diff options
Diffstat (limited to 'lib/Transforms/Vectorize')
-rw-r--r-- | lib/Transforms/Vectorize/BBVectorize.cpp | 1012 | ||||
-rw-r--r-- | lib/Transforms/Vectorize/CMakeLists.txt | 1 | ||||
-rw-r--r-- | lib/Transforms/Vectorize/LoopVectorize.cpp | 1941 | ||||
-rw-r--r-- | lib/Transforms/Vectorize/Vectorize.cpp | 8 |
4 files changed, 2742 insertions, 220 deletions
diff --git a/lib/Transforms/Vectorize/BBVectorize.cpp b/lib/Transforms/Vectorize/BBVectorize.cpp index 62d23cb..f7be3e3 100644 --- a/lib/Transforms/Vectorize/BBVectorize.cpp +++ b/lib/Transforms/Vectorize/BBVectorize.cpp @@ -28,12 +28,14 @@ #include "llvm/Type.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" @@ -41,17 +43,27 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ValueHandle.h" -#include "llvm/Target/TargetData.h" +#include "llvm/DataLayout.h" +#include "llvm/TargetTransformInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Vectorize.h" #include <algorithm> #include <map> using namespace llvm; +static cl::opt<bool> +IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false), + cl::Hidden, cl::desc("Ignore target information")); + static cl::opt<unsigned> ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden, cl::desc("The required chain depth for vectorization")); +static cl::opt<bool> +UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false), + cl::Hidden, cl::desc("Use the chain depth requirement with" + " target information")); + static cl::opt<unsigned> SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden, cl::desc("The maximum search distance for instruction pairs")); @@ -93,8 +105,9 @@ static cl::opt<bool> NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point values")); +// FIXME: This should default to false once pointer vector support works. static cl::opt<bool> -NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden, +NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden, cl::desc("Don't try to vectorize pointer values")); static cl::opt<bool> @@ -159,6 +172,12 @@ DebugCycleCheck("bb-vectorize-debug-cycle-check", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " cycle-checking process")); + +static cl::opt<bool> +PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair", + cl::init(false), cl::Hidden, + cl::desc("When debugging is enabled, dump the basic block after" + " every pair is fused")); #endif STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize"); @@ -177,13 +196,19 @@ namespace { BBVectorize(Pass *P, const VectorizeConfig &C) : BasicBlockPass(ID), Config(C) { AA = &P->getAnalysis<AliasAnalysis>(); + DT = &P->getAnalysis<DominatorTree>(); SE = &P->getAnalysis<ScalarEvolution>(); - TD = P->getAnalysisIfAvailable<TargetData>(); + TD = P->getAnalysisIfAvailable<DataLayout>(); + TTI = IgnoreTargetInfo ? 0 : + P->getAnalysisIfAvailable<TargetTransformInfo>(); + VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0; } typedef std::pair<Value *, Value *> ValuePair; + typedef std::pair<ValuePair, int> ValuePairWithCost; typedef std::pair<ValuePair, size_t> ValuePairWithDepth; typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair + typedef std::pair<VPPair, unsigned> VPPairWithType; typedef std::pair<std::multimap<Value *, Value *>::iterator, std::multimap<Value *, Value *>::iterator> VPIteratorPair; typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator, @@ -191,8 +216,11 @@ namespace { VPPIteratorPair; AliasAnalysis *AA; + DominatorTree *DT; ScalarEvolution *SE; - TargetData *TD; + DataLayout *TD; + TargetTransformInfo *TTI; + const VectorTargetTransformInfo *VTTI; // FIXME: const correct? @@ -201,11 +229,23 @@ namespace { bool getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap<Value *, Value *> &CandidatePairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, std::vector<Value *> &PairableInsts, bool NonPow2Len); + // FIXME: The current implementation does not account for pairs that + // are connected in multiple ways. For example: + // C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap) + enum PairConnectionType { + PairConnectionDirect, + PairConnectionSwap, + PairConnectionSplat + }; + void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs, std::vector<Value *> &PairableInsts, - std::multimap<ValuePair, ValuePair> &ConnectedPairs); + std::multimap<ValuePair, ValuePair> &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes); void buildDepMap(BasicBlock &BB, std::multimap<Value *, Value *> &CandidatePairs, @@ -213,19 +253,29 @@ namespace { DenseSet<ValuePair> &PairableInstUsers); void choosePairs(std::multimap<Value *, Value *> &CandidatePairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, std::multimap<ValuePair, ValuePair> &ConnectedPairs, + std::multimap<ValuePair, ValuePair> &ConnectedPairDeps, DenseSet<ValuePair> &PairableInstUsers, DenseMap<Value *, Value *>& ChosenPairs); void fuseChosenPairs(BasicBlock &BB, std::vector<Value *> &PairableInsts, - DenseMap<Value *, Value *>& ChosenPairs); + DenseMap<Value *, Value *>& ChosenPairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + std::multimap<ValuePair, ValuePair> &ConnectedPairs, + std::multimap<ValuePair, ValuePair> &ConnectedPairDeps); + bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore); bool areInstsCompatible(Instruction *I, Instruction *J, - bool IsSimpleLoadStore, bool NonPow2Len); + bool IsSimpleLoadStore, bool NonPow2Len, + int &CostSavings, int &FixedOrder); bool trackUsesOfI(DenseSet<Value *> &Users, AliasSetTracker &WriteSet, Instruction *I, @@ -236,6 +286,7 @@ namespace { std::multimap<Value *, Value *> &CandidatePairs, std::vector<Value *> &PairableInsts, std::multimap<ValuePair, ValuePair> &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, ValuePair P); bool pairsConflict(ValuePair P, ValuePair Q, @@ -267,17 +318,21 @@ namespace { void findBestTreeFor( std::multimap<Value *, Value *> &CandidatePairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, std::multimap<ValuePair, ValuePair> &ConnectedPairs, + std::multimap<ValuePair, ValuePair> &ConnectedPairDeps, DenseSet<ValuePair> &PairableInstUsers, std::multimap<ValuePair, ValuePair> &PairableInstUserMap, DenseMap<Value *, Value *> &ChosenPairs, DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth, - size_t &BestEffSize, VPIteratorPair ChoiceRange, + int &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck); Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I, - Instruction *J, unsigned o, bool FlipMemInputs); + Instruction *J, unsigned o); void fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned MaskOffset, unsigned NumInElem, @@ -289,20 +344,20 @@ namespace { bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, Value *&LOp, unsigned numElemL, - Type *ArgTypeL, Type *ArgTypeR, + Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ, unsigned IdxOff = 0); Value *getReplacementInput(LLVMContext& Context, Instruction *I, - Instruction *J, unsigned o, bool FlipMemInputs); + Instruction *J, unsigned o, bool IBeforeJ); void getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector<Value *, 3> &ReplacedOperands, - bool FlipMemInputs); + bool IBeforeJ); void replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, Instruction *&K1, - Instruction *&K2, bool FlipMemInputs); + Instruction *&K2); void collectPairLoadMoveSet(BasicBlock &BB, DenseMap<Value *, Value *> &ChosenPairs, @@ -314,10 +369,6 @@ namespace { DenseMap<Value *, Value *> &ChosenPairs, std::multimap<Value *, Value *> &LoadMoveSet); - void collectPtrInfo(std::vector<Value *> &PairableInsts, - DenseMap<Value *, Value *> &ChosenPairs, - DenseSet<Value *> &LowPtrInsts); - bool canMoveUsesOfIAfterJ(BasicBlock &BB, std::multimap<Value *, Value *> &LoadMoveSet, Instruction *I, Instruction *J); @@ -330,13 +381,22 @@ namespace { void combineMetadata(Instruction *K, const Instruction *J); bool vectorizeBB(BasicBlock &BB) { + if (!DT->isReachableFromEntry(&BB)) { + DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() << + " in " << BB.getParent()->getName() << "\n"); + return false; + } + + DEBUG(if (VTTI) dbgs() << "BBV: using target information\n"); + bool changed = false; // Iterate a sufficient number of times to merge types of size 1 bit, // then 2 bits, then 4, etc. up to half of the target vector width of the // target vector register. unsigned n = 1; for (unsigned v = 2; - v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter); + (VTTI || v <= Config.VectorBits) && + (!Config.MaxIter || n <= Config.MaxIter); v *= 2, ++n) { DEBUG(dbgs() << "BBV: fusing loop #" << n << " for " << BB.getName() << " in " << @@ -363,8 +423,12 @@ namespace { virtual bool runOnBasicBlock(BasicBlock &BB) { AA = &getAnalysis<AliasAnalysis>(); + DT = &getAnalysis<DominatorTree>(); SE = &getAnalysis<ScalarEvolution>(); - TD = getAnalysisIfAvailable<TargetData>(); + TD = getAnalysisIfAvailable<DataLayout>(); + TTI = IgnoreTargetInfo ? 0 : + getAnalysisIfAvailable<TargetTransformInfo>(); + VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0; return vectorizeBB(BB); } @@ -372,8 +436,10 @@ namespace { virtual void getAnalysisUsage(AnalysisUsage &AU) const { BasicBlockPass::getAnalysisUsage(AU); AU.addRequired<AliasAnalysis>(); + AU.addRequired<DominatorTree>(); AU.addRequired<ScalarEvolution>(); AU.addPreserved<AliasAnalysis>(); + AU.addPreserved<DominatorTree>(); AU.addPreserved<ScalarEvolution>(); AU.setPreservesCFG(); } @@ -415,6 +481,14 @@ namespace { T2 = cast<CastInst>(I)->getSrcTy(); else T2 = T1; + + if (SelectInst *SI = dyn_cast<SelectInst>(I)) { + T2 = SI->getCondition()->getType(); + } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { + T2 = SI->getOperand(0)->getType(); + } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) { + T2 = CI->getOperand(0)->getType(); + } } // Returns the weight associated with the provided value. A chain of @@ -446,6 +520,62 @@ namespace { return 1; } + // Returns the cost of the provided instruction using VTTI. + // This does not handle loads and stores. + unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) { + switch (Opcode) { + default: break; + case Instruction::GetElementPtr: + // We mark this instruction as zero-cost because scalar GEPs are usually + // lowered to the intruction addressing mode. At the moment we don't + // generate vector GEPs. + return 0; + case Instruction::Br: + return VTTI->getCFInstrCost(Opcode); + case Instruction::PHI: + return 0; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + return VTTI->getArithmeticInstrCost(Opcode, T1); + case Instruction::Select: + case Instruction::ICmp: + case Instruction::FCmp: + return VTTI->getCmpSelInstrCost(Opcode, T1, T2); + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: + case Instruction::ShuffleVector: + return VTTI->getCastInstrCost(Opcode, T1, T2); + } + + return 1; + } + // This determines the relative offset of two loads or stores, returning // true if the offset could be determined to be some constant value. // For example, if OffsetInElmts == 1, then J accesses the memory directly @@ -453,20 +583,30 @@ namespace { // directly after J. bool getPairPtrInfo(Instruction *I, Instruction *J, Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment, - int64_t &OffsetInElmts) { + unsigned &IAddressSpace, unsigned &JAddressSpace, + int64_t &OffsetInElmts, bool ComputeOffset = true) { OffsetInElmts = 0; - if (isa<LoadInst>(I)) { - IPtr = cast<LoadInst>(I)->getPointerOperand(); - JPtr = cast<LoadInst>(J)->getPointerOperand(); - IAlignment = cast<LoadInst>(I)->getAlignment(); - JAlignment = cast<LoadInst>(J)->getAlignment(); + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + LoadInst *LJ = cast<LoadInst>(J); + IPtr = LI->getPointerOperand(); + JPtr = LJ->getPointerOperand(); + IAlignment = LI->getAlignment(); + JAlignment = LJ->getAlignment(); + IAddressSpace = LI->getPointerAddressSpace(); + JAddressSpace = LJ->getPointerAddressSpace(); } else { - IPtr = cast<StoreInst>(I)->getPointerOperand(); - JPtr = cast<StoreInst>(J)->getPointerOperand(); - IAlignment = cast<StoreInst>(I)->getAlignment(); - JAlignment = cast<StoreInst>(J)->getAlignment(); + StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J); + IPtr = SI->getPointerOperand(); + JPtr = SJ->getPointerOperand(); + IAlignment = SI->getAlignment(); + JAlignment = SJ->getAlignment(); + IAddressSpace = SI->getPointerAddressSpace(); + JAddressSpace = SJ->getPointerAddressSpace(); } + if (!ComputeOffset) + return true; + const SCEV *IPtrSCEV = SE->getSCEV(IPtr); const SCEV *JPtrSCEV = SE->getSCEV(JPtr); @@ -536,6 +676,19 @@ namespace { return false; } + + bool isPureIEChain(InsertElementInst *IE) { + InsertElementInst *IENext = IE; + do { + if (!isa<UndefValue>(IENext->getOperand(0)) && + !isa<InsertElementInst>(IENext->getOperand(0))) { + return false; + } + } while ((IENext = + dyn_cast<InsertElementInst>(IENext->getOperand(0)))); + + return true; + } }; // This function implements one vectorization iteration on the provided @@ -546,11 +699,18 @@ namespace { std::vector<Value *> AllPairableInsts; DenseMap<Value *, Value *> AllChosenPairs; + DenseSet<ValuePair> AllFixedOrderPairs; + DenseMap<VPPair, unsigned> AllPairConnectionTypes; + std::multimap<ValuePair, ValuePair> AllConnectedPairs, AllConnectedPairDeps; do { std::vector<Value *> PairableInsts; std::multimap<Value *, Value *> CandidatePairs; + DenseSet<ValuePair> FixedOrderPairs; + DenseMap<ValuePair, int> CandidatePairCostSavings; ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs, + FixedOrderPairs, + CandidatePairCostSavings, PairableInsts, NonPow2Len); if (PairableInsts.empty()) continue; @@ -563,10 +723,18 @@ namespace { // Note that it only matters that both members of the second pair use some // element of the first pair (to allow for splatting). - std::multimap<ValuePair, ValuePair> ConnectedPairs; - computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs); + std::multimap<ValuePair, ValuePair> ConnectedPairs, ConnectedPairDeps; + DenseMap<VPPair, unsigned> PairConnectionTypes; + computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs, + PairConnectionTypes); if (ConnectedPairs.empty()) continue; + for (std::multimap<ValuePair, ValuePair>::iterator + I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); + I != IE; ++I) { + ConnectedPairDeps.insert(VPPair(I->second, I->first)); + } + // Build the pairable-instruction dependency map DenseSet<ValuePair> PairableInstUsers; buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers); @@ -578,13 +746,48 @@ namespace { // variables. DenseMap<Value *, Value *> ChosenPairs; - choosePairs(CandidatePairs, PairableInsts, ConnectedPairs, + choosePairs(CandidatePairs, CandidatePairCostSavings, + PairableInsts, FixedOrderPairs, PairConnectionTypes, + ConnectedPairs, ConnectedPairDeps, PairableInstUsers, ChosenPairs); if (ChosenPairs.empty()) continue; AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(), PairableInsts.end()); AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end()); + + // Only for the chosen pairs, propagate information on fixed-order pairs, + // pair connections, and their types to the data structures used by the + // pair fusion procedures. + for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(), + IE = ChosenPairs.end(); I != IE; ++I) { + if (FixedOrderPairs.count(*I)) + AllFixedOrderPairs.insert(*I); + else if (FixedOrderPairs.count(ValuePair(I->second, I->first))) + AllFixedOrderPairs.insert(ValuePair(I->second, I->first)); + + for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin(); + J != IE; ++J) { + DenseMap<VPPair, unsigned>::iterator K = + PairConnectionTypes.find(VPPair(*I, *J)); + if (K != PairConnectionTypes.end()) { + AllPairConnectionTypes.insert(*K); + } else { + K = PairConnectionTypes.find(VPPair(*J, *I)); + if (K != PairConnectionTypes.end()) + AllPairConnectionTypes.insert(*K); + } + } + } + + for (std::multimap<ValuePair, ValuePair>::iterator + I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); + I != IE; ++I) { + if (AllPairConnectionTypes.count(*I)) { + AllConnectedPairs.insert(*I); + AllConnectedPairDeps.insert(VPPair(I->second, I->first)); + } + } } while (ShouldContinue); if (AllChosenPairs.empty()) return false; @@ -597,11 +800,13 @@ namespace { // replaced with a vector_extract on the result. Subsequent optimization // passes should coalesce the build/extract combinations. - fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs); + fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs, + AllPairConnectionTypes, + AllConnectedPairs, AllConnectedPairDeps); // It is important to cleanup here so that future iterations of this // function have less work to do. - (void) SimplifyInstructionsInBlock(&BB, TD); + (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo()); return true; } @@ -667,15 +872,22 @@ namespace { !