summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/JumpThreading.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/JumpThreading.cpp')
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp550
1 files changed, 366 insertions, 184 deletions
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index dee7bfb..8b11edd 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -19,6 +19,7 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
@@ -26,13 +27,13 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds, "Number of terminators folded");
+STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
@@ -56,7 +57,7 @@ namespace {
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
- class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
+ class JumpThreading : public FunctionPass {
TargetData *TD;
#ifdef NDEBUG
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
@@ -68,15 +69,16 @@ namespace {
JumpThreading() : FunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
}
bool runOnFunction(Function &F);
void FindLoopHeaders(Function &F);
bool ProcessBlock(BasicBlock *BB);
- bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
- unsigned JumpThreadCost);
+ bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
+ bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
+ BasicBlock *PredBB);
+
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
@@ -99,8 +101,8 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
- DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
- TD = &getAnalysis<TargetData>();
+ DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
+ TD = getAnalysisIfAvailable<TargetData>();
FindLoopHeaders(F);
@@ -119,8 +121,8 @@ bool JumpThreading::runOnFunction(Function &F) {
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
- DOUT << " JT: Deleting dead block '" << BB->getNameStart()
- << "' with terminator: " << *BB->getTerminator();
+ DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
+ << "' with terminator: " << *BB->getTerminator() << '\n');
LoopHeaders.erase(BB);
DeleteDeadBlock(BB);
Changed = true;
@@ -134,6 +136,48 @@ bool JumpThreading::runOnFunction(Function &F) {
return EverChanged;
}
+/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
+/// thread across it.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+ /// Ignore PHI nodes, these will be flattened when duplication happens.
+ BasicBlock::const_iterator I = BB->getFirstNonPHI();
+
+ // Sum up the cost of each instruction until we get to the terminator. Don't
+ // include the terminator because the copy won't include it.
+ unsigned Size = 0;
+ for (; !isa<TerminatorInst>(I); ++I) {
+ // Debugger intrinsics don't incur code size.
+ if (isa<DbgInfoIntrinsic>(I)) continue;
+
+ // If this is a pointer->pointer bitcast, it is free.
+ if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
+ continue;
+
+ // All other instructions count for at least one unit.
+ ++Size;
+
+ // Calls are more expensive. If they are non-intrinsic calls, we model them
+ // as having cost of 4. If they are a non-vector intrinsic, we model them
+ // as having cost of 2 total, and if they are a vector intrinsic, we model
+ // them as having cost 1.
+ if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+ if (!isa<IntrinsicInst>(CI))
+ Size += 3;
+ else if (!isa<VectorType>(CI->getType()))
+ Size += 1;
+ }
+ }
+
+ // Threading through a switch statement is particularly profitable. If this
+ // block ends in a switch, decrease its cost to make it more likely to happen.
+ if (isa<SwitchInst>(I))
+ Size = Size > 6 ? Size-6 : 0;
+
+ return Size;
+}
+
+
+
/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops. Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations. To prevent this from
@@ -173,52 +217,34 @@ BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
if (CommonPreds.size() == 1)
return CommonPreds[0];
- DOUT << " Factoring out " << CommonPreds.size()
- << " common predecessors.\n";
+ DEBUG(errs() << " Factoring out " << CommonPreds.size()
+ << " common predecessors.\n");
return SplitBlockPredecessors(PN->getParent(),
&CommonPreds[0], CommonPreds.size(),
".thr_comm", this);
}
-/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
- /// Ignore PHI nodes, these will be flattened when duplication happens.
- BasicBlock::const_iterator I = BB->getFirstNonPHI();
-
- // Sum up the cost of each instruction until we get to the terminator. Don't
- // include the terminator because the copy won't include it.
- unsigned Size = 0;
- for (; !isa<TerminatorInst>(I); ++I) {
- // Debugger intrinsics don't incur code size.
- if (isa<DbgInfoIntrinsic>(I)) continue;
-
- // If this is a pointer->pointer bitcast, it is free.
- if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
- continue;
-
- // All other instructions count for at least one unit.
- ++Size;
-
- // Calls are more expensive. If they are non-intrinsic calls, we model them
- // as having cost of 4. If they are a non-vector intrinsic, we model them
- // as having cost of 2 total, and if they are a vector intrinsic, we model
- // them as having cost 1.
- if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!isa<IntrinsicInst>(CI))
- Size += 3;
- else if (!isa<VectorType>(CI->getType()))
- Size += 1;
- }
+/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
+/// in an undefined jump, decide which block is best to revector to.
