summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LoopStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp2605
1 files changed, 2605 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
new file mode 100644
index 0000000..92270b5
--- /dev/null
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -0,0 +1,2605 @@
+//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation analyzes and transforms the induction variables (and
+// computations derived from them) into forms suitable for efficient execution
+// on the target.
+//
+// This pass performs a strength reduction on array references inside loops that
+// have as one or more of their components the loop induction variable, it
+// rewrites expressions to take advantage of scaled-index addressing modes
+// available on the target, and it performs a variety of other optimizations
+// related to loop induction variables.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-reduce"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/IVUsers.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Transforms/Utils/AddrModeMatcher.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumReduced , "Number of IV uses strength reduced");
+STATISTIC(NumInserted, "Number of PHIs inserted");
+STATISTIC(NumVariable, "Number of PHIs with variable strides");
+STATISTIC(NumEliminated, "Number of strides eliminated");
+STATISTIC(NumShadow, "Number of Shadow IVs optimized");
+STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
+STATISTIC(NumLoopCond, "Number of loop terminating conds optimized");
+
+static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
+ cl::init(false),
+ cl::Hidden);
+
+namespace {
+
+ struct BasedUser;
+
+ /// IVInfo - This structure keeps track of one IV expression inserted during
+ /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
+ /// well as the PHI node and increment value created for rewrite.
+ struct VISIBILITY_HIDDEN IVExpr {
+ SCEVHandle Stride;
+ SCEVHandle Base;
+ PHINode *PHI;
+
+ IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi)
+ : Stride(stride), Base(base), PHI(phi) {}
+ };
+
+ /// IVsOfOneStride - This structure keeps track of all IV expression inserted
+ /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
+ struct VISIBILITY_HIDDEN IVsOfOneStride {
+ std::vector<IVExpr> IVs;
+
+ void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI) {
+ IVs.push_back(IVExpr(Stride, Base, PHI));
+ }
+ };
+
+ class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
+ IVUsers *IU;
+ LoopInfo *LI;
+ DominatorTree *DT;
+ ScalarEvolution *SE;
+ bool Changed;
+
+ /// IVsByStride - Keep track of all IVs that have been inserted for a
+ /// particular stride.
+ std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
+
+ /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
+ /// reused (nor should they be rewritten to reuse other strides).
+ SmallSet<SCEVHandle, 4> StrideNoReuse;
+
+ /// DeadInsts - Keep track of instructions we may have made dead, so that
+ /// we can remove them after we are done working.
+ SmallVector<WeakVH, 16> DeadInsts;
+
+ /// TLI - Keep a pointer of a TargetLowering to consult for determining
+ /// transformation profitability.
+ const TargetLowering *TLI;
+
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
+ LoopPass(&ID), TLI(tli) {
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ // We split critical edges, so we change the CFG. However, we do update
+ // many analyses if they are around.
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominanceFrontier>();
+ AU.addPreserved<DominatorTree>();
+
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<IVUsers>();
+ AU.addPreserved<IVUsers>();
+ }
+
+ private:
+ ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
+ IVStrideUse* &CondUse,
+ const SCEVHandle* &CondStride);
+
+ void OptimizeIndvars(Loop *L);
+ void OptimizeLoopCountIV(Loop *L);
+ void OptimizeLoopTermCond(Loop *L);
+
+ /// OptimizeShadowIV - If IV is used in a int-to-float cast
+ /// inside the loop then try to eliminate the cast opeation.
+ void OptimizeShadowIV(Loop *L);
+
+ /// OptimizeSMax - Rewrite the loop's terminating condition
+ /// if it uses an smax computation.
+ ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
+ IVStrideUse* &CondUse);
+
+ bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
+ const SCEVHandle *&CondStride);
+ bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
+ SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
+ IVExpr&, const Type*,
+ const std::vector<BasedUser>& UsersToProcess);
+ bool ValidScale(bool, int64_t,
+ const std::vector<BasedUser>& UsersToProcess);
+ bool ValidOffset(bool, int64_t, int64_t,
+ const std::vector<BasedUser>& UsersToProcess);
+ SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
+ IVUsersOfOneStride &Uses,
+ Loop *L,
+ bool &AllUsesAreAddresses,
+ bool &AllUsesAreOutsideLoop,
+ std::vector<BasedUser> &UsersToProcess);
+ bool ShouldUseFullStrengthReductionMode(
+ const std::vector<BasedUser> &UsersToProcess,
+ const Loop *L,
+ bool AllUsesAreAddresses,
+ SCEVHandle Stride);
+ void PrepareToStrengthReduceFully(
+ std::vector<BasedUser> &UsersToProcess,
+ SCEVHandle Stride,
+ SCEVHandle CommonExprs,
+ const Loop *L,
+ SCEVExpander &PreheaderRewriter);
+ void PrepareToStrengthReduceFromSmallerStride(
+ std::vector<BasedUser> &UsersToProcess,
+ Value *CommonBaseV,
+ const IVExpr &ReuseIV,
+ Instruction *PreInsertPt);
+ void PrepareToStrengthReduceWithNewPhi(
+ std::vector<BasedUser> &UsersToProcess,
+ SCEVHandle Stride,
+ SCEVHandle CommonExprs,
+ Value *CommonBaseV,
+ Instruction *IVIncInsertPt,
+ const Loop *L,
+ SCEVExpander &PreheaderRewriter);
+ void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
+ IVUsersOfOneStride &Uses,
+ Loop *L);
+ void DeleteTriviallyDeadInstructions();
+ };
+}
+
+char LoopStrengthReduce::ID = 0;
+static RegisterPass<LoopStrengthReduce>
+X("loop-reduce", "Loop Strength Reduction");
+
+Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
+ return new LoopStrengthReduce(TLI);
+}
+
+/// DeleteTriviallyDeadInstructions - If any of the instructions is the
+/// specified set are trivially dead, delete them and see if this makes any of
+/// their operands subsequently dead.
+void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
+ if (DeadInsts.empty()) return;
+
+ while (!DeadInsts.empty()) {
+ Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
+ DeadInsts.pop_back();
+
+ if (I == 0 || !isInstructionTriviallyDead(I))
+ continue;
+
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ *OI = 0;
+ if (U->use_empty())
+ DeadInsts.push_back(U);
+ }
+ }
+
+ I->eraseFromParent();
+ Changed = true;
+ }
+}
+
+/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
+/// subexpression that is an AddRec from a loop other than L. An outer loop
+/// of L is OK, but not an inner loop nor a disjoint loop.
+static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
+ // This is very common, put it first.
+ if (isa<SCEVConstant>(S))
+ return false;
+ if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
+ for (unsigned int i=0; i< AE->getNumOperands(); i++)
+ if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
+ return true;
+ return false;
+ }
+ if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
+ if (const Loop *newLoop = AE->getLoop()) {
+ if (newLoop == L)
+ return false;
+ // if newLoop is an outer loop of L, this is OK.
+ if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
+ return false;
+ }
+ return true;
+ }
+ if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
+ return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
+ containsAddRecFromDifferentLoop(DE->getRHS(), L);
+#if 0
+ // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
+ // need this when it is.
+ if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
+ return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
+ containsAddRecFromDifferentLoop(DE->getRHS(), L);
+#endif
+ if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
+ return containsAddRecFromDifferentLoop(CE->getOperand(), L);
+ return false;
+}
+
+/// isAddressUse - Returns true if the specified instruction is using the
+/// specified value as an address.
+static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
+ bool isAddress = isa<LoadInst>(Inst);
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ if (SI->getOperand(1) == OperandVal)
+ isAddress = true;
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::prefetch:
+ case Intrinsic::x86_sse2_loadu_dq:
+ case Intrinsic::x86_sse2_loadu_pd:
+ case Intrinsic::x86_sse_loadu_ps:
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ if (II->getOperand(1) == OperandVal)
+ isAddress = true;
+ break;
+ }
+ }
+ return isAddress;
+}
+
+/// getAccessType - Return the type of the memory being accessed.
+static const Type *getAccessType(const Instruction *Inst) {
+ const Type *AccessTy = Inst->getType();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ AccessTy = SI->getOperand(0)->getType();
+ else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ AccessTy = II->getOperand(1)->getType();
+ break;
+ }
+ }
+ return AccessTy;
+}
+
+namespace {
+ /// BasedUser - For a particular base value, keep information about how we've
+ /// partitioned the expression so far.
+ struct BasedUser {
+ /// SE - The current ScalarEvolution object.
+ ScalarEvolution *SE;
+
+ /// Base - The Base value for the PHI node that needs to be inserted for
+ /// this use. As the use is processed, information gets moved from this
+ /// field to the Imm field (below). BasedUser values are sorted by this
+ /// field.
+ SCEVHandle Base;
+
+ /// Inst - The instruction using the induction variable.
+ Instruction *Inst;
+
+ /// OperandValToReplace - The operand value of Inst to replace with the
+ /// EmittedBase.
+ Value *OperandValToReplace;
+
+ /// isSigned - The stride (and thus also the Base) of this use may be in
+ /// a narrower type than the use itself (OperandValToReplace->getType()).
+ /// When this is the case, the isSigned field indicates whether the
+ /// IV expression should be signed-extended instead of zero-extended to
+ /// fit the type of the use.
+ bool isSigned;
+
+ /// Imm - The immediate value that should be added to the base immediately
+ /// before Inst, because it will be folded into the imm field of the
+ /// instruction. This is also sometimes used for loop-variant values that
+ /// must be added inside the loop.
+ SCEVHandle Imm;
+
+ /// Phi - The induction variable that performs the striding that
+ /// should be used for this user.
+ PHINode *Phi;
+
+ // isUseOfPostIncrementedValue - True if this should use the
+ // post-incremented version of this IV, not the preincremented version.
+ // This can only be set in special cases, such as the terminating setcc
+ // instruction for a loop and uses outside the loop that are dominated by
+ // the loop.
+ bool isUseOfPostIncrementedValue;
+
+ BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
+ : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
+ OperandValToReplace(IVSU.getOperandValToReplace()),
+ isSigned(IVSU.isSigned()),
+ Imm(SE->getIntegerSCEV(0, Base->getType())),
+ isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
+
+ // Once we rewrite the code to insert the new IVs we want, update the
+ // operands of Inst to use the new expression 'NewBase', with 'Imm' added
+ // to it.
