summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/InstructionCombining.cpp')
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp4048
1 files changed, 1933 insertions, 2115 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index 59fbd39..7c96c49 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -40,7 +40,9 @@
#include "llvm/Pass.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
+#include "llvm/Operator.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -48,11 +50,13 @@
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -60,7 +64,6 @@
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <climits>
-#include <sstream>
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -71,29 +74,49 @@ STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
namespace {
- class VISIBILITY_HIDDEN InstCombiner
- : public FunctionPass,
- public InstVisitor<InstCombiner, Instruction*> {
- // Worklist of all of the instructions that need to be simplified.
+ /// InstCombineWorklist - This is the worklist management logic for
+ /// InstCombine.
+ class InstCombineWorklist {
SmallVector<Instruction*, 256> Worklist;
DenseMap<Instruction*, unsigned> WorklistMap;
- TargetData *TD;
- bool MustPreserveLCSSA;
+
+ void operator=(const InstCombineWorklist&RHS); // DO NOT IMPLEMENT
+ InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
public:
- static char ID; // Pass identification, replacement for typeid
- InstCombiner() : FunctionPass(&ID) {}
-
- LLVMContext* getContext() { return Context; }
-
- /// AddToWorkList - Add the specified instruction to the worklist if it
- /// isn't already in it.
- void AddToWorkList(Instruction *I) {
- if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
+ InstCombineWorklist() {}
+
+ bool isEmpty() const { return Worklist.empty(); }
+
+ /// Add - Add the specified instruction to the worklist if it isn't already
+ /// in it.
+ void Add(Instruction *I) {
+ if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) {
+ DEBUG(errs() << "IC: ADD: " << *I << '\n');
Worklist.push_back(I);
+ }
+ }
+
+ void AddValue(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Add(I);
}
- // RemoveFromWorkList - remove I from the worklist if it exists.
- void RemoveFromWorkList(Instruction *I) {
+ /// AddInitialGroup - Add the specified batch of stuff in reverse order.
+ /// which should only be done when the worklist is empty and when the group
+ /// has no duplicates.
+ void AddInitialGroup(Instruction *const *List, unsigned NumEntries) {
+ assert(Worklist.empty() && "Worklist must be empty to add initial group");
+ Worklist.reserve(NumEntries+16);
+ DEBUG(errs() << "IC: ADDING: " << NumEntries << " instrs to worklist\n");
+ for (; NumEntries; --NumEntries) {
+ Instruction *I = List[NumEntries-1];
+ WorklistMap.insert(std::make_pair(I, Worklist.size()));
+ Worklist.push_back(I);
+ }
+ }
+
+ // Remove - remove I from the worklist if it exists.
+ void Remove(Instruction *I) {
DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
if (It == WorklistMap.end()) return; // Not in worklist.
@@ -103,51 +126,74 @@ namespace {
WorklistMap.erase(It);
}
- Instruction *RemoveOneFromWorkList() {
+ Instruction *RemoveOne() {
Instruction *I = Worklist.back();
Worklist.pop_back();
WorklistMap.erase(I);
return I;
}
-
/// AddUsersToWorkList - When an instruction is simplified, add all users of
/// the instruction to the work lists because they might get more simplified
/// now.
///
- void AddUsersToWorkList(Value &I) {
+ void AddUsersToWorkList(Instruction &I) {
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
- AddToWorkList(cast<Instruction>(*UI));
- }
-
- /// AddUsesToWorkList - When an instruction is simplified, add operands to
- /// the work lists because they might get more simplified now.
- ///
- void AddUsesToWorkList(Instruction &I) {
- for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(*i))
- AddToWorkList(Op);
+ Add(cast<Instruction>(*UI));
}
- /// AddSoonDeadInstToWorklist - The specified instruction is about to become
- /// dead. Add all of its operands to the worklist, turning them into
- /// undef's to reduce the number of uses of those instructions.
- ///
- /// Return the specified operand before it is turned into an undef.
- ///
- Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
- Value *R = I.getOperand(op);
-
- for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(*i)) {
- AddToWorkList(Op);
- // Set the operand to undef to drop the use.
- *i = Context->getUndef(Op->getType());
- }
+
+ /// Zap - check that the worklist is empty and nuke the backing store for
+ /// the map if it is large.
+ void Zap() {
+ assert(WorklistMap.empty() && "Worklist empty, but map not?");
- return R;
+ // Do an explicit clear, this shrinks the map if needed.
+ WorklistMap.clear();
}
+ };
+} // end anonymous namespace.
+
+
+namespace {
+ /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
+ /// just like the normal insertion helper, but also adds any new instructions
+ /// to the instcombine worklist.
+ class InstCombineIRInserter : public IRBuilderDefaultInserter<true> {
+ InstCombineWorklist &Worklist;
+ public:
+ InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
+
+ void InsertHelper(Instruction *I, const Twine &Name,
+ BasicBlock *BB, BasicBlock::iterator InsertPt) const {
+ IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
+ Worklist.Add(I);
+ }
+ };
+} // end anonymous namespace
+
+
+namespace {
+ class InstCombiner : public FunctionPass,
+ public InstVisitor<InstCombiner, Instruction*> {
+ TargetData *TD;
+ bool MustPreserveLCSSA;
+ bool MadeIRChange;
+ public:
+ /// Worklist - All of the instructions that need to be simplified.
+ InstCombineWorklist Worklist;
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ typedef IRBuilder<true, ConstantFolder, InstCombineIRInserter> BuilderTy;
+ BuilderTy *Builder;
+
+ static char ID; // Pass identification, replacement for typeid
+ InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
+
+ LLVMContext *Context;
+ LLVMContext *getContext() const { return Context; }
public:
virtual bool runOnFunction(Function &F);
@@ -155,12 +201,11 @@ namespace {
bool DoOneIteration(Function &F, unsigned ItNum);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
AU.addPreservedID(LCSSAID);
AU.setPreservesCFG();
}
- TargetData &getTargetData() const { return *TD; }
+ TargetData *getTargetData() const { return TD; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
@@ -187,8 +232,10 @@ namespace {
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+ Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+ Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Value *A, Value *B, Value *C);
Instruction *visitOr (BinaryOperator &I);
@@ -208,7 +255,7 @@ namespace {
Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
- Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
+ Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond, Instruction &I);
Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
BinaryOperator &I);
@@ -269,30 +316,10 @@ namespace {
"New instruction already inserted into a basic block!");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(&Old, New); // Insert inst
- AddToWorkList(New);
+ Worklist.Add(New);
return New;
}
-
- /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
- /// This also adds the cast to the worklist. Finally, this returns the
- /// cast.
- Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
- Instruction &Pos) {
- if (V->getType() == Ty) return V;
-
- if (Constant *CV = dyn_cast<Constant>(V))
- return Context->getConstantExprCast(opc, CV, Ty);
-
- Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
- AddToWorkList(C);
- return C;
- }
- Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
- return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
- }
-
-
// ReplaceInstUsesWith - This method is to be used when an instruction is
// found to be dead, replacable with another preexisting expression. Here
// we add all uses of I to the worklist, replace all uses of I with the new
@@ -300,16 +327,15 @@ namespace {
// modified.
//
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
- AddUsersToWorkList(I); // Add all modified instrs to worklist
- if (&I != V) {
- I.replaceAllUsesWith(V);
- return &I;
- } else {
- // If we are replacing the instruction with itself, this must be in a
- // segment of unreachable code, so just clobber the instruction.
- I.replaceAllUsesWith(Context->getUndef(I.getType()));
- return &I;
- }
+ Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
+
+ // If we are replacing the instruction with itself, this must be in a
+ // segment of unreachable code, so just clobber the instruction.
+ if (&I == V)
+ V = UndefValue::get(I.getType());
+
+ I.replaceAllUsesWith(V);
+ return &I;
}
// EraseInstFromFunction - When dealing with an instruction that has side
@@ -317,10 +343,19 @@ namespace {
// instruction. Instead, visit methods should return the value returned by
// this function.
Instruction *EraseInstFromFunction(Instruction &I) {
+ DEBUG(errs() << "IC: ERASE " << I << '\n');
+
assert(I.use_empty() && "Cannot erase instruction that is used!");
- AddUsesToWorkList(I);
- RemoveFromWorkList(&I);
+ // Make sure that we reprocess all operands now that we reduced their
+ // use counts.
+ if (I.getNumOperands() < 8) {
+ for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
+ if (Instruction *Op = dyn_cast<Instruction>(*i))
+ Worklist.Add(Op);
+ }
+ Worklist.Remove(&I);
I.eraseFromParent();
+ MadeIRChange = true;
return 0; // Don't do anything with FI
}
@@ -364,10 +399,15 @@ namespace {
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt& UndefElts, unsigned Depth = 0);
- // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
- // PHI node as operand #0, see if we can fold the instruction into the PHI
- // (which is only possible if all operands to the PHI are constants).
- Instruction *FoldOpIntoPhi(Instruction &I);
+ // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
+ // which has a PHI node as operand #0, see if we can fold the instruction
+ // into the PHI (which is only possible if all operands to the PHI are
+ // constants).
+ //
+ // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+ // that would normally be unprofitable because they strongly encourage jump
+ // threading.
+ Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
@@ -399,7 +439,7 @@ namespace {
unsigned PrefAlign = 0);
};
-}
+} // end anonymous namespace
char InstCombiner::ID = 0;
static RegisterPass<InstCombiner>
@@ -409,7 +449,8 @@ X("instcombine", "Combine redundant instructions");
// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
static unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
- if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
+ if (BinaryOperator::isNeg(V) ||
+ BinaryOperator::isFNeg(V) ||
BinaryOperator::isNot(V))
return 3;
return 4;
@@ -429,7 +470,7 @@ static bool isOnlyUse(Value *V) {
static const Type *getPromotedType(const Type *Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
- return Type::Int32Ty;
+ return Type::getInt32Ty(Ty->getContext());
}
return Ty;
}
@@ -438,29 +479,12 @@ static const Type *getPromotedType(const Type *Ty) {
/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
/// operand value, otherwise return null.
static Value *getBitCastOperand(Value *V) {
- if (BitCastInst *I = dyn_cast<BitCastInst>(V))
- // BitCastInst?
- return I->getOperand(0);
- else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
- // GetElementPtrInst?
- if (GEP->hasAllZeroIndices())
- return GEP->getOperand(0);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast)
- // BitCast ConstantExp?
- return CE->getOperand(0);
- else if (CE->getOpcode() == Instruction::GetElementPtr) {
- // GetElementPtr ConstantExp?
- for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
- I != E; ++I) {
- ConstantInt *CI = dyn_cast<ConstantInt>(I);
- if (!CI || !CI->isZero())
- // Any non-zero indices? Not cast-like.
- return 0;
- }
- // All-zero indices? This is just like casting.
- return CE->getOperand(0);
- }
+ if (Operator *O = dyn_cast<Operator>(V)) {
+ if (O->getOpcode() == Instruction::BitCast)
+ return O->getOperand(0);
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+ if (GEP->hasAllZeroIndices())
+ return GEP->getPointerOperand();
}
return 0;
}
@@ -474,7 +498,7 @@ isEliminableCastPair(
const Type *DstTy, ///< The target type for the second cast instruction
TargetData *TD ///< The target data for pointer size
) {
-
+
const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
const Type *MidTy = CI->getType(); // B from above
@@ -483,12 +507,15 @@ isEliminableCastPair(
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy, TD->getIntPtrType());
+ DstTy,
+ TD ? TD->getIntPtrType(CI->getContext()) : 0);
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr && SrcTy != TD->getIntPtrType()) ||
- (Res == Instruction::PtrToInt && DstTy != TD->getIntPtrType()))
+ if ((Res == Instruction::IntToPtr &&
+ (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
+ (Res == Instruction::PtrToInt &&
+ (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
Res = 0;
return Instruction::CastOps(Res);
@@ -503,7 +530,7 @@ static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
// If this is another cast that can be eliminated, it isn't codegen either.