+///
+/// Since we can pick an arbitrary destination, we pick the successor with the
+/// fewest predecessors. This should reduce the in-degree of the others.
+///
+static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
+ TerminatorInst *BBTerm = BB->getTerminator();
+ unsigned MinSucc = 0;
+ BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
+ // Compute the successor with the minimum number of predecessors.
+ unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
+ for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
+ TestBB = BBTerm->getSuccessor(i);
+ unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
+ if (NumPreds < MinNumPreds)
+ MinSucc = i;
}
- // Threading through a switch statement is particularly profitable. If this
- // block ends in a switch, decrease its cost to make it more likely to happen.
- if (isa<SwitchInst>(I))
- Size = Size > 6 ? Size-6 : 0;
-
- return Size;
+ return MinSucc;
}
/// ProcessBlock - If there are any predecessors whose control can be threaded
@@ -262,39 +288,28 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// terminator to an unconditional branch. This can occur due to threading in
// other blocks.
if (isa<ConstantInt>(Condition)) {
- DOUT << " In block '" << BB->getNameStart()
- << "' folding terminator: " << *BB->getTerminator();
+ DEBUG(errs() << " In block '" << BB->getName()
+ << "' folding terminator: " << *BB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(BB);
return true;
}
// If the terminator is branching on an undef, we can pick any of the
- // successors to branch to. Since this is arbitrary, we pick the successor
- // with the fewest predecessors. This should reduce the in-degree of the
- // others.
+ // successors to branch to. Let GetBestDestForJumpOnUndef decide.
if (isa<UndefValue>(Condition)) {
- TerminatorInst *BBTerm = BB->getTerminator();
- unsigned MinSucc = 0;
- BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
- // Compute the successor with the minimum number of predecessors.
- unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
- for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
- TestBB = BBTerm->getSuccessor(i);
- unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
- if (NumPreds < MinNumPreds)
- MinSucc = i;
- }
+ unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
// Fold the branch/switch.
+ TerminatorInst *BBTerm = BB->getTerminator();
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
- if (i == MinSucc) continue;
+ if (i == BestSucc) continue;
BBTerm->getSuccessor(i)->removePredecessor(BB);
}
- DOUT << " In block '" << BB->getNameStart()
- << "' folding undef terminator: " << *BBTerm;
- BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
+ DEBUG(errs() << " In block '" << BB->getName()
+ << "' folding undef terminator: " << *BBTerm << '\n');
+ BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
BBTerm->eraseFromParent();
return true;
}
@@ -419,8 +434,8 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
else if (PredBI->getSuccessor(0) != BB)
BranchDir = false;
else {
- DOUT << " In block '" << PredBB->getNameStart()
- << "' folding terminator: " << *PredBB->getTerminator();
+ DEBUG(errs() << " In block '" << PredBB->getName()
+ << "' folding terminator: " << *PredBB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(PredBB);
return true;
@@ -431,29 +446,24 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
// If the dest block has one predecessor, just fix the branch condition to a
// constant and fold it.
if (BB->getSinglePredecessor()) {
- DOUT << " In block '" << BB->getNameStart()
- << "' folding condition to '" << BranchDir << "': "
- << *BB->getTerminator();
+ DEBUG(errs() << " In block '" << BB->getName()
+ << "' folding condition to '" << BranchDir << "': "
+ << *BB->getTerminator() << '\n');
++NumFolds;
- DestBI->setCondition(Context->getConstantInt(Type::Int1Ty, BranchDir));
+ Value *OldCond = DestBI->getCondition();
+ DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ BranchDir));
ConstantFoldTerminator(BB);
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
return true;
}
-
- // Otherwise we need to thread from PredBB to DestBB's successor which
- // involves code duplication. Check to see if it is worth it.
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
- }
+
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
// Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+ return ThreadEdge(BB, PredBB, SuccBB);
}
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
@@ -472,7 +482,6 @@ bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
if (PredBB == DestBB)
return false;
-
SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
@@ -508,8 +517,8 @@ bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
// Otherwise, we're safe to make the change. Make sure that the edge from
// DestSI to DestSucc is not critical and has no PHI nodes.
- DOUT << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI;
- DOUT << "THROUGH: " << *DestSI;
+ DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
+ DEBUG(errs() << "THROUGH: " << *DestSI);
// If the destination has PHI nodes, just split the edge for updating
// simplicity.
@@ -564,7 +573,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
- if (AvailableVal == LI) AvailableVal = Context->getUndef(LI->getType());
+ if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
@@ -685,49 +694,74 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
}
-/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
+/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on
/// inputs to the phi node.
///
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
- // See if the phi node has any constant values. If so, we can determine where
- // the corresponding predecessor will branch.
- ConstantInt *PredCst = 0;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
- break;
-
- // If no incoming value has a constant, we don't know the destination of any
- // predecessors.
- if (PredCst == 0)
- return false;
-
- // See if the cost of duplicating this block is low enough.
BasicBlock *BB = PN->getParent();
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
+
+ // See if the phi node has any constant integer or undef values. If so, we
+ // can determine where the corresponding predecessor will branch.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *PredVal = PN->getIncomingValue(i);
+
+ // Check to see if this input is a constant integer. If so, the direction
+ // of the branch is predictable.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
+ // Merge any common predecessors that will act the same.
+ BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
+
+ BasicBlock *SuccBB;
+ if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
+ SuccBB = BI->getSuccessor(CI->isZero());
+ else {
+ SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
+ SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
+ }
+
+ // Ok, try to thread it!
+ return ThreadEdge(BB, PredBB, SuccBB);
+ }
+
+ // If the input is an undef, then it doesn't matter which way it will go.
+ // Pick an arbitrary dest and thread the edge.
+ if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
+ // Merge any common predecessors that will act the same.
+ BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
+ BasicBlock *SuccBB =
+ BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
+
+ // Ok, try to thread it!
+ return ThreadEdge(BB, PredBB, SuccBB);
+ }
}
- // If so, we can actually do this threading. Merge any common predecessors
- // that will act the same.
- BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
+ // If the incoming values are all variables, we don't know the destination of
+ // any predecessors. However, if any of the predecessor blocks end in an
+ // unconditional branch, we can *duplicate* the jump into that block in order
+ // to further encourage jump threading and to eliminate cases where we have
+ // branch on a phi of an icmp (branch on icmp is much better).
+
+ // We don't want to do this tranformation for switches, because we don't
+ // really want to duplicate a switch.
+ if (isa<SwitchInst>(BB->getTerminator()))
+ return false;
- // Next, figure out which successor we are threading to.
- BasicBlock *SuccBB;
- if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
- SuccBB = BI->getSuccessor(PredCst == Context->getConstantIntFalse());
- else {
- SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
- SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
+ // Look for unconditional branch predecessors.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
+ if (PredBr->isUnconditional() &&
+ // Try to duplicate BB into PredBB.
+ DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
+ return true;
}
-
- // Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+
+ return false;
}
+
/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
/// whose condition is an AND/OR where one side is PN. If PN has constant
/// operands that permit us to evaluate the condition for some operand, thread
@@ -756,7 +790,8 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
// We can only do the simplification for phi nodes of 'false' with AND or
// 'true' with OR. See if we have any entries in the phi for this.
unsigned PredNo = ~0U;
- ConstantInt *PredCst = Context->getConstantInt(Type::Int1Ty, !isAnd);
+ ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ !isAnd);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) == PredCst) {
PredNo = i;
@@ -768,14 +803,6 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
if (PredNo == ~0U)
return false;
- // See if the cost of duplicating this block is low enough.
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
- }
-
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
@@ -787,7 +814,7 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
// Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+ return ThreadEdge(BB, PredBB, SuccBB);
}
/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
@@ -795,15 +822,15 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
/// result can not be determined, a null pointer is returned.
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
Value *LHS, Value *RHS,
- LLVMContext* Context) {
+ LLVMContext &Context) {
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return Context->getConstantExprCompare(pred, CLHS, CRHS);
+ return ConstantExpr::getCompare(pred, CLHS, CRHS);
if (LHS == RHS)
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
return ICmpInst::isTrueWhenEqual(pred) ?
- Context->getConstantIntTrue() : Context->getConstantIntFalse();
+ ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
return 0;
}
@@ -829,7 +856,7 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
PredVal = PN->getIncomingValue(i);
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
- RHS, Context);
+ RHS, Cmp->getContext());
if (!Res) {
PredVal = 0;
continue;
@@ -854,14 +881,6 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
if (PredVal == 0)
return false;
- // See if the cost of duplicating this block is low enough.
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
- }
-
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
@@ -870,58 +889,77 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
// Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+ return ThreadEdge(BB, PredBB, SuccBB);
}
+/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
+/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
+/// NewPred using the entries from OldPred (suitably mapped).