+ void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
+ Instruction *InsertPt,
+ SCEVExpander &Rewriter, Loop *L, Pass *P,
+ LoopInfo &LI,
+ SmallVectorImpl<WeakVH> &DeadInsts);
+
+ Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
+ const Type *Ty,
+ SCEVExpander &Rewriter,
+ Instruction *IP, Loop *L,
+ LoopInfo &LI);
+ void dump() const;
+ };
+}
+
+void BasedUser::dump() const {
+ cerr << " Base=" << *Base;
+ cerr << " Imm=" << *Imm;
+ cerr << " Inst: " << *Inst;
+}
+
+Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
+ const Type *Ty,
+ SCEVExpander &Rewriter,
+ Instruction *IP, Loop *L,
+ LoopInfo &LI) {
+ // Figure out where we *really* want to insert this code. In particular, if
+ // the user is inside of a loop that is nested inside of L, we really don't
+ // want to insert this expression before the user, we'd rather pull it out as
+ // many loops as possible.
+ Instruction *BaseInsertPt = IP;
+
+ // Figure out the most-nested loop that IP is in.
+ Loop *InsertLoop = LI.getLoopFor(IP->getParent());
+
+ // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
+ // the preheader of the outer-most loop where NewBase is not loop invariant.
+ if (L->contains(IP->getParent()))
+ while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
+ BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
+ InsertLoop = InsertLoop->getParentLoop();
+ }
+
+ Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
+
+ SCEVHandle NewValSCEV = SE->getUnknown(Base);
+
+ // If there is no immediate value, skip the next part.
+ if (!Imm->isZero()) {
+ // If we are inserting the base and imm values in the same block, make sure
+ // to adjust the IP position if insertion reused a result.
+ if (IP == BaseInsertPt)
+ IP = Rewriter.getInsertionPoint();
+
+ // Always emit the immediate (if non-zero) into the same block as the user.
+ NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
+ }
+
+ if (isSigned)
+ NewValSCEV = SE->getTruncateOrSignExtend(NewValSCEV, Ty);
+ else
+ NewValSCEV = SE->getTruncateOrZeroExtend(NewValSCEV, Ty);
+
+ return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
+}
+
+
+// Once we rewrite the code to insert the new IVs we want, update the
+// operands of Inst to use the new expression 'NewBase', with 'Imm' added
+// to it. NewBasePt is the last instruction which contributes to the
+// value of NewBase in the case that it's a diffferent instruction from
+// the PHI that NewBase is computed from, or null otherwise.
+//
+void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
+ Instruction *NewBasePt,
+ SCEVExpander &Rewriter, Loop *L, Pass *P,
+ LoopInfo &LI,
+ SmallVectorImpl<WeakVH> &DeadInsts) {
+ if (!isa<PHINode>(Inst)) {
+ // By default, insert code at the user instruction.
+ BasicBlock::iterator InsertPt = Inst;
+
+ // However, if the Operand is itself an instruction, the (potentially
+ // complex) inserted code may be shared by many users. Because of this, we
+ // want to emit code for the computation of the operand right before its old
+ // computation. This is usually safe, because we obviously used to use the
+ // computation when it was computed in its current block. However, in some
+ // cases (e.g. use of a post-incremented induction variable) the NewBase
+ // value will be pinned to live somewhere after the original computation.
+ // In this case, we have to back off.
+ //
+ // If this is a use outside the loop (which means after, since it is based
+ // on a loop indvar) we use the post-incremented value, so that we don't
+ // artificially make the preinc value live out the bottom of the loop.
+ if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
+ if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
+ InsertPt = NewBasePt;
+ ++InsertPt;
+ } else if (Instruction *OpInst
+ = dyn_cast<Instruction>(OperandValToReplace)) {
+ InsertPt = OpInst;
+ while (isa<PHINode>(InsertPt)) ++InsertPt;
+ }
+ }
+ Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
+ OperandValToReplace->getType(),
+ Rewriter, InsertPt, L, LI);
+ // Replace the use of the operand Value with the new Phi we just created.
+ Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
+
+ DOUT << " Replacing with ";
+ DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
+ DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
+ return;
+ }
+
+ // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
+ // expression into each operand block that uses it. Note that PHI nodes can
+ // have multiple entries for the same predecessor. We use a map to make sure
+ // that a PHI node only has a single Value* for each predecessor (which also
+ // prevents us from inserting duplicate code in some blocks).
+ DenseMap<BasicBlock*, Value*> InsertedCode;
+ PHINode *PN = cast<PHINode>(Inst);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (PN->getIncomingValue(i) == OperandValToReplace) {
+ // If the original expression is outside the loop, put the replacement
+ // code in the same place as the original expression,
+ // which need not be an immediate predecessor of this PHI. This way we
+ // need only one copy of it even if it is referenced multiple times in
+ // the PHI. We don't do this when the original expression is inside the
+ // loop because multiple copies sometimes do useful sinking of code in
+ // that case(?).
+ Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
+ if (L->contains(OldLoc->getParent())) {
+ // If this is a critical edge, split the edge so that we do not insert
+ // the code on all predecessor/successor paths. We do this unless this
+ // is the canonical backedge for this loop, as this can make some
+ // inserted code be in an illegal position.
+ BasicBlock *PHIPred = PN->getIncomingBlock(i);
+ if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
+ (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
+
+ // First step, split the critical edge.
+ SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
+
+ // Next step: move the basic block. In particular, if the PHI node
+ // is outside of the loop, and PredTI is in the loop, we want to
+ // move the block to be immediately before the PHI block, not
+ // immediately after PredTI.
+ if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
+ BasicBlock *NewBB = PN->getIncomingBlock(i);
+ NewBB->moveBefore(PN->getParent());
+ }
+
+ // Splitting the edge can reduce the number of PHI entries we have.
+ e = PN->getNumIncomingValues();
+ }
+ }
+ Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
+ if (!Code) {
+ // Insert the code into the end of the predecessor block.
+ Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
+ PN->getIncomingBlock(i)->getTerminator() :
+ OldLoc->getParent()->getTerminator();
+ Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
+ Rewriter, InsertPt, L, LI);
+
+ DOUT << " Changing PHI use to ";
+ DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
+ DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
+ }
+
+ // Replace the use of the operand Value with the new Phi we just created.
+ PN->setIncomingValue(i, Code);
+ Rewriter.clear();
+ }
+ }
+
+ // PHI node might have become a constant value after SplitCriticalEdge.
+ DeadInsts.push_back(Inst);
+}
+
+
+/// fitsInAddressMode - Return true if V can be subsumed within an addressing
+/// mode, and does not need to be put in a register first.
+static bool fitsInAddressMode(const SCEVHandle &V, const Type *AccessTy,
+ const TargetLowering *TLI, bool HasBaseReg) {
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
+ int64_t VC = SC->getValue()->getSExtValue();
+ if (TLI) {
+ TargetLowering::AddrMode AM;
+ AM.BaseOffs = VC;
+ AM.HasBaseReg = HasBaseReg;
+ return TLI->isLegalAddressingMode(AM, AccessTy);
+ } else {
+ // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
+ return (VC > -(1 << 16) && VC < (1 << 16)-1);
+ }
+ }
+
+ if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
+ if (TLI) {
+ TargetLowering::AddrMode AM;
+ AM.BaseGV = GV;
+ AM.HasBaseReg = HasBaseReg;
+ return TLI->isLegalAddressingMode(AM, AccessTy);
+ } else {
+ // Default: assume global addresses are not legal.
+ }
+ }
+
+ return false;
+}
+
+/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
+/// loop varying to the Imm operand.
+static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
+ Loop *L, ScalarEvolution *SE) {
+ if (Val->isLoopInvariant(L)) return; // Nothing to do.
+
+ if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
+ std::vector<SCEVHandle> NewOps;
+ NewOps.reserve(SAE->getNumOperands());
+
+ for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
+ if (!SAE->getOperand(i)->isLoopInvariant(L)) {
+ // If this is a loop-variant expression, it must stay in the immediate
+ // field of the expression.
+ Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
+ } else {
+ NewOps.push_back(SAE->getOperand(i));
+ }
+
+ if (NewOps.empty())
+ Val = SE->getIntegerSCEV(0, Val->getType());
+ else
+ Val = SE->getAddExpr(NewOps);
+ } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
+ // Try to pull immediates out of the start value of nested addrec's.
+ SCEVHandle Start = SARE->getStart();
+ MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
+
+ std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
+ Ops[0] = Start;
+ Val = SE->getAddRecExpr(Ops, SARE->getLoop());
+ } else {
+ // Otherwise, all of Val is variant, move the whole thing over.
+ Imm = SE->getAddExpr(Imm, Val);
+ Val = SE->getIntegerSCEV(0, Val->getType());
+ }
+}
+
+
+/// MoveImmediateValues - Look at Val, and pull out any additions of constants
+/// that can fit into the immediate field of instructions in the target.
+/// Accumulate these immediate values into the Imm value.
+static void MoveImmediateValues(const TargetLowering *TLI,
+ const Type *AccessTy,
+ SCEVHandle &Val, SCEVHandle &Imm,
+ bool isAddress, Loop *L,
+ ScalarEvolution *SE) {
+ if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
+ std::vector<SCEVHandle> NewOps;
+ NewOps.reserve(SAE->getNumOperands());
+
+ for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
+ SCEVHandle NewOp = SAE->getOperand(i);
+ MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
+
+ if (!NewOp->isLoopInvariant(L)) {
+ // If this is a loop-variant expression, it must stay in the immediate
+ // field of the expression.
+ Imm = SE->getAddExpr(Imm, NewOp);
+ } else {
+ NewOps.push_back(NewOp);
+ }
+ }
+
+ if (NewOps.empty())
+ Val = SE->getIntegerSCEV(0, Val->getType());
+ else
+ Val = SE->getAddExpr(NewOps);
+ return;
+ } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
+ // Try to pull immediates out of the start value of nested addrec's.
+ SCEVHandle Start = SARE->getStart();
+ MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
+
+ if (Start != SARE->getStart()) {
+ std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
+ Ops[0] = Start;
+ Val = SE->getAddRecExpr(Ops, SARE->getLoop());
+ }
+ return;
+ } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
+ // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
+ if (isAddress &&
+ fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
+ SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
+
+ SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
+ SCEVHandle NewOp = SME->getOperand(1);
+ MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
+
+ // If we extracted something out of the subexpressions, see if we can
+ // simplify this!
+ if (NewOp != SME->getOperand(1)) {
+ // Scale SubImm up by "8". If the result is a target constant, we are
+ // good.
+ SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
+ if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
+ // Accumulate the immediate.
+ Imm = SE->getAddExpr(Imm, SubImm);
+
+ // Update what is left of 'Val'.
+ Val = SE->getMulExpr(SME->getOperand(0), NewOp);
+ return;
+ }
+ }
+ }
+ }
+
+ // Loop-variant expressions must stay in the immediate field of the
+ // expression.
+ if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
+ !Val->isLoopInvariant(L)) {
+ Imm = SE->getAddExpr(Imm, Val);
+ Val = SE->getIntegerSCEV(0, Val->getType());
+ return;
+ }
+
+ // Otherwise, no immediates to move.