if (const CastInst *CI = dyn_cast<CastInst>(V))
- if (isEliminableCastPair(CI, opcode, Ty, TD))
+ if (isEliminableCastPair(CI, opcode, Ty, TD))
return false;
return true;
}
@@ -528,7 +555,7 @@ bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
if (isa<Constant>(I.getOperand(1))) {
- Constant *Folded = Context->getConstantExpr(I.getOpcode(),
+ Constant *Folded = ConstantExpr::get(I.getOpcode(),
cast<Constant>(I.getOperand(1)),
cast<Constant>(Op->getOperand(1)));
I.setOperand(0, Op->getOperand(0));
@@ -541,11 +568,11 @@ bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Constant *C2 = cast<Constant>(Op1->getOperand(1));
// Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
- Constant *Folded = Context->getConstantExpr(I.getOpcode(), C1, C2);
+ Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Op1->getOperand(0),
Op1->getName(), &I);
- AddToWorkList(New);
+ Worklist.Add(New);
I.setOperand(0, New);
I.setOperand(1, Folded);
return true;
@@ -568,17 +595,17 @@ bool InstCombiner::SimplifyCompare(CmpInst &I) {
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
-static inline Value *dyn_castNegVal(Value *V, LLVMContext* Context) {
+static inline Value *dyn_castNegVal(Value *V) {
if (BinaryOperator::isNeg(V))
return BinaryOperator::getNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return Context->getConstantExprNeg(C);
+ return ConstantExpr::getNeg(C);
if (ConstantVector *C = dyn_cast<ConstantVector>(V))
if (C->getType()->getElementType()->isInteger())
- return Context->getConstantExprNeg(C);
+ return ConstantExpr::getNeg(C);
return 0;
}
@@ -587,28 +614,28 @@ static inline Value *dyn_castNegVal(Value *V, LLVMContext* Context) {
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
-static inline Value *dyn_castFNegVal(Value *V, LLVMContext* Context) {
+static inline Value *dyn_castFNegVal(Value *V) {
if (BinaryOperator::isFNeg(V))
return BinaryOperator::getFNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
if (ConstantFP *C = dyn_cast<ConstantFP>(V))
- return Context->getConstantExprFNeg(C);
+ return ConstantExpr::getFNeg(C);
if (ConstantVector *C = dyn_cast<ConstantVector>(V))
if (C->getType()->getElementType()->isFloatingPoint())
- return Context->getConstantExprFNeg(C);
+ return ConstantExpr::getFNeg(C);
return 0;
}
-static inline Value *dyn_castNotVal(Value *V, LLVMContext* Context) {
+static inline Value *dyn_castNotVal(Value *V) {
if (BinaryOperator::isNot(V))
return BinaryOperator::getNotArgument(V);
// Constants can be considered to be not'ed values...
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return Context->getConstantInt(~C->getValue());
+ return ConstantInt::get(C->getType(), ~C->getValue());
return 0;
}
@@ -617,8 +644,7 @@ static inline Value *dyn_castNotVal(Value *V, LLVMContext* Context) {
// non-constant operand of the multiply, and set CST to point to the multiplier.
// Otherwise, return null.
//
-static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST,
- LLVMContext* Context) {
+static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
if (V->hasOneUse() && V->getType()->isInteger())
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (I->getOpcode() == Instruction::Mul)
@@ -629,48 +655,27 @@ static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST,
// The multiplier is really 1 << CST.
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
uint32_t CSTVal = CST->getLimitedValue(BitWidth);
- CST = Context->getConstantInt(APInt(BitWidth, 1).shl(CSTVal));
+ CST = ConstantInt::get(V->getType()->getContext(),
+ APInt(BitWidth, 1).shl(CSTVal));
return I->getOperand(0);
}
}
return 0;
}
-/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
-/// expression, return it.
-static User *dyn_castGetElementPtr(Value *V) {
- if (isa<GetElementPtrInst>(V)) return cast<User>(V);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::GetElementPtr)
- return cast<User>(V);
- return false;
-}
-
-/// getOpcode - If this is an Instruction or a ConstantExpr, return the
-/// opcode value. Otherwise return UserOp1.
-static unsigned getOpcode(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getOpcode();
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode();
- // Use UserOp1 to mean there's no opcode.
- return Instruction::UserOp1;
-}
-
/// AddOne - Add one to a ConstantInt
-static Constant *AddOne(Constant *C, LLVMContext* Context) {
- return Context->getConstantExprAdd(C,
- Context->getConstantInt(C->getType(), 1));
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C,
+ ConstantInt::get(C->getType(), 1));
}
/// SubOne - Subtract one from a ConstantInt
-static Constant *SubOne(ConstantInt *C, LLVMContext* Context) {
- return Context->getConstantExprSub(C,
- Context->getConstantInt(C->getType(), 1));
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantExpr::getSub(C,
+ ConstantInt::get(C->getType(), 1));
}
/// MultiplyOverflows - True if the multiply can not be expressed in an int
/// this size.
-static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign,
- LLVMContext* Context) {
+static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
uint32_t W = C1->getBitWidth();
APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
if (sign) {
@@ -697,7 +702,7 @@ static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign,
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
- APInt Demanded, LLVMContext* Context) {
+ APInt Demanded) {
assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
@@ -712,7 +717,7 @@ static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
// This instruction is producing bits that are not demanded. Shrink the RHS.
Demanded &= OpC->getValue();
- I->setOperand(OpNo, Context->getConstantInt(Demanded));
+ I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
return true;
}
@@ -784,7 +789,7 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
KnownZero, KnownOne, Depth);
if (NewVal == 0) return false;
- U.set(NewVal);
+ U = NewVal;
return true;
}
@@ -844,7 +849,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (DemandedMask == 0) { // Not demanding any bits from V.
if (isa<UndefValue>(V))
return 0;
- return Context->getUndef(VTy);
+ return UndefValue::get(VTy);
}
if (Depth == 6) // Limit search depth.
@@ -886,7 +891,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
- return Context->getNullValue(VTy);
+ return Constant::getNullValue(VTy);
} else if (I->getOpcode() == Instruction::Or) {
// We can simplify (X|Y) -> X or Y in the user's context if we know that
@@ -955,10 +960,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
- return Context->getNullValue(VTy);
+ return Constant::getNullValue(VTy);
// If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
return I;
// Output known-1 bits are only known if set in both the LHS & RHS.
@@ -995,7 +1000,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return I->getOperand(1);
// If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
// Output known-0 bits are only known if clear in both the LHS & RHS.
@@ -1030,7 +1035,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
- Instruction *Or =
+ Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
return InsertNewInstBefore(Or, *I);
@@ -1043,7 +1048,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
// all known
if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
- Constant *AndC = Context->getConstantInt(~RHSKnownOne & DemandedMask);
+ Constant *AndC = Constant::getIntegerValue(VTy,
+ ~RHSKnownOne & DemandedMask);
Instruction *And =
BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
return InsertNewInstBefore(And, *I);
@@ -1052,9 +1058,36 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
- if (ShrinkDemandedConstant(I, 1, DemandedMask, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
+ // If our LHS is an 'and' and if it has one use, and if any of the bits we
+ // are flipping are known to be set, then the xor is just resetting those
+ // bits to zero. We can just knock out bits from the 'and' and the 'xor',
+ // simplifying both of them.
+ if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
+ if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
+ isa<ConstantInt>(I->getOperand(1)) &&
+ isa<ConstantInt>(LHSInst->getOperand(1)) &&
+ (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
+ ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
+ ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
+ APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
+
+ Constant *AndC =
+ ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
+ Instruction *NewAnd =
+ BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
+ InsertNewInstBefore(NewAnd, *I);
+
+ Constant *XorC =
+ ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
+ Instruction *NewXor =
+ BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
+ return InsertNewInstBefore(NewXor, *I);
+ }
+
+
RHSKnownZero = KnownZeroOut;
RHSKnownOne = KnownOneOut;
break;
@@ -1069,8 +1102,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(I, 1, DemandedMask, Context) ||
- ShrinkDemandedConstant(I, 2, DemandedMask, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
+ ShrinkDemandedConstant(I, 2, DemandedMask))
return I;
// Only known if known in both the LHS and RHS.
@@ -1194,7 +1227,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the RHS of the add has bits set that can't affect the input, reduce
// the constant.
- if (ShrinkDemandedConstant(I, 1, InDemandedBits, Context))
+ if (ShrinkDemandedConstant(I, 1, InDemandedBits))
return I;
// Avoid excess work.
@@ -1415,10 +1448,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Instruction *NewVal;
if (InputBit > ResultBit)
NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
- Context->getConstantInt(I->getType(), InputBit-ResultBit));
+ ConstantInt::get(I->getType(), InputBit-ResultBit));
else
NewVal = BinaryOperator::CreateShl(I->getOperand(1),
- Context->getConstantInt(I->getType(), ResultBit-InputBit));
+ ConstantInt::get(I->getType(), ResultBit-InputBit));
NewVal->takeName(I);
return InsertNewInstBefore(NewVal, *I);
}
@@ -1434,12 +1467,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
- Constant *C = Context->getConstantInt(RHSKnownOne);
- if (isa<PointerType>(V->getType()))
- C = Context->getConstantExprIntToPtr(C, V->getType());
- return C;
- }
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
+ return Constant::getIntegerValue(VTy, RHSKnownOne);
return false;
}
@@ -1465,13 +1494,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
return 0;
} else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
UndefElts = EltMask;
- return Context->getUndef(V->getType());
+ return UndefValue::get(V->getType());
}
UndefElts = 0;
if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Undef = Context->getUndef(EltTy);
+ Constant *Undef = UndefValue::get(EltTy);
std::vector<Constant*> Elts;
for (unsigned i = 0; i != VWidth; ++i)
@@ -1486,7 +1515,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
}
// If we changed the constant, return it.
- Constant *NewCP = Context->getConstantVector(Elts);
+ Constant *NewCP = ConstantVector::get(Elts);
return NewCP != CP ? NewCP : 0;
} else if (isa<ConstantAggregateZero>(V)) {
// Simplify the CAZ to a ConstantVector where the non-demanded elements are
@@ -1498,15 +1527,15 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
return 0;
const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Zero = Context->getNullValue(EltTy);
- Constant *Undef = Context->getUndef(EltTy);
+ Constant *Zero = Constant::getNullValue(EltTy);
+ Constant *Undef = UndefValue::get(EltTy);
std::vector<Constant*> Elts;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = DemandedElts[i] ? Zero : Undef;
Elts.push_back(Elt);
}
UndefElts = DemandedElts ^ EltMask;
- return Context->getConstantVector(Elts);
+ return ConstantVector::get(Elts);
}
// Limit search depth.
@@ -1553,8 +1582,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// If this is inserting an element that isn't demanded, remove this
// insertelement.
unsigned IdxNo = Idx->getZExtValue();
- if (IdxNo >= VWidth || !DemandedElts[IdxNo])
- return AddSoonDeadInstToWorklist(*I, 0);
+ if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
+ Worklist.Add(I);
+ return I->getOperand(0);
+ }
// Otherwise, the element inserted overwrites whatever was there, so the
// input demanded set is simpler than the output set.
@@ -1620,12 +1651,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
std::vector<Constant*> Elts;
for (unsigned i = 0; i < VWidth; ++i) {
if (UndefElts[i])
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
else
- Elts.push_back(Context->getConstantInt(Type::Int32Ty,
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context),
Shuffle->getMaskValue(i)));
}
- I->setOperand(2, Context->getConstantVector(Elts));
+ I->setOperand(2, ConstantVector::get(Elts));
MadeChange = true;
}
break;
@@ -1678,7 +1709,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = UndefElts2;
if (VWidth > InVWidth) {
- assert(0 && "Unimp");
+ llvm_unreachable("Unimp");
// If there are more elements in the result than there are in the source,
// then an output element is undef if the corresponding input element is
// undef.
@@ -1686,7 +1717,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (UndefElts2[OutIdx/Ratio])
UndefElts.set(OutIdx);
} else if (VWidth < InVWidth) {
- assert(0 && "Unimp");
+ llvm_unreachable("Unimp");
// If there are more elements in the source than there are in the result,
// then a result element is undef if all of the corresponding input
// elements are undef.
@@ -1752,11 +1783,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Value *LHS = II->getOperand(1);
Value *RHS = II->getOperand(2);
// Extract the element as scalars.
- LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
- RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
+ LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
+ RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
switch (II->getIntrinsicID()) {
- default: assert(0 && "Case stmts out of sync!");
+ default: llvm_unreachable("Case stmts out of sync!");
case Intrinsic::x86_sse_sub_ss:
case Intrinsic::x86_sse2_sub_sd:
TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
@@ -1771,9 +1804,9 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Instruction *New =
InsertElementInst::Create(
- Context->getUndef(II->getType()), TmpV, 0U, II->getName());
+ UndefValue::get(II->getType()), TmpV,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), II->getName());
InsertNewInstBefore(New, *II);
- AddSoonDeadInstToWorklist(*II, 0);
return New;
}
}
@@ -1799,8 +1832,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
/// 'shouldApply' and 'apply' methods.
///
template<typename Functor>
-static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F,
- LLVMContext* Context) {
+static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
unsigned Opcode = Root.getOpcode();
Value *LHS = Root.getOperand(0);
@@ -1833,7 +1865,7 @@ static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F,
// Make what used to be the LHS of the root be the user of the root...