+static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
+ BasicBlock *OldPred,
+ BasicBlock *NewPred,
+ DenseMap<Instruction*, Value*> &ValueMap) {
+ for (BasicBlock::iterator PNI = PHIBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
+ // Ok, we have a PHI node. Figure out what the incoming value was for the
+ // DestBlock.
+ Value *IV = PN->getIncomingValueForBlock(OldPred);
+
+ // Remap the value if necessary.
+ if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
+ DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
+ if (I != ValueMap.end())
+ IV = I->second;
+ }
+
+ PN->addIncoming(IV, NewPred);
+ }
+}
+
/// ThreadEdge - We have decided that it is safe and profitable to thread an
/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
/// change.
bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
- BasicBlock *SuccBB, unsigned JumpThreadCost) {
-
+ BasicBlock *SuccBB) {
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
- DOUT << " Not threading across BB '" << BB->getNameStart()
- << "' - would thread to self!\n";
+ DEBUG(errs() << " Not threading across BB '" << BB->getName()
+ << "' - would thread to self!\n");
return false;
}
// If threading this would thread across a loop header, don't thread the edge.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
- DOUT << " Not threading from '" << PredBB->getNameStart()
- << "' across loop header BB '" << BB->getNameStart()
- << "' to dest BB '" << SuccBB->getNameStart()
- << "' - it might create an irreducible loop!\n";
+ DEBUG(errs() << " Not threading from '" << PredBB->getName()
+ << "' across loop header BB '" << BB->getName()
+ << "' to dest BB '" << SuccBB->getName()
+ << "' - it might create an irreducible loop!\n");
return false;
}
- // And finally, do it!
- DOUT << " Threading edge from '" << PredBB->getNameStart() << "' to '"
- << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
- << ", across block:\n "
- << *BB << "\n";
-
- // Jump Threading can not update SSA properties correctly if the values
- // defined in the duplicated block are used outside of the block itself. For
- // this reason, we spill all values that are used outside of BB to the stack.
- for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
- if (!I->isUsedOutsideOfBlock(BB))
- continue;
-
- // We found a use of I outside of BB. Create a new stack slot to
- // break this inter-block usage pattern.
- DemoteRegToStack(*I);
+ unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
+ if (JumpThreadCost > Threshold) {
+ DEBUG(errs() << " Not threading BB '" << BB->getName()
+ << "' - Cost is too high: " << JumpThreadCost << "\n");
+ return false;
}
-
+
+ // And finally, do it!
+ DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
+ << SuccBB->getName() << "' with cost: " << JumpThreadCost
+ << ", across block:\n "
+ << *BB << "\n");
+
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
DenseMap<Instruction*, Value*> ValueMapping;
- BasicBlock *NewBB =
- BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
+ BB->getName()+".thread",
+ BB->getParent(), BB);
NewBB->moveAfter(PredBB);
BasicBlock::iterator BI = BB->begin();
@@ -932,7 +970,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
// mapping and using it to remap operands in the cloned instructions.
for (; !isa<TerminatorInst>(BI); ++BI) {
Instruction *New = BI->clone();
- New->setName(BI->getNameStart());
+ New->setName(BI->getName());
NewBB->getInstList().push_back(New);
ValueMapping[BI] = New;
@@ -951,21 +989,48 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
// PHI nodes for NewBB now.
- for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
- PHINode *PN = cast<PHINode>(PNI);
- // Ok, we have a PHI node. Figure out what the incoming value was for the
- // DestBlock.
- Value *IV = PN->getIncomingValueForBlock(BB);
-
- // Remap the value if necessary.
- if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
- DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
- if (I != ValueMapping.end())
- IV = I->second;
+ AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
+
+ // If there were values defined in BB that are used outside the block, then we
+ // now have to update all uses of the value to use either the original value,
+ // the cloned value, or some PHI derived value. This can require arbitrary
+ // PHI insertion, of which we are prepared to do, clean these up now.
+ SSAUpdater SSAUpdate;
+ SmallVector<Use*, 16> UsesToRename;
+ for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
+ // Scan all uses of this instruction to see if it is used outside of its
+ // block, and if so, record them in UsesToRename.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (UserPN->getIncomingBlock(UI) == BB)
+ continue;
+ } else if (User->getParent() == BB)
+ continue;
+
+ UsesToRename.push_back(&UI.getUse());
}
- PN->addIncoming(IV, NewBB);
+
+ // If there are no uses outside the block, we're done with this instruction.