+}
+
+static void MoveImmediateValues(const TargetLowering *TLI,
+ Instruction *User,
+ SCEVHandle &Val, SCEVHandle &Imm,
+ bool isAddress, Loop *L,
+ ScalarEvolution *SE) {
+ const Type *AccessTy = getAccessType(User);
+ MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
+}
+
+/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
+/// added together. This is used to reassociate common addition subexprs
+/// together for maximal sharing when rewriting bases.
+static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
+ SCEVHandle Expr,
+ ScalarEvolution *SE) {
+ if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
+ for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
+ SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
+ } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
+ SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
+ if (SARE->getOperand(0) == Zero) {
+ SubExprs.push_back(Expr);
+ } else {
+ // Compute the addrec with zero as its base.
+ std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
+ Ops[0] = Zero; // Start with zero base.
+ SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
+
+
+ SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
+ }
+ } else if (!Expr->isZero()) {
+ // Do not add zero.
+ SubExprs.push_back(Expr);
+ }
+}
+
+// This is logically local to the following function, but C++ says we have
+// to make it file scope.
+struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
+
+/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
+/// the Uses, removing any common subexpressions, except that if all such
+/// subexpressions can be folded into an addressing mode for all uses inside
+/// the loop (this case is referred to as "free" in comments herein) we do
+/// not remove anything. This looks for things like (a+b+c) and
+/// (a+c+d) and computes the common (a+c) subexpression. The common expression
+/// is *removed* from the Bases and returned.
+static SCEVHandle
+RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
+ ScalarEvolution *SE, Loop *L,
+ const TargetLowering *TLI) {
+ unsigned NumUses = Uses.size();
+
+ // Only one use? This is a very common case, so we handle it specially and
+ // cheaply.
+ SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
+ SCEVHandle Result = Zero;
+ SCEVHandle FreeResult = Zero;
+ if (NumUses == 1) {
+ // If the use is inside the loop, use its base, regardless of what it is:
+ // it is clearly shared across all the IV's. If the use is outside the loop
+ // (which means after it) we don't want to factor anything *into* the loop,
+ // so just use 0 as the base.
+ if (L->contains(Uses[0].Inst->getParent()))
+ std::swap(Result, Uses[0].Base);
+ return Result;
+ }
+
+ // To find common subexpressions, count how many of Uses use each expression.
+ // If any subexpressions are used Uses.size() times, they are common.
+ // Also track whether all uses of each expression can be moved into an
+ // an addressing mode "for free"; such expressions are left within the loop.
+ // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
+ std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
+
+ // UniqueSubExprs - Keep track of all of the subexpressions we see in the
+ // order we see them.
+ std::vector<SCEVHandle> UniqueSubExprs;
+
+ std::vector<SCEVHandle> SubExprs;
+ unsigned NumUsesInsideLoop = 0;
+ for (unsigned i = 0; i != NumUses; ++i) {
+ // If the user is outside the loop, just ignore it for base computation.
+ // Since the user is outside the loop, it must be *after* the loop (if it
+ // were before, it could not be based on the loop IV). We don't want users
+ // after the loop to affect base computation of values *inside* the loop,
+ // because we can always add their offsets to the result IV after the loop
+ // is done, ensuring we get good code inside the loop.
+ if (!L->contains(Uses[i].Inst->getParent()))
+ continue;
+ NumUsesInsideLoop++;
+
+ // If the base is zero (which is common), return zero now, there are no
+ // CSEs we can find.
+ if (Uses[i].Base == Zero) return Zero;
+
+ // If this use is as an address we may be able to put CSEs in the addressing
+ // mode rather than hoisting them.
+ bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
+ // We may need the AccessTy below, but only when isAddrUse, so compute it
+ // only in that case.
+ const Type *AccessTy = 0;
+ if (isAddrUse)
+ AccessTy = getAccessType(Uses[i].Inst);
+
+ // Split the expression into subexprs.
+ SeparateSubExprs(SubExprs, Uses[i].Base, SE);
+ // Add one to SubExpressionUseData.Count for each subexpr present, and
+ // if the subexpr is not a valid immediate within an addressing mode use,
+ // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
+ // hoist these out of the loop (if they are common to all uses).
+ for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
+ if (++SubExpressionUseData[SubExprs[j]].Count == 1)
+ UniqueSubExprs.push_back(SubExprs[j]);
+ if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
+ SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
+ }
+ SubExprs.clear();
+ }
+
+ // Now that we know how many times each is used, build Result. Iterate over
+ // UniqueSubexprs so that we have a stable ordering.
+ for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
+ std::map<SCEVHandle, SubExprUseData>::iterator I =
+ SubExpressionUseData.find(UniqueSubExprs[i]);
+ assert(I != SubExpressionUseData.end() && "Entry not found?");
+ if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
+ if (I->second.notAllUsesAreFree)
+ Result = SE->getAddExpr(Result, I->first);
+ else
+ FreeResult = SE->getAddExpr(FreeResult, I->first);
+ } else
+ // Remove non-cse's from SubExpressionUseData.
+ SubExpressionUseData.erase(I);
+ }
+
+ if (FreeResult != Zero) {
+ // We have some subexpressions that can be subsumed into addressing
+ // modes in every use inside the loop. However, it's possible that
+ // there are so many of them that the combined FreeResult cannot
+ // be subsumed, or that the target cannot handle both a FreeResult
+ // and a Result in the same instruction (for example because it would
+ // require too many registers). Check this.
+ for (unsigned i=0; i<NumUses; ++i) {
+ if (!L->contains(Uses[i].Inst->getParent()))
+ continue;
+ // We know this is an addressing mode use; if there are any uses that
+ // are not, FreeResult would be Zero.
+ const Type *AccessTy = getAccessType(Uses[i].Inst);
+ if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
+ // FIXME: could split up FreeResult into pieces here, some hoisted
+ // and some not. There is no obvious advantage to this.
+ Result = SE->getAddExpr(Result, FreeResult);
+ FreeResult = Zero;
+ break;
+ }
+ }
+ }
+
+ // If we found no CSE's, return now.
+ if (Result == Zero) return Result;
+
+ // If we still have a FreeResult, remove its subexpressions from
+ // SubExpressionUseData. This means they will remain in the use Bases.
+ if (FreeResult != Zero) {
+ SeparateSubExprs(SubExprs, FreeResult, SE);
+ for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
+ std::map<SCEVHandle, SubExprUseData>::iterator I =
+ SubExpressionUseData.find(SubExprs[j]);
+ SubExpressionUseData.erase(I);
+ }
+ SubExprs.clear();
+ }
+
+ // Otherwise, remove all of the CSE's we found from each of the base values.
+ for (unsigned i = 0; i != NumUses; ++i) {
+ // Uses outside the loop don't necessarily include the common base, but
+ // the final IV value coming into those uses does. Instead of trying to
+ // remove the pieces of the common base, which might not be there,
+ // subtract off the base to compensate for this.
+ if (!L->contains(Uses[i].Inst->getParent())) {
+ Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
+ continue;
+ }
+
+ // Split the expression into subexprs.
+ SeparateSubExprs(SubExprs, Uses[i].Base, SE);
+
+ // Remove any common subexpressions.
+ for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
+ if (SubExpressionUseData.count(SubExprs[j])) {
+ SubExprs.erase(SubExprs.begin()+j);
+ --j; --e;
+ }
+
+ // Finally, add the non-shared expressions together.
+ if (SubExprs.empty())
+ Uses[i].Base = Zero;
+ else
+ Uses[i].Base = SE->getAddExpr(SubExprs);
+ SubExprs.clear();
+ }
+
+ return Result;
+}
+
+/// ValidScale - Check whether the given Scale is valid for all loads and
+/// stores in UsersToProcess.
+///
+bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
+ const std::vector<BasedUser>& UsersToProcess) {
+ if (!TLI)
+ return true;
+
+ for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
+ // If this is a load or other access, pass the type of the access in.
+ const Type *AccessTy = Type::VoidTy;
+ if (isAddressUse(UsersToProcess[i].Inst,
+ UsersToProcess[i].OperandValToReplace))
+ AccessTy = getAccessType(UsersToProcess[i].Inst);
+ else if (isa<PHINode>(UsersToProcess[i].Inst))
+ continue;
+
+ TargetLowering::AddrMode AM;
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
+ AM.BaseOffs = SC->getValue()->getSExtValue();
+ AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
+ AM.Scale = Scale;
+
+ // If load[imm+r*scale] is illegal, bail out.
+ if (!TLI->isLegalAddressingMode(AM, AccessTy))
+ return false;
+ }
+ return true;
+}
+
+/// ValidOffset - Check whether the given Offset is valid for all loads and
+/// stores in UsersToProcess.
+///
+bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
+ int64_t Offset,
+ int64_t Scale,
+ const std::vector<BasedUser>& UsersToProcess) {
+ if (!TLI)
+ return true;
+
+ for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
+ // If this is a load or other access, pass the type of the access in.
+ const Type *AccessTy = Type::VoidTy;
+ if (isAddressUse(UsersToProcess[i].Inst,
+ UsersToProcess[i].OperandValToReplace))
+ AccessTy = getAccessType(UsersToProcess[i].Inst);
+ else if (isa<PHINode>(UsersToProcess[i].Inst))
+ continue;
+
+ TargetLowering::AddrMode AM;
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
+ AM.BaseOffs = SC->getValue()->getSExtValue();
+ AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
+ AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
+ AM.Scale = Scale;
+
+ // If load[imm+r*scale] is illegal, bail out.
+ if (!TLI->isLegalAddressingMode(AM, AccessTy))
+ return false;
+ }
+ return true;
+}
+
+/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
+/// a nop.
+bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
+ const Type *Ty2) {
+ if (Ty1 == Ty2)
+ return false;
+ Ty1 = SE->getEffectiveSCEVType(Ty1);
+ Ty2 = SE->getEffectiveSCEVType(Ty2);
+ if (Ty1 == Ty2)
+ return false;
+ if (Ty1->canLosslesslyBitCastTo(Ty2))
+ return false;
+ if (TLI && TLI->isTruncateFree(Ty1, Ty2))
+ return false;
+ return true;
+}
+
+/// CheckForIVReuse - Returns the multiple if the stride is the multiple
+/// of a previous stride and it is a legal value for the target addressing
+/// mode scale component and optional base reg. This allows the users of
+/// this stride to be rewritten as prev iv * factor. It returns 0 if no
+/// reuse is possible. Factors can be negative on same targets, e.g. ARM.
+///
+/// If all uses are outside the loop, we don't require that all multiplies
+/// be folded into the addressing mode, nor even that the factor be constant;
+/// a multiply (executed once) outside the loop is better than another IV
+/// within. Well, usually.
+SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
+ bool AllUsesAreAddresses,
+ bool AllUsesAreOutsideLoop,
+ const SCEVHandle &Stride,
+ IVExpr &IV, const Type *Ty,
+ const std::vector<BasedUser>& UsersToProcess) {
+ if (StrideNoReuse.count(Stride))
+ return SE->getIntegerSCEV(0, Stride->getType());
+
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
+ int64_t SInt = SC->getValue()->getSExtValue();
+ for (unsigned NewStride = 0, e = IU->StrideOrder.size();
+ NewStride != e; ++NewStride) {
+ std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
+ IVsByStride.find(IU->StrideOrder[NewStride]);
+ if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
+ StrideNoReuse.count(SI->first))
+ continue;
+ int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
+ if (SI->first != Stride &&
+ (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
+ continue;
+ int64_t Scale = SInt / SSInt;
+ // Check that this stride is valid for all the types used for loads and
+ // stores; if it can be used for some and not others, we might as well use
+ // the original stride everywhere, since we have to create the IV for it
+ // anyway. If the scale is 1, then we don't need to worry about folding
+ // multiplications.
+ if (Scale == 1 ||
+ (AllUsesAreAddresses &&
+ ValidScale(HasBaseReg, Scale, UsersToProcess))) {
+ // Prefer to reuse an IV with a base of zero.
+ for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
+ IE = SI->second.IVs.end(); II != IE; ++II)
+ // Only reuse previous IV if it would not require a type conversion
+ // and if the base difference can be folded.
+ if (II->Base->isZero() &&
+ !RequiresTypeConversion(II->Base->getType(), Ty)) {
+ IV = *II;
+ return SE->getIntegerSCEV(Scale, Stride->getType());
+ }
+ // Otherwise, settle for an IV with a foldable base.
+ if (AllUsesAreAddresses)
+ for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
+ IE = SI->second.IVs.end(); II != IE; ++II)
+ // Only reuse previous IV if it would not require a type conversion
+ // and if the base difference can be folded.
+ if (SE->getEffectiveSCEVType(II->Base->getType()) ==
+ SE->getEffectiveSCEVType(Ty) &&
+ isa<SCEVConstant>(II->Base)) {
+ int64_t Base =
+ cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
+ if (Base > INT32_MIN && Base <= INT32_MAX &&
+ ValidOffset(HasBaseReg, -Base * Scale,
+ Scale, UsersToProcess)) {
+ IV = *II;
+ return SE->getIntegerSCEV(Scale, Stride->getType());
+ }
+ }
+ }
+ }
+ } else if (AllUsesAreOutsideLoop) {
+ // Accept nonconstant strides here; it is really really right to substitute
+ // an existing IV if we can.
+ for (unsigned NewStride = 0, e = IU->StrideOrder.size();
+ NewStride != e; ++NewStride) {
+ std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
+ IVsByStride.find(IU->StrideOrder[NewStride]);
+ if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
+ continue;
+ int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
+ if (SI->first != Stride && SSInt != 1)
+ continue;
+ for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
+ IE = SI->second.IVs.end(); II != IE; ++II)
+ // Accept nonzero base here.
+ // Only reuse previous IV if it would not require a type conversion.
+ if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
+ IV = *II;
+ return Stride;
+ }
+ }
+ // Special case, old IV is -1*x and this one is x. Can treat this one as
+ // -1*old.
+ for (unsigned NewStride = 0, e = IU->StrideOrder.size();
+ NewStride != e; ++NewStride) {
+ std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
+ IVsByStride.find(IU->StrideOrder[NewStride]);
+ if (SI == IVsByStride.end())
+ continue;
+ if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
+ if (Stride == ME->getOperand(1) &&
+ SC->getValue()->getSExtValue() == -1LL)
+ for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
+ IE = SI->second.IVs.end(); II != IE; ++II)
+ // Accept nonzero base here.
+ // Only reuse previous IV if it would not require type conversion.
+ if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
+ IV = *II;
+ return SE->getIntegerSCEV(-1LL, Stride->getType());
+ }
+ }
+ }
+ return SE->getIntegerSCEV(0, Stride->getType());
+}
+
+/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
+/// returns true if Val's isUseOfPostIncrementedValue is true.
+static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
+ return Val.isUseOfPostIncrementedValue;
+}
+
+/// isNonConstantNegative - Return true if the specified scev is negated, but
+/// not a constant.
+static bool isNonConstantNegative(const SCEVHandle &Expr) {
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
+ if (!Mul) return false;
+
+ // If there is a constant factor, it will be first.
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
+ if (!SC) return false;
+
+ // Return true if the value is negative, this matches things like (-42 * V).
+ return SC->getValue()->getValue().isNegative();
+}
+
+// CollectIVUsers - Transform our list of users and offsets to a bit more
+// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
+// of the strided accesses, as well as the old information from Uses. We
+// progressively move information from the Base field to the Imm field, until
+// we eventually have the full access expression to rewrite the use.
+SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
+ IVUsersOfOneStride &Uses,
+ Loop *L,
+ bool &AllUsesAreAddresses,
+ bool &AllUsesAreOutsideLoop,
+ std::vector<BasedUser> &UsersToProcess) {
+ // FIXME: Generalize to non-affine IV's.
+ if (!Stride->isLoopInvariant(L))
+ return SE->getIntegerSCEV(0, Stride->getType());
+
+ UsersToProcess.reserve(Uses.Users.size());
+ for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
+ E = Uses.Users.end(); I != E; ++I) {
+ UsersToProcess.push_back(BasedUser(*I, SE));
+
+ // Move any loop variant operands from the offset field to the immediate
+ // field of the use, so that we don't try to use something before it is
+ // computed.
+ MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
+ UsersToProcess.back().Imm, L, SE);
+ assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
+ "Base value is not loop invariant!");
+ }
+
+ // We now have a whole bunch of uses of like-strided induction variables, but
+ // they might all have different bases. We want to emit one PHI node for this
+ // stride which we fold as many common expressions (between the IVs) into as
+ // possible. Start by identifying the common expressions in the base values
+ // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
+ // "A+B"), emit it to the preheader, then remove the expression from the
+ // UsersToProcess base values.
+ SCEVHandle CommonExprs =
+ RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
+
+ // Next, figure out what we can represent in the immediate fields of
+ // instructions. If we can represent anything there, move it to the imm
+ // fields of the BasedUsers. We do this so that it increases the commonality
+ // of the remaining uses.
+ unsigned NumPHI = 0;
+ bool HasAddress = false;
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
+ // If the user is not in the current loop, this means it is using the exit
+ // value of the IV. Do not put anything in the base, make sure it's all in
+ // the immediate field to allow as much factoring as possible.
+ if (!L->contains(UsersToProcess[i].Inst->getParent())) {
+ UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
+ UsersToProcess[i].Base);
+ UsersToProcess[i].Base =
+ SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
+ } else {
+ // Not all uses are outside the loop.
+ AllUsesAreOutsideLoop = false;
+
+ // Addressing modes can be folded into loads and stores. Be careful that
+ // the store is through the expression, not of the expression though.
+ bool isPHI = false;
+ bool isAddress = isAddressUse(UsersToProcess[i].Inst,
+ UsersToProcess[i].OperandValToReplace);
+ if (isa<PHINode>(UsersToProcess[i].Inst)) {
+ isPHI = true;
+ ++NumPHI;
+ }
+
+ if (isAddress)
+ HasAddress = true;
+
+ // If this use isn't an address, then not all uses are addresses.
+ if (!isAddress && !isPHI)
+ AllUsesAreAddresses = false;
+
+ MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
+ UsersToProcess[i].Imm, isAddress, L, SE);
+ }
+ }
+
+ // If one of the use is a PHI node and all other uses are addresses, still
+ // allow iv reuse. Essentially we are trading one constant multiplication
+ // for one fewer iv.
+ if (NumPHI > 1)
+ AllUsesAreAddresses = false;
+
+ // There are no in-loop address uses.
+ if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
+ AllUsesAreAddresses = false;
+
+ return CommonExprs;
+}
+
+/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
+/// is valid and profitable for the given set of users of a stride. In
+/// full strength-reduction mode, all addresses at the current stride are
+/// strength-reduced all the way down to pointer arithmetic.
+///
+bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
+ const std::vector<BasedUser> &UsersToProcess,
+ const Loop *L,
+ bool AllUsesAreAddresses,
+ SCEVHandle Stride) {
+ if (!EnableFullLSRMode)
+ return false;
+
+ // The heuristics below aim to avoid increasing register pressure, but
+ // fully strength-reducing all the addresses increases the number of
+ // add instructions, so don't do this when optimizing for size.
+ // TODO: If the loop is large, the savings due to simpler addresses
+ // may oughtweight the costs of the extra increment instructions.
+ if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
+ return false;
+
+ // TODO: For now, don't do full strength reduction if there could
+ // potentially be greater-stride multiples of the current stride
+ // which could reuse the current stride IV.
+ if (IU->StrideOrder.back() != Stride)
+ return false;
+
+ // Iterate through the uses to find conditions that automatically rule out
+ // full-lsr mode.
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
+ const SCEV *Base = UsersToProcess[i].Base;
+ const SCEV *Imm = UsersToProcess[i].Imm;
+ // If any users have a loop-variant component, they can't be fully
+ // strength-reduced.
+ if (Imm && !Imm->isLoopInvariant(L))
+ return false;
+ // If there are to users with the same base and the difference between
+ // the two Imm values can't be folded into the address, full
+ // strength reduction would increase register pressure.
+ do {
+ const SCEV *CurImm = UsersToProcess[i].Imm;
+ if ((CurImm || Imm) && CurImm != Imm) {
+ if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
+ if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType());
+ const Instruction *Inst = UsersToProcess[i].Inst;
+ const Type *AccessTy = getAccessType(Inst);
+ SCEVHandle Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
+ if (!Diff->isZero() &&
+ (!AllUsesAreAddresses ||
+ !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
+ return false;
+ }
+ } while (++i != e && Base == UsersToProcess[i].Base);
+ }
+
+ // If there's exactly one user in this stride, fully strength-reducing it
+ // won't increase register pressure. If it's starting from a non-zero base,
+ // it'll be simpler this way.
+ if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
+ return true;
+
+ // Otherwise, if there are any users in this stride that don't require
+ // a register for their base, full strength-reduction will increase
+ // register pressure.
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
+ if (UsersToProcess[i].Base->isZero())
+ return false;
+
+ // Otherwise, go for it.
+ return true;
+}
+
+/// InsertAffinePhi Create and insert a PHI node for an induction variable
+/// with the specified start and step values in the specified loop.
+///
+/// If NegateStride is true, the stride should be negated by using a
+/// subtract instead of an add.
+///
+/// Return the created phi node.