Value *ExtraOperand = TmpLHSI->getOperand(1);
if (&Root == TmpLHSI) {
- Root.replaceAllUsesWith(Context->getNullValue(TmpLHSI->getType()));
+ Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
return 0;
}
Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
@@ -1872,12 +1904,11 @@ namespace {
// AddRHS - Implements: X + X --> X << 1
struct AddRHS {
Value *RHS;
- LLVMContext* Context;
- AddRHS(Value *rhs, LLVMContext* C) : RHS(rhs), Context(C) {}
+ explicit AddRHS(Value *rhs) : RHS(rhs) {}
bool shouldApply(Value *LHS) const { return LHS == RHS; }
Instruction *apply(BinaryOperator &Add) const {
return BinaryOperator::CreateShl(Add.getOperand(0),
- Context->getConstantInt(Add.getType(), 1));
+ ConstantInt::get(Add.getType(), 1));
}
};
@@ -1885,12 +1916,11 @@ struct AddRHS {
// iff C1&C2 == 0
struct AddMaskingAnd {
Constant *C2;
- LLVMContext* Context;
- AddMaskingAnd(Constant *c, LLVMContext* C) : C2(c), Context(C) {}
+ explicit AddMaskingAnd(Constant *c) : C2(c) {}
bool shouldApply(Value *LHS) const {
ConstantInt *C1;
return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
- Context->getConstantExprAnd(C1, C2)->isNullValue();
+ ConstantExpr::getAnd(C1, C2)->isNullValue();
}
Instruction *apply(BinaryOperator &Add) const {
return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
@@ -1901,11 +1931,8 @@ struct AddMaskingAnd {
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
InstCombiner *IC) {
- LLVMContext* Context = IC->getContext();
-
- if (CastInst *CI = dyn_cast<CastInst>(&I)) {
- return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
- }
+ if (CastInst *CI = dyn_cast<CastInst>(&I))
+ return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
// Figure out if the constant is the left or the right argument.
bool ConstIsRHS = isa<Constant>(I.getOperand(1));
@@ -1913,24 +1940,24 @@ static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
if (Constant *SOC = dyn_cast<Constant>(SO)) {
if (ConstIsRHS)
- return Context->getConstantExpr(I.getOpcode(), SOC, ConstOperand);
- return Context->getConstantExpr(I.getOpcode(), ConstOperand, SOC);
+ return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+ return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
}
Value *Op0 = SO, *Op1 = ConstOperand;
if (!ConstIsRHS)
std::swap(Op0, Op1);
- Instruction *New;
+
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
- New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
- else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
- SO->getName()+".cmp");
- else {
- assert(0 && "Unknown binary instruction type!");
- abort();
- }
- return IC->InsertNewInstBefore(New, I);
+ return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
+ SO->getName()+".op");
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ llvm_unreachable("Unknown binary instruction type!");
}
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
@@ -1946,7 +1973,7 @@ static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
if (isa<Constant>(TV) || isa<Constant>(FV)) {
// Bool selects with constant operands can be folded to logical ops.
- if (SI->getType() == Type::Int1Ty) return 0;
+ if (SI->getType() == Type::getInt1Ty(*IC->getContext())) return 0;
Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
@@ -1958,20 +1985,34 @@ static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
}
-/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
-/// node as operand #0, see if we can fold the instruction into the PHI (which
-/// is only possible if all operands to the PHI are constants).
-Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
+/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
+/// has a PHI node as operand #0, see if we can fold the instruction into the
+/// PHI (which is only possible if all operands to the PHI are constants).
+///
+/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+/// that would normally be unprofitable because they strongly encourage jump
+/// threading.
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
+ bool AllowAggressive) {
+ AllowAggressive = false;
PHINode *PN = cast<PHINode>(I.getOperand(0));
unsigned NumPHIValues = PN->getNumIncomingValues();
- if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
-
- // Check to see if all of the operands of the PHI are constants. If there is
- // one non-constant value, remember the BB it is. If there is more than one
- // or if *it* is a PHI, bail out.
+ if (NumPHIValues == 0 ||
+ // We normally only transform phis with a single use, unless we're trying
+ // hard to make jump threading happen.
+ (!PN->hasOneUse() && !AllowAggressive))
+ return 0;
+
+
+ // Check to see if all of the operands of the PHI are simple constants
+ // (constantint/constantfp/undef). If there is one non-constant value,
+ // remember the BB it is in. If there is more than one or if *it* is a PHI,
+ // bail out. We don't do arbitrary constant expressions here because moving
+ // their computation can be expensive without a cost model.
BasicBlock *NonConstBB = 0;
for (unsigned i = 0; i != NumPHIValues; ++i)
- if (!isa<Constant>(PN->getIncomingValue(i))) {
+ if (!isa<Constant>(PN->getIncomingValue(i)) ||
+ isa<ConstantExpr>(PN->getIncomingValue(i))) {
if (NonConstBB) return 0; // More than one non-const value.
if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
NonConstBB = PN->getIncomingBlock(i);
@@ -1986,7 +2027,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation one some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB) {
+ if (NonConstBB != 0 && !AllowAggressive) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
if (!BI || !BI->isUnconditional()) return 0;
}
@@ -1998,15 +2039,37 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
NewPN->takeName(PN);
// Next, add all of the operands to the PHI.
- if (I.getNumOperands() == 2) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+ // We only currently try to fold the condition of a select when it is a phi,
+ // not the true/false values.
+ Value *TrueV = SI->getTrueValue();
+ Value *FalseV = SI->getFalseValue();
+ BasicBlock *PhiTransBB = PN->getParent();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ BasicBlock *ThisBB = PN->getIncomingBlock(i);
+ Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+ } else {
+ assert(PN->getIncomingBlock(i) == NonConstBB);
+ InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
+ FalseVInPred,
+ "phitmp", NonConstBB->getTerminator());
+ Worklist.Add(cast<Instruction>(InV));
+ }
+ NewPN->addIncoming(InV, ThisBB);
+ }
+ } else if (I.getNumOperands() == 2) {
Constant *C = cast<Constant>(I.getOperand(1));
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV = 0;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = Context->getConstantExprCompare(CI->getPredicate(), InC, C);
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
else
- InV = Context->getConstantExpr(I.getOpcode(), InC, C);
+ InV = ConstantExpr::get(I.getOpcode(), InC, C);
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
@@ -2014,14 +2077,14 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PN->getIncomingValue(i), C, "phitmp",
NonConstBB->getTerminator());
else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = CmpInst::Create(CI->getOpcode(),
+ InV = CmpInst::Create(CI->getOpcode(),
CI->getPredicate(),
PN->getIncomingValue(i), C, "phitmp",
NonConstBB->getTerminator());
else
- assert(0 && "Unknown binop!");
+ llvm_unreachable("Unknown binop!");
- AddToWorkList(cast<Instruction>(InV));
+ Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
@@ -2031,13 +2094,13 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- InV = Context->getConstantExprCast(CI->getOpcode(), InC, RetTy);
+ InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
I.getType(), "phitmp",
NonConstBB->getTerminator());
- AddToWorkList(cast<Instruction>(InV));
+ Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
@@ -2098,13 +2161,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
- // zext(i1) - 1 -> select i1, 0, -1
+ // zext(bool) + C -> bool ? C + 1 : C
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
- if (CI->isAllOnesValue() &&
- ZI->getOperand(0)->getType() == Type::Int1Ty)
- return SelectInst::Create(ZI->getOperand(0),
- Context->getNullValue(I.getType()),
- Context->getConstantIntAllOnesValue(I.getType()));
+ if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
+ return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
}
if (isa<PHINode>(LHS))
@@ -2146,24 +2206,23 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
const Type *MiddleType = 0;
switch (Size) {
default: break;
- case 32: MiddleType = Type::Int32Ty; break;
- case 16: MiddleType = Type::Int16Ty; break;
- case 8: MiddleType = Type::Int8Ty; break;
+ case 32: MiddleType = Type::getInt32Ty(*Context); break;
+ case 16: MiddleType = Type::getInt16Ty(*Context); break;
+ case 8: MiddleType = Type::getInt8Ty(*Context); break;
}
if (MiddleType) {
- Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
- InsertNewInstBefore(NewTrunc, I);
+ Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
return new SExtInst(NewTrunc, I.getType(), I.getName());
}
}
}
- if (I.getType() == Type::Int1Ty)
+ if (I.getType() == Type::getInt1Ty(*Context))
return BinaryOperator::CreateXor(LHS, RHS);
// X + X --> X << 1
if (I.getType()->isInteger()) {
- if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS, Context), Context))
+ if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS)))
return Result;
if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
@@ -2180,11 +2239,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// -A + B --> B - A
// -A + -B --> -(A + B)
- if (Value *LHSV = dyn_castNegVal(LHS, Context)) {
+ if (Value *LHSV = dyn_castNegVal(LHS)) {
if (LHS->getType()->isIntOrIntVector()) {
- if (Value *RHSV = dyn_castNegVal(RHS, Context)) {
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
- InsertNewInstBefore(NewAdd, I);
+ if (Value *RHSV = dyn_castNegVal(RHS)) {
+ Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
}
@@ -2194,34 +2252,34 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// A + -B --> A - B
if (!isa<Constant>(RHS))
- if (Value *V = dyn_castNegVal(RHS, Context))
+ if (Value *V = dyn_castNegVal(RHS))
return BinaryOperator::CreateSub(LHS, V);
ConstantInt *C2;
- if (Value *X = dyn_castFoldableMul(LHS, C2, Context)) {
+ if (Value *X = dyn_castFoldableMul(LHS, C2)) {
if (X == RHS) // X*C + X --> X * (C+1)
- return BinaryOperator::CreateMul(RHS, AddOne(C2, Context));
+ return BinaryOperator::CreateMul(RHS, AddOne(C2));
// X*C1 + X*C2 --> X * (C1+C2)
ConstantInt *C1;
- if (X == dyn_castFoldableMul(RHS, C1, Context))
- return BinaryOperator::CreateMul(X, Context->getConstantExprAdd(C1, C2));
+ if (X == dyn_castFoldableMul(RHS, C1))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
}
// X + X*C --> X * (C+1)
- if (dyn_castFoldableMul(RHS, C2, Context) == LHS)
- return BinaryOperator::CreateMul(LHS, AddOne(C2, Context));
+ if (dyn_castFoldableMul(RHS, C2) == LHS)
+ return BinaryOperator::CreateMul(LHS, AddOne(C2));
// X + ~X --> -1 since ~X = -X-1
- if (dyn_castNotVal(LHS, Context) == RHS ||
- dyn_castNotVal(RHS, Context) == LHS)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ if (dyn_castNotVal(LHS) == RHS ||
+ dyn_castNotVal(RHS) == LHS)
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
// (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
- if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2, Context), Context))
+ if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
return R;
// A+B --> A|B iff A and B have no bits set in common.
@@ -2258,8 +2316,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
if (W == Y) {
- Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
- LHS->getName()), I);
+ Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
return BinaryOperator::CreateMul(W, NewAdd);
}
}
@@ -2268,11 +2325,12 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Value *X = 0;
if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
- return BinaryOperator::CreateSub(SubOne(CRHS, Context), X);
+ return BinaryOperator::CreateSub(SubOne(CRHS), X);
// (X & FF00) + xx00 -> (X+xx00) & FF00
- if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
- Constant *Anded = Context->getConstantExprAnd(CRHS, C2);
+ if (LHS->hasOneUse() &&
+ match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
+ Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
if (Anded == CRHS) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
@@ -2286,8 +2344,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (AddRHSHighBits == AddRHSHighBitsAnd) {
// Okay, the xform is safe. Insert the new add pronto.
- Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
- LHS->getName()), I);
+ Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
return BinaryOperator::CreateAnd(NewAdd, C2);
}
}
@@ -2299,28 +2356,6 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
return R;
}
- // add (cast *A to intptrtype) B ->
- // cast (GEP (cast *A to i8*) B) --> intptrtype
- {
- CastInst *CI = dyn_cast<CastInst>(LHS);
- Value *Other = RHS;
- if (!CI) {
- CI = dyn_cast<CastInst>(RHS);
- Other = LHS;
- }
- if (CI && CI->getType()->isSized() &&
- (CI->getType()->getScalarSizeInBits() ==
- TD->getIntPtrType()->getPrimitiveSizeInBits())
- && isa<PointerType>(CI->getOperand(0)->getType())) {
- unsigned AS =
- cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
- Value *I2 = InsertBitCastBefore(CI->getOperand(0),
- Context->getPointerType(Type::Int8Ty, AS), I);
- I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
- return new PtrToIntInst(I2, CI->getType());
- }
- }
-
// add (select X 0 (sub n A)) A --> select X A n
{
SelectInst *SI = dyn_cast<SelectInst>(LHS);
@@ -2336,10 +2371,12 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// Can we fold the add into the argument of the select?
// We check both true and false select arguments for a matching subtract.