+ if (UsesToRename.empty())
+ continue;
+
+ DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
+
+ // We found a use of I outside of BB. Rename all uses of I that are outside
+ // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
+ // with the two values we know.
+ SSAUpdate.Initialize(I);
+ SSAUpdate.AddAvailableValue(BB, I);
+ SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
+
+ while (!UsesToRename.empty())
+ SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
+ DEBUG(errs() << "\n");
}
+
// Ok, NewBB is good to go. Update the terminator of PredBB to jump to
// NewBB instead of BB. This eliminates predecessors from BB, which requires
// us to simplify any PHI nodes in BB.
@@ -982,7 +1047,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
BI = NewBB->begin();
for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
Instruction *Inst = BI++;
- if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
+ if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
continue;
@@ -995,3 +1060,120 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
++NumThreads;
return true;
}
+
+/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
+/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
+/// If we can duplicate the contents of BB up into PredBB do so now, this
+/// improves the odds that the branch will be on an analyzable instruction like
+/// a compare.
+bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
+ BasicBlock *PredBB) {
+ // If BB is a loop header, then duplicating this block outside the loop would
+ // cause us to transform this into an irreducible loop, don't do this.
+ // See the comments above FindLoopHeaders for justifications and caveats.
+ if (LoopHeaders.count(BB)) {
+ DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
+ << "' into predecessor block '" << PredBB->getName()
+ << "' - it might create an irreducible loop!\n");
+ return false;
+ }
+
+ unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
+ if (DuplicationCost > Threshold) {
+ DEBUG(errs() << " Not duplicating BB '" << BB->getName()
+ << "' - Cost is too high: " << DuplicationCost << "\n");
+ return false;
+ }
+
+ // Okay, we decided to do this! Clone all the instructions in BB onto the end
+ // of PredBB.
+ DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
+ << PredBB->getName() << "' to eliminate branch on phi. Cost: "
+ << DuplicationCost << " block is:" << *BB << "\n");
+
+ // We are going to have to map operands from the original BB block into the
+ // PredBB block. Evaluate PHI nodes in BB.
+ DenseMap<Instruction*, Value*> ValueMapping;
+
+ BasicBlock::iterator BI = BB->begin();
+ for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
+
+ BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
+
+ // Clone the non-phi instructions of BB into PredBB, keeping track of the
+ // mapping and using it to remap operands in the cloned instructions.
+ for (; BI != BB->end(); ++BI) {
+ Instruction *New = BI->clone();
+ New->setName(BI->getName());
+ PredBB->getInstList().insert(OldPredBranch, New);
+ ValueMapping[BI] = New;
+
+ // Remap operands to patch up intra-block references.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
+ DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
+ if (I != ValueMapping.end())
+ New->setOperand(i, I->second);
+ }
+ }
+
+ // Check to see if the targets of the branch had PHI nodes. If so, we need to
+ // add entries to the PHI nodes for branch from PredBB now.
+ BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
+ AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
+ ValueMapping);
+ AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
+ ValueMapping);
+
+ // If there were values defined in BB that are used outside the block, then we
+ // now have to update all uses of the value to use either the original value,
+ // the cloned value, or some PHI derived value. This can require arbitrary
+ // PHI insertion, of which we are prepared to do, clean these up now.
+ SSAUpdater SSAUpdate;
+ SmallVector<Use*, 16> UsesToRename;
+ for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
+ // Scan all uses of this instruction to see if it is used outside of its
+ // block, and if so, record them in UsesToRename.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (UserPN->getIncomingBlock(UI) == BB)
+ continue;
+ } else if (User->getParent() == BB)
+ continue;
+
+ UsesToRename.push_back(&UI.getUse());
+ }
+
+ // If there are no uses outside the block, we're done with this instruction.
+ if (UsesToRename.empty())
+ continue;
+
+ DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
+
+ // We found a use of I outside of BB. Rename all uses of I that are outside
+ // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
+ // with the two values we know.
+ SSAUpdate.Initialize(I);
+ SSAUpdate.AddAvailableValue(BB, I);
+ SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
+
+ while (!UsesToRename.empty())
+ SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
+ DEBUG(errs() << "\n");
+ }
+
+ // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
+ // that we nuked.
+ BB->removePredecessor(PredBB);
+
+ // Remove the unconditional branch at the end of the PredBB block.
+ OldPredBranch->eraseFromParent();
+
+ ++NumDupes;
+ return true;
+}
+
+
OpenPOWER on IntegriCloud