(VectorType::isValidElementType(T2) || T2->isVectorTy())) return false; - if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) { + if (T1->getScalarSizeInBits() == 1) { if (!Config.VectorizeBools) return false; } else { - if (!Config.VectorizeInts - && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy())) + if (!Config.VectorizeInts && T1->isIntOrIntVectorTy()) return false; } - + + if (T2->getScalarSizeInBits() == 1) { + if (!Config.VectorizeBools) + return false; + } else { + if (!Config.VectorizeInts && T2->isIntOrIntVectorTy()) + return false; + } + if (!Config.VectorizeFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy())) return false; @@ -691,8 +903,8 @@ namespace { T2->getScalarType()->isPointerTy())) return false; - if (T1->getPrimitiveSizeInBits() >= Config.VectorBits || - T2->getPrimitiveSizeInBits() >= Config.VectorBits) + if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits || + T2->getPrimitiveSizeInBits() >= Config.VectorBits)) return false; return true; @@ -703,10 +915,14 @@ namespace { // that I has already been determined to be vectorizable and that J is not // in the use tree of I. bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J, - bool IsSimpleLoadStore, bool NonPow2Len) { + bool IsSimpleLoadStore, bool NonPow2Len, + int &CostSavings, int &FixedOrder) { DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I << " <-> " << *J << "\n"); + CostSavings = 0; + FixedOrder = 0; + // Loads and stores can be merged if they have different alignments, // but are otherwise the same. if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment | @@ -719,38 +935,84 @@ namespace { unsigned MaxTypeBits = std::max( IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(), IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits()); - if (MaxTypeBits > Config.VectorBits) + if (!VTTI && MaxTypeBits > Config.VectorBits) return false; // FIXME: handle addsub-type operations! if (IsSimpleLoadStore) { Value *IPtr, *JPtr; - unsigned IAlignment, JAlignment; + unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; int64_t OffsetInElmts = 0; if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, + IAddressSpace, JAddressSpace, OffsetInElmts) && abs64(OffsetInElmts) == 1) { - if (Config.AlignedOnly) { - Type *aTypeI = isa<StoreInst>(I) ? - cast<StoreInst>(I)->getValueOperand()->getType() : I->getType(); - Type *aTypeJ = isa<StoreInst>(J) ? - cast<StoreInst>(J)->getValueOperand()->getType() : J->getType(); + FixedOrder = (int) OffsetInElmts; + unsigned BottomAlignment = IAlignment; + if (OffsetInElmts < 0) BottomAlignment = JAlignment; + + Type *aTypeI = isa<StoreInst>(I) ? + cast<StoreInst>(I)->getValueOperand()->getType() : I->getType(); + Type *aTypeJ = isa<StoreInst>(J) ? + cast<StoreInst>(J)->getValueOperand()->getType() : J->getType(); + Type *VType = getVecTypeForPair(aTypeI, aTypeJ); + if (Config.AlignedOnly) { // An aligned load or store is possible only if the instruction // with the lower offset has an alignment suitable for the // vector type. - unsigned BottomAlignment = IAlignment; - if (OffsetInElmts < 0) BottomAlignment = JAlignment; - - Type *VType = getVecTypeForPair(aTypeI, aTypeJ); unsigned VecAlignment = TD->getPrefTypeAlignment(VType); if (BottomAlignment < VecAlignment) return false; } + + if (VTTI) { + unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(), + IAlignment, IAddressSpace); + unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(), + JAlignment, JAddressSpace); + unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType, + BottomAlignment, + IAddressSpace); + if (VCost > ICost + JCost) + return false; + + // We don't want to fuse to a type that will be split, even + // if the two input types will also be split and there is no other + // associated cost. + unsigned VParts = VTTI->getNumberOfParts(VType); + if (VParts > 1) + return false; + else if (!VParts && VCost == ICost + JCost) + return false; + + CostSavings = ICost + JCost - VCost; + } } else { return false; } + } else if (VTTI) { + unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2); + unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2); + Type *VT1 = getVecTypeForPair(IT1, JT1), + *VT2 = getVecTypeForPair(IT2, JT2); + unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2); + + if (VCost > ICost + JCost) + return false; + + // We don't want to fuse to a type that will be split, even + // if the two input types will also be split and there is no other + // associated cost. + unsigned VParts1 = VTTI->getNumberOfParts(VT1), + VParts2 = VTTI->getNumberOfParts(VT2); + if (VParts1 > 1 || VParts2 > 1) + return false; + else if ((!VParts1 || !VParts2) && VCost == ICost + JCost) + return false; + + CostSavings = ICost + JCost - VCost; } // The powi intrinsic is special because only the first argument is @@ -833,6 +1095,8 @@ namespace { bool BBVectorize::getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap<Value *, Value *> &CandidatePairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, std::vector<Value *> &PairableInsts, bool NonPow2Len) { BasicBlock::iterator E = BB.end(); if (Start == E) return false; @@ -869,7 +1133,9 @@ namespace { // J does not use I, and comes before the first use of I, so it can be // merged with I if the instructions are compatible. - if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len)) continue; + int CostSavings, FixedOrder; + if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len, + CostSavings, FixedOrder)) continue; // J is a candidate for merging with I. if (!PairableInsts.size() || @@ -878,6 +1144,14 @@ namespace { } CandidatePairs.insert(ValuePair(I, J)); + if (VTTI) + CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J), + CostSavings)); + + if (FixedOrder == 1) + FixedOrderPairs.insert(ValuePair(I, J)); + else if (FixedOrder == -1) + FixedOrderPairs.insert(ValuePair(J, I)); // The next call to this function must start after the last instruction // selected during this invocation. @@ -887,7 +1161,8 @@ namespace { } DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair " - << *I << " <-> " << *J << "\n"); + << *I << " <-> " << *J << " (cost savings: " << + CostSavings << ")\n"); // If we have already found too many pairs, break here and this function // will be called again starting after the last instruction selected @@ -915,6 +1190,7 @@ namespace { std::multimap<Value *, Value *> &CandidatePairs, std::vector<Value *> &PairableInsts, std::multimap<ValuePair, ValuePair> &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, ValuePair P) { StoreInst *SI, *SJ; @@ -946,12 +1222,18 @@ namespace { VPIteratorPair JPairRange = CandidatePairs.equal_range(*J); // Look for <I, J>: - if (isSecondInIteratorPair<Value*>(*J, IPairRange)) - ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); + if (isSecondInIteratorPair<Value*>(*J, IPairRange)) { + VPPair VP(P, ValuePair(*I, *J)); + ConnectedPairs.insert(VP); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect)); + } // Look for <J, I>: - if (isSecondInIteratorPair<Value*>(*I, JPairRange)) - ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I))); + if (isSecondInIteratorPair<Value*>(*I, JPairRange)) { + VPPair VP(P, ValuePair(*J, *I)); + ConnectedPairs.insert(VP); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap)); + } } if (Config.SplatBreaksChain) continue; @@ -962,8 +1244,11 @@ namespace { P.first == SJ->getPointerOperand()) continue; - if (isSecondInIteratorPair<Value*>(*J, IPairRange)) - ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); + if (isSecondInIteratorPair<Value*>(*J, IPairRange)) { + VPPair VP(P, ValuePair(*I, *J)); + ConnectedPairs.insert(VP); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); + } } } @@ -985,8 +1270,11 @@ namespace { P.second == SJ->getPointerOperand()) continue; - if (isSecondInIteratorPair<Value*>(*J, IPairRange)) - ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); + if (isSecondInIteratorPair<Value*>(*J, IPairRange)) { + VPPair VP(P, ValuePair(*I, *J)); + ConnectedPairs.insert(VP); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); + } } } } @@ -997,7 +1285,8 @@ namespace { void BBVectorize::computeConnectedPairs( std::multimap<Value *, Value *> &CandidatePairs, std::vector<Value *> &PairableInsts, - std::multimap<ValuePair, ValuePair> &ConnectedPairs) { + std::multimap<ValuePair, ValuePair> &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes) { for (std::vector<Value *>::iterator PI = PairableInsts.begin(), PE = PairableInsts.end(); PI != PE; ++PI) { @@ -1006,7 +1295,7 @@ namespace { for (std::multimap<Value *, Value *>::iterator P = choiceRange.first; P != choiceRange.second; ++P) computePairsConnectedTo(CandidatePairs, PairableInsts, - ConnectedPairs, *P); + ConnectedPairs, PairConnectionTypes, *P); } DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size() @@ -1196,7 +1485,7 @@ namespace { PrunedTree.insert(QTop.first); // Visit each child, pruning as necessary... - DenseMap<ValuePair, size_t> BestChildren; + SmallVector<ValuePairWithDepth, 8> BestChildren; VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first; K != QTopRange.second; ++K) { @@ -1228,7 +1517,7 @@ namespace { DenseSet<ValuePair> CurrentPairs; bool CanAdd = true; - for (DenseMap<ValuePair, size_t>::iterator C2 + for (SmallVector<ValuePairWithDepth, 8>::iterator C2 = BestChildren.begin(), E2 = BestChildren.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || @@ -1313,22 +1602,22 @@ namespace { // to an already-selected child. Check for this here, and if a // conflict is found, then remove the previously-selected child // before adding this one in its place. - for (DenseMap<ValuePair, size_t>::iterator C2 + for (SmallVector<ValuePairWithDepth, 8>::iterator C2 = BestChildren.begin(); C2 != BestChildren.end();) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers)) - BestChildren.erase(C2++); + C2 = BestChildren.erase(C2); else ++C2; } - BestChildren.insert(ValuePairWithDepth(C->first, C->second)); + BestChildren.push_back(ValuePairWithDepth(C->first, C->second)); } - for (DenseMap<ValuePair, size_t>::iterator C + for (SmallVector<ValuePairWithDepth, 8>::iterator C = BestChildren.begin(), E2 = BestChildren.end(); C != E2; ++C) { size_t DepthF = getDepthFactor(C->first.first); @@ -1341,13 +1630,17 @@ namespace { // pairs, given the choice of root pairs as an iterator range. void BBVectorize::findBestTreeFor( std::multimap<Value *, Value *> &CandidatePairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, std::multimap<ValuePair, ValuePair> &ConnectedPairs, + std::multimap<ValuePair, ValuePair> &ConnectedPairDeps, DenseSet<ValuePair> &PairableInstUsers, std::multimap<ValuePair, ValuePair> &PairableInstUserMap, DenseMap<Value *, Value *> &ChosenPairs, DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth, - size_t &BestEffSize, VPIteratorPair ChoiceRange, + int &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck) { for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first; J != ChoiceRange.second; ++J) { @@ -1397,17 +1690,289 @@ namespace { PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree, PrunedTree, *J, UseCycleCheck); - size_t EffSize = 0; - for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(), - E = PrunedTree.end(); S != E; ++S) - EffSize += getDepthFactor(S->first); + int EffSize = 0; + if (VTTI) { + DenseSet<Value *> PrunedTreeInstrs; + for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(), + E = PrunedTree.end(); S != E; ++S) { + PrunedTreeInstrs.insert(S->first); + PrunedTreeInstrs.insert(S->second); + } + + // The set of pairs that have already contributed to the total cost. + DenseSet<ValuePair> IncomingPairs; + + // If the cost model were perfect, this might not be necessary; but we + // need to make sure that we don't get stuck vectorizing our own + // shuffle chains. + bool HasNontrivialInsts = false; + + // The node weights represent the cost savings associated with + // fusing the pair of instructions. + for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(), + E = PrunedTree.end(); S != E; ++S) { + if (!isa<ShuffleVectorInst>(S->first) && + !isa<InsertElementInst>(S->first) && + !isa<ExtractElementInst>(S->first)) + HasNontrivialInsts = true; + + bool FlipOrder = false; + + if (getDepthFactor(S->first)) { + int ESContrib = CandidatePairCostSavings.find(*S)->second; + DEBUG(if (DebugPairSelection) dbgs() << "\tweight {" + << *S->first << " <-> " << *S->second << "} = " << + ESContrib << "\n"); + EffSize += ESContrib; + } + + // The edge weights contribute in a negative sense: they represent + // the cost of shuffles. + VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S); + if (IP.first != ConnectedPairDeps.end()) { + unsigned NumDepsDirect = 0, NumDepsSwap = 0; + for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first; + Q != IP.second; ++Q) { + if (!PrunedTree.count(Q->second)) + continue; + DenseMap<VPPair, unsigned>::iterator R = + PairConnectionTypes.find(VPPair(Q->second, Q->first)); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + if (R->second == PairConnectionDirect) + ++NumDepsDirect; + else if (R->second == PairConnectionSwap) + ++NumDepsSwap; + } + + // If there are more swaps than direct connections, then + // the pair order will be flipped during fusion. So the real + // number of swaps is the minimum number. + FlipOrder = !FixedOrderPairs.count(*S) && + ((NumDepsSwap > NumDepsDirect) || + FixedOrderPairs.count(ValuePair(S->second, S->first))); + + for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first; + Q != IP.second; ++Q) { + if (!PrunedTree.count(Q->second)) + continue; + DenseMap<VPPair, unsigned>::iterator R = + PairConnectionTypes.find(VPPair(Q->second, Q->first)); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + Type *Ty1 = Q->second.first->getType(), + *Ty2 = Q->second.second->getType(); + Type *VTy = getVecTypeForPair(Ty1, Ty2); + if ((R->second == PairConnectionDirect && FlipOrder) || + (R->second == PairConnectionSwap && !FlipOrder) || + R->second == PairConnectionSplat) { + int ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + VTy, VTy); + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << + *Q->second.first << " <-> " << *Q->second.second << + "} -> {" << + *S->first << " <-> " << *S->second << "} = " << + ESContrib << "\n"); + EffSize -= ESContrib; + } + } + } + + // Compute the cost of outgoing edges. We assume that edges outgoing + // to shuffles, inserts or extracts can be merged, and so contribute + // no additional cost. + if (!S->first->getType()->isVoidTy()) { + Type *Ty1 = S->first->getType(), + *Ty2 = S->second->getType(); + Type *VTy = getVecTypeForPair(Ty1, Ty2); + + bool NeedsExtraction = false; + for (Value::use_iterator I = S->first->use_begin(), + IE = S->first->use_end(); I != IE; ++I) { + if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) { + // Shuffle can be folded if it has no other input + if (isa<UndefValue>(SI->getOperand(1))) + continue; + } + if (isa<ExtractElementInst>(*I)) + continue; + if (PrunedTreeInstrs.count(*I)) + continue; + NeedsExtraction = true; + break; + } + + if (NeedsExtraction) { + int ESContrib; + if (Ty1->isVectorTy()) + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + Ty1, VTy); + else + ESContrib = (int) VTTI->getVectorInstrCost( + Instruction::ExtractElement, VTy, 0); + + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << + *S->first << "} = " << ESContrib << "\n"); + EffSize -= ESContrib; + } + + NeedsExtraction = false; + for (Value::use_iterator I = S->second->use_begin(), + IE = S->second->use_end(); I != IE; ++I) { + if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) { + // Shuffle can be folded if it has no other input + if (isa<UndefValue>(SI->getOperand(1))) + continue; + } + if (isa<ExtractElementInst>(*I)) + continue; + if (PrunedTreeInstrs.count(*I)) + continue; + NeedsExtraction = true; + break; + } + + if (NeedsExtraction) { + int ESContrib; + if (Ty2->isVectorTy()) + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + Ty2, VTy); + else + ESContrib = (int) VTTI->getVectorInstrCost( + Instruction::ExtractElement, VTy, 1); + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << + *S->second << "} = " << ESContrib << "\n"); + EffSize -= ESContrib; + } + } + + // Compute the cost of incoming edges. + if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) { + Instruction *S1 = cast<Instruction>(S->first), + *S2 = cast<Instruction>(S->second); + for (unsigned o = 0; o < S1->getNumOperands(); ++o) { + Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o); + + // Combining constants into vector constants (or small vector + // constants into larger ones are assumed free). + if (isa<Constant>(O1) && isa<Constant>(O2)) + continue; + + if (FlipOrder) + std::swap(O1, O2); + + ValuePair VP = ValuePair(O1, O2); + ValuePair VPR = ValuePair(O2, O1); + + // Internal edges are not handled here. + if (PrunedTree.count(VP) || PrunedTree.count(VPR)) + continue; + + Type *Ty1 = O1->getType(), + *Ty2 = O2->getType(); + Type *VTy = getVecTypeForPair(Ty1, Ty2); + + // Combining vector operations of the same type is also assumed + // folded with other operations. + if (Ty1 == Ty2) { + // If both are insert elements, then both can be widened. + InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1), + *IEO2 = dyn_cast<InsertElementInst>(O2); + if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2)) + continue; + // If both are extract elements, and both have the same input + // type, then they can be replaced with a shuffle + ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1), + *EIO2 = dyn_cast<ExtractElementInst>(O2); + if (EIO1 && EIO2 && + EIO1->getOperand(0)->getType() == + EIO2->getOperand(0)->getType()) + continue; + // If both are a shuffle with equal operand types and only two + // unqiue operands, then they can be replaced with a single + // shuffle + ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1), + *SIO2 = dyn_cast<ShuffleVectorInst>(O2); + if (SIO1 && SIO2 && + SIO1->getOperand(0)->getType() == + SIO2->getOperand(0)->getType()) { + SmallSet<Value *, 4> SIOps; + SIOps.insert(SIO1->getOperand(0)); + SIOps.insert(SIO1->getOperand(1)); + SIOps.insert(SIO2->getOperand(0)); + SIOps.insert(SIO2->getOperand(1)); + if (SIOps.size() <= 2) + continue; + } + } + + int ESContrib; + // This pair has already been formed. + if (IncomingPairs.count(VP)) { + continue; + } else if (IncomingPairs.count(VPR)) { + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + VTy, VTy); + } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) { + ESContrib = (int) VTTI->getVectorInstrCost( + Instruction::InsertElement, VTy, 0); + ESContrib += (int) VTTI->getVectorInstrCost( + Instruction::InsertElement, VTy, 1); + } else if (!Ty1->isVectorTy()) { + // O1 needs to be inserted into a vector of size O2, and then + // both need to be shuffled together. + ESContrib = (int) VTTI->getVectorInstrCost( + Instruction::InsertElement, Ty2, 0); + ESContrib += (int) getInstrCost(Instruction::ShuffleVector, + VTy, Ty2); + } else if (!Ty2->isVectorTy()) { + // O2 needs to be inserted into a vector of size O1, and then + // both need to be shuffled together. + ESContrib = (int) VTTI->getVectorInstrCost( + Instruction::InsertElement, Ty1, 0); + ESContrib += (int) getInstrCost(Instruction::ShuffleVector, + VTy, Ty1); + } else { + Type *TyBig = Ty1, *TySmall = Ty2; + if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements()) + std::swap(TyBig, TySmall); + + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + VTy, TyBig); + if (TyBig != TySmall) + ESContrib += (int) getInstrCost(Instruction::ShuffleVector, + TyBig, TySmall); + } + + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" + << *O1 << " <-> " << *O2 << "} = " << + ESContrib << "\n"); + EffSize -= ESContrib; + IncomingPairs.insert(VP); + } + } + } + + if (!HasNontrivialInsts) { + DEBUG(if (DebugPairSelection) dbgs() << + "\tNo non-trivial instructions in tree;" + " override to zero effective size\n"); + EffSize = 0; + } + } else { + for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(), + E = PrunedTree.end(); S != E; ++S) + EffSize += (int) getDepthFactor(S->first); + } DEBUG(if (DebugPairSelection) dbgs() << "BBV: found pruned Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << PrunedTree.size() << " (effective size: " << EffSize << ")\n"); - if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) { + if (((VTTI && !UseChainDepthWithTI) || + MaxDepth >= Config.ReqChainDepth) && + EffSize > 0 && EffSize > BestEffSize) { BestMaxDepth = MaxDepth; BestEffSize = EffSize; BestTree = PrunedTree; @@ -1419,8 +1984,12 @@ namespace { // that will be fused into vector instructions. void BBVectorize::choosePairs( std::multimap<Value *, Value *> &CandidatePairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, std::multimap<ValuePair, ValuePair> &ConnectedPairs, + std::multimap<ValuePair, ValuePair> &ConnectedPairDeps, DenseSet<ValuePair> &PairableInstUsers, DenseMap<Value *, Value *>& ChosenPairs) { bool UseCycleCheck = @@ -1435,9 +2004,12 @@ namespace { VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I); // The best pair to choose and its tree: - size_t BestMaxDepth = 0, BestEffSize = 0; + size_t BestMaxDepth = 0; + int BestEffSize = 0; DenseSet<ValuePair> BestTree; - findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, + findBestTreeFor(CandidatePairs, CandidatePairCostSavings, + PairableInsts, FixedOrderPairs, PairConnectionTypes, + ConnectedPairs, ConnectedPairDeps, PairableInstUsers, PairableInstUserMap, ChosenPairs, BestTree, BestMaxDepth, BestEffSize, ChoiceRange, UseCycleCheck); @@ -1490,24 +2062,19 @@ namespace { // Returns the value that is to be used as the pointer input to the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context, - Instruction *I, Instruction *J, unsigned o, - bool FlipMemInputs) { + Instruction *I, Instruction *J, unsigned o) { Value *IPtr, *JPtr; - unsigned IAlignment, JAlignment; + unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; int64_t OffsetInElmts; - // Note: the analysis might fail here, that is why FlipMemInputs has + // Note: the analysis might fail here, that is why the pair order has // been precomputed (OffsetInElmts must be unused here). (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, - OffsetInElmts); + IAddressSpace, JAddressSpace, + OffsetInElmts, false); // The pointer value is taken to be the one with the lowest offset. - Value *VPtr; - if (!FlipMemInputs) { - VPtr = IPtr; - } else { - VPtr = JPtr; - } + Value *VPtr = IPtr; Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType(); Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType(); @@ -1515,7 +2082,7 @@ namespace { Type *VArgPtrType = PointerType::get(VArgType, cast<PointerType>(IPtr->getType())->getAddressSpace()); return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o), - /* insert before */ FlipMemInputs ? J : I); + /* insert before */ I); } void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J, @@ -1585,23 +2152,12 @@ namespace { Instruction *J, unsigned o, Value *&LOp, unsigned numElemL, Type *ArgTypeL, Type *ArgTypeH, - unsigned IdxOff) { + bool IBeforeJ, unsigned IdxOff) { bool ExpandedIEChain = false; if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) { // If we have a pure insertelement chain, then this can be rewritten // into a chain that directly builds the larger type. - bool PureChain = true; - InsertElementInst *LIENext = LIE; - do { - if (!isa<UndefValue>(LIENext->getOperand(0)) && - !isa<InsertElementInst>(LIENext->getOperand(0))) { - PureChain = false; - break; - } - } while ((LIENext = - dyn_cast<InsertElementInst>(LIENext->getOperand(0)))); - - if (PureChain) { + if (isPureIEChain(LIE)) { SmallVector<Value *, 8> VectElemts(numElemL, UndefValue::get(ArgTypeL->getScalarType())); InsertElementInst *LIENext = LIE; @@ -1619,8 +2175,9 @@ namespace { LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i], ConstantInt::get(Type::getInt32Ty(Context), i + IdxOff), - getReplacementName(I, true, o, i+1)); - LIENext->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, + true, o, i+1)); + LIENext->insertBefore(IBeforeJ ? J : I); LIEPrev = LIENext; } @@ -1635,7 +2192,7 @@ namespace { // Returns the value to be used as the specified operand of the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I, - Instruction *J, unsigned o, bool FlipMemInputs) { + Instruction *J, unsigned o, bool IBeforeJ) { Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1); @@ -1646,12 +2203,6 @@ namespace { Instruction *L = I, *H = J; Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ; - if (FlipMemInputs) { - L = J; - H = I; - ArgTypeL = ArgTypeJ; - ArgTypeH = ArgTypeI; - } unsigned numElemL; if (ArgTypeL->isVectorTy()) @@ -1804,8 +2355,9 @@ namespace { Instruction *S = new ShuffleVectorInst(I1, UndefValue::get(I1T), ConstantVector::get(Mask), - getReplacementName(I, true, o)); - S->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, + true, o)); + S->insertBefore(IBeforeJ ? J : I); return S; } @@ -1826,8 +2378,9 @@ namespace { Instruction *NewI1 = new ShuffleVectorInst(I1, UndefValue::get(I1T), ConstantVector::get(Mask), - getReplacementName(I, true, o, 1)); - NewI1->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + NewI1->insertBefore(IBeforeJ ? J : I); I1 = NewI1; I1T = I2T; I1Elem = I2Elem; @@ -1842,8 +2395,9 @@ namespace { Instruction *NewI2 = new ShuffleVectorInst(I2, UndefValue::get(I2T), ConstantVector::get(Mask), - getReplacementName(I, true, o, 1)); - NewI2->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + NewI2->insertBefore(IBeforeJ ? J : I); I2 = NewI2; I2T = I1T; I2Elem = I1Elem; @@ -1863,8 +2417,8 @@ namespace { Instruction *NewOp = new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask), - getReplacementName(I, true, o)); - NewOp->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, true, o)); + NewOp->insertBefore(IBeforeJ ? J : I); return NewOp; } } @@ -1872,17 +2426,17 @@ namespace { Type *ArgType = ArgTypeL; if (numElemL < numElemH) { if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH, - ArgTypeL, VArgType, 1)) { + ArgTypeL, VArgType, IBeforeJ, 1)) { // This is another short-circuit case: we're combining a scalar into // a vector that is formed by an IE chain. We've just expanded the IE // chain, now insert the scalar and we're done. Instruction *S = InsertElementInst::Create(HOp, LOp, CV0, - getReplacementName(I, true, o)); - S->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, true, o)); + S->insertBefore(IBeforeJ ? J : I); return S; } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL, - ArgTypeH)) { + ArgTypeH, IBeforeJ)) { // The two vector inputs to the shuffle must be the same length, // so extend the smaller vector to be the same length as the larger one. Instruction *NLOp; @@ -1897,29 +2451,32 @@ namespace { NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL), ConstantVector::get(Mask), - getReplacementName(I, true, o, 1)); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); } else { NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0, - getReplacementName(I, true, o, 1)); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); } - NLOp->insertBefore(J); + NLOp->insertBefore(IBeforeJ ? J : I); LOp = NLOp; } ArgType = ArgTypeH; } else if (numElemL > numElemH) { if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL, - ArgTypeH, VArgType)) { + ArgTypeH, VArgType, IBeforeJ)) { Instruction *S = InsertElementInst::Create(LOp, HOp, ConstantInt::get(Type::getInt32Ty(Context), numElemL), - getReplacementName(I, true, o)); - S->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, + true, o)); + S->insertBefore(IBeforeJ ? J : I); return S; } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH, - ArgTypeL)) { + ArgTypeL, IBeforeJ)) { Instruction *NHOp; if (numElemH > 1) { std::vector<Constant *> Mask(numElemL); @@ -1931,13 +2488,15 @@ namespace { NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH), ConstantVector::get(Mask), - getReplacementName(I, true, o, 1)); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); } else { NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0, - getReplacementName(I, true, o, 1)); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); } - NHOp->insertBefore(J); + NHOp->insertBefore(IBeforeJ ? J : I); HOp = NHOp; } } @@ -1955,19 +2514,21 @@ namespace { } Instruction *BV = new ShuffleVectorInst(LOp, HOp, - ConstantVector::get(Mask), - getReplacementName(I, true, o)); - BV->insertBefore(J); + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, true, o)); + BV->insertBefore(IBeforeJ ? J : I); return BV; } Instruction *BV1 = InsertElementInst::Create( UndefValue::get(VArgType), LOp, CV0, - getReplacementName(I, true, o, 1)); - BV1->insertBefore(I); + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + BV1->insertBefore(IBeforeJ ? J : I); Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1, - getReplacementName(I, true, o, 2)); - BV2->insertBefore(J); + getReplacementName(IBeforeJ ? I : J, + true, o, 2)); + BV2->insertBefore(IBeforeJ ? J : I); return BV2; } @@ -1976,7 +2537,7 @@ namespace { void BBVectorize::getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector<Value *, 3> &ReplacedOperands, - bool FlipMemInputs) { + bool IBeforeJ) { unsigned NumOperands = I->getNumOperands(); for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) { @@ -1985,8 +2546,7 @@ namespace { if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) { // This is the pointer for a load/store instruction. - ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o, - FlipMemInputs); + ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o); continue; } else if (isa<CallInst>(I)) { Function *F = cast<CallInst>(I)->getCalledFunction(); @@ -2014,8 +2574,7 @@ namespace { continue; } - ReplacedOperands[o] = - getReplacementInput(Context, I, J, o, FlipMemInputs); + ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ); } } @@ -2026,8 +2585,7 @@ namespace { void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, - Instruction *&K1, Instruction *&K2, - bool FlipMemInputs) { + Instruction *&K1, Instruction *&K2) { if (isa<StoreInst>(I)) { AA->replaceWithNewValue(I, K); AA->replaceWithNewValue(J, K); @@ -2057,13 +2615,11 @@ namespace { } K1 = new ShuffleVectorInst(K, UndefValue::get(VType), - ConstantVector::get( - FlipMemInputs ? Mask2 : Mask1), + ConstantVector::get( Mask1), getReplacementName(K, false, 1)); } else { Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); - Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1); - K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0, + K1 = ExtractElementInst::Create(K, CV0, getReplacementName(K, false, 1)); } @@ -2075,13 +2631,11 @@ namespace { } K2 = new ShuffleVectorInst(K, UndefValue::get(VType), - ConstantVector::get( - FlipMemInputs ? Mask1 : Mask2), + ConstantVector::get( Mask2), getReplacementName(K, false, 2)); } else { - Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1); - K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1, + K2 = ExtractElementInst::Create(K, CV1, getReplacementName(K, false, 2)); } @@ -2181,36 +2735,6 @@ namespace { } } - // As with the aliasing information, SCEV can also change because of - // vectorization. This information is used to compute relative pointer - // offsets; the necessary information will be cached here prior to - // fusion. - void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts, - DenseMap<Value *, Value *> &ChosenPairs, - DenseSet<Value *> &LowPtrInsts) { - for (std::vector<Value *>::iterator PI = PairableInsts.begin(), - PIE = PairableInsts.end(); PI != PIE; ++PI) { - DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI); - if (P == ChosenPairs.end()) continue; - - Instruction *I = cast<Instruction>(P->first); - Instruction *J = cast<Instruction>(P->second); - - if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) - continue; - - Value *IPtr, *JPtr; - unsigned IAlignment, JAlignment; - int64_t OffsetInElmts; - if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, - OffsetInElmts) || abs64(OffsetInElmts) != 1) - llvm_unreachable("Pre-fusion pointer analysis failed"); - - Value *LowPI = (OffsetInElmts > 0) ? I : J; - LowPtrInsts.insert(LowPI); - } - } - // When the first instruction in each pair is cloned, it will inherit its // parent's metadata. This metadata must be combined with that of the other // instruction in a safe way. @@ -2244,27 +2768,27 @@ namespace { // second member). void BBVectorize::fuseChosenPairs(BasicBlock &BB, std::vector<Value *> &PairableInsts, - DenseMap<Value *, Value *> &ChosenPairs) { + DenseMap<Value *, Value *> &ChosenPairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + std::multimap<ValuePair, ValuePair> &ConnectedPairs, + std::multimap<ValuePair, ValuePair> &ConnectedPairDeps) { LLVMContext& Context = BB.getContext(); // During the vectorization process, the order of the pairs to be fused // could be flipped. So we'll add each pair, flipped, into the ChosenPairs // list. After a pair is fused, the flipped pair is removed from the list. - std::vector<ValuePair> FlippedPairs; - FlippedPairs.reserve(ChosenPairs.size()); + DenseSet<ValuePair> FlippedPairs; for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(), E = ChosenPairs.end(); P != E; ++P) - FlippedPairs.push_back(ValuePair(P->second, P->first)); - for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(), + FlippedPairs.insert(ValuePair(P->second, P->first)); + for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(), E = FlippedPairs.end(); P != E; ++P) ChosenPairs.insert(*P); std::multimap<Value *, Value *> LoadMoveSet; collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet); - DenseSet<Value *> LowPtrInsts; - collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts); - DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n"); for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) { @@ -2304,44 +2828,92 @@ namespace { continue; } - bool FlipMemInputs = false; - if (isa<LoadInst>(I) || isa<StoreInst>(I)) - FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end()); + // If the pair must have the other order, then flip it. + bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I)); + if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) { + // This pair does not have a fixed order, and so we might want to + // flip it if that will yield fewer shuffles. We count the number + // of dependencies connected via swaps, and those directly connected, + // and flip the order if the number of swaps is greater. + bool OrigOrder = true; + VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J)); + if (IP.first == ConnectedPairDeps.end()) { + IP = ConnectedPairDeps.equal_range(ValuePair(J, I)); + OrigOrder = false; + } + if (IP.first != ConnectedPairDeps.end()) { + unsigned NumDepsDirect = 0, NumDepsSwap = 0; + for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first; + Q != IP.second; ++Q) { + DenseMap<VPPair, unsigned>::iterator R = + PairConnectionTypes.find(VPPair(Q->second, Q->first)); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + if (R->second == PairConnectionDirect) + ++NumDepsDirect; + else if (R->second == PairConnectionSwap) + ++NumDepsSwap; + } + + if (!OrigOrder) + std::swap(NumDepsDirect, NumDepsSwap); + + if (NumDepsSwap > NumDepsDirect) { + FlipPairOrder = true; + DEBUG(dbgs() << "BBV: reordering pair: " << *I << + " <-> " << *J << "\n"); + } + } + } + + Instruction *L = I, *H = J; + if (FlipPairOrder) + std::swap(H, L); + + // If the pair being fused uses the opposite order from that in the pair + // connection map, then we need to flip the types. + VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L)); + for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first; + Q != IP.second; ++Q) { + DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(*Q); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + if (R->second == PairConnectionDirect) + R->second = PairConnectionSwap; + else if (R->second == PairConnectionSwap) + R->second = PairConnectionDirect; + } + + bool LBeforeH = !FlipPairOrder; unsigned NumOperands = I->getNumOperands(); SmallVector<Value *, 3> ReplacedOperands(NumOperands); - getReplacementInputsForPair(Context, I, J, ReplacedOperands, - FlipMemInputs); + getReplacementInputsForPair(Context, L, H, ReplacedOperands, + LBeforeH); // Make a copy of the original operation, change its type to the vector // type and replace its operands with the vector operands. - Instruction *K = I->clone(); - if (I->hasName()) K->takeName(I); + Instruction *K = L->clone(); + if (L->hasName()) + K->takeName(L); + else if (H->hasName()) + K->takeName(H); if (!isa<StoreInst>(K)) - K->mutateType(getVecTypeForPair(I->getType(), J->getType())); + K->mutateType(getVecTypeForPair(L->getType(), H->getType())); - combineMetadata(K, J); + combineMetadata(K, H); + K->intersectOptionalDataWith(H); for (unsigned o = 0; o < NumOperands; ++o) K->setOperand(o, ReplacedOperands[o]); - // If we've flipped the memory inputs, make sure that we take the correct - // alignment. - if (FlipMemInputs) { - if (isa<StoreInst>(K)) - cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment()); - else - cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment()); - } - K->insertAfter(J); // Instruction insertion point: Instruction *InsertionPt = K; Instruction *K1 = 0, *K2 = 0; - replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2, - FlipMemInputs); + replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2); // The use tree of the first original instruction must be moved to after // the location of the second instruction. The entire use tree of the @@ -2351,10 +2923,10 @@ namespace { moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J); if (!isa<StoreInst>(I)) { - I->replaceAllUsesWith(K1); - J->replaceAllUsesWith(K2); - AA->replaceWithNewValue(I, K1); - AA->replaceWithNewValue(J, K2); + L->replaceAllUsesWith(K1); + H->replaceAllUsesWith(K2); + AA->replaceWithNewValue(L, K1); + AA->replaceWithNewValue(H, K2); } // Instructions that may read from memory may be in the load move set. @@ -2387,6 +2959,9 @@ namespace { SE->forgetValue(J); I->eraseFromParent(); J->eraseFromParent(); + + DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" << + BB << "\n"); } DEBUG(dbgs() << "BBV: final: \n" << BB << "\n"); @@ -2397,6 +2972,7 @@ char BBVectorize::ID = 0; static const char bb_vectorize_name[] = "Basic-Block Vectorization"; INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) diff --git a/lib/Transforms/Vectorize/CMakeLists.txt b/lib/Transforms/Vectorize/CMakeLists.txt index 06cf1e4..e64034a 100644 --- a/lib/Transforms/Vectorize/CMakeLists.txt +++ b/lib/Transforms/Vectorize/CMakeLists.txt @@ -1,6 +1,7 @@ add_llvm_library(LLVMVectorize BBVectorize.cpp Vectorize.cpp + LoopVectorize.cpp ) add_dependencies(LLVMVectorize intrinsics_gen) diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp new file mode 100644 index 0000000..a7ef248 --- /dev/null +++ b/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -0,0 +1,1941 @@ +//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops +// and generates target-independent LLVM-IR. Legalization of the IR is done +// in the codegen. However, the vectorizes uses (will use) the codegen +// interfaces to generate IR that is likely to result in an optimal binary. +// +// The loop vectorizer combines consecutive loop iteration into a single +// 'wide' iteration. After this transformation the index is incremented +// by the SIMD vector width, and not by one. +// +// This pass has three parts: +// 1. The main loop pass that drives the different parts. +// 2. LoopVectorizationLegality - A unit that checks for the legality +// of the vectorization. +// 3. SingleBlockLoopVectorizer - A unit that performs the actual +// widening of instructions. +// 4. LoopVectorizationCostModel - A unit that checks for the profitability +// of vectorization. It decides on the optimal vector width, which +// can be one, if vectorization is not profitable. +//===----------------------------------------------------------------------===// +// +// The reduction-variable vectorization is based on the paper: +// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. +// +// Variable uniformity checks are inspired by: +// Karrenberg, R. and Hack, S. Whole Function Vectorization. +// +// Other ideas/concepts are from: +// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. +// +//===----------------------------------------------------------------------===// +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/LLVMContext.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Value.h" +#include "llvm/Function.h" +#include "llvm/Analysis/Verifier.h" +#include "llvm/Module.h" +#include "llvm/Type.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/TargetTransformInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/DataLayout.h" +#include "llvm/Transforms/Utils/Local.h" +#include <algorithm> +using namespace llvm; + +static cl::opt<unsigned> +VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, + cl::desc("Set the default vectorization width. Zero is autoselect.")); + +/// We don't vectorize loops with a known constant trip count below this number. +const unsigned TinyTripCountThreshold = 16; + +/// When performing a runtime memory check, do not check more than this +/// number of pointers. Notice that the check is quadratic! +const unsigned RuntimeMemoryCheckThreshold = 2; + +namespace { + +// Forward declarations. +class LoopVectorizationLegality; +class LoopVectorizationCostModel; + +/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic +/// block to a specified vectorization factor (VF). +/// This class performs the widening of scalars into vectors, or multiple +/// scalars. This class also implements the following features: +/// * It inserts an epilogue loop for handling loops that don't have iteration +/// counts that are known to be a multiple of the vectorization factor. +/// * It handles the code generation for reduction variables. +/// * Scalarization (implementation using scalars) of un-vectorizable +/// instructions. +/// SingleBlockLoopVectorizer does not perform any vectorization-legality +/// checks, and relies on the caller to check for the different legality +/// aspects. The SingleBlockLoopVectorizer relies on the +/// LoopVectorizationLegality class to provide information about the induction +/// and reduction variables that were found to a given vectorization factor. +class SingleBlockLoopVectorizer { +public: + /// Ctor. + SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li, + DominatorTree *dt, LPPassManager *Lpm, + unsigned VecWidth): + OrigLoop(Orig), SE(Se), LI(Li), DT(dt), LPM(Lpm), VF(VecWidth), + Builder(Se->getContext()), Induction(0), OldInduction(0) { } + + // Perform the actual loop widening (vectorization). + void vectorize(LoopVectorizationLegality *Legal) { + ///Create a new empty loop. Unlink the old loop and connect the new one. + createEmptyLoop(Legal); + /// Widen each instruction in the old loop to a new one in the new loop. + /// Use the Legality module to find the induction and reduction variables. + vectorizeLoop(Legal); + // Register the new loop and update the analysis passes. + updateAnalysis(); + } + +private: + /// Create an empty loop, based on the loop ranges of the old loop. + void createEmptyLoop(LoopVectorizationLegality *Legal); + /// Copy and widen the instructions from the old loop. + void vectorizeLoop(LoopVectorizationLegality *Legal); + /// Insert the new loop to the loop hierarchy and pass manager + /// and update the analysis passes. + void updateAnalysis(); + + /// This instruction is un-vectorizable. Implement it as a sequence + /// of scalars. + void scalarizeInstruction(Instruction *Instr); + + /// Create a broadcast instruction. This method generates a broadcast + /// instruction (shuffle) for loop invariant values and for the induction + /// value. If this is the induction variable then we extend it to N, N+1, ... + /// this is needed because each iteration in the loop corresponds to a SIMD + /// element. + Value *getBroadcastInstrs(Value *V); + + /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 .. + /// for each element in the vector. Starting from zero. + Value *getConsecutiveVector(Value* Val); + + /// When we go over instructions in the basic block we rely on previous + /// values within the current basic block or on loop invariant values. + /// When we widen (vectorize) values we place them in the map. If the values + /// are not within the map, they have to be loop invariant, so we simply + /// broadcast them into a vector. + Value *getVectorValue(Value *V); + + /// Get a uniform vector of constant integers. We use this to get + /// vectors of ones and zeros for the reduction code. + Constant* getUniformVector(unsigned Val, Type* ScalarTy); + + typedef DenseMap<Value*, Value*> ValueMap; + + /// The original loop. + Loop *OrigLoop; + // Scev analysis to use. + ScalarEvolution *SE; + // Loop Info. + LoopInfo *LI; + // Dominator Tree. + DominatorTree *DT; + // Loop Pass Manager; + LPPassManager *LPM; + // The vectorization factor to use. + unsigned VF; + + // The builder that we use + IRBuilder<> Builder; + + // --- Vectorization state --- + + /// The vector-loop preheader. + BasicBlock *LoopVectorPreHeader; + /// The scalar-loop preheader. + BasicBlock *LoopScalarPreHeader; + /// Middle Block between the vector and the scalar. + BasicBlock *LoopMiddleBlock; + ///The ExitBlock of the scalar loop. + BasicBlock *LoopExitBlock; + ///The vector loop body. + BasicBlock *LoopVectorBody; + ///The scalar loop body. + BasicBlock *LoopScalarBody; + ///The first bypass block. + BasicBlock *LoopBypassBlock; + + /// The new Induction variable which was added to the new block. + PHINode *Induction; + /// The induction variable of the old basic block. + PHINode *OldInduction; + // Maps scalars to widened vectors. + ValueMap WidenMap; +}; + +/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and +/// to what vectorization factor. +/// This class does not look at the profitability of vectorization, only the +/// legality. This class has two main kinds of checks: +/// * Memory checks - The code in canVectorizeMemory checks if vectorization +/// will change the order of memory accesses in a way that will change the +/// correctness of the program. +/// * Scalars checks - The code in canVectorizeBlock checks for a number +/// of different conditions, such as the availability of a single induction +/// variable, that all types are supported and vectorize-able, etc. +/// This code reflects the capabilities of SingleBlockLoopVectorizer. +/// This class is also used by SingleBlockLoopVectorizer for identifying +/// induction variable and the different reduction variables. +class LoopVectorizationLegality { +public: + LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl): + TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { } + + /// This represents the kinds of reductions that we support. + enum ReductionKind { + NoReduction, /// Not a reduction. + IntegerAdd, /// Sum of numbers. + IntegerMult, /// Product of numbers. + IntegerOr, /// Bitwise or logical OR of numbers. + IntegerAnd, /// Bitwise or logical AND of numbers. + IntegerXor /// Bitwise or logical XOR of numbers. + }; + + /// This POD struct holds information about reduction variables. + struct ReductionDescriptor { + // Default C'tor + ReductionDescriptor(): + StartValue(0), LoopExitInstr(0), Kind(NoReduction) {} + + // C'tor. + ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K): + StartValue(Start), LoopExitInstr(Exit), Kind(K) {} + + // The starting value of the reduction. + // It does not have to be zero! + Value *StartValue; + // The instruction who's value is used outside the loop. + Instruction *LoopExitInstr; + // The kind of the reduction. + ReductionKind Kind; + }; + + // This POD struct holds information about the memory runtime legality + // check that a group of pointers do not overlap. + struct RuntimePointerCheck { + /// This flag indicates if we need to add the runtime check. + bool Need; + /// Holds the pointers that we need to check. + SmallVector<Value*, 2> Pointers; + }; + + /// ReductionList contains the reduction descriptors for all + /// of the reductions that were found in the loop. + typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; + + /// Returns true if it is legal to vectorize this loop. + /// This does not mean that it is profitable to vectorize this + /// loop, only that it is legal to do so. + bool canVectorize(); + + /// Returns the Induction variable. + PHINode *getInduction() {return Induction;} + + /// Returns the reduction variables found in the loop. + ReductionList *getReductionVars() { return &Reductions; } + + /// Check if the pointer returned by this GEP is consecutive + /// when the index is vectorized. This happens when the last + /// index of the GEP is consecutive, like the induction variable. + /// This check allows us to vectorize A[idx] into a wide load/store. + bool isConsecutiveGep(Value *Ptr); + + /// Returns true if the value V is uniform within the loop. + bool isUniform(Value *V); + + /// Returns true if this instruction will remain scalar after vectorization. + bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);} + + /// Returns the information that we collected about runtime memory check. + RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; } +private: + /// Check if a single basic block loop is vectorizable. + /// At this point we know that this is a loop with a constant trip count + /// and we only need to check individual instructions. + bool canVectorizeBlock(BasicBlock &BB); + + /// When we vectorize loops we may change the order in which + /// we read and write from memory. This method checks if it is + /// legal to vectorize the code, considering only memory constrains. + /// Returns true if BB is vectorizable + bool canVectorizeMemory(BasicBlock &BB); + + /// Returns True, if 'Phi' is the kind of reduction variable for type + /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. + bool AddReductionVar(PHINode *Phi, ReductionKind Kind); + /// Returns true if the instruction I can be a reduction variable of type + /// 'Kind'. + bool isReductionInstr(Instruction *I, ReductionKind Kind); + /// Returns True, if 'Phi' is an induction variable. + bool isInductionVariable(PHINode *Phi); + /// Return true if can compute the address bounds of Ptr within the loop. + bool hasComputableBounds(Value *Ptr); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + /// DataLayout analysis. + DataLayout *DL; + + // --- vectorization state --- // + + /// Holds the induction variable. + PHINode *Induction; + /// Holds the reduction variables. + ReductionList Reductions; + /// Allowed outside users. This holds the reduction + /// vars which can be accessed from outside the loop. + SmallPtrSet<Value*, 4> AllowedExit; + /// This set holds the variables which are known to be uniform after + /// vectorization. + SmallPtrSet<Instruction*, 4> Uniforms; + /// We need to check that all of the pointers in this list are disjoint + /// at runtime. + RuntimePointerCheck PtrRtCheck; +}; + +/// LoopVectorizationCostModel - estimates the expected speedups due to +/// vectorization. +/// In many cases vectorization is not profitable. This can happen because +/// of a number of reasons. In this class we mainly attempt to predict +/// the expected speedup/slowdowns due to the supported instruction set. +/// We use the VectorTargetTransformInfo to query the different backends +/// for the cost of different operations. +class LoopVectorizationCostModel { +public: + /// C'tor. + LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se, + LoopVectorizationLegality *Leg, + const VectorTargetTransformInfo *Vtti): + TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { } + + /// Returns the most profitable vectorization factor for the loop that is + /// smaller or equal to the VF argument. This method checks every power + /// of two up to VF. + unsigned findBestVectorizationFactor(unsigned VF = 8); + +private: + /// Returns the expected execution cost. The unit of the cost does + /// not matter because we use the 'cost' units to compare different + /// vector widths. The cost that is returned is *not* normalized by + /// the factor width. + unsigned expectedCost(unsigned VF); + + /// Returns the execution time cost of an instruction for a given vector + /// width. Vector width of one means scalar. + unsigned getInstructionCost(Instruction *I, unsigned VF); + + /// A helper function for converting Scalar types to vector types. + /// If the incoming type is void, we return void. If the VF is 1, we return + /// the scalar type. + static Type* ToVectorTy(Type *Scalar, unsigned VF); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + + /// Vectorization legality. + LoopVectorizationLegality *Legal; + /// Vector target information. + const VectorTargetTransformInfo *VTTI; +}; + +struct LoopVectorize : public LoopPass { + static char ID; // Pass identification, replacement for typeid + + LoopVectorize() : LoopPass(ID) { + initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); + } + + ScalarEvolution *SE; + DataLayout *DL; + LoopInfo *LI; + TargetTransformInfo *TTI; + DominatorTree *DT; + + virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { + // We only vectorize innermost loops. + if (!L->empty()) + return false; + + SE = &getAnalysis<ScalarEvolution>(); + DL = getAnalysisIfAvailable<DataLayout>(); + LI = &getAnalysis<LoopInfo>(); + TTI = getAnalysisIfAvailable<TargetTransformInfo>(); + DT = &getAnalysis<DominatorTree>(); + + DEBUG(dbgs() << "LV: Checking a loop in \"" << + L->getHeader()->getParent()->getName() << "\"\n"); + + // Check if it is legal to vectorize the loop. + LoopVectorizationLegality LVL(L, SE, DL); + if (!LVL.canVectorize()) { + DEBUG(dbgs() << "LV: Not vectorizing.\n"); + return false; + } + + // Select the preffered vectorization factor. + unsigned VF = 1; + if (VectorizationFactor == 0) { + const VectorTargetTransformInfo *VTTI = 0; + if (TTI) + VTTI = TTI->getVectorTargetTransformInfo(); + // Use the cost model. + LoopVectorizationCostModel CM(L, SE, &LVL, VTTI); + VF = CM.findBestVectorizationFactor(); + + if (VF == 1) { + DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); + return false; + } + + } else { + // Use the user command flag. + VF = VectorizationFactor; + } + + DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<< + L->getHeader()->getParent()->getParent()->getModuleIdentifier()<< + "\n"); + + // If we decided that it is *legal* to vectorizer the loop then do it. + SingleBlockLoopVectorizer LB(L, SE, LI, DT, &LPM, VF); + LB.vectorize(&LVL); + + DEBUG(verifyFunction(*L->getHeader()->getParent())); + return true; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + LoopPass::getAnalysisUsage(AU); + AU.addRequiredID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addRequired<LoopInfo>(); + AU.addRequired<ScalarEvolution>(); + AU.addRequired<DominatorTree>(); + AU.addPreserved<LoopInfo>(); + AU.addPreserved<DominatorTree>(); + } + +}; + +Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) { + // Instructions that access the old induction variable + // actually want to get the new one. + if (V == OldInduction) + V = Induction; + // Create the types. + LLVMContext &C = V->getContext(); + Type *VTy = VectorType::get(V->getType(), VF); + Type *I32 = IntegerType::getInt32Ty(C); + Constant *Zero = ConstantInt::get(I32, 0); + Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF)); + Value *UndefVal = UndefValue::get(VTy); + // Insert the value into a new vector. + Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero); + // Broadcast the scalar into all locations in the vector. + Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros, + "broadcast"); + // We are accessing the induction variable. Make sure to promote the + // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes. + if (V == Induction) + return getConsecutiveVector(Shuf); + return Shuf; +} + +Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) { + assert(Val->getType()->isVectorTy() && "Must be a vector"); + assert(Val->getType()->getScalarType()->isIntegerTy() && + "Elem must be an integer"); + // Create the types. + Type *ITy = Val->getType()->getScalarType(); + VectorType *Ty = cast<VectorType>(Val->getType()); + unsigned VLen = Ty->getNumElements(); + SmallVector<Constant*, 8> Indices; + + // Create a vector of consecutive numbers from zero to VF. + for (unsigned i = 0; i < VLen; ++i) + Indices.push_back(ConstantInt::get(ITy, i)); + + // Add the consecutive indices to the vector value. + Constant *Cv = ConstantVector::get(Indices); + assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); + return Builder.CreateAdd(Val, Cv, "induction"); +} + +bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) { + GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); + if (!Gep) + return false; + + unsigned NumOperands = Gep->getNumOperands(); + Value *LastIndex = Gep->getOperand(NumOperands - 1); + + // Check that all of the gep indices are uniform except for the last. + for (unsigned i = 0; i < NumOperands - 1; ++i) + if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) + return false; + + // We can emit wide load/stores only of the last index is the induction + // variable. + const SCEV *Last = SE->getSCEV(LastIndex); + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { + const SCEV *Step = AR->getStepRecurrence(*SE); + + // The memory is consecutive because the last index is consecutive + // and all other indices are loop invariant. + if (Step->isOne()) + return true; + } + + return false; +} + +bool LoopVectorizationLegality::isUniform(Value *V) { + return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); +} + +Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) { + assert(!V->getType()->isVectorTy() && "Can't widen a vector"); + // If we saved a vectorized copy of V, use it. + Value *&MapEntry = WidenMap[V]; + if (MapEntry) + return MapEntry; + + // Broadcast V and save the value for future uses. + Value *B = getBroadcastInstrs(V); + MapEntry = B; + return B; +} + +Constant* +SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) { + SmallVector<Constant*, 8> Indices; + // Create a vector of consecutive numbers from zero to VF. + for (unsigned i = 0; i < VF; ++i) + Indices.push_back(ConstantInt::get(ScalarTy, Val, true)); + + // Add the consecutive indices to the vector value. + return ConstantVector::get(Indices); +} + +void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) { + assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); + // Holds vector parameters or scalars, in case of uniform vals. + SmallVector<Value*, 8> Params; + + // Find all of the vectorized parameters. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *SrcOp = Instr->getOperand(op); + + // If we are accessing the old induction variable, use the new one. + if (SrcOp == OldInduction) { + Params.push_back(getBroadcastInstrs(Induction)); + continue; + } + + // Try using previously calculated values. + Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); + + // If the src is an instruction that appeared earlier in the basic block + // then it should already be vectorized. + if (SrcInst && SrcInst->getParent() == Instr->getParent()) { + assert(WidenMap.count(SrcInst) && "Source operand is unavailable"); + // The parameter is a vector value from earlier. + Params.push_back(WidenMap[SrcInst]); + } else { + // The parameter is a scalar from outside the loop. Maybe even a constant. + Params.push_back(SrcOp); + } + } + + assert(Params.size() == Instr->getNumOperands() && + "Invalid number of operands"); + + // Does this instruction return a value ? + bool IsVoidRetTy = Instr->getType()->isVoidTy(); + Value *VecResults = 0; + + // If we have a return value, create an empty vector. We place the scalarized + // instructions in this vector. + if (!IsVoidRetTy) + VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF)); + + // For each scalar that we create: + for (unsigned i = 0; i < VF; ++i) { + Instruction *Cloned = Instr->clone(); + if (!IsVoidRetTy) + Cloned->setName(Instr->getName() + ".cloned"); + // Replace the operands of the cloned instrucions with extracted scalars. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *Op = Params[op]; + // Param is a vector. Need to extract the right lane. + if (Op->getType()->isVectorTy()) + Op = Builder.CreateExtractElement(Op, Builder.getInt32(i)); + Cloned->setOperand(op, Op); + } + + // Place the cloned scalar in the new loop. + Builder.Insert(Cloned); + + // If the original scalar returns a value we need to place it in a vector + // so that future users will be able to use it. + if (!IsVoidRetTy) + VecResults = Builder.CreateInsertElement(VecResults, Cloned, + Builder.getInt32(i)); + } + + if (!IsVoidRetTy) + WidenMap[Instr] = VecResults; +} + +void +SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { + /* + In this function we generate a new loop. The new loop will contain + the vectorized instructions while the old loop will continue to run the + scalar remainder. + + [ ] <-- vector loop bypass. + / | + / v +| [ ] <-- vector pre header. +| | +| v +| [ ] \ +| [ ]_| <-- vector loop. +| | + \ v + >[ ] <--- middle-block. + / | + / v +| [ ] <--- new preheader. +| | +| v +| [ ] \ +| [ ]_| <-- old scalar loop to handle remainder. + \ | + \ v + >[ ] <-- exit block. + ... + */ + + OldInduction = Legal->getInduction(); + assert(OldInduction && "We must have a single phi node."); + Type *IdxTy = OldInduction->getType(); + + // Find the loop boundaries. + const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader()); + assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); + + // Get the total trip count from the count by adding 1. + ExitCount = SE->getAddExpr(ExitCount, + SE->getConstant(ExitCount->getType(), 1)); + // We may need to extend the index in case there is a type mismatch. + // We know that the count starts at zero and does not overflow. + // We are using Zext because it should be less expensive. + if (ExitCount->getType() != IdxTy) + ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy); + + // This is the original scalar-loop preheader. + BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); + BasicBlock *ExitBlock = OrigLoop->getExitBlock(); + assert(ExitBlock && "Must have an exit block"); + + // The loop index does not have to start at Zero. It starts with this value. + Value *StartIdx = OldInduction->getIncomingValueForBlock(BypassBlock); + + assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop"); + assert(BypassBlock && "Invalid loop structure"); + + BasicBlock *VectorPH = + BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); + BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), + "vector.body"); + + BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), + "middle.block"); + BasicBlock *ScalarPH = + MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), + "scalar.preheader"); + // Find the induction variable. + BasicBlock *OldBasicBlock = OrigLoop->getHeader(); + + // Use this IR builder to create the loop instructions (Phi, Br, Cmp) + // inside the loop. + Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); + + // Generate the induction variable. + Induction = Builder.CreatePHI(IdxTy, 2, "index"); + Constant *Step = ConstantInt::get(IdxTy, VF); + + // Expand the trip count and place the new instructions in the preheader. + // Notice that the pre-header does not change, only the loop body. + SCEVExpander Exp(*SE, "induction"); + Instruction *Loc = BypassBlock->getTerminator(); + + // Count holds the overall loop count (N). + Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc); + + // Add the start index to the loop count to get the new end index. + Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc); + + // Now we need to generate the expression for N - (N % VF), which is + // the part that the vectorized body will execute. + Constant *CIVF = ConstantInt::get(IdxTy, VF); + Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc); + Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc); + Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx, + "end.idx.rnd.down", Loc); + + // Now, compare the new count to zero. If it is zero, jump to the scalar part. + Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, + IdxEndRoundDown, + StartIdx, + "cmp.zero", Loc); + + LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = + Legal->getRuntimePointerCheck(); + Value *MemoryRuntimeCheck = 0; + if (PtrRtCheck->Need) { + unsigned NumPointers = PtrRtCheck->Pointers.size(); + SmallVector<Value* , 2> Starts; + SmallVector<Value* , 2> Ends; + + // Use this type for pointer arithmetic. + Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType(); + + for (unsigned i=0; i < NumPointers; ++i) { + Value *Ptr = PtrRtCheck->Pointers[i]; + const SCEV *Sc = SE->getSCEV(Ptr); + + if (SE->isLoopInvariant(Sc, OrigLoop)) { + DEBUG(dbgs() << "LV1: Adding RT check for a loop invariant ptr:" << + *Ptr <<"\n"); + Starts.push_back(Ptr); + Ends.push_back(Ptr); + } else { + DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n"); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); + Value *Start = Exp.expandCodeFor(AR->getStart(), PtrArithTy, Loc); + const SCEV *Ex = SE->getExitCount(OrigLoop, OrigLoop->getHeader()); + const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); + assert(!isa<SCEVCouldNotCompute>(ScEnd) && "Invalid scev range."); + Value *End = Exp.expandCodeFor(ScEnd, PtrArithTy, Loc); + Starts.push_back(Start); + Ends.push_back(End); + } + } + + for (unsigned i=0; i < NumPointers; ++i) { + for (unsigned j=i+1; j < NumPointers; ++j) { + Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE, + Starts[0], Ends[1], "bound0", Loc); + Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE, + Starts[1], Ends[0], "bound1", Loc); + Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1, + "found.conflict", Loc); + if (MemoryRuntimeCheck) { + MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or, + MemoryRuntimeCheck, + IsConflict, + "conflict.rdx", Loc); + } else { + MemoryRuntimeCheck = IsConflict; + } + } + } + }// end of need-runtime-check code. + + // If we are using memory runtime checks, include them in. + if (MemoryRuntimeCheck) { + Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck, + "CntOrMem", Loc); + } + + BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc); + // Remove the old terminator. + Loc->eraseFromParent(); + + // We are going to resume the execution of the scalar loop. + // This PHI decides on what number to start. If we come from the + // vector loop then we need to start with the end index minus the + // index modulo VF. If we come from a bypass edge then we need to start + // from the real start. + PHINode* ResumeIndex = PHINode::Create(IdxTy, 2, "resume.idx", + MiddleBlock->getTerminator()); + ResumeIndex->addIncoming(StartIdx, BypassBlock); + ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); + + // Add a check in the middle block to see if we have completed + // all of the iterations in the first vector loop. + // If (N - N%VF) == N, then we *don't* need to run the remainder. + Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, + ResumeIndex, "cmp.n", + MiddleBlock->getTerminator()); + + BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); + // Remove the old terminator. + MiddleBlock->getTerminator()->eraseFromParent(); + + // Create i+1 and fill the PHINode. + Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); + Induction->addIncoming(StartIdx, VectorPH); + Induction->addIncoming(NextIdx, VecBody); + // Create the compare. + Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); + Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); + + // Now we have two terminators. Remove the old one from the block. + VecBody->getTerminator()->eraseFromParent(); + + // Fix the scalar body iteration count. + unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH); + OldInduction->setIncomingValue(BlockIdx, ResumeIndex); + + // Get ready to start creating new instructions into the vectorized body. + Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); + + // Register the new loop. + Loop* Lp = new Loop(); + LPM->insertLoop(Lp, OrigLoop->getParentLoop()); + + Lp->addBasicBlockToLoop(VecBody, LI->getBase()); + + Loop *ParentLoop = OrigLoop->getParentLoop(); + if (ParentLoop) { + ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); + ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); + ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); + } + + // Save the state. + LoopVectorPreHeader = VectorPH; + LoopScalarPreHeader = ScalarPH; + LoopMiddleBlock = MiddleBlock; + LoopExitBlock = ExitBlock; + LoopVectorBody = VecBody; + LoopScalarBody = OldBasicBlock; + LoopBypassBlock = BypassBlock; +} + +/// This function returns the identity element (or neutral element) for +/// the operation K. +static unsigned +getReductionIdentity(LoopVectorizationLegality::ReductionKind K) { + switch (K) { + case LoopVectorizationLegality::IntegerXor: + case LoopVectorizationLegality::IntegerAdd: + case LoopVectorizationLegality::IntegerOr: + // Adding, Xoring, Oring zero to a number does not change it. + return 0; + case LoopVectorizationLegality::IntegerMult: + // Multiplying a number by 1 does not change it. + return 1; + case LoopVectorizationLegality::IntegerAnd: + // AND-ing a number with an all-1 value does not change it. + return -1; + default: + llvm_unreachable("Unknown reduction kind"); + } +} + +void +SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { + //===------------------------------------------------===// + // + // Notice: any optimization or new instruction that go + // into the code below should be also be implemented in + // the cost-model. + // + //===------------------------------------------------===// + typedef SmallVector<PHINode*, 4> PhiVector; + BasicBlock &BB = *OrigLoop->getHeader(); + Constant *Zero = ConstantInt::get( + IntegerType::getInt32Ty(BB.getContext()), 0); + + // In order to support reduction variables we need to be able to vectorize + // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two + // steages. First, we create a new vector PHI node with no incoming edges. + // We use this value when we vectorize all of the instructions that use the + // PHI. Next, after all of the instructions in the block are complete we + // add the new incoming edges to the PHI. At this point all of the + // instructions in the basic block are vectorized, so we can use them to + // construct the PHI. + PhiVector PHIsToFix; + + // For each instruction in the old loop. + for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { + Instruction *Inst = it; + + switch (Inst->getOpcode()) { + case Instruction::Br: + // Nothing to do for PHIs and BR, since we already took care of the + // loop control flow instructions. + continue; + case Instruction::PHI:{ + PHINode* P = cast<PHINode>(Inst); + // Special handling for the induction var. + if (OldInduction == Inst) + continue; + // This is phase one of vectorizing PHIs. + // This has to be a reduction variable. + assert(Legal->getReductionVars()->count(P) && "Not a Reduction"); + Type *VecTy = VectorType::get(Inst->getType(), VF); + WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi"); + PHIsToFix.push_back(P); + continue; + } + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // Just widen binops. + BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); + Value *A = getVectorValue(Inst->getOperand(0)); + Value *B = getVectorValue(Inst->getOperand(1)); + + // Use this vector value for all users of the original instruction. + Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); + WidenMap[Inst] = V; + + // Update the NSW, NUW and Exact flags. + BinaryOperator *VecOp = cast<BinaryOperator>(V); + if (isa<OverflowingBinaryOperator>(BinOp)) { + VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); + VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); + } + if (isa<PossiblyExactOperator>(VecOp)) + VecOp->setIsExact(BinOp->isExact()); + break; + } + case Instruction::Select: { + // Widen selects. + // If the selector is loop invariant we can create a select + // instruction with a scalar condition. Otherwise, use vector-select. + Value *Cond = Inst->getOperand(0); + bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop); + + // The condition can be loop invariant but still defined inside the + // loop. This means that we can't just use the original 'cond' value. + // We have to take the 'vectorized' value and pick the first lane. + // Instcombine will make this a no-op. + Cond = getVectorValue(Cond); + if (InvariantCond) + Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0)); + + Value *Op0 = getVectorValue(Inst->getOperand(1)); + Value *Op1 = getVectorValue(Inst->getOperand(2)); + WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1); + break; + } + + case Instruction::ICmp: + case Instruction::FCmp: { + // Widen compares. Generate vector compares. + bool FCmp = (Inst->getOpcode() == Instruction::FCmp); + CmpInst *Cmp = dyn_cast<CmpInst>(Inst); + Value *A = getVectorValue(Inst->getOperand(0)); + Value *B = getVectorValue(Inst->getOperand(1)); + if (FCmp) + WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B); + else + WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B); + break; + } + + case Instruction::Store: { + // Attempt to issue a wide store. + StoreInst *SI = dyn_cast<StoreInst>(Inst); + Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF); + Value *Ptr = SI->getPointerOperand(); + unsigned Alignment = SI->getAlignment(); + + assert(!Legal->isUniform(Ptr) && + "We do not allow storing to uniform addresses"); + + GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); + + // This store does not use GEPs. + if (!Legal->isConsecutiveGep(Gep)) { + scalarizeInstruction(Inst); + break; + } + + // The last index does not have to be the induction. It can be + // consecutive and be a function of the index. For example A[I+1]; + unsigned NumOperands = Gep->getNumOperands(); + Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1)); + LastIndex = Builder.CreateExtractElement(LastIndex, Zero); + + // Create the new GEP with the new induction variable. + GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); + Gep2->setOperand(NumOperands - 1, LastIndex); + Ptr = Builder.Insert(Gep2); + Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo()); + Value *Val = getVectorValue(SI->getValueOperand()); + Builder.CreateStore(Val, Ptr)->setAlignment(Alignment); + break; + } + case Instruction::Load: { + // Attempt to issue a wide load. + LoadInst *LI = dyn_cast<LoadInst>(Inst); + Type *RetTy = VectorType::get(LI->getType(), VF); + Value *Ptr = LI->getPointerOperand(); + unsigned Alignment = LI->getAlignment(); + GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); + + // If we don't have a gep, or that the pointer is loop invariant, + // scalarize the load. + if (!Gep || Legal->isUniform(Gep) || !Legal->isConsecutiveGep(Gep)) { + scalarizeInstruction(Inst); + break; + } + + // The last index does not have to be the induction. It can be + // consecutive and be a function of the index. For example A[I+1]; + unsigned NumOperands = Gep->getNumOperands(); + Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1)); + LastIndex = Builder.CreateExtractElement(LastIndex, Zero); + + // Create the new GEP with the new induction variable. + GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); + Gep2->setOperand(NumOperands - 1, LastIndex); + Ptr = Builder.Insert(Gep2); + Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo()); + LI = Builder.CreateLoad(Ptr); + LI->setAlignment(Alignment); + // Use this vector value for all users of the load. + WidenMap[Inst] = LI; + break; + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + /// Vectorize bitcasts. + CastInst *CI = dyn_cast<CastInst>(Inst); + Value *A = getVectorValue(Inst->getOperand(0)); + Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF); + WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy); + break; + } + + default: + /// All other instructions are unsupported. Scalarize them. + scalarizeInstruction(Inst); + break; + }// end of switch. + }// end of for_each instr. + + // At this point every instruction in the original loop is widended to + // a vector form. We are almost done. Now, we need to fix the PHI nodes + // that we vectorized. The PHI nodes are currently empty because we did + // not want to introduce cycles. Notice that the remaining PHI nodes + // that we need to fix are reduction variables. + + // Create the 'reduced' values for each of the induction vars. + // The reduced values are the vector values that we scalarize and combine + // after the loop is finished. + for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end(); + it != e; ++it) { + PHINode *RdxPhi = *it; + PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]); + assert(RdxPhi && "Unable to recover vectorized PHI"); + + // Find the reduction variable descriptor. + assert(Legal->getReductionVars()->count(RdxPhi) && + "Unable to find the reduction variable"); + LoopVectorizationLegality::ReductionDescriptor RdxDesc = + (*Legal->getReductionVars())[RdxPhi]; + + // We need to generate a reduction vector from the incoming scalar. + // To do so, we need to generate the 'identity' vector and overide + // one of the elements with the incoming scalar reduction. We need + // to do it in the vector-loop preheader. + Builder.SetInsertPoint(LoopBypassBlock->getTerminator()); + + // This is the vector-clone of the value that leaves the loop. + Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr); + Type *VecTy = VectorExit->getType(); + + // Find the reduction identity variable. Zero for addition, or, xor, + // one for multiplication, -1 for And. + Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind), + VecTy->getScalarType()); + + // This vector is the Identity vector where the first element is the + // incoming scalar reduction. + Value *VectorStart = Builder.CreateInsertElement(Identity, + RdxDesc.StartValue, Zero); + + + // Fix the vector-loop phi. + // We created the induction variable so we know that the + // preheader is the first entry. + BasicBlock *VecPreheader = Induction->getIncomingBlock(0); + + // Reductions do not have to start at zero. They can start with + // any loop invariant values. + VecRdxPhi->addIncoming(VectorStart, VecPreheader); + unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody); + Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx)); + VecRdxPhi->addIncoming(Val, LoopVectorBody); + + // Before each round, move the insertion point right between + // the PHIs and the values we are going to write. + // This allows us to write both PHINodes and the extractelement + // instructions. + Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); + + // This PHINode contains the vectorized reduction variable, or + // the initial value vector, if we bypass the vector loop. + PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); + NewPhi->addIncoming(VectorStart, LoopBypassBlock); + NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody); + + // Extract the first scalar. + Value *Scalar0 = + Builder.CreateExtractElement(NewPhi, Builder.getInt32(0)); + // Extract and reduce the remaining vector elements. + for (unsigned i=1; i < VF; ++i) { + Value *Scalar1 = + Builder.CreateExtractElement(NewPhi, Builder.getInt32(i)); + switch (RdxDesc.Kind) { + case LoopVectorizationLegality::IntegerAdd: + Scalar0 = Builder.CreateAdd(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerMult: + Scalar0 = Builder.CreateMul(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerOr: + Scalar0 = Builder.CreateOr(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerAnd: + Scalar0 = Builder.CreateAnd(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerXor: + Scalar0 = Builder.CreateXor(Scalar0, Scalar1); + break; + default: + llvm_unreachable("Unknown reduction operation"); + } + } + + // Now, we need to fix the users of the reduction variable + // inside and outside of the scalar remainder loop. + // We know that the loop is in LCSSA form. We need to update the + // PHI nodes in the exit blocks. + for (BasicBlock::iterator LEI = LoopExitBlock->begin(), + LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { + PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); + if (!LCSSAPhi) continue; + + // All PHINodes need to have a single entry edge, or two if + // we already fixed them. + assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); + + // We found our reduction value exit-PHI. Update it with the + // incoming bypass edge. + if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { + // Add an edge coming from the bypass. + LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock); + break; + } + }// end of the LCSSA phi scan. + + // Fix the scalar loop reduction variable with the incoming reduction sum + // from the vector body and from the backedge value. + int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody); + int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block. + (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0); + (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); + }// end of for each redux variable. +} + +void SingleBlockLoopVectorizer::updateAnalysis() { + // The original basic block. + SE->forgetLoop(OrigLoop); + + // Update the dominator tree information. + assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) && + "Entry does not dominate exit."); + + DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock); + DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); + DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock); + DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); + DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); + DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); + + DEBUG(DT->verifyAnalysis()); +} + +bool LoopVectorizationLegality::canVectorize() { + if (!TheLoop->getLoopPreheader()) { + assert(false && "No preheader!!"); + DEBUG(dbgs() << "LV: Loop not normalized." << "\n"); + return false; + } + + // We can only vectorize single basic block loops. + unsigned NumBlocks = TheLoop->getNumBlocks(); + if (NumBlocks != 1) { + DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n"); + return false; + } + + // We need to have a loop header. + BasicBlock *BB = TheLoop->getHeader(); + DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n"); + + // ScalarEvolution needs to be able to find the exit count. + const SCEV *ExitCount = SE->getExitCount(TheLoop, BB); + if (ExitCount == SE->getCouldNotCompute()) { + DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); + return false; + } + + // Do not loop-vectorize loops with a tiny trip count. + unsigned TC = SE->getSmallConstantTripCount(TheLoop, BB); + if (TC > 0u && TC < TinyTripCountThreshold) { + DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << + "This loop is not worth vectorizing.\n"); + return false; + } + + // Go over each instruction and look at memory deps. + if (!canVectorizeBlock(*BB)) { + DEBUG(dbgs() << "LV: Can't vectorize this loop header\n"); + return false; + } + + DEBUG(dbgs() << "LV: We can vectorize this loop" << + (PtrRtCheck.Need ? " (with a runtime bound check)" : "") + <<"!\n"); + + // Okay! We can vectorize. At this point we don't have any other mem analysis + // which may limit our maximum vectorization factor, so just return true with + // no restrictions. + return true; +} + +bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) { + // Scan the instructions in the block and look for hazards. + for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { + Instruction *I = it; + + PHINode *Phi = dyn_cast<PHINode>(I); + if (Phi) { + // This should not happen because the loop should be normalized. + if (Phi->getNumIncomingValues() != 2) { + DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); + return false; + } + // We only look at integer phi nodes. + if (!Phi->getType()->isIntegerTy()) { + DEBUG(dbgs() << "LV: Found an non-int PHI.\n"); + return false; + } + + if (isInductionVariable(Phi)) { + if (Induction) { + DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n"); + return false; + } + DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n"); + Induction = Phi; + continue; + } + if (AddReductionVar(Phi, IntegerAdd)) { + DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerMult)) { + DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerOr)) { + DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerAnd)) { + DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerXor)) { + DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); + continue; + } + + DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); + return false; + }// end of PHI handling + + // We still don't handle functions. + CallInst *CI = dyn_cast<CallInst>(I); + if (CI) { + DEBUG(dbgs() << "LV: Found a call site.\n"); + return false; + } + + // We do not re-vectorize vectors. + if (!VectorType::isValidElementType(I->getType()) && + !I->getType()->isVoidTy()) { + DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); + return false; + } + + // Reduction instructions are allowed to have exit users. + // All other instructions must not have external users. + if (!AllowedExit.count(I)) + //Check that all of the users of the loop are inside the BB. + for (Value::use_iterator it = I->use_begin(), e = I->use_end(); + it != e; ++it) { + Instruction *U = cast<Instruction>(*it); + // This user may be a reduction exit value. + BasicBlock *Parent = U->getParent(); + if (Parent != &BB) { + DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); + return false; + } + } + } // next instr. + + if (!Induction) { + DEBUG(dbgs() << "LV: Did not find an induction var.\n"); + return false; + } + + // Don't vectorize if the memory dependencies do not allow vectorization. + if (!canVectorizeMemory(BB)) + return false; + + // We now know that the loop is vectorizable! + // Collect variables that will remain uniform after vectorization. + std::vector<Value*> Worklist; + + // Start with the conditional branch and walk up the block. + Worklist.push_back(BB.getTerminator()->getOperand(0)); + + while (Worklist.size()) { + Instruction *I = dyn_cast<Instruction>(Worklist.back()); + Worklist.pop_back(); + // Look at instructions inside this block. + if (!I) continue; + if (I->getParent() != &BB) continue; + + // Stop when reaching PHI nodes. + if (isa<PHINode>(I)) { + assert(I == Induction && "Found a uniform PHI that is not the induction"); + break; + } + + // This is a known uniform. + Uniforms.insert(I); + + // Insert all operands. + for (int i=0, Op = I->getNumOperands(); i < Op; ++i) { + Worklist.push_back(I->getOperand(i)); + } + } + + return true; +} + +bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) { + typedef SmallVector<Value*, 16> ValueVector; + typedef SmallPtrSet<Value*, 16> ValueSet; + // Holds the Load and Store *instructions*. + ValueVector Loads; + ValueVector Stores; + PtrRtCheck.Pointers.clear(); + PtrRtCheck.Need = false; + + // Scan the BB and collect legal loads and stores. + for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { + Instruction *I = it; + + // If this is a load, save it. If this instruction can read from memory + // but is not a load, then we quit. Notice that we don't handle function + // calls that read or write. + if (I->mayReadFromMemory()) { + LoadInst *Ld = dyn_cast<LoadInst>(I); + if (!Ld) return false; + if (!Ld->isSimple()) { + DEBUG(dbgs() << "LV: Found a non-simple load.\n"); + return false; + } + Loads.push_back(Ld); + continue; + } + + // Save store instructions. Abort if other instructions write to memory. + if (I->mayWriteToMemory()) { + StoreInst *St = dyn_cast<StoreInst>(I); + if (!St) return false; + if (!St->isSimple()) { + DEBUG(dbgs() << "LV: Found a non-simple store.\n"); + return false; + } + Stores.push_back(St); + } + } // next instr. + + // Now we have two lists that hold the loads and the stores. + // Next, we find the pointers that they use. + + // Check if we see any stores. If there are no stores, then we don't + // care if the pointers are *restrict*. + if (!Stores.size()) { + DEBUG(dbgs() << "LV: Found a read-only loop!\n"); + return true; + } + + // Holds the read and read-write *pointers* that we find. + ValueVector Reads; + ValueVector ReadWrites; + + // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects + // multiple times on the same object. If the ptr is accessed twice, once + // for read and once for write, it will only appear once (on the write + // list). This is okay, since we are going to check for conflicts between + // writes and between reads and writes, but not between reads and reads. + ValueSet Seen; + + ValueVector::iterator I, IE; + for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { + StoreInst *ST = dyn_cast<StoreInst>(*I); + assert(ST && "Bad StoreInst"); + Value* Ptr = ST->getPointerOperand(); + + if (isUniform(Ptr)) { + DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); + return false; + } + + // If we did *not* see this pointer before, insert it to + // the read-write list. At this phase it is only a 'write' list. + if (Seen.insert(Ptr)) + ReadWrites.push_back(Ptr); + } + + for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { + LoadInst *LD = dyn_cast<LoadInst>(*I); + assert(LD && "Bad LoadInst"); + Value* Ptr = LD->getPointerOperand(); + // If we did *not* see this pointer before, insert it to the + // read list. If we *did* see it before, then it is already in + // the read-write list. This allows us to vectorize expressions + // such as A[i] += x; Because the address of A[i] is a read-write + // pointer. This only works if the index of A[i] is consecutive. + // If the address of i is unknown (for example A[B[i]]) then we may + // read a few words, modify, and write a few words, and some of the + // words may be written to the same address. + if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr)) + Reads.push_back(Ptr); + } + + // If we write (or read-write) to a single destination and there are no + // other reads in this loop then is it safe to vectorize. + if (ReadWrites.size() == 1 && Reads.size() == 0) { + DEBUG(dbgs() << "LV: Found a write-only loop!\n"); + return true; + } + + // Find pointers with computable bounds. We are going to use this information + // to place a runtime bound check. + bool RT = true; + for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) + if (hasComputableBounds(*I)) { + PtrRtCheck.Pointers.push_back(*I); + DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n"); + } else { + RT = false; + break; + } + for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) + if (hasComputableBounds(*I)) { + PtrRtCheck.Pointers.push_back(*I); + DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n"); + } else { + RT = false; + break; + } + + // Check that we did not collect too many pointers or found a + // unsizeable pointer. + if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) { + PtrRtCheck.Pointers.clear(); + RT = false; + } + + PtrRtCheck.Need = RT; + + if (RT) { + DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); + } + + // Now that the pointers are in two lists (Reads and ReadWrites), we + // can check that there are no conflicts between each of the writes and + // between the writes to the reads. + ValueSet WriteObjects; + ValueVector TempObjects; + + // Check that the read-writes do not conflict with other read-write + // pointers. + for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) { + GetUnderlyingObjects(*I, TempObjects, DL); + for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); + it != e; ++it) { + if (!isIdentifiedObject(*it)) { + DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n"); + return RT; + } + if (!WriteObjects.insert(*it)) { + DEBUG(dbgs() << "LV: Found a possible write-write reorder:" + << **it <<"\n"); + return RT; + } + } + TempObjects.clear(); + } + + /// Check that the reads don't conflict with the read-writes. + for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) { + GetUnderlyingObjects(*I, TempObjects, DL); + for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); + it != e; ++it) { + if (!isIdentifiedObject(*it)) { + DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n"); + return RT; + } + if (WriteObjects.count(*it)) { + DEBUG(dbgs() << "LV: Found a possible read/write reorder:" + << **it <<"\n"); + return RT; + } + } + TempObjects.clear(); + } + + // It is safe to vectorize and we don't need any runtime checks. + DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n"); + PtrRtCheck.Pointers.clear(); + PtrRtCheck.Need = false; + return true; +} + +bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, + ReductionKind Kind) { + if (Phi->getNumIncomingValues() != 2) + return false; + + // Find the possible incoming reduction variable. + BasicBlock *BB = Phi->getParent(); + int SelfEdgeIdx = Phi->getBasicBlockIndex(BB); + int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry. + Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx); + + // ExitInstruction is the single value which is used outside the loop. + // We only allow for a single reduction value to be used outside the loop. + // This includes users of the reduction, variables (which form a cycle + // which ends in the phi node). + Instruction *ExitInstruction = 0; + + // Iter is our iterator. We start with the PHI node and scan for all of the + // users of this instruction. All users must be instructions which can be + // used as reduction variables (such as ADD). We may have a single + // out-of-block user. They cycle must end with the original PHI. + // Also, we can't have multiple block-local users. + Instruction *Iter = Phi; + while (true) { + // Any reduction instr must be of one of the allowed kinds. + if (!isReductionInstr(Iter, Kind)) + return false; + + // Did we found a user inside this block ? + bool FoundInBlockUser = false; + // Did we reach the initial PHI node ? + bool FoundStartPHI = false; + + // If the instruction has no users then this is a broken + // chain and can't be a reduction variable. + if (Iter->use_empty()) + return false; + + // For each of the *users* of iter. + for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end(); + it != e; ++it) { + Instruction *U = cast<Instruction>(*it); + // We already know that the PHI is a user. + if (U == Phi) { + FoundStartPHI = true; + continue; + } + // Check if we found the exit user. + BasicBlock *Parent = U->getParent(); + if (Parent != BB) { + // We must have a single exit instruction. + if (ExitInstruction != 0) + return false; + ExitInstruction = Iter; + } + // We can't have multiple inside users. + if (FoundInBlockUser) + return false; + FoundInBlockUser = true; + Iter = U; + } + + // We found a reduction var if we have reached the original + // phi node and we only have a single instruction with out-of-loop + // users. + if (FoundStartPHI && ExitInstruction) { + // This instruction is allowed to have out-of-loop users. + AllowedExit.insert(ExitInstruction); + + // Save the description of this reduction variable. + ReductionDescriptor RD(RdxStart, ExitInstruction, Kind); + Reductions[Phi] = RD; + return true; + } + } +} + +bool +LoopVectorizationLegality::isReductionInstr(Instruction *I, + ReductionKind Kind) { + switch (I->getOpcode()) { + default: + return false; + case Instruction::PHI: + // possibly. + return true; + case Instruction::Add: + case Instruction::Sub: + return Kind == IntegerAdd; + case Instruction::Mul: + case Instruction::UDiv: + case Instruction::SDiv: + return Kind == IntegerMult; + case Instruction::And: + return Kind == IntegerAnd; + case Instruction::Or: + return Kind == IntegerOr; + case Instruction::Xor: + return Kind == IntegerXor; + } +} + +bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { + // Check that the PHI is consecutive and starts at zero. + const SCEV *PhiScev = SE->getSCEV(Phi); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); + if (!AR) { + DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); + return false; + } + const SCEV *Step = AR->getStepRecurrence(*SE); + + if (!Step->isOne()) { + DEBUG(dbgs() << "LV: PHI stride does not equal one.\n"); + return false; + } + return true; +} + +bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) { + const SCEV *PhiScev = SE->getSCEV(Ptr); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); + if (!AR) + return false; + + return AR->isAffine(); +} + +unsigned +LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) { + if (!VTTI) { + DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n"); + return 1; + } + + float Cost = expectedCost(1); + unsigned Width = 1; + DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n"); + for (unsigned i=2; i <= VF; i*=2) { + // Notice that the vector loop needs to be executed less times, so + // we need to divide the cost of the vector loops by the width of + // the vector elements. + float VectorCost = expectedCost(i) / (float)i; + DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " << + (int)VectorCost << ".\n"); + if (VectorCost < Cost) { + Cost = VectorCost; + Width = i; + } + } + + DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); + return Width; +} + +unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { + // We can only estimate the cost of single basic block loops. + assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop"); + + BasicBlock *BB = TheLoop->getHeader(); + unsigned Cost = 0; + + // For each instruction in the old loop. + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + Instruction *Inst = it; + unsigned C = getInstructionCost(Inst, VF); + Cost += C; + DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF << + " For instruction: "<< *Inst << "\n"); + } + + return Cost; +} + +unsigned +LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { + assert(VTTI && "Invalid vector target transformation info"); + + // If we know that this instruction will remain uniform, check the cost of + // the scalar version. + if (Legal->isUniformAfterVectorization(I)) + VF = 1; + + Type *RetTy = I->getType(); + Type *VectorTy = ToVectorTy(RetTy, VF); + + + // TODO: We need to estimate the cost of intrinsic calls. + switch (I->getOpcode()) { + case Instruction::GetElementPtr: + // We mark this instruction as zero-cost because scalar GEPs are usually + // lowered to the intruction addressing mode. At the moment we don't + // generate vector geps. + return 0; + case Instruction::Br: { + return VTTI->getCFInstrCost(I->getOpcode()); + } + case Instruction::PHI: + return 0; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy); + } + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); + bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); + Type *CondTy = SI->getCondition()->getType(); + if (ScalarCond) + CondTy = VectorType::get(CondTy, VF); + + return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); + } + case Instruction::ICmp: + case Instruction::FCmp: { + Type *ValTy = I->getOperand(0)->getType(); + VectorTy = ToVectorTy(ValTy, VF); + return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy); + } + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(I); + Type *ValTy = SI->getValueOperand()->getType(); + VectorTy = ToVectorTy(ValTy, VF); + + if (VF == 1) + return VTTI->getMemoryOpCost(I->getOpcode(), ValTy, + SI->getAlignment(), SI->getPointerAddressSpace()); + + // Scalarized stores. + if (!Legal->isConsecutiveGep(SI->getPointerOperand())) { + unsigned Cost = 0; + unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement, + ValTy); + // The cost of extracting from the value vector. + Cost += VF * (ExtCost); + // The cost of the scalar stores. + Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), + ValTy->getScalarType(), + SI->getAlignment(), + SI->getPointerAddressSpace()); + return Cost; + } + + // Wide stores. + return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(), + SI->getPointerAddressSpace()); + } + case Instruction::Load: { + LoadInst *LI = cast<LoadInst>(I); + + if (VF == 1) + return VTTI->getMemoryOpCost(I->getOpcode(), RetTy, + LI->getAlignment(), + LI->getPointerAddressSpace()); + + // Scalarized loads. + if (!Legal->isConsecutiveGep(LI->getPointerOperand())) { + unsigned Cost = 0; + unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy); + // The cost of inserting the loaded value into the result vector. + Cost += VF * (InCost); + // The cost of the scalar stores. + Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), + RetTy->getScalarType(), + LI->getAlignment(), + LI->getPointerAddressSpace()); + return Cost; + } + + // Wide loads. + return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(), + LI->getPointerAddressSpace()); + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); + return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); + } + default: { + // We are scalarizing the instruction. Return the cost of the scalar + // instruction, plus the cost of insert and extract into vector + // elements, times the vector width. + unsigned Cost = 0; + + bool IsVoid = RetTy->isVoidTy(); + + unsigned InsCost = (IsVoid ? 0 : + VTTI->getInstrCost(Instruction::InsertElement, + VectorTy)); + + unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement, + VectorTy); + + // The cost of inserting the results plus extracting each one of the + // operands. + Cost += VF * (InsCost + ExtCost * I->getNumOperands()); + + // The cost of executing VF copies of the scalar instruction. + Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy); + return Cost; + } + }// end of switch. +} + +Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { + if (Scalar->isVoidTy() || VF == 1) + return Scalar; + return VectorType::get(Scalar, VF); +} + +} // namespace + +char LoopVectorize::ID = 0; +static const char lv_name[] = "Loop Vectorization"; +INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) + +namespace llvm { + Pass *createLoopVectorizePass() { + return new LoopVectorize(); + } +} + diff --git a/lib/Transforms/Vectorize/Vectorize.cpp b/lib/Transforms/Vectorize/Vectorize.cpp index 1ef6002..d26973a 100644 --- a/lib/Transforms/Vectorize/Vectorize.cpp +++ b/lib/Transforms/Vectorize/Vectorize.cpp @@ -7,7 +7,7 @@ // //===----------------------------------------------------------------------===// // -// This file implements common infrastructure for libLLVMVectorizeOpts.a, which +// This file implements common infrastructure for libLLVMVectorizeOpts.a, which // implements several vectorization transformations over the LLVM intermediate // representation, including the C bindings for that library. // @@ -23,10 +23,11 @@ using namespace llvm; -/// initializeVectorizationPasses - Initialize all passes linked into the +/// initializeVectorizationPasses - Initialize all passes linked into the /// Vectorization library. void llvm::initializeVectorization(PassRegistry &Registry) { initializeBBVectorizePass(Registry); + initializeLoopVectorizePass(Registry); } void LLVMInitializeVectorization(LLVMPassRegistryRef R) { @@ -37,3 +38,6 @@ void LLVMAddBBVectorizePass(LLVMPassManagerRef PM) { unwrap(PM)->add(createBBVectorizePass()); } +void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) { + unwrap(PM)->add(createLoopVectorizePass()); +} |