- if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
+ if (match(FV, m_Zero()) &&
+ match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
- if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
+ if (match(TV, m_Zero()) &&
+ match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
}
@@ -2351,14 +2388,13 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
Constant *CI =
- Context->getConstantExprTrunc(RHSC, LHSConv->getOperand(0)->getType());
+ ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
- Context->getConstantExprSExt(CI, I.getType()) == RHSC &&
+ ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new, smaller add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- CI, "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
@@ -2373,10 +2409,8 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),
- "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
@@ -2392,7 +2426,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
// X + 0 --> X
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
- if (CFP->isExactlyValue(Context->getConstantFPNegativeZero
+ if (CFP->isExactlyValue(ConstantFP::getNegativeZero
(I.getType())->getValueAPF()))
return ReplaceInstUsesWith(I, LHS);
}
@@ -2404,12 +2438,12 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// -A + B --> B - A
// -A + -B --> -(A + B)
- if (Value *LHSV = dyn_castFNegVal(LHS, Context))
+ if (Value *LHSV = dyn_castFNegVal(LHS))
return BinaryOperator::CreateFSub(RHS, LHSV);
// A + -B --> A - B
if (!isa<Constant>(RHS))
- if (Value *V = dyn_castFNegVal(RHS, Context))
+ if (Value *V = dyn_castFNegVal(RHS))
return BinaryOperator::CreateFSub(LHS, V);
// Check for X+0.0. Simplify it to X if we know X is not -0.0.
@@ -2427,14 +2461,13 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
Constant *CI =
- Context->getConstantExprFPToSI(CFP, LHSConv->getOperand(0)->getType());
+ ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
- Context->getConstantExprSIToFP(CI, I.getType()) == CFP &&
+ ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new integer add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- CI, "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ CI, "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
@@ -2449,10 +2482,8 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),
- "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
@@ -2465,10 +2496,10 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Op0 == Op1) // sub X, X -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// If this is a 'B = x-(-A)', change to B = x+A...
- if (Value *V = dyn_castNegVal(Op1, Context))
+ if (Value *V = dyn_castNegVal(Op1))
return BinaryOperator::CreateAdd(Op0, V);
if (isa<UndefValue>(Op0))
@@ -2484,7 +2515,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// C - ~X == X + (1+C)
Value *X = 0;
if (match(Op1, m_Not(m_Value(X))))
- return BinaryOperator::CreateAdd(X, AddOne(C, Context));
+ return BinaryOperator::CreateAdd(X, AddOne(C));
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
@@ -2519,22 +2550,29 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI, this))
return R;
+
+ // C - zext(bool) -> bool ? C - 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
+ if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
+ return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
}
- if (I.getType() == Type::Int1Ty)
+ if (I.getType() == Type::getInt1Ty(*Context))
return BinaryOperator::CreateXor(Op0, Op1);
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
if (Op1I->getOpcode() == Instruction::Add) {
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
+ return BinaryOperator::CreateNeg(Op1I->getOperand(1),
+ I.getName());
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
+ return BinaryOperator::CreateNeg(Op1I->getOperand(0),
+ I.getName());
else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
// C1-(X+C2) --> (C1-C2)-X
return BinaryOperator::CreateSub(
- Context->getConstantExprSub(CI1, CI2), Op1I->getOperand(0));
+ ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
}
}
@@ -2558,8 +2596,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
(Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
- Value *NewNot =
- InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
+ Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
return BinaryOperator::CreateAnd(Op0, NewNot);
}
@@ -2569,13 +2606,13 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (CSI->isZero())
if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
- Context->getConstantExprNeg(DivRHS));
+ ConstantExpr::getNeg(DivRHS));
// X - X*C --> X * (1-C)
ConstantInt *C2 = 0;
- if (dyn_castFoldableMul(Op1I, C2, Context) == Op0) {
+ if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Constant *CP1 =
- Context->getConstantExprSub(Context->getConstantInt(I.getType(), 1),
+ ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
C2);
return BinaryOperator::CreateMul(Op0, CP1);
}
@@ -2590,18 +2627,19 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return ReplaceInstUsesWith(I, Op0I->getOperand(0));
} else if (Op0I->getOpcode() == Instruction::Sub) {
if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
- return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
+ return BinaryOperator::CreateNeg(Op0I->getOperand(1),
+ I.getName());
}
}
ConstantInt *C1;
- if (Value *X = dyn_castFoldableMul(Op0, C1, Context)) {
+ if (Value *X = dyn_castFoldableMul(Op0, C1)) {
if (X == Op1) // X*C - X --> X * (C-1)
- return BinaryOperator::CreateMul(Op1, SubOne(C1, Context));
+ return BinaryOperator::CreateMul(Op1, SubOne(C1));
ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
- if (X == dyn_castFoldableMul(Op1, C2, Context))
- return BinaryOperator::CreateMul(X, Context->getConstantExprSub(C1, C2));
+ if (X == dyn_castFoldableMul(Op1, C2))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
}
return 0;
}
@@ -2610,15 +2648,17 @@ Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// If this is a 'B = x-(-A)', change to B = x+A...
- if (Value *V = dyn_castFNegVal(Op1, Context))
+ if (Value *V = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFAdd(Op0, V);
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
if (Op1I->getOpcode() == Instruction::FAdd) {
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateFNeg(Op1I->getOperand(1), I.getName());
+ return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
+ I.getName());
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateFNeg(Op1I->getOperand(0), I.getName());
+ return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
+ I.getName());
}
}
@@ -2657,26 +2697,24 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // TODO: If Op1 is undef and Op0 is finite, return zero.
- if (!I.getType()->isFPOrFPVector() &&
- isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ if (isa<UndefValue>(Op1)) // undef * X -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- // Simplify mul instructions with a constant RHS...
- if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ // Simplify mul instructions with a constant RHS.
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
// ((X << C1)*C2) == (X * (C2 << C1))
if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
if (SI->getOpcode() == Instruction::Shl)
if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
return BinaryOperator::CreateMul(SI->getOperand(0),
- Context->getConstantExprShl(CI, ShOp));
+ ConstantExpr::getShl(CI, ShOp));
if (CI->isZero())
- return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
+ return ReplaceInstUsesWith(I, Op1C); // X * 0 == 0
if (CI->equalsInt(1)) // X * 1 == X
return ReplaceInstUsesWith(I, Op0);
if (CI->isAllOnesValue()) // X * -1 == 0 - X
@@ -2685,12 +2723,13 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
const APInt& Val = cast<ConstantInt>(CI)->getValue();
if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
return BinaryOperator::CreateShl(Op0,
- Context->getConstantInt(Op0->getType(), Val.logBase2()));
+ ConstantInt::get(Op0->getType(), Val.logBase2()));
}
- } else if (isa<VectorType>(Op1->getType())) {
- // TODO: If Op1 is all zeros and Op0 is all finite, return all zeros.
+ } else if (isa<VectorType>(Op1C->getType())) {
+ if (Op1C->isNullValue())
+ return ReplaceInstUsesWith(I, Op1C);
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
return BinaryOperator::CreateNeg(Op0, I.getName());
@@ -2705,13 +2744,10 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
- isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
+ isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
// Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
- Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
- Op1, "tmp");
- InsertNewInstBefore(Add, I);
- Value *C1C2 = Context->getConstantExprMul(Op1,
- cast<Constant>(Op0I->getOperand(1)));
+ Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
+ Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
return BinaryOperator::CreateAdd(Add, C1C2);
}
@@ -2726,93 +2762,80 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
return NV;
}
- if (Value *Op0v = dyn_castNegVal(Op0, Context)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castNegVal(I.getOperand(1), Context))
+ if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castNegVal(Op1))
return BinaryOperator::CreateMul(Op0v, Op1v);
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
- Value *Op1 = I.getOperand(1);
+ Value *Op1C = Op1;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
if (!BO ||
(BO->getOpcode() != Instruction::UDiv &&
BO->getOpcode() != Instruction::SDiv)) {
- Op1 = Op0;
- BO = dyn_cast<BinaryOperator>(I.getOperand(1));
+ Op1C = Op0;
+ BO = dyn_cast<BinaryOperator>(Op1);
}
- Value *Neg = dyn_castNegVal(Op1, Context);
+ Value *Neg = dyn_castNegVal(Op1C);
if (BO && BO->hasOneUse() &&
- (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
+ (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
(BO->getOpcode() == Instruction::UDiv ||
BO->getOpcode() == Instruction::SDiv)) {
Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
- Instruction *Rem;
+ // If the division is exact, X % Y is zero.
+ if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
+ if (SDiv->isExact()) {
+ if (Op1BO == Op1C)
+ return ReplaceInstUsesWith(I, Op0BO);
+ return BinaryOperator::CreateNeg(Op0BO);
+ }
+
+ Value *Rem;
if (BO->getOpcode() == Instruction::UDiv)
- Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
+ Rem = Builder->CreateURem(Op0BO, Op1BO);
else
- Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
-
- InsertNewInstBefore(Rem, I);
+ Rem = Builder->CreateSRem(Op0BO, Op1BO);
Rem->takeName(BO);
- if (Op1BO == Op1)
+ if (Op1BO == Op1C)
return BinaryOperator::CreateSub(Op0BO, Rem);
- else
- return BinaryOperator::CreateSub(Rem, Op0BO);
+ return BinaryOperator::CreateSub(Rem, Op0BO);
}
}
- if (I.getType() == Type::Int1Ty)
- return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
+ /// i1 mul -> i1 and.
+ if (I.getType() == Type::getInt1Ty(*Context))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op1, Y);
+ if (match(Op1, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op0, Y);
+ }
+
// If one of the operands of the multiply is a cast from a boolean value, then
// we know the bool is either zero or one, so this is a 'masking' multiply.
- // See if we can simplify things based on how the boolean was originally
- // formed.
- CastInst *BoolCast = 0;
- if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
- if (CI->getOperand(0)->getType() == Type::Int1Ty)
- BoolCast = CI;
- if (!BoolCast)
- if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
- if (CI->getOperand(0)->getType() == Type::Int1Ty)
- BoolCast = CI;
- if (BoolCast) {
- if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
- Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
- const Type *SCOpTy = SCIOp0->getType();
- bool TIS = false;
-
- // If the icmp is true iff the sign bit of X is set, then convert this
- // multiply into a shift/and combination.
- if (isa<ConstantInt>(SCIOp1) &&
- isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
- TIS) {
- // Shift the X value right to turn it into "all signbits".
- Constant *Amt = Context->getConstantInt(SCIOp0->getType(),
- SCOpTy->getPrimitiveSizeInBits()-1);
- Value *V =
- InsertNewInstBefore(
- BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
- BoolCast->getOperand(0)->getName()+
- ".mask"), I);
-
- // If the multiply type is not the same as the source type, sign extend
- // or truncate to the multiply type.
- if (I.getType() != V->getType()) {
- uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
- uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
- Instruction::CastOps opcode =
- (SrcBits == DstBits ? Instruction::BitCast :
- (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
- V = InsertCastBefore(opcode, V, I.getType(), I);
- }
+ // X * Y (where Y is 0 or 1) -> X & (0-Y)
+ if (!isa<VectorType>(I.getType())) {
+ // -2 is "-1 << 1" so it is all bits set except the low one.
+ APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
+
+ Value *BoolCast = 0, *OtherOp = 0;
+ if (MaskedValueIsZero(Op0, Negative2))
+ BoolCast = Op0, OtherOp = Op1;
+ else if (MaskedValueIsZero(Op1, Negative2))
+ BoolCast = Op1, OtherOp = Op0;
- Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
- return BinaryOperator::CreateAnd(V, OtherOp);
- }
+ if (BoolCast) {
+ Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
+ BoolCast, "tmp");
+ return BinaryOperator::CreateAnd(V, OtherOp);
}
}
@@ -2821,17 +2844,17 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Simplify mul instructions with a constant RHS...
