), "puts");
+ if (const Function *F = dyn_cast<Function>(PutS->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+}
+
+/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
+/// an integer and File is a pointer to FILE.
+void llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
+ const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[2];
+ AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ Constant *F;
+ if (File->getType()->isPointerTy())
+ F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2),
+ B.getInt32Ty(),
+ B.getInt32Ty(), File->getType(),
+ NULL);
+ else
+ F = M->getOrInsertFunction("fputc",
+ B.getInt32Ty(),
+ B.getInt32Ty(),
+ File->getType(), NULL);
+ Char = B.CreateIntCast(Char, B.getInt32Ty(), /*isSigned*/true,
+ "chari");
+ CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
+
+ if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
+ CI->setCallingConv(Fn->getCallingConv());
+}
+
+/// EmitFPutS - Emit a call to the puts function. Str is required to be a
+/// pointer and File is a pointer to FILE.
+void llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
+ const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[3];
+ AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
+ AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ Constant *F;
+ if (File->getType()->isPointerTy())
+ F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3),
+ B.getInt32Ty(),
+ B.getInt8PtrTy(),
+ File->getType(), NULL);
+ else
+ F = M->getOrInsertFunction("fputs", B.getInt32Ty(),
+ B.getInt8PtrTy(),
+ File->getType(), NULL);
+ CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
+
+ if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
+ CI->setCallingConv(Fn->getCallingConv());
+}
+
+/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
+/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
+void llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
+ IRBuilder<> &B, const TargetData *TD) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ AttributeWithIndex AWI[3];
+ AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
+ AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture);
+ AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
+ LLVMContext &Context = B.GetInsertBlock()->getContext();
+ Constant *F;
+ if (File->getType()->isPointerTy())
+ F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3),
+ TD->getIntPtrType(Context),
+ B.getInt8PtrTy(),
+ TD->getIntPtrType(Context),
+ TD->getIntPtrType(Context),
+ File->getType(), NULL);
+ else
+ F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(Context),
+ B.getInt8PtrTy(),
+ TD->getIntPtrType(Context),
+ TD->getIntPtrType(Context),
+ File->getType(), NULL);
+ CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
+ ConstantInt::get(TD->getIntPtrType(Context), 1), File);
+
+ if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
+ CI->setCallingConv(Fn->getCallingConv());
+}
diff --git a/lib/Transforms/Utils/CMakeLists.txt b/lib/Transforms/Utils/CMakeLists.txt
index 93577b4..dec227a 100644
--- a/lib/Transforms/Utils/CMakeLists.txt
+++ b/lib/Transforms/Utils/CMakeLists.txt
@@ -3,6 +3,7 @@ add_llvm_library(LLVMTransformUtils
BasicBlockUtils.cpp
BasicInliner.cpp
BreakCriticalEdges.cpp
+ BuildLibCalls.cpp
CloneFunction.cpp
CloneLoop.cpp
CloneModule.cpp
OpenPOWER on IntegriCloud