+///
+static PHINode *InsertAffinePhi(SCEVHandle Start, SCEVHandle Step,
+ Instruction *IVIncInsertPt,
+ const Loop *L,
+ SCEVExpander &Rewriter) {
+ assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
+ assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
+
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Preheader = L->getLoopPreheader();
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ const Type *Ty = Start->getType();
+ Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
+
+ PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
+ PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
+ Preheader);
+
+ // If the stride is negative, insert a sub instead of an add for the
+ // increment.
+ bool isNegative = isNonConstantNegative(Step);
+ SCEVHandle IncAmount = Step;
+ if (isNegative)
+ IncAmount = Rewriter.SE.getNegativeSCEV(Step);
+
+ // Insert an add instruction right before the terminator corresponding
+ // to the back-edge or just before the only use. The location is determined
+ // by the caller and passed in as IVIncInsertPt.
+ Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
+ Preheader->getTerminator());
+ Instruction *IncV;
+ if (isNegative) {
+ IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
+ IVIncInsertPt);
+ } else {
+ IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
+ IVIncInsertPt);
+ }
+ if (!isa<ConstantInt>(StepV)) ++NumVariable;
+
+ PN->addIncoming(IncV, LatchBlock);
+
+ ++NumInserted;
+ return PN;
+}
+
+static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
+ // We want to emit code for users inside the loop first. To do this, we
+ // rearrange BasedUser so that the entries at the end have
+ // isUseOfPostIncrementedValue = false, because we pop off the end of the
+ // vector (so we handle them first).
+ std::partition(UsersToProcess.begin(), UsersToProcess.end(),
+ PartitionByIsUseOfPostIncrementedValue);
+
+ // Sort this by base, so that things with the same base are handled
+ // together. By partitioning first and stable-sorting later, we are
+ // guaranteed that within each base we will pop off users from within the
+ // loop before users outside of the loop with a particular base.
+ //
+ // We would like to use stable_sort here, but we can't. The problem is that
+ // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
+ // we don't have anything to do a '<' comparison on. Because we think the
+ // number of uses is small, do a horrible bubble sort which just relies on
+ // ==.
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
+ // Get a base value.
+ SCEVHandle Base = UsersToProcess[i].Base;
+
+ // Compact everything with this base to be consecutive with this one.
+ for (unsigned j = i+1; j != e; ++j) {
+ if (UsersToProcess[j].Base == Base) {
+ std::swap(UsersToProcess[i+1], UsersToProcess[j]);
+ ++i;
+ }
+ }
+ }
+}
+
+/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
+/// UsersToProcess, meaning lowering addresses all the way down to direct
+/// pointer arithmetic.
+///
+void
+LoopStrengthReduce::PrepareToStrengthReduceFully(
+ std::vector<BasedUser> &UsersToProcess,
+ SCEVHandle Stride,
+ SCEVHandle CommonExprs,
+ const Loop *L,
+ SCEVExpander &PreheaderRewriter) {
+ DOUT << " Fully reducing all users\n";
+
+ // Rewrite the UsersToProcess records, creating a separate PHI for each
+ // unique Base value.
+ Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
+ // TODO: The uses are grouped by base, but not sorted. We arbitrarily
+ // pick the first Imm value here to start with, and adjust it for the
+ // other uses.
+ SCEVHandle Imm = UsersToProcess[i].Imm;
+ SCEVHandle Base = UsersToProcess[i].Base;
+ SCEVHandle Start = SE->getAddExpr(CommonExprs, Base, Imm);
+ PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
+ PreheaderRewriter);
+ // Loop over all the users with the same base.
+ do {
+ UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
+ UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
+ UsersToProcess[i].Phi = Phi;
+ assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
+ "ShouldUseFullStrengthReductionMode should reject this!");
+ } while (++i != e && Base == UsersToProcess[i].Base);
+ }
+}
+
+/// FindIVIncInsertPt - Return the location to insert the increment instruction.
+/// If the only use if a use of postinc value, (must be the loop termination
+/// condition), then insert it just before the use.
+static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
+ const Loop *L) {
+ if (UsersToProcess.size() == 1 &&
+ UsersToProcess[0].isUseOfPostIncrementedValue &&
+ L->contains(UsersToProcess[0].Inst->getParent()))
+ return UsersToProcess[0].Inst;
+ return L->getLoopLatch()->getTerminator();
+}
+
+/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
+/// given users to share.
+///
+void
+LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
+ std::vector<BasedUser> &UsersToProcess,
+ SCEVHandle Stride,
+ SCEVHandle CommonExprs,
+ Value *CommonBaseV,
+ Instruction *IVIncInsertPt,
+ const Loop *L,
+ SCEVExpander &PreheaderRewriter) {
+ DOUT << " Inserting new PHI:\n";
+
+ PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
+ Stride, IVIncInsertPt, L,
+ PreheaderRewriter);
+
+ // Remember this in case a later stride is multiple of this.
+ IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
+
+ // All the users will share this new IV.
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
+ UsersToProcess[i].Phi = Phi;
+
+ DOUT << " IV=";
+ DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
+ DOUT << "\n";
+}
+
+/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
+/// reuse an induction variable with a stride that is a factor of the current
+/// induction variable.
+///
+void
+LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
+ std::vector<BasedUser> &UsersToProcess,
+ Value *CommonBaseV,
+ const IVExpr &ReuseIV,
+ Instruction *PreInsertPt) {
+ DOUT << " Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
+ << " and BASE " << *ReuseIV.Base << "\n";
+
+ // All the users will share the reused IV.
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
+ UsersToProcess[i].Phi = ReuseIV.PHI;
+
+ Constant *C = dyn_cast<Constant>(CommonBaseV);
+ if (C &&
+ (!C->isNullValue() &&
+ !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
+ TLI, false)))
+ // We want the common base emitted into the preheader! This is just
+ // using cast as a copy so BitCast (no-op cast) is appropriate
+ CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
+ "commonbase", PreInsertPt);
+}
+
+static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
+ const Type *AccessTy,
+ std::vector<BasedUser> &UsersToProcess,
+ const TargetLowering *TLI) {
+ SmallVector<Instruction*, 16> AddrModeInsts;
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
+ if (UsersToProcess[i].isUseOfPostIncrementedValue)
+ continue;
+ ExtAddrMode AddrMode =
+ AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
+ AccessTy, UsersToProcess[i].Inst,
+ AddrModeInsts, *TLI);
+ if (GV && GV != AddrMode.BaseGV)
+ return false;
+ if (Offset && !AddrMode.BaseOffs)
+ // FIXME: How to accurate check it's immediate offset is folded.
+ return false;
+ AddrModeInsts.clear();
+ }
+ return true;
+}
+
+/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
+/// stride of IV. All of the users may have different starting values, and this
+/// may not be the only stride.
+void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
+ IVUsersOfOneStride &Uses,
+ Loop *L) {
+ // If all the users are moved to another stride, then there is nothing to do.
+ if (Uses.Users.empty())
+ return;
+
+ // Keep track if every use in UsersToProcess is an address. If they all are,
+ // we may be able to rewrite the entire collection of them in terms of a
+ // smaller-stride IV.
+ bool AllUsesAreAddresses = true;
+
+ // Keep track if every use of a single stride is outside the loop. If so,
+ // we want to be more aggressive about reusing a smaller-stride IV; a
+ // multiply outside the loop is better than another IV inside. Well, usually.
+ bool AllUsesAreOutsideLoop = true;
+
+ // Transform our list of users and offsets to a bit more complex table. In
+ // this new vector, each 'BasedUser' contains 'Base' the base of the
+ // strided accessas well as the old information from Uses. We progressively
+ // move information from the Base field to the Imm field, until we eventually
+ // have the full access expression to rewrite the use.
+ std::vector<BasedUser> UsersToProcess;
+ SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
+ AllUsesAreOutsideLoop,
+ UsersToProcess);
+
+ // Sort the UsersToProcess array so that users with common bases are
+ // next to each other.
+ SortUsersToProcess(UsersToProcess);
+
+ // If we managed to find some expressions in common, we'll need to carry
+ // their value in a register and add it in for each use. This will take up
+ // a register operand, which potentially restricts what stride values are
+ // valid.
+ bool HaveCommonExprs = !CommonExprs->isZero();
+ const Type *ReplacedTy = CommonExprs->getType();
+
+ // If all uses are addresses, consider sinking the immediate part of the
+ // common expression back into uses if they can fit in the immediate fields.
+ if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
+ SCEVHandle NewCommon = CommonExprs;
+ SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
+ MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
+ if (!Imm->isZero()) {
+ bool DoSink = true;
+
+ // If the immediate part of the common expression is a GV, check if it's
+ // possible to fold it into the target addressing mode.
+ GlobalValue *GV = 0;
+ if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
+ GV = dyn_cast<GlobalValue>(SU->getValue());
+ int64_t Offset = 0;
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
+ Offset = SC->getValue()->getSExtValue();
+ if (GV || Offset)
+ // Pass VoidTy as the AccessTy to be conservative, because
+ // there could be multiple access types among all the uses.
+ DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
+ UsersToProcess, TLI);
+
+ if (DoSink) {
+ DOUT << " Sinking " << *Imm << " back down into uses\n";
+ for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
+ UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
+ CommonExprs = NewCommon;
+ HaveCommonExprs = !CommonExprs->isZero();
+ ++NumImmSunk;
+ }
+ }
+ }
+
+ // Now that we know what we need to do, insert the PHI node itself.
+ //
+ DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
+ << *Stride << ":\n"
+ << " Common base: " << *CommonExprs << "\n";
+
+ SCEVExpander Rewriter(*SE);
+ SCEVExpander PreheaderRewriter(*SE);
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ Instruction *PreInsertPt = Preheader->getTerminator();
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ Instruction *IVIncInsertPt = LatchBlock->getTerminator();
+
+ Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
+
+ SCEVHandle RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
+ IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
+ SE->getIntegerSCEV(0, Type::Int32Ty),
+ 0);
+
+ /// Choose a strength-reduction strategy and prepare for it by creating
+ /// the necessary PHIs and adjusting the bookkeeping.
+ if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
+ AllUsesAreAddresses, Stride)) {
+ PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
+ PreheaderRewriter);
+ } else {
+ // Emit the initial base value into the loop preheader.
+ CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
+ PreInsertPt);
+
+ // If all uses are addresses, check if it is possible to reuse an IV. The
+ // new IV must have a stride that is a multiple of the old stride; the
+ // multiple must be a number that can be encoded in the scale field of the
+ // target addressing mode; and we must have a valid instruction after this
+ // substitution, including the immediate field, if any.
+ RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
+ AllUsesAreOutsideLoop,
+ Stride, ReuseIV, ReplacedTy,
+ UsersToProcess);
+ if (!RewriteFactor->isZero())
+ PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
+ ReuseIV, PreInsertPt);
+ else {
+ IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
+ PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
+ CommonBaseV, IVIncInsertPt,
+ L, PreheaderRewriter);
+ }
+ }
+
+ // Process all the users now, replacing their strided uses with
+ // strength-reduced forms. This outer loop handles all bases, the inner
+ // loop handles all users of a particular base.
+ while (!UsersToProcess.empty()) {
+ SCEVHandle Base = UsersToProcess.back().Base;
+ Instruction *Inst = UsersToProcess.back().Inst;
+
+ // Emit the code for Base into the preheader.
+ Value *BaseV = 0;
+ if (!Base->isZero()) {
+ BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
+
+ DOUT << " INSERTING code for BASE = " << *Base << ":";
+ if (BaseV->hasName())
+ DOUT << " Result value name = %" << BaseV->getNameStr();
+ DOUT << "\n";
+
+ // If BaseV is a non-zero constant, make sure that it gets inserted into
+ // the preheader, instead of being forward substituted into the uses. We
+ // do this by forcing a BitCast (noop cast) to be inserted into the
+ // preheader in this case.
+ if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
+ // We want this constant emitted into the preheader! This is just
+ // using cast as a copy so BitCast (no-op cast) is appropriate
+ BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
+ PreInsertPt);
+ }
+ }
+
+ // Emit the code to add the immediate offset to the Phi value, just before
+ // the instructions that we identified as using this stride and base.
+ do {
+ // FIXME: Use emitted users to emit other users.
+ BasedUser &User = UsersToProcess.back();
+
+ DOUT << " Examining ";
+ if (User.isUseOfPostIncrementedValue)
+ DOUT << "postinc";
+ else
+ DOUT << "preinc";
+ DOUT << " use ";
+ DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
+ /*PrintType=*/false));
+ DOUT << " in Inst: " << *(User.Inst);
+
+ // If this instruction wants to use the post-incremented value, move it
+ // after the post-inc and use its value instead of the PHI.
+ Value *RewriteOp = User.Phi;
+ if (User.isUseOfPostIncrementedValue) {
+ RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
+ // If this user is in the loop, make sure it is the last thing in the
+ // loop to ensure it is dominated by the increment. In case it's the
+ // only use of the iv, the increment instruction is already before the
+ // use.
+ if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
+ User.Inst->moveBefore(IVIncInsertPt);
+ }
+
+ SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
+
+ if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
+ SE->getEffectiveSCEVType(ReplacedTy)) {
+ assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
+ SE->getTypeSizeInBits(ReplacedTy) &&
+ "Unexpected widening cast!");
+ RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
+ }
+
+ // If we had to insert new instructions for RewriteOp, we have to
+ // consider that they may not have been able to end up immediately
+ // next to RewriteOp, because non-PHI instructions may never precede
+ // PHI instructions in a block. In this case, remember where the last
+ // instruction was inserted so that if we're replacing a different
+ // PHI node, we can use the later point to expand the final
+ // RewriteExpr.
+ Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
+ if (RewriteOp == User.Phi) NewBasePt = 0;
+
+ // Clear the SCEVExpander's expression map so that we are guaranteed
+ // to have the code emitted where we expect it.
+ Rewriter.clear();
+
+ // If we are reusing the iv, then it must be multiplied by a constant
+ // factor to take advantage of the addressing mode scale component.
+ if (!RewriteFactor->isZero()) {
+ // If we're reusing an IV with a nonzero base (currently this happens
+ // only when all reuses are outside the loop) subtract that base here.
+ // The base has been used to initialize the PHI node but we don't want
+ // it here.
+ if (!ReuseIV.Base->isZero()) {
+ SCEVHandle typedBase = ReuseIV.Base;
+ if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
+ SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
+ // It's possible the original IV is a larger type than the new IV,
+ // in which case we have to truncate the Base. We checked in
+ // RequiresTypeConversion that this is valid.
+ assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
+ SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
+ "Unexpected lengthening conversion!");
+ typedBase = SE->getTruncateExpr(ReuseIV.Base,
+ RewriteExpr->getType());
+ }
+ RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
+ }
+
+ // Multiply old variable, with base removed, by new scale factor.
+ RewriteExpr = SE->getMulExpr(RewriteFactor,
+ RewriteExpr);
+
+ // The common base is emitted in the loop preheader. But since we
+ // are reusing an IV, it has not been used to initialize the PHI node.
+ // Add it to the expression used to rewrite the uses.
+ // When this use is outside the loop, we earlier subtracted the
+ // common base, and are adding it back here. Use the same expression
+ // as before, rather than CommonBaseV, so DAGCombiner will zap it.
+ if (!CommonExprs->isZero()) {
+ if (L->contains(User.Inst->getParent()))
+ RewriteExpr = SE->getAddExpr(RewriteExpr,
+ SE->getUnknown(CommonBaseV));
+ else
+ RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
+ }
+ }
+
+ // Now that we know what we need to do, insert code before User for the
+ // immediate and any loop-variant expressions.
+ if (BaseV)
+ // Add BaseV to the PHI value if needed.
+ RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
+
+ User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
+ Rewriter, L, this, *LI,
+ DeadInsts);
+
+ // Mark old value we replaced as possibly dead, so that it is eliminated
+ // if we just replaced the last use of that value.
+ DeadInsts.push_back(User.OperandValToReplace);
+
+ UsersToProcess.pop_back();
+ ++NumReduced;
+
+ // If there are any more users to process with the same base, process them
+ // now. We sorted by base above, so we just have to check the last elt.
+ } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
+ // TODO: Next, find out which base index is the most common, pull it out.
+ }
+
+ // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
+ // different starting values, into different PHIs.
+}
+
+/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
+/// set the IV user and stride information and return true, otherwise return
+/// false.
+bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
+ const SCEVHandle *&CondStride) {
+ for (unsigned Stride = 0, e = IU->StrideOrder.size();
+ Stride != e && !CondUse; ++Stride) {
+ std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
+ IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
+ assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
+
+ for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
+ E = SI->second->Users.end(); UI != E; ++UI)
+ if (UI->getUser() == Cond) {
+ // NOTE: we could handle setcc instructions with multiple uses here, but
+ // InstCombine does it as well for simple uses, it's not clear that it
+ // occurs enough in real life to handle.
+ CondUse = UI;
+ CondStride = &SI->first;
+ return true;
+ }
+ }
+ return false;
+}
+
+namespace {
+ // Constant strides come first which in turns are sorted by their absolute
+ // values. If absolute values are the same, then positive strides comes first.
+ // e.g.
+ // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
+ struct StrideCompare {
+ const ScalarEvolution *SE;
+ explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
+
+ bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+ const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
+ const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
+ if (LHSC && RHSC) {
+ int64_t LV = LHSC->getValue()->getSExtValue();
+ int64_t RV = RHSC->getValue()->getSExtValue();
+ uint64_t ALV = (LV < 0) ? -LV : LV;
+ uint64_t ARV = (RV < 0) ? -RV : RV;
+ if (ALV == ARV) {
+ if (LV != RV)
+ return LV > RV;
+ } else {
+ return ALV < ARV;
+ }
+
+ // If it's the same value but different type, sort by bit width so
+ // that we emit larger induction variables before smaller
+ // ones, letting the smaller be re-written in terms of larger ones.
+ return SE->getTypeSizeInBits(RHS->getType()) <
+ SE->getTypeSizeInBits(LHS->getType());
+ }
+ return LHSC && !RHSC;
+ }
+ };
+}
+
+/// ChangeCompareStride - If a loop termination compare instruction is the
+/// only use of its stride, and the compaison is against a constant value,
+/// try eliminate the stride by moving the compare instruction to another
+/// stride and change its constant operand accordingly. e.g.
+///
+/// loop:
+/// ...
+/// v1 = v1 + 3
+/// v2 = v2 + 1
+/// if (v2 < 10) goto loop
+/// =>
+/// loop:
+/// ...
+/// v1 = v1 + 3
+/// if (v1 < 30) goto loop
+ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
+ IVStrideUse* &CondUse,
+ const SCEVHandle* &CondStride) {
+ // If there's only one stride in the loop, there's nothing to do here.
+ if (IU->StrideOrder.size() < 2)
+ return Cond;
+ // If there are other users of the condition's stride, don't bother
+ // trying to change the condition because the stride will still
+ // remain.
+ std::map<SCEVHandle, IVUsersOfOneStride *>::iterator I =
+ IU->IVUsesByStride.find(*CondStride);
+ if (I == IU->IVUsesByStride.end() ||
+ I->second->Users.size() != 1)
+ return Cond;
+ // Only handle constant strides for now.
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
+ if (!SC) return Cond;
+
+ ICmpInst::Predicate Predicate = Cond->getPredicate();
+ int64_t CmpSSInt = SC->getValue()->getSExtValue();
+ unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
+ uint64_t SignBit = 1ULL << (BitWidth-1);
+ const Type *CmpTy = Cond->getOperand(0)->getType();
+ const Type *NewCmpTy = NULL;
+ unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
+ unsigned NewTyBits = 0;
+ SCEVHandle *NewStride = NULL;
+ Value *NewCmpLHS = NULL;
+ Value *NewCmpRHS = NULL;
+ int64_t Scale = 1;
+ SCEVHandle NewOffset = SE->getIntegerSCEV(0, CmpTy);
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
+ int64_t CmpVal = C->getValue().getSExtValue();
+
+ // Check stride constant and the comparision constant signs to detect
+ // overflow.
+ if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
+ return Cond;
+
+ // Look for a suitable stride / iv as replacement.
+ for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
+ std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
+ IU->IVUsesByStride.find(IU->StrideOrder[i]);
+ if (!isa<SCEVConstant>(SI->first))
+ continue;
+ int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
+ if (SSInt == CmpSSInt ||
+ abs64(SSInt) < abs64(CmpSSInt) ||
+ (SSInt % CmpSSInt) != 0)
+ continue;
+
+ Scale = SSInt / CmpSSInt;
+ int64_t NewCmpVal = CmpVal * Scale;
+ APInt Mul = APInt(BitWidth*2, CmpVal, true);
+ Mul = Mul * APInt(BitWidth*2, Scale, true);
+ // Check for overflow.
+ if (!Mul.isSignedIntN(BitWidth))
+ continue;
+ // Check for overflow in the stride's type too.
+ if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
+ continue;
+
+ // Watch out for overflow.
+ if (ICmpInst::isSignedPredicate(Predicate) &&
+ (CmpVal & SignBit) != (NewCmpVal & SignBit))
+ continue;
+
+ if (NewCmpVal == CmpVal)
+ continue;
+ // Pick the best iv to use trying to avoid a cast.
+ NewCmpLHS = NULL;
+ for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
+ E = SI->second->Users.end(); UI != E; ++UI) {
+ Value *Op = UI->getOperandValToReplace();
+
+ // If the IVStrideUse implies a cast, check for an actual cast which
+ // can be used to find the original IV expression.
+ if (SE->getEffectiveSCEVType(Op->getType()) !=
+ SE->getEffectiveSCEVType(SI->first->getType())) {
+ CastInst *CI = dyn_cast<CastInst>(Op);
+ // If it's not a simple cast, it's complicated.
+ if (!CI)
+ continue;
+ // If it's a cast from a type other than the stride type,
+ // it's complicated.
+ if (CI->getOperand(0)->getType() != SI->first->getType())
+ continue;
+ // Ok, we found the IV expression in the stride's type.
+ Op = CI->getOperand(0);
+ }
+
+ NewCmpLHS = Op;
+ if (NewCmpLHS->getType() == CmpTy)
+ break;
+ }
+ if (!NewCmpLHS)
+ continue;
+
+ NewCmpTy = NewCmpLHS->getType();
+ NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
+ const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
+ if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
+ // Check if it is possible to rewrite it using
+ // an iv / stride of a smaller integer type.
+ unsigned Bits = NewTyBits;
+ if (ICmpInst::isSignedPredicate(Predicate))
+ --Bits;
+ uint64_t Mask = (1ULL << Bits) - 1;
+ if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
+ continue;
+ }
+
+ // Don't rewrite if use offset is non-constant and the new type is
+ // of a different type.
+ // FIXME: too conservative?
+ if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
+ continue;
+
+ bool AllUsesAreAddresses = true;
+ bool AllUsesAreOutsideLoop = true;
+ std::vector<BasedUser> UsersToProcess;
+ SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
+ AllUsesAreAddresses,
+ AllUsesAreOutsideLoop,
+ UsersToProcess);
+ // Avoid rewriting the compare instruction with an iv of new stride
+ // if it's likely the new stride uses will be rewritten using the
+ // stride of the compare instruction.
+ if (AllUsesAreAddresses &&
+ ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
+ continue;
+
+ // Avoid rewriting the compare instruction with an iv which has
+ // implicit extension or truncation built into it.
+ // TODO: This is over-conservative.
+ if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
+ continue;
+
+ // If scale is negative, use swapped predicate unless it's testing
+ // for equality.
+ if (Scale < 0 && !Cond->isEquality())
+ Predicate = ICmpInst::getSwappedPredicate(Predicate);
+
+ NewStride = &IU->StrideOrder[i];
+ if (!isa<PointerType>(NewCmpTy))
+ NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
+ else {
+ ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
+ NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
+ }
+ NewOffset = TyBits == NewTyBits
+ ? SE->getMulExpr(CondUse->getOffset(),
+ SE->getConstant(ConstantInt::get(CmpTy, Scale)))
+ : SE->getConstant(ConstantInt::get(NewCmpIntTy,
+ cast<SCEVConstant>(CondUse->getOffset())->getValue()
+ ->getSExtValue()*Scale));
+ break;
+ }
+ }
+
+ // Forgo this transformation if it the increment happens to be
+ // unfortunately positioned after the condition, and the condition
+ // has multiple uses which prevent it from being moved immediately
+ // before the branch. See
+ // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
+ // for an example of this situation.
+ if (!Cond->hasOneUse()) {
+ for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
+ I != E; ++I)
+ if (I == NewCmpLHS)
+ return Cond;
+ }
+
+ if (NewCmpRHS) {
+ // Create a new compare instruction using new stride / iv.
+ ICmpInst *OldCond = Cond;
+ // Insert new compare instruction.
+ Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
+ L->getHeader()->getName() + ".termcond",
+ OldCond);
+
+ // Remove the old compare instruction. The old indvar is probably dead too.
+ DeadInsts.push_back(CondUse->getOperandValToReplace());
+ OldCond->replaceAllUsesWith(Cond);
+ OldCond->eraseFromParent();
+
+ IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS, false);
+ CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
+ CondStride = NewStride;
+ ++NumEliminated;
+ Changed = true;
+ }
+
+ return Cond;
+}
+
+/// OptimizeSMax - Rewrite the loop's terminating condition if it uses
+/// an smax computation.
+///
+/// This is a narrow solution to a specific, but acute, problem. For loops
+/// like this:
+///
+/// i = 0;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i < n);
+///
+/// where the comparison is signed, the trip count isn't just 'n', because
+/// 'n' could be negative. And unfortunately this can come up even for loops
+/// where the user didn't use a C do-while loop. For example, seemingly
+/// well-behaved top-test loops will commonly be lowered like this:
+//
+/// if (n > 0) {
+/// i = 0;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i < n);
+/// }
+///
+/// and then it's possible for subsequent optimization to obscure the if
+/// test in such a way that indvars can't find it.
+///
+/// When indvars can't find the if test in loops like this, it creates a
+/// signed-max expression, which allows it to give the loop a canonical
+/// induction variable:
+///
+/// i = 0;
+/// smax = n < 1 ? 1 : n;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i != smax);
+///
+/// Canonical induction variables are necessary because the loop passes
+/// are designed around them. The most obvious example of this is the
+/// LoopInfo analysis, which doesn't remember trip count values. It
+/// expects to be able to rediscover the trip count each time it is
+/// needed, and it does this using a simple analyis that only succeeds if
+/// the loop has a canonical induction variable.
+///
+/// However, when it comes time to generate code, the maximum operation
+/// can be quite costly, especially if it's inside of an outer loop.
+///
+/// This function solves this problem by detecting this type of loop and
+/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
+/// the instructions for the maximum computation.
+///
+ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
+ IVStrideUse* &CondUse) {
+ // Check that the loop matches the pattern we're looking for.
+ if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
+ Cond->getPredicate() != CmpInst::ICMP_NE)
+ return Cond;
+
+ SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
+ if (!Sel || !Sel->hasOneUse()) return Cond;
+
+ SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return Cond;
+ SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
+
+ // Add one to the backedge-taken count to get the trip count.
+ SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
+
+ // Check for a max calculation that matches the pattern.
+ const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
+ if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
+
+ SCEVHandle SMaxLHS = SMax->getOperand(0);
+ SCEVHandle SMaxRHS = SMax->getOperand(1);
+ if (!SMaxLHS || SMaxLHS != One) return Cond;
+
+ // Check the relevant induction variable for conformance to
+ // the pattern.
+ SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
+ if (!AR || !AR->isAffine() ||
+ AR->getStart() != One ||
+ AR->getStepRecurrence(*SE) != One)
+ return Cond;
+
+ assert(AR->getLoop() == L &&
+ "Loop condition operand is an addrec in a different loop!");
+
+ // Check the right operand of the select, and remember it, as it will
+ // be used in the new comparison instruction.
+ Value *NewRHS = 0;
+ if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
+ NewRHS = Sel->getOperand(1);
+ else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
+ NewRHS = Sel->getOperand(2);
+ if (!NewRHS) return Cond;
+
+ // Ok, everything looks ok to change the condition into an SLT or SGE and
+ // delete the max calculation.
+ ICmpInst *NewCond =
+ new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
+ CmpInst::ICMP_SLT :
+ CmpInst::ICMP_SGE,
+ Cond->getOperand(0), NewRHS, "scmp", Cond);
+
+ // Delete the max calculation instructions.
+ Cond->replaceAllUsesWith(NewCond);
+ CondUse->setUser(NewCond);
+ Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
+ Cond->eraseFromParent();
+ Sel->eraseFromParent();
+ if (Cmp->use_empty())
+ Cmp->eraseFromParent();
+ return NewCond;
+}
+
+/// OptimizeShadowIV - If IV is used in a int-to-float cast
+/// inside the loop then try to eliminate the cast opeation.
+void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
+
+ SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return;
+
+ for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
+ ++Stride) {
+ std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
+ IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
+ assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
+ if (!isa<SCEVConstant>(SI->first))
+ continue;
+
+ for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
+ E = SI->second->Users.end(); UI != E; /* empty */) {
+ ilist<IVStrideUse>::iterator CandidateUI = UI;
+ ++UI;
+ Instruction *ShadowUse = CandidateUI->getUser();
+ const Type *DestTy = NULL;
+
+ /* If shadow use is a int->float cast then insert a second IV
+ to eliminate this cast.
+
+ for (unsigned i = 0; i < n; ++i)
+ foo((double)i);
+
+ is transformed into
+
+ double d = 0.0;
+ for (unsigned i = 0; i < n; ++i, ++d)
+ foo(d);
+ */
+ if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
+ DestTy = UCast->getDestTy();
+ else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
+ DestTy = SCast->getDestTy();
+ if (!DestTy) continue;
+
+ if (TLI) {
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ MVT DVT = TLI->getValueType(DestTy);
+ if (!TLI->isTypeLegal(DVT)) continue;
+ }
+
+ PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
+ if (!PH) continue;
+ if (PH->getNumIncomingValues() != 2) continue;
+
+ const Type *SrcTy = PH->getType();
+ int Mantissa = DestTy->getFPMantissaWidth();
+ if (Mantissa == -1) continue;
+ if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
+ continue;
+
+ unsigned Entry, Latch;
+ if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
+ Entry = 0;
+ Latch = 1;
+ } else {
+ Entry = 1;
+ Latch = 0;
+ }
+
+ ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
+ if (!Init) continue;
+ ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
+
+ BinaryOperator *Incr =
+ dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
+ if (!Incr) continue;
+ if (Incr->getOpcode() != Instruction::Add
+ && Incr->getOpcode() != Instruction::Sub)
+ continue;
+
+ /* Initialize new IV, double d = 0.0 in above example. */
+ ConstantInt *C = NULL;
+ if (Incr->getOperand(0) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(1));
+ else if (Incr->getOperand(1) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(0));
+ else
+ continue;
+
+ if (!C) continue;
+
+ /* Add new PHINode. */
+ PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
+
+ /* create new increment. '++d' in above example. */
+ ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
+ BinaryOperator *NewIncr =
+ BinaryOperator::Create(Incr->getOpcode(),
+ NewPH, CFP, "IV.S.next.", Incr);
+
+ NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
+ NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
+
+ /* Remove cast operation */
+ ShadowUse->replaceAllUsesWith(NewPH);
+ ShadowUse->eraseFromParent();
+ NumShadow++;
+ break;
+ }
+ }
+}
+
+// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
+// uses in the loop, look to see if we can eliminate some, in favor of using
+// common indvars for the different uses.
+void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
+ // TODO: implement optzns here.
+
+ OptimizeShadowIV(L);
+}
+
+/// OptimizeLoopTermCond - Change loop terminating condition to use the
+/// postinc iv when possible.
+void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
+ // Finally, get the terminating condition for the loop if possible. If we
+ // can, we want to change it to use a post-incremented version of its
+ // induction variable, to allow coalescing the live ranges for the IV into
+ // one register value.
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ BasicBlock *ExitBlock = L->getExitingBlock();
+ if (!ExitBlock)
+ // Multiple exits, just look at the exit in the latch block if there is one.
+ ExitBlock = LatchBlock;
+ BranchInst *TermBr = dyn_cast<BranchInst>(ExitBlock->getTerminator());
+ if (!TermBr)
+ return;
+ if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
+ return;
+
+ // Search IVUsesByStride to find Cond's IVUse if there is one.
+ IVStrideUse *CondUse = 0;
+ const SCEVHandle *CondStride = 0;
+ ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
+ if (!FindIVUserForCond(Cond, CondUse, CondStride))
+ return; // setcc doesn't use the IV.
+
+ if (ExitBlock != LatchBlock) {
+ if (!Cond->hasOneUse())
+ // See below, we don't want the condition to be cloned.
+ return;
+
+ // If exiting block is the latch block, we know it's safe and profitable to
+ // transform the icmp to use post-inc iv. Otherwise do so only if it would
+ // not reuse another iv and its iv would be reused by other uses. We are
+ // optimizing for the case where the icmp is the only use of the iv.
+ IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
+ for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
+ E = StrideUses.Users.end(); I != E; ++I) {
+ if (I->getUser() == Cond)
+ continue;
+ if (!I->isUseOfPostIncrementedValue())
+ return;
+ }
+
+ // FIXME: This is expensive, and worse still ChangeCompareStride does a
+ // similar check. Can we perform all the icmp related transformations after
+ // StrengthReduceStridedIVUsers?
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
+ int64_t SInt = SC->getValue()->getSExtValue();
+ for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
+ ++NewStride) {
+ std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
+ IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
+ if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
+ continue;
+ int64_t SSInt =
+ cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
+ if (SSInt == SInt)
+ return; // This can definitely be reused.
+ if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
+ continue;
+ int64_t Scale = SSInt / SInt;
+ bool AllUsesAreAddresses = true;
+ bool AllUsesAreOutsideLoop = true;
+ std::vector<BasedUser> UsersToProcess;
+ SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
+ AllUsesAreAddresses,
+ AllUsesAreOutsideLoop,
+ UsersToProcess);
+ // Avoid rewriting the compare instruction with an iv of new stride
+ // if it's likely the new stride uses will be rewritten using the
+ // stride of the compare instruction.
+ if (AllUsesAreAddresses &&
+ ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
+ return;
+ }
+ }
+
+ StrideNoReuse.insert(*CondStride);
+ }
+
+ // If the trip count is computed in terms of an smax (due to ScalarEvolution
+ // being unable to find a sufficient guard, for example), change the loop
+ // comparison to use SLT instead of NE.
+ Cond = OptimizeSMax(L, Cond, CondUse);
+
+ // If possible, change stride and operands of the compare instruction to
+ // eliminate one stride.
+ if (ExitBlock == LatchBlock)
+ Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
+
+ // It's possible for the setcc instruction to be anywhere in the loop, and
+ // possible for it to have multiple users. If it is not immediately before
+ // the latch block branch, move it.
+ if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
+ if (Cond->hasOneUse()) { // Condition has a single use, just move it.
+ Cond->moveBefore(TermBr);
+ } else {
+ // Otherwise, clone the terminating condition and insert into the loopend.
+ Cond = cast<ICmpInst>(Cond->clone());
+ Cond->setName(L->getHeader()->getName() + ".termcond");
+ LatchBlock->getInstList().insert(TermBr, Cond);
+
+ // Clone the IVUse, as the old use still exists!
+ IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
+ CondUse->getOperandValToReplace(),
+ false);
+ CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
+ }
+ }
+
+ // If we get to here, we know that we can transform the setcc instruction to
+ // use the post-incremented version of the IV, allowing us to coalesce the
+ // live ranges for the IV correctly.
+ CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
+ CondUse->setIsUseOfPostIncrementedValue(true);
+ Changed = true;
+
+ ++NumLoopCond;
+}
+
+// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
+// when to exit the loop is used only for that purpose, try to rearrange things
+// so it counts down to a test against zero.
+void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
+
+ // If the number of times the loop is executed isn't computable, give up.
+ SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return;
+
+ // Get the terminating condition for the loop if possible (this isn't
+ // necessarily in the latch, or a block that's a predecessor of the header).
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+ if (ExitBlocks.size() != 1) return;
+
+ // Okay, there is one exit block. Try to find the condition that causes the
+ // loop to be exited.
+ BasicBlock *ExitBlock = ExitBlocks[0];
+
+ BasicBlock *ExitingBlock = 0;
+ for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
+ PI != E; ++PI)
+ if (L->contains(*PI)) {
+ if (ExitingBlock == 0)
+ ExitingBlock = *PI;
+ else
+ return; // More than one block exiting!
+ }
+ assert(ExitingBlock && "No exits from loop, something is broken!");
+
+ // Okay, we've computed the exiting block. See what condition causes us to
+ // exit.
+ //
+ // FIXME: we should be able to handle switch instructions (with a single exit)
+ BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+ if (TermBr == 0) return;
+ assert(TermBr->isConditional() && "If unconditional, it can't be in loop!");
+ if (!isa<ICmpInst>(TermBr->getCondition()))
+ return;
+ ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
+
+ // Handle only tests for equality for the moment, and only stride 1.
+ if (Cond->getPredicate() != CmpInst::ICMP_EQ)
+ return;
+ SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
+ SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
+ if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
+ return;
+ // If the RHS of the comparison is defined inside the loop, the rewrite
+ // cannot be done.
+ if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1)))
+ if (L->contains(CR->getParent()))
+ return;
+
+ // Make sure the IV is only used for counting. Value may be preinc or
+ // postinc; 2 uses in either case.
+ if (!Cond->getOperand(0)->hasNUses(2))
+ return;
+ PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0));
+ Instruction *incr;
+ if (phi && phi->getParent()==L->getHeader()) {
+ // value tested is preinc. Find the increment.
+ // A CmpInst is not a BinaryOperator; we depend on this.
+ Instruction::use_iterator UI = phi->use_begin();
+ incr = dyn_cast<BinaryOperator>(UI);
+ if (!incr)
+ incr = dyn_cast<BinaryOperator>(++UI);
+ // 1 use for postinc value, the phi. Unnecessarily conservative?
+ if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add)
+ return;
+ } else {
+ // Value tested is postinc. Find the phi node.
+ incr = dyn_cast<BinaryOperator>(Cond->getOperand(0));
+ if (!incr || incr->getOpcode()!=Instruction::Add)
+ return;
+
+ Instruction::use_iterator UI = Cond->getOperand(0)->use_begin();
+ phi = dyn_cast<PHINode>(UI);
+ if (!phi)
+ phi = dyn_cast<PHINode>(++UI);
+ // 1 use for preinc value, the increment.
+ if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse())
+ return;
+ }
+
+ // Replace the increment with a decrement.
+ BinaryOperator *decr =
+ BinaryOperator::Create(Instruction::Sub, incr->getOperand(0),
+ incr->getOperand(1), "tmp", incr);
+ incr->replaceAllUsesWith(decr);
+ incr->eraseFromParent();
+
+ // Substitute endval-startval for the original startval, and 0 for the
+ // original endval. Since we're only testing for equality this is OK even
+ // if the computation wraps around.
+ BasicBlock *Preheader = L->getLoopPreheader();
+ Instruction *PreInsertPt = Preheader->getTerminator();
+ int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0;
+ Value *startVal = phi->getIncomingValue(inBlock);
+ Value *endVal = Cond->getOperand(1);
+ // FIXME check for case where both are constant
+ ConstantInt* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
+ BinaryOperator *NewStartVal =
+ BinaryOperator::Create(Instruction::Sub, endVal, startVal,
+ "tmp", PreInsertPt);
+ phi->setIncomingValue(inBlock, NewStartVal);
+ Cond->setOperand(1, Zero);
+
+ Changed = true;
+}
+
+bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
+
+ IU = &getAnalysis<IVUsers>();
+ LI = &getAnalysis<LoopInfo>();
+ DT = &getAnalysis<DominatorTree>();
+ SE = &getAnalysis<ScalarEvolution>();
+ Changed = false;
+
+ if (!IU->IVUsesByStride.empty()) {
+#ifndef NDEBUG
+ DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
+ << "\" ";
+ DEBUG(L->dump());
+#endif
+
+ // Sort the StrideOrder so we process larger strides first.
+ std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
+ StrideCompare(SE));
+
+ // Optimize induction variables. Some indvar uses can be transformed to use
+ // strides that will be needed for other purposes. A common example of this
+ // is the exit test for the loop, which can often be rewritten to use the
+ // computation of some other indvar to decide when to terminate the loop.
+ OptimizeIndvars(L);
+
+ // Change loop terminating condition to use the postinc iv when possible
+ // and optimize loop terminating compare. FIXME: Move this after
+ // StrengthReduceStridedIVUsers?
+ OptimizeLoopTermCond(L);
+
+ // FIXME: We can shrink overlarge IV's here. e.g. if the code has
+ // computation in i64 values and the target doesn't support i64, demote
+ // the computation to 32-bit if safe.
+
+ // FIXME: Attempt to reuse values across multiple IV's. In particular, we
+ // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
+ // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
+ // Need to be careful that IV's are all the same type. Only works for
+ // intptr_t indvars.
+
+ // IVsByStride keeps IVs for one particular loop.
+ assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
+
+ // Note: this processes each stride/type pair individually. All users
+ // passed into StrengthReduceStridedIVUsers have the same type AND stride.
+ // Also, note that we iterate over IVUsesByStride indirectly by using
+ // StrideOrder. This extra layer of indirection makes the ordering of
+ // strides deterministic - not dependent on map order.
+ for (unsigned Stride = 0, e = IU->StrideOrder.size();
+ Stride != e; ++Stride) {
+ std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
+ IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
+ assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
+ // FIXME: Generalize to non-affine IV's.
+ if (!SI->first->isLoopInvariant(L))
+ continue;
+ StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
+ }
+ }
+
+ // After all sharing is done, see if we can adjust the loop to test against
+ // zero instead of counting up to a maximum. This is usually faster.
+ OptimizeLoopCountIV(L);
+
+ // We're done analyzing this loop; release all the state we built up for it.
+ IVsByStride.clear();
+ StrideNoReuse.clear();
+
+ // Clean up after ourselves
+ if (!DeadInsts.empty())
+ DeleteTriviallyDeadInstructions();
+
+ // At this point, it is worth checking to see if any recurrence PHIs are also
+ // dead, so that we can remove them as well.
+ DeleteDeadPHIs(L->getHeader());
+
+ return Changed;
+}
OpenPOWER on IntegriCloud