- if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
- if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
// "In IEEE floating point, x*1 is not equivalent to x for nans. However,
// ANSI says we can drop signals, so we can do this anyway." (from GCC)
if (Op1F->isExactlyValue(1.0))
return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
- } else if (isa<VectorType>(Op1->getType())) {
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
+ } else if (isa<VectorType>(Op1C->getType())) {
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
// As above, vector X*splat(1.0) -> X in all defined cases.
if (Constant *Splat = Op1V->getSplatValue()) {
if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
@@ -2851,8 +2874,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
return NV;
}
- if (Value *Op0v = dyn_castFNegVal(Op0, Context)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castFNegVal(I.getOperand(1), Context))
+ if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFMul(Op0v, Op1v);
return Changed ? &I : 0;
@@ -2907,11 +2930,11 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
I != E; ++I) {
if (*I == SI) {
*I = SI->getOperand(NonNullOperand);
- AddToWorkList(BBI);
+ Worklist.Add(BBI);
} else if (*I == SelectCond) {
- *I = NonNullOperand == 1 ? Context->getConstantIntTrue() :
- Context->getConstantIntFalse();
- AddToWorkList(BBI);
+ *I = NonNullOperand == 1 ? ConstantInt::getTrue(*Context) :
+ ConstantInt::getFalse(*Context);
+ Worklist.Add(BBI);
}
}
@@ -2942,7 +2965,7 @@ Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
if (isa<UndefValue>(Op0)) {
if (Op0->getType()->isFPOrFPVector())
return ReplaceInstUsesWith(I, Op0);
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
// X / undef -> undef
@@ -2962,12 +2985,12 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
// (sdiv X, X) --> 1 (udiv X, X) --> 1
if (Op0 == Op1) {
if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
- Constant *CI = Context->getConstantInt(Ty->getElementType(), 1);
+ Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
std::vector<Constant*> Elts(Ty->getNumElements(), CI);
- return ReplaceInstUsesWith(I, Context->getConstantVector(Elts));
+ return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
}
- Constant *CI = Context->getConstantInt(I.getType(), 1);
+ Constant *CI = ConstantInt::get(I.getType(), 1);
return ReplaceInstUsesWith(I, CI);
}
@@ -2989,11 +3012,11 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
if (MultiplyOverflows(RHS, LHSRHS,
- I.getOpcode()==Instruction::SDiv, Context))
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ I.getOpcode()==Instruction::SDiv))
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
else
return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
- Context->getConstantExprMul(RHS, LHSRHS));
+ ConstantExpr::getMul(RHS, LHSRHS));
}
if (!RHS->isZero()) { // avoid X udiv 0
@@ -3009,10 +3032,10 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
// 0 / X == 0, we don't need to preserve faults!
if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
if (LHS->equalsInt(0))
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// It can't be division by zero, hence it must be division by one.
- if (I.getType() == Type::Int1Ty)
+ if (I.getType() == Type::getInt1Ty(*Context))
return ReplaceInstUsesWith(I, Op0);
if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
@@ -3038,14 +3061,13 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
// if so, convert to a right shift.
if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
return BinaryOperator::CreateLShr(Op0,
- Context->getConstantInt(Op0->getType(), C->getValue().logBase2()));
+ ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
// X udiv C, where C >= signbit
if (C->getValue().isNegative()) {
- Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
- I);
- return SelectInst::Create(IC, Context->getNullValue(I.getType()),
- Context->getConstantInt(I.getType(), 1));
+ Value *IC = Builder->CreateICmpULT( Op0, C);
+ return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
+ ConstantInt::get(I.getType(), 1));
}
}
@@ -3057,10 +3079,8 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
if (C1.isPowerOf2()) {
Value *N = RHSI->getOperand(1);
const Type *NTy = N->getType();
- if (uint32_t C2 = C1.logBase2()) {
- Constant *C2V = Context->getConstantInt(NTy, C2);
- N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
- }
+ if (uint32_t C2 = C1.logBase2())
+ N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
return BinaryOperator::CreateLShr(Op0, N);
}
}
@@ -3076,16 +3096,12 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
// Compute the shift amounts
uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
// Construct the "on true" case of the select
- Constant *TC = Context->getConstantInt(Op0->getType(), TSA);
- Instruction *TSI = BinaryOperator::CreateLShr(
- Op0, TC, SI->getName()+".t");
- TSI = InsertNewInstBefore(TSI, I);
+ Constant *TC = ConstantInt::get(Op0->getType(), TSA);
+ Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
// Construct the "on false" case of the select
- Constant *FC = Context->getConstantInt(Op0->getType(), FSA);
- Instruction *FSI = BinaryOperator::CreateLShr(
- Op0, FC, SI->getName()+".f");
- FSI = InsertNewInstBefore(FSI, I);
+ Constant *FC = ConstantInt::get(Op0->getType(), FSA);
+ Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
// construct the select instruction and return it.
return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
@@ -3105,17 +3121,45 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
// sdiv X, -1 == -X
if (RHS->isAllOnesValue())
return BinaryOperator::CreateNeg(Op0);
+
+ // sdiv X, C --> ashr X, log2(C)
+ if (cast<SDivOperator>(&I)->isExact() &&
+ RHS->getValue().isNonNegative() &&
+ RHS->getValue().isPowerOf2()) {
+ Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
+ RHS->getValue().exactLogBase2());
+ return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
+ }
+
+ // -X/C --> X/-C provided the negation doesn't overflow.
+ if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
+ if (isa<Constant>(Sub->getOperand(0)) &&
+ cast<Constant>(Sub->getOperand(0))->isNullValue() &&
+ Sub->hasNoSignedWrap())
+ return BinaryOperator::CreateSDiv(Sub->getOperand(1),
+ ConstantExpr::getNeg(RHS));
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
if (I.getType()->isInteger()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
- // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ if (MaskedValueIsZero(Op0, Mask)) {
+ if (MaskedValueIsZero(Op1, Mask)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+ ConstantInt *ShiftedInt;
+ if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
+ ShiftedInt->getValue().isPowerOf2()) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
}
- }
+ }
return 0;
}
@@ -3134,7 +3178,7 @@ Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
if (isa<UndefValue>(Op0)) { // undef % X -> 0
if (I.getType()->isFPOrFPVector())
return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (isa<UndefValue>(Op1))
return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
@@ -3159,15 +3203,15 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
// 0 % X == 0 for integer, we don't need to preserve faults!
if (Constant *LHS = dyn_cast<Constant>(Op0))
if (LHS->isNullValue())
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
// X % 0 == undef, we don't need to preserve faults!
if (RHS->equalsInt(0))
- return ReplaceInstUsesWith(I, Context->getUndef(I.getType()));
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
if (RHS->equalsInt(1)) // X % 1 == 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
@@ -3199,7 +3243,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
// if so, convert to a bitwise and.
if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue().isPowerOf2())
- return BinaryOperator::CreateAnd(Op0, SubOne(C, Context));
+ return BinaryOperator::CreateAnd(Op0, SubOne(C));
}
if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
@@ -3207,9 +3251,8 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
if (RHSI->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(RHSI->getOperand(0))) {
if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
- Constant *N1 = Context->getConstantIntAllOnesValue(I.getType());
- Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
- "tmp"), I);
+ Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
return BinaryOperator::CreateAnd(Op0, Add);
}
}
@@ -3223,12 +3266,10 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
// STO == 0 and SFO == 0 handled above.
if ((STO->getValue().isPowerOf2()) &&
(SFO->getValue().isPowerOf2())) {
- Value *TrueAnd = InsertNewInstBefore(
- BinaryOperator::CreateAnd(Op0, SubOne(STO, Context),
- SI->getName()+".t"), I);
- Value *FalseAnd = InsertNewInstBefore(
- BinaryOperator::CreateAnd(Op0, SubOne(SFO, Context),
- SI->getName()+".f"), I);
+ Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
+ SI->getName()+".t");
+ Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
+ SI->getName()+".f");
return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
}
}
@@ -3241,15 +3282,15 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Handle the integer rem common cases
- if (Instruction *common = commonIRemTransforms(I))
- return common;
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
- if (Value *RHSNeg = dyn_castNegVal(Op1, Context))
+ if (Value *RHSNeg = dyn_castNegVal(Op1))
if (!isa<Constant>(RHSNeg) ||
(isa<ConstantInt>(RHSNeg) &&
cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
// X % -Y -> X % Y
- AddUsesToWorkList(I);
+ Worklist.AddValue(I.getOperand(1));
I.setOperand(1, RHSNeg);
return &I;
}
@@ -3279,15 +3320,15 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
for (unsigned i = 0; i != VWidth; ++i) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
if (RHS->getValue().isNegative())
- Elts[i] = cast<ConstantInt>(Context->getConstantExprNeg(RHS));
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
else
Elts[i] = RHS;
}
}
- Constant *NewRHSV = Context->getConstantVector(Elts);
+ Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != RHSV) {
- AddUsesToWorkList(I);
+ Worklist.AddValue(I.getOperand(1));
I.setOperand(1, NewRHSV);
return &I;
}
@@ -3351,7 +3392,7 @@ static unsigned getICmpCode(const ICmpInst *ICI) {
case ICmpInst::ICMP_SLE: return 6; // 110
// True -> 7
default:
- assert(0 && "Invalid ICmp predicate!");
+ llvm_unreachable("Invalid ICmp predicate!");
return 0;
}
}
@@ -3379,7 +3420,7 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
// True -> 7
default:
// Not expecting FCMP_FALSE and FCMP_TRUE;
- assert(0 && "Unexpected FCmp predicate!");
+ llvm_unreachable("Unexpected FCmp predicate!");
return 0;
}
}
@@ -3389,10 +3430,10 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in the new icmp instruction.
static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
- LLVMContext* Context) {
+ LLVMContext *Context) {
switch (code) {
- default: assert(0 && "Illegal ICmp code!");
- case 0: return Context->getConstantIntFalse();
+ default: llvm_unreachable("Illegal ICmp code!");
+ case 0: return ConstantInt::getFalse(*Context);
case 1:
if (sign)
return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
@@ -3415,7 +3456,7 @@ static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
else
return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
- case 7: return Context->getConstantIntTrue();
+ case 7: return ConstantInt::getTrue(*Context);
}
}
@@ -3423,9 +3464,9 @@ static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
/// opcode and two operands into either a FCmp instruction. isordered is passed
/// in to determine which kind of predicate to use in the new fcmp instruction.
static Value *getFCmpValue(bool isordered, unsigned code,
- Value *LHS, Value *RHS, LLVMContext* Context) {
+ Value *LHS, Value *RHS, LLVMContext *Context) {
switch (code) {
- default: assert(0 && "Illegal FCmp code!");
+ default: llvm_unreachable("Illegal FCmp code!");
case 0:
if (isordered)
return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
@@ -3461,7 +3502,7 @@ static Value *getFCmpValue(bool isordered, unsigned code,
return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
else
return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
- case 7: return Context->getConstantIntTrue();
+ case 7: return ConstantInt::getTrue(*Context);
}
}
@@ -3504,7 +3545,7 @@ struct FoldICmpLogical {
case Instruction::And: Code = LHSCode & RHSCode; break;
case Instruction::Or: Code = LHSCode | RHSCode; break;
case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
- default: assert(0 && "Illegal logical opcode!"); return 0;
+ default: llvm_unreachable("Illegal logical opcode!"); return 0;
}
bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
@@ -3529,14 +3570,13 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Value *X = Op->getOperand(0);
Constant *Together = 0;
if (!Op->isShift())
- Together = Context->getConstantExprAnd(AndRHS, OpRHS);
+ Together = ConstantExpr::getAnd(AndRHS, OpRHS);
switch (Op->getOpcode()) {
case Instruction::Xor:
if (Op->hasOneUse()) {
// (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
- Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
- InsertNewInstBefore(And, TheAnd);
+ Value *And = Builder->CreateAnd(X, AndRHS);
And->takeName(Op);
return BinaryOperator::CreateXor(And, Together);
}
@@ -3547,8 +3587,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (Op->hasOneUse() && Together != OpRHS) {
// (X | C1) & C2 --> (X | (C1&C2)) & C2
- Instruction *Or = BinaryOperator::CreateOr(X, Together);
- InsertNewInstBefore(Or, TheAnd);
+ Value *Or = Builder->CreateOr(X, Together);
Or->takeName(Op);
return BinaryOperator::CreateAnd(Or, AndRHS);
}
@@ -3578,8 +3617,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
return &TheAnd;
} else {
// Pull the XOR out of the AND.
- Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
- InsertNewInstBefore(NewAnd, TheAnd);
+ Value *NewAnd = Builder->CreateAnd(X, AndRHS);
NewAnd->takeName(Op);
return BinaryOperator::CreateXor(NewAnd, AndRHS);
}
@@ -3595,7 +3633,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
- ConstantInt *CI = Context->getConstantInt(AndRHS->getValue() & ShlMask);
+ ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShlMask);
if (CI->getValue() == ShlMask) {
// Masking out bits that the shift already masks
@@ -3615,7 +3653,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- ConstantInt *CI = Context->getConstantInt(AndRHS->getValue() & ShrMask);
+ ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
if (CI->getValue() == ShrMask) {
// Masking out bits that the shift already masks.
@@ -3634,14 +3672,12 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- Constant *C = Context->getConstantInt(AndRHS->getValue() & ShrMask);
+ Constant *C = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
if (C == AndRHS) { // Masking out bits shifted in.
// (Val ashr C1) & C2 -> (Val lshr C1) & C2
// Make the argument unsigned.
Value *ShVal = Op->getOperand(0);
- ShVal = InsertNewInstBefore(
- BinaryOperator::CreateLShr(ShVal, OpRHS,
- Op->getName()), TheAnd);
+ ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
}
}
@@ -3659,7 +3695,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside,
Instruction &IB) {
- assert(cast<ConstantInt>(Context->getConstantExprICmp((isSigned ?
+ assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
@@ -3675,10 +3711,9 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
}
// Emit V-Lo <u Hi-Lo
- Constant *NegLo = Context->getConstantExprNeg(Lo);
- Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
- InsertNewInstBefore(Add, IB);
- Constant *UpperBound = Context->getConstantExprAdd(NegLo, Hi);
+ Constant *NegLo = ConstantExpr::getNeg(Lo);
+ Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+ Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
}
@@ -3686,7 +3721,7 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
// V < Min || V >= Hi -> V > Hi-1
- Hi = SubOne(cast<ConstantInt>(Hi), Context);
+ Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
@@ -3695,10 +3730,9 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
// Emit V-Lo >u Hi-1-Lo
// Note that Hi has already had one subtracted from it, above.
- ConstantInt *NegLo = cast<ConstantInt>(Context->getConstantExprNeg(Lo));
- Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
- InsertNewInstBefore(Add, IB);
- Constant *LowerBound = Context->getConstantExprAdd(NegLo, Hi);
+ ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
+ Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+ Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
}
@@ -3740,7 +3774,7 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
switch (LHSI->getOpcode()) {
default: return 0;
case Instruction::And:
- if (Context->getConstantExprAnd(N, Mask) == Mask) {
+ if (ConstantExpr::getAnd(N, Mask) == Mask) {
// If the AndRHS is a power of two minus one (0+1+), this is simple.
if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) ==
@@ -3764,17 +3798,14 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
// If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
- && Context->getConstantExprAnd(N, Mask)->isNullValue())
+ && ConstantExpr::getAnd(N, Mask)->isNullValue())
break;
return 0;
}
- Instruction *New;
if (isSub)
- New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
- else
- New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
- return InsertNewInstBefore(New, I);
+ return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
+ return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
}
/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
@@ -3785,16 +3816,17 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
ICmpInst::Predicate LHSCC, RHSCC;
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
+ if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
+ m_ConstantInt(LHSCst))) ||
+ !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
+ m_ConstantInt(RHSCst))))
return 0;
// (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
// where C is a power of 2
if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
LHSCst->getValue().isPowerOf2()) {
- Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
- InsertNewInstBefore(NewOr, I);
+ Value *NewOr = Builder->CreateOr(Val, Val2);
return new ICmpInst(LHSCC, NewOr, LHSCst);
}
@@ -3837,14 +3869,14 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
assert(LHSCst != RHSCst && "Compares not folded above?");
switch (LHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
@@ -3852,13 +3884,13 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
}
case ICmpInst::ICMP_NE:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_ULT:
- if (LHSCst == SubOne(RHSCst, Context)) // (X != 13 & X u< 14) -> X < 13
+ if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
break; // (X != 13 & X u< 15) -> no change
case ICmpInst::ICMP_SLT:
- if (LHSCst == SubOne(RHSCst, Context)) // (X != 13 & X s< 14) -> X < 13
+ if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
break; // (X != 13 & X s< 15) -> no change
case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
@@ -3866,23 +3898,21 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
return ReplaceInstUsesWith(I, RHS);
case ICmpInst::ICMP_NE:
- if (LHSCst == SubOne(RHSCst, Context)){// (X != 13 & X != 14) -> X-13 >u 1
- Constant *AddCST = Context->getConstantExprNeg(LHSCst);
- Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
- Val->getName()+".off");
- InsertNewInstBefore(Add, I);
+ if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
+ Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+ Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
return new ICmpInst(ICmpInst::ICMP_UGT, Add,
- Context->getConstantInt(Add->getType(), 1));
+ ConstantInt::get(Add->getType(), 1));
}
break; // (X != 13 & X != 15) -> no change
}
break;
case ICmpInst::ICMP_ULT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
@@ -3894,10 +3924,10 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_SLT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
@@ -3909,18 +3939,18 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_UGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
return ReplaceInstUsesWith(I, RHS);
case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
break;
case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst, Context)) // (X u> 13 & X != 14) -> X u> 14
+ if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
return new ICmpInst(LHSCC, Val, RHSCst);
break; // (X u> 13 & X != 15) -> no change
case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
- return InsertRangeTest(Val, AddOne(LHSCst, Context),
+ return InsertRangeTest(Val, AddOne(LHSCst),
RHSCst, false, true, I);
case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
break;
@@ -3928,18 +3958,18 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_SGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
return ReplaceInstUsesWith(I, RHS);
case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
break;
case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst, Context)) // (X s> 13 & X != 14) -> X s> 14
+ if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
return new ICmpInst(LHSCC, Val, RHSCst);
break; // (X s> 13 & X != 15) -> no change
case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
- return InsertRangeTest(Val, AddOne(LHSCst, Context),
+ return InsertRangeTest(Val, AddOne(LHSCst),
RHSCst, true, true, I);
case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
break;
@@ -3950,13 +3980,89 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
return 0;
}
+Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
+ FCmpInst *RHS) {
+
+ if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
+ RHS->getPredicate() == FCmpInst::FCMP_ORD) {
+ // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
+ if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+ if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+ // If either of the constants are nans, then the whole thing returns
+ // false.
+ if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
+ return new FCmpInst(FCmpInst::FCMP_ORD,
+ LHS->getOperand(0), RHS->getOperand(0));
+ }
+
+ // Handle vector zeros. This occurs because the canonical form of
+ // "fcmp ord x,x" is "fcmp ord x, 0".
+ if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+ isa<ConstantAggregateZero>(RHS->getOperand(1)))
+ return new FCmpInst(FCmpInst::FCMP_ORD,
+ LHS->getOperand(0), RHS->getOperand(0));
+ return 0;
+ }
+
+ Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+ Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+ FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+
+
+ if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+ // Swap RHS operands to match LHS.
+ Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+ std::swap(Op1LHS, Op1RHS);
+ }
+
+ if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+ // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
+ if (Op0CC == Op1CC)
+ return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
+
+ if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
+ if (Op0CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, RHS);
+ if (Op1CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, LHS);
+
+ bool Op0Ordered;
+ bool Op1Ordered;
+ unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+ unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+ if (Op1Pred == 0) {
+ std::swap(LHS, RHS);
+ std::swap(Op0Pred, Op1Pred);
+ std::swap(Op0Ordered, Op1Ordered);
+ }
+ if (Op0Pred == 0) {
+ // uno && ueq -> uno && (uno || eq) -> ueq
+ // ord && olt -> ord && (ord && lt) -> olt
+ if (Op0Ordered == Op1Ordered)
+ return ReplaceInstUsesWith(I, RHS);
+
+ // uno && oeq -> uno && (ord && eq) -> false
+ // uno && ord -> false
+ if (!Op0Ordered)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
+ // ord && ueq -> ord && (uno || eq) -> oeq
+ return cast<Instruction>(getFCmpValue(true, Op1Pred,
+ Op0LHS, Op0RHS, Context));
+ }
+ }
+
+ return 0;
+}
+
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1)) // X & undef -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// and X, X = X
if (Op0 == Op1)
@@ -3976,36 +4082,32 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
- const APInt& AndRHSMask = AndRHS->getValue();
+ const APInt &AndRHSMask = AndRHS->getValue();
APInt NotAndRHS(~AndRHSMask);
// Optimize a variety of ((val OP C1) & C2) combinations...
- if (isa<BinaryOperator>(Op0)) {
- Instruction *Op0I = cast<Instruction>(Op0);
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Value *Op0LHS = Op0I->getOperand(0);
Value *Op0RHS = Op0I->getOperand(1);
switch (Op0I->getOpcode()) {
+ default: break;
case Instruction::Xor:
case Instruction::Or:
// If the mask is only needed on one incoming arm, push it up.
- if (Op0I->hasOneUse()) {
- if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
- // Not masking anything out for the LHS, move to RHS.
- Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
- Op0RHS->getName()+".masked");
- InsertNewInstBefore(NewRHS, I);
- return BinaryOperator::Create(
- cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
- }
- if (!isa<Constant>(Op0RHS) &&
- MaskedValueIsZero(Op0RHS, NotAndRHS)) {
- // Not masking anything out for the RHS, move to LHS.
- Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
- Op0LHS->getName()+".masked");
- InsertNewInstBefore(NewLHS, I);
- return BinaryOperator::Create(
- cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
- }
+ if (!Op0I->hasOneUse()) break;
+
+ if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
+ // Not masking anything out for the LHS, move to RHS.
+ Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
+ Op0RHS->getName()+".masked");
+ return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
+ }
+ if (!isa<Constant>(Op0RHS) &&
+ MaskedValueIsZero(Op0RHS, NotAndRHS)) {
+ // Not masking anything out for the RHS, move to LHS.
+ Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
+ Op0LHS->getName()+".masked");
+ return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
}
break;
@@ -4036,8 +4138,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
if (!(A && A->isZero()) && // avoid infinite recursion.
MaskedValueIsZero(Op0LHS, Mask)) {
- Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
- InsertNewInstBefore(NewNeg, I);
+ Value *NewNeg = Builder->CreateNeg(Op0RHS);
return BinaryOperator::CreateAnd(NewNeg, AndRHS);
}
}
@@ -4048,9 +4149,8 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// (1 << x) & 1 --> zext(x == 0)
// (1 >> x) & 1 --> zext(x == 0)
if (AndRHSMask == 1 && Op0LHS == AndRHS) {
- Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
- Context->getNullValue(I.getType()));
- InsertNewInstBefore(NewICmp, I);
+ Value *NewICmp =
+ Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
return new ZExtInst(NewICmp, I.getType());
}
break;
@@ -4072,21 +4172,18 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// into : and (cast X to T), trunc_or_bitcast(C1)&C2
// This will fold the two constants together, which may allow
// other simplifications.
- Instruction *NewCast = CastInst::CreateTruncOrBitCast(
+ Value *NewCast = Builder->CreateTruncOrBitCast(
CastOp->getOperand(0), I.getType(),
CastOp->getName()+".shrunk");
- NewCast = InsertNewInstBefore(NewCast, I);
// trunc_or_bitcast(C1)&C2
- Constant *C3 =
- Context->getConstantExprTruncOrBitCast(AndCI,I.getType());
- C3 = Context->getConstantExprAnd(C3, AndRHS);
+ Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+ C3 = ConstantExpr::getAnd(C3, AndRHS);
return BinaryOperator::CreateAnd(NewCast, C3);
} else if (CastOp->getOpcode() == Instruction::Or) {
// Change: and (cast (or X, C1) to T), C2
// into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
- Constant *C3 =
- Context->getConstantExprTruncOrBitCast(AndCI,I.getType());
- if (Context->getConstantExprAnd(C3, AndRHS) == AndRHS)
+ Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+ if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
// trunc(C1)&C2
return ReplaceInstUsesWith(I, AndRHS);
}
@@ -4103,17 +4200,16 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return NV;
}
- Value *Op0NotVal = dyn_castNotVal(Op0, Context);
- Value *Op1NotVal = dyn_castNotVal(Op1, Context);
+ Value *Op0NotVal = dyn_castNotVal(Op0);
+ Value *Op1NotVal = dyn_castNotVal(Op1);
if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// (~A & ~B) == (~(A | B)) - De Morgan's Law
if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
- Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
- I.getName()+".demorgan");
- InsertNewInstBefore(Or, I);
+ Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
+ I.getName()+".demorgan");
return BinaryOperator::CreateNot(Or);
}
@@ -4159,11 +4255,8 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
cast<BinaryOperator>(Op1)->swapOperands();
std::swap(A, B);
}
- if (A == Op0) { // A&(A^B) -> A & ~B
- Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
- InsertNewInstBefore(NotB, I);
- return BinaryOperator::CreateAnd(A, NotB);
- }
+ if (A == Op0) // A&(A^B) -> A & ~B
+ return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
}
// (A&((~A)|B)) -> A&B
@@ -4177,7 +4270,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
// (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS),Context))
+ if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
return R;
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
@@ -4190,16 +4283,15 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVector() &&
// Only do this if the casts both really cause code to be generated.
ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType(), TD) &&
ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType(), TD)) {
- Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
- Op1C->getOperand(0),
- I.getName());
- InsertNewInstBefore(NewOp, I);
+ Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
}
@@ -4210,10 +4302,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
- SI1->getOperand(0),
- SI0->getName()), I);
+ Value *NewOp =
+ Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
+ SI0->getName());
return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
@@ -4221,66 +4312,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
- if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
- RHS->getPredicate() == FCmpInst::FCMP_ORD) {
- // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // false.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
- return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
- RHS->getOperand(0));
- }
- } else {
- Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
- FCmpInst::Predicate Op0CC, Op1CC;
- if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
- match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
- else if (Op0CC == FCmpInst::FCMP_FALSE ||
- Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
- else if (Op0CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Op1);
- else if (Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Op0);
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op1Pred == 0) {
- std::swap(Op0, Op1);
- std::swap(Op0Pred, Op1Pred);
- std::swap(Op0Ordered, Op1Ordered);
- }
- if (Op0Pred == 0) {
- // uno && ueq -> uno && (uno || eq) -> ueq
- // ord && olt -> ord && (ord && lt) -> olt
- if (Op0Ordered == Op1Ordered)
- return ReplaceInstUsesWith(I, Op1);
- // uno && oeq -> uno && (ord && eq) -> false
- // uno && ord -> false
- if (!Op0Ordered)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
- // ord && ueq -> ord && (uno || eq) -> oeq
- return cast<Instruction>(getFCmpValue(true, Op1Pred,
- Op0LHS, Op0RHS, Context));
- }
- }
- }
- }
- }
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
+ return Res;
}
return Changed ? &I : 0;
@@ -4450,7 +4484,8 @@ Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
/// we can simplify this expression to "cond ? C : D or B".
static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
- Value *C, Value *D) {
+ Value *C, Value *D,
+ LLVMContext *Context) {
// If A is not a select of -1/0, this cannot match.
Value *Cond = 0;
if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
@@ -4477,8 +4512,10 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
ICmpInst::Predicate LHSCC, RHSCC;
// This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
+ if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
+ m_ConstantInt(LHSCst))) ||
+ !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
+ m_ConstantInt(RHSCst))))
return 0;
// From here on, we only handle:
@@ -4520,18 +4557,16 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
assert(LHSCst != RHSCst && "Compares not folded above?");
switch (LHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
- if (LHSCst == SubOne(RHSCst, Context)) {
+ if (LHSCst == SubOne(RHSCst)) {
// (X == 13 | X == 14) -> X-13 <u 2
- Constant *AddCST = Context->getConstantExprNeg(LHSCst);
- Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
- Val->getName()+".off");
- InsertNewInstBefore(Add, I);
- AddCST = Context->getConstantExprSub(AddOne(RHSCst, Context), LHSCst);
+ Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+ Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
+ AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
}
break; // (X == 13 | X == 15) -> no change
@@ -4546,7 +4581,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_NE:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
@@ -4554,12 +4589,12 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
}
break;
case ICmpInst::ICMP_ULT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
break;
case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
@@ -4567,7 +4602,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
// this can cause overflow.
if (RHSCst->isMaxValue(false))
return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst, Context),
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
false, false, I);
case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
break;
@@ -4580,7 +4615,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_SLT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
break;
case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
@@ -4588,7 +4623,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
// this can cause overflow.
if (RHSCst->isMaxValue(true))
return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst, Context),
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
true, false, I);
case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
break;
@@ -4601,7 +4636,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_UGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
return ReplaceInstUsesWith(I, LHS);
@@ -4609,14 +4644,14 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
break;
}
break;
case ICmpInst::ICMP_SGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
return ReplaceInstUsesWith(I, LHS);
@@ -4624,7 +4659,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
break;
}
@@ -4633,6 +4668,72 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
return 0;
}
+Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
+ FCmpInst *RHS) {
+ if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ RHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
+ if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+ if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+ // If either of the constants are nans, then the whole thing returns
+ // true.
+ if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+
+ // Otherwise, no need to compare the two constants, compare the
+ // rest.
+ return new FCmpInst(FCmpInst::FCMP_UNO,
+ LHS->getOperand(0), RHS->getOperand(0));
+ }
+
+ // Handle vector zeros. This occurs because the canonical form of
+ // "fcmp uno x,x" is "fcmp uno x, 0".
+ if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+ isa<ConstantAggregateZero>(RHS->getOperand(1)))
+ return new FCmpInst(FCmpInst::FCMP_UNO,
+ LHS->getOperand(0), RHS->getOperand(0));
+
+ return 0;
+ }
+
+ Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+ Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+ FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+
+ if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+ // Swap RHS operands to match LHS.
+ Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+ std::swap(Op1LHS, Op1RHS);
+ }
+ if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+ // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
+ if (Op0CC == Op1CC)
+ return new FCmpInst((FCmpInst::Predicate)Op0CC,
+ Op0LHS, Op0RHS);
+ if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ if (Op0CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, RHS);
+ if (Op1CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, LHS);
+ bool Op0Ordered;
+ bool Op1Ordered;
+ unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+ unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+ if (Op0Ordered == Op1Ordered) {
+ // If both are ordered or unordered, return a new fcmp with
+ // or'ed predicates.
+ Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
+ Op0LHS, Op0RHS, Context);
+ if (Instruction *I = dyn_cast<Instruction>(RV))
+ return I;
+ // Otherwise, it's a constant boolean value...
+ return ReplaceInstUsesWith(I, RV);
+ }
+ }
+ return 0;
+}
+
/// FoldOrWithConstants - This helper function folds:
///
/// ((A | B) & C1) | (B & C2)
@@ -4655,8 +4756,7 @@ Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
if (!Xor.isAllOnesValue()) return 0;
if (V1 == A || V1 == B) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateAnd((V1 == A) ? B : A, CI1), I);
+ Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
return BinaryOperator::CreateOr(NewOp, V1);
}
@@ -4668,7 +4768,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1)) // X | undef -> -1
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
// or X, X = X
if (Op0 == Op1)
@@ -4691,21 +4791,21 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
ConstantInt *C1 = 0; Value *X = 0;
// (X & C1) | C2 --> (X | C2) & (C1|C2)
- if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
- Instruction *Or = BinaryOperator::CreateOr(X, RHS);
- InsertNewInstBefore(Or, I);
+ if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
+ isOnlyUse(Op0)) {
+ Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
return BinaryOperator::CreateAnd(Or,
- Context->getConstantInt(RHS->getValue() | C1->getValue()));
+ ConstantInt::get(*Context, RHS->getValue() | C1->getValue()));
}
// (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
- if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
- Instruction *Or = BinaryOperator::CreateOr(X, RHS);
- InsertNewInstBefore(Or, I);
+ if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
+ isOnlyUse(Op0)) {
+ Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
return BinaryOperator::CreateXor(Or,
- Context->getConstantInt(C1->getValue() & ~RHS->getValue()));
+ ConstantInt::get(*Context, C1->getValue() & ~RHS->getValue()));
}
// Try to fold constant and into select arguments.
@@ -4738,19 +4838,19 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
}
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
- if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
MaskedValueIsZero(Op1, C1->getValue())) {
- Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
- InsertNewInstBefore(NOr, I);
+ Value *NOr = Builder->CreateOr(A, Op1);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr, C1);
}
// Y|(X^C) -> (X|Y)^C iff Y&C == 0
- if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+ if (Op1->hasOneUse() &&
+ match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
MaskedValueIsZero(Op0, C1->getValue())) {
- Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
- InsertNewInstBefore(NOr, I);
+ Value *NOr = Builder->CreateOr(A, Op0);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr, C1);
}
@@ -4801,20 +4901,19 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
V1 = C, V2 = A, V3 = B;
if (V1) {
- Value *Or =
- InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
+ Value *Or = Builder->CreateOr(V2, V3, "tmp");
return BinaryOperator::CreateAnd(V1, Or);
}
}
// (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
- if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
+ if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D, Context))
return Match;
- if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
+ if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C, Context))
return Match;
- if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
+ if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D, Context))
return Match;
- if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
+ if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C, Context))
return Match;
// ((A&~B)|(~A&B)) -> A^B
@@ -4841,10 +4940,8 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
- SI1->getOperand(0),
- SI0->getName()), I);
+ Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
+ SI0->getName());
return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
@@ -4865,26 +4962,25 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
if (A == Op1) // ~A | A == -1
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
} else {
A = 0;
}
// Note, A is still live here!
if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
if (Op0 == B)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
// (~A | ~B) == (~(A & B)) - De Morgan's Law
if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
- Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
- I.getName()+".demorgan"), I);
+ Value *And = Builder->CreateAnd(A, B, I.getName()+".demorgan");
return BinaryOperator::CreateNot(And);
}
}
// (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS),Context))
+ if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
return R;
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
@@ -4899,17 +4995,16 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
!isa<ICmpInst>(Op1C->getOperand(0))) {
const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVector() &&
// Only do this if the casts both really cause code to be
// generated.
ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType(), TD) &&
ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType(), TD)) {
- Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
- Op1C->getOperand(0),
- I.getName());
- InsertNewInstBefore(NewOp, I);
+ Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
}
@@ -4919,61 +5014,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
- if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
- LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // true.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
-
- // Otherwise, no need to compare the two constants, compare the
- // rest.
- return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
- RHS->getOperand(0));
- }
- } else {
- Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
- FCmpInst::Predicate Op0CC, Op1CC;
- if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
- match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
- else if (Op0CC == FCmpInst::FCMP_TRUE ||
- Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- else if (Op0CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Op1);
- else if (Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Op0);
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op0Ordered == Op1Ordered) {
- // If both are ordered or unordered, return a new fcmp with
- // or'ed predicates.
- Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
- Op0LHS, Op0RHS, Context);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value...
- return ReplaceInstUsesWith(I, RV);
- }
- }
- }
- }
- }
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
+ return Res;
}
return Changed ? &I : 0;
@@ -5001,14 +5044,14 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (isa<UndefValue>(Op0))
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
}
// xor X, X = 0, even if X is nested in a sequence of Xor's.
- if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1), Context)) {
+ if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
// See if we can simplify any instructions used by the instruction whose sole
@@ -5020,22 +5063,20 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
// Is this a ~ operation?
- if (Value *NotOp = dyn_castNotVal(&I, Context)) {
+ if (Value *NotOp = dyn_castNotVal(&I)) {
// ~(~X & Y) --> (X | ~Y) - De Morgan's Law
// ~(~X | Y) === (X & ~Y) - De Morgan's Law
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
if (Op0I->getOpcode() == Instruction::And ||
Op0I->getOpcode() == Instruction::Or) {
- if (dyn_castNotVal(Op0I->getOperand(1), Context)) Op0I->swapOperands();
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0), Context)) {
- Instruction *NotY =
- BinaryOperator::CreateNot(Op0I->getOperand(1),
- Op0I->getOperand(1)->getName()+".not");
- InsertNewInstBefore(NotY, I);
+ if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
+ if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
+ Value *NotY =
+ Builder->CreateNot(Op0I->getOperand(1),
+ Op0I->getOperand(1)->getName()+".not");
if (Op0I->getOpcode() == Instruction::And)
return BinaryOperator::CreateOr(Op0NotVal, NotY);
- else
- return BinaryOperator::CreateAnd(Op0NotVal, NotY);
+ return BinaryOperator::CreateAnd(Op0NotVal, NotY);
}
}
}
@@ -5043,7 +5084,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- if (RHS == Context->getConstantIntTrue() && Op0->hasOneUse()) {
+ if (RHS->isOne() && Op0->hasOneUse()) {
// xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
return new ICmpInst(ICI->getInversePredicate(),
@@ -5059,16 +5100,12 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
- if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
- if (RHS == Context->getConstantExprCast(Opcode,
- Context->getConstantIntTrue(),
- Op0C->getDestTy())) {
- Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
- CI->getOpcode(), CI->getInversePredicate(),
- CI->getOperand(0), CI->getOperand(1)), I);
- NewCI->takeName(CI);
- return CastInst::Create(Opcode, NewCI, Op0C->getType());
- }
+ if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
+ (RHS == ConstantExpr::getCast(Opcode,
+ ConstantInt::getTrue(*Context),
+ Op0C->getDestTy()))) {
+ CI->setPredicate(CI->getInversePredicate());
+ return CastInst::Create(Opcode, CI, Op0C->getType());
}
}
}
@@ -5078,9 +5115,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// ~(c-X) == X-c-1 == X+(-c-1)
if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
- Constant *NegOp0I0C = Context->getConstantExprNeg(Op0I0C);
- Constant *ConstantRHS = Context->getConstantExprSub(NegOp0I0C,
- Context->getConstantInt(I.getType(), 1));
+ Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
+ Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
+ ConstantInt::get(I.getType(), 1));
return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
}
@@ -5088,28 +5125,28 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Op0I->getOpcode() == Instruction::Add) {
// ~(X-c) --> (-c-1)-X
if (RHS->isAllOnesValue()) {
- Constant *NegOp0CI = Context->getConstantExprNeg(Op0CI);
+ Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
return BinaryOperator::CreateSub(
- Context->getConstantExprSub(NegOp0CI,
- Context->getConstantInt(I.getType(), 1)),
+ ConstantExpr::getSub(NegOp0CI,
+ ConstantInt::get(I.getType(), 1)),
Op0I->getOperand(0));
} else if (RHS->getValue().isSignBit()) {
// (X + C) ^ signbit -> (X + C + signbit)
- Constant *C =
- Context->getConstantInt(RHS->getValue() + Op0CI->getValue());
+ Constant *C = ConstantInt::get(*Context,
+ RHS->getValue() + Op0CI->getValue());
return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
}
} else if (Op0I->getOpcode() == Instruction::Or) {
// (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
- Constant *NewRHS = Context->getConstantExprOr(Op0CI, RHS);
+ Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
- Constant *CommonBits = Context->getConstantExprAnd(Op0CI, RHS);
- NewRHS = Context->getConstantExprAnd(NewRHS,
- Context->getConstantExprNot(CommonBits));
- AddToWorkList(Op0I);
+ Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
+ NewRHS = ConstantExpr::getAnd(NewRHS,
+ ConstantExpr::getNot(CommonBits));
+ Worklist.Add(Op0I);
I.setOperand(0, Op0I->getOperand(0));
I.setOperand(1, NewRHS);
return &I;
@@ -5127,13 +5164,13 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return NV;
}
- if (Value *X = dyn_castNotVal(Op0, Context)) // ~A ^ A == -1
+ if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
if (X == Op1)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
- if (Value *X = dyn_castNotVal(Op1, Context)) // A ^ ~A == -1
+ if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
if (X == Op0)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
@@ -5152,7 +5189,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return ReplaceInstUsesWith(I, B); // A^(A^B) == B
} else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
return ReplaceInstUsesWith(I, A); // A^(B^A) == B
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
+ } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
+ Op1I->hasOneUse()){
if (A == Op0) { // A^(A&B) -> A^(B&A)
Op1I->swapOperands();
std::swap(A, B);
@@ -5167,26 +5205,23 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
if (Op0I) {
Value *A, *B;
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
+ if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+ Op0I->hasOneUse()) {
if (A == Op1) // (B|A)^B == (A|B)^B
std::swap(A, B);
- if (B == Op1) { // (A|B)^B == A & ~B
- Instruction *NotB =
- InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
- return BinaryOperator::CreateAnd(A, NotB);
- }
+ if (B == Op1) // (A|B)^B == A & ~B
+ return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
} else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
return ReplaceInstUsesWith(I, B); // (A^B)^A == B
} else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
return ReplaceInstUsesWith(I, A); // (B^A)^A == B
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
+ } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ Op0I->hasOneUse()){
if (A == Op1) // (A&B)^A -> (B&A)^A
std::swap(A, B);
if (B == Op1 && // (B&A)^A == ~B & A
!isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
- Instruction *N =
- InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
- return BinaryOperator::CreateAnd(N, Op1);
+ return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
}
}
}
@@ -5196,10 +5231,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Op0I->getOpcode() == Op1I->getOpcode() &&
Op0I->getOperand(1) == Op1I->getOperand(1) &&
(Op1I->hasOneUse() || Op1I->hasOneUse())) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
- Op1I->getOperand(0),
- Op0I->getName()), I);
+ Value *NewOp =
+ Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
+ Op0I->getName());
return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Op1I->getOperand(1));
}
@@ -5235,8 +5269,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
X = B, Y = A, Z = C;
if (X) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
+ Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
return BinaryOperator::CreateAnd(NewOp, X);
}
}
@@ -5244,7 +5277,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS),Context))
+ if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
return R;
// fold (xor (cast A), (cast B)) -> (cast (xor A, B))
@@ -5258,10 +5291,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
I.getType(), TD) &&
ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType(), TD)) {
- Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
- Op1C->getOperand(0),
- I.getName());
- InsertNewInstBefore(NewOp, I);
+ Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
}
@@ -5271,8 +5302,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
static ConstantInt *ExtractElement(Constant *V, Constant *Idx,
- LLVMContext* Context) {
- return cast<ConstantInt>(Context->getConstantExprExtractElement(V, Idx));
+ LLVMContext *Context) {
+ return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
}
static bool HasAddOverflow(ConstantInt *Result,
@@ -5290,13 +5321,13 @@ static bool HasAddOverflow(ConstantInt *Result,
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
/// overflowed for this type.
static bool AddWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, LLVMContext* Context,
+ Constant *In2, LLVMContext *Context,
bool IsSigned = false) {
- Result = Context->getConstantExprAdd(In1, In2);
+ Result = ConstantExpr::getAdd(In1, In2);
if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = Context->getConstantInt(Type::Int32Ty, i);
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
if (HasAddOverflow(ExtractElement(Result, Idx, Context),
ExtractElement(In1, Idx, Context),
ExtractElement(In2, Idx, Context),
@@ -5326,13 +5357,13 @@ static bool HasSubOverflow(ConstantInt *Result,
/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
/// overflowed for this type.
static bool SubWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, LLVMContext* Context,
+ Constant *In2, LLVMContext *Context,
bool IsSigned = false) {
- Result = Context->getConstantExprSub(In1, In2);
+ Result = ConstantExpr::getSub(In1, In2);
if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = Context->getConstantInt(Type::Int32Ty, i);
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
if (HasSubOverflow(ExtractElement(Result, Idx, Context),
ExtractElement(In1, Idx, Context),
ExtractElement(In2, Idx, Context),
@@ -5351,11 +5382,10 @@ static bool SubWithOverflow(Constant *&Result, Constant *In1,
/// code necessary to compute the offset from the base pointer (without adding
/// in the base pointer). Return the result as a signed integer of intptr size.
static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
- TargetData &TD = IC.getTargetData();
+ TargetData &TD = *IC.getTargetData();
gep_type_iterator GTI = gep_type_begin(GEP);
- const Type *IntPtrTy = TD.getIntPtrType();
- LLVMContext* Context = IC.getContext();
- Value *Result = Context->getNullValue(IntPtrTy);
+ const Type *IntPtrTy = TD.getIntPtrType(I.getContext());
+ Value *Result = Constant::getNullValue(IntPtrTy);
// Build a mask for high order bits.
unsigned IntPtrWidth = TD.getPointerSizeInBits();
@@ -5372,74 +5402,49 @@ static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
- if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
- Result =
- Context->getConstantInt(RC->getValue() + APInt(IntPtrWidth, Size));
- else
- Result = IC.InsertNewInstBefore(
- BinaryOperator::CreateAdd(Result,
- Context->getConstantInt(IntPtrTy, Size),
- GEP->getName()+".offs"), I);
+ Result = IC.Builder->CreateAdd(Result,
+ ConstantInt::get(IntPtrTy, Size),
+ GEP->getName()+".offs");
continue;
}
- Constant *Scale = Context->getConstantInt(IntPtrTy, Size);
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Constant *OC =
- Context->getConstantExprIntegerCast(OpC, IntPtrTy, true /*SExt*/);
- Scale = Context->getConstantExprMul(OC, Scale);
- if (Constant *RC = dyn_cast<Constant>(Result))
- Result = Context->getConstantExprAdd(RC, Scale);
- else {
- // Emit an add instruction.
- Result = IC.InsertNewInstBefore(
- BinaryOperator::CreateAdd(Result, Scale,
- GEP->getName()+".offs"), I);
- }
+ ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
+ Scale = ConstantExpr::getMul(OC, Scale);
+ // Emit an add instruction.
+ Result = IC.Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
continue;
}
// Convert to correct type.
- if (Op->getType() != IntPtrTy) {
- if (Constant *OpC = dyn_cast<Constant>(Op))
- Op = Context->getConstantExprIntegerCast(OpC, IntPtrTy, true);
- else
- Op = IC.InsertNewInstBefore(CastInst::CreateIntegerCast(Op, IntPtrTy,
- true,
- Op->getName()+".c"), I);
- }
+ if (Op->getType() != IntPtrTy)
+ Op = IC.Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
if (Size != 1) {
- Constant *Scale = Context->getConstantInt(IntPtrTy, Size);
- if (Constant *OpC = dyn_cast<Constant>(Op))
- Op = Context->getConstantExprMul(OpC, Scale);
- else // We'll let instcombine(mul) convert this to a shl if possible.
- Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
- GEP->getName()+".idx"), I);
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+ // We'll let instcombine(mul) convert this to a shl if possible.
+ Op = IC.Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
}
// Emit an add instruction.
- if (isa<Constant>(Op) && isa<Constant>(Result))
- Result = Context->getConstantExprAdd(cast<Constant>(Op),
- cast<Constant>(Result));
- else
- Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
- GEP->getName()+".offs"), I);
+ Result = IC.Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
}
return Result;
}
-/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
-/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
-/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
-/// complex, and scales are involved. The above expression would also be legal
-/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
-/// later form is less amenable to optimization though, and we are allowed to
-/// generate the first by knowing that pointer arithmetic doesn't overflow.
+/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
+/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
+/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
+/// be complex, and scales are involved. The above expression would also be
+/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This later form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
InstCombiner &IC) {
- TargetData &TD = IC.getTargetData();
+ TargetData &TD = *IC.getTargetData();
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
@@ -5502,8 +5507,9 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
- VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
- VariableIdx->getNameStart(), &I);
+ VariableIdx = new TruncInst(VariableIdx,
+ TD.getIntPtrType(VariableIdx->getContext()),
+ VariableIdx->getName(), &I);
return VariableIdx;
}
@@ -5523,40 +5529,39 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
return 0;
// Okay, we can do this evaluation. Start by converting the index to intptr.
- const Type *IntPtrTy = TD.getIntPtrType();
+ const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
true /*SExt*/,
- VariableIdx->getNameStart(), &I);
- Constant *OffsetVal = IC.getContext()->getConstantInt(IntPtrTy, NewOffs);
+ VariableIdx->getName(), &I);
+ Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
}
/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
/// else. At this point we know that the GEP is on the LHS of the comparison.
-Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
+Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
- assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
-
// Look through bitcasts.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
RHS = BCI->getOperand(0);
Value *PtrBase = GEPLHS->getOperand(0);
- if (PtrBase == RHS) {
+ if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
// This transformation (ignoring the base and scales) is valid because we
- // know pointers can't overflow. See if we can output an optimized form.
+ // know pointers can't overflow since the gep is inbounds. See if we can
+ // output an optimized form.
Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
// If not, synthesize the offset the hard way.
if (Offset == 0)
Offset = EmitGEPOffset(GEPLHS, I, *this);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
- Context->getNullValue(Offset->getType()));
- } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
+ Constant::getNullValue(Offset->getType()));
+ } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
// If the base pointers are different, but the indices are the same, just
// compare the base pointer.
if (PtrBase != GEPRHS->getOperand(0)) {
@@ -5572,7 +5577,7 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
// If all indices are the same, just compare the base pointers.
if (IndicesTheSame)
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
GEPLHS->getOperand(0), GEPRHS->getOperand(0));
// Otherwise, the base pointers are different and the indices are
@@ -5622,7 +5627,7 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
if (NumDifferences == 0) // SAME GEP?
return ReplaceInstUsesWith(I, // No comparison is needed here.
- Context->getConstantInt(Type::Int1Ty,
+ ConstantInt::get(Type::getInt1Ty(*Context),
ICmpInst::isTrueWhenEqual(Cond)));
else if (NumDifferences == 1) {
@@ -5635,7 +5640,8 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
// Only lower this if the icmp is the only user of the GEP or if we expect
// the result to fold to a constant!
- if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ if (TD &&
+ (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
Value *L = EmitGEPOffset(GEPLHS, I, *this);
@@ -5680,7 +5686,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
ICmpInst::Predicate Pred;
switch (I.getPredicate()) {
- default: assert(0 && "Unexpected predicate!");
+ default: llvm_unreachable("Unexpected predicate!");
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_OEQ:
Pred = ICmpInst::ICMP_EQ;
@@ -5706,9 +5712,9 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Pred = ICmpInst::ICMP_NE;
break;
case FCmpInst::FCMP_ORD:
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case FCmpInst::FCMP_UNO:
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
@@ -5728,8 +5734,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
Pred == ICmpInst::ICMP_SLE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
} else {
// If the RHS value is > UnsignedMax, fold the comparison. This handles
@@ -5740,8 +5746,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
Pred == ICmpInst::ICMP_ULE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
}
@@ -5753,8 +5759,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
Pred == ICmpInst::ICMP_SGE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
}
@@ -5763,27 +5769,27 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// casting the FP value to the integer value and back, checking for equality.
// Don't do this for zero, because -0.0 is not fractional.
Constant *RHSInt = LHSUnsigned
- ? Context->getConstantExprFPToUI(RHSC, IntTy)
- : Context->getConstantExprFPToSI(RHSC, IntTy);
+ ? ConstantExpr::getFPToUI(RHSC, IntTy)
+ : ConstantExpr::getFPToSI(RHSC, IntTy);
if (!RHS.isZero()) {
bool Equal = LHSUnsigned
- ? Context->getConstantExprUIToFP(RHSInt, RHSC->getType()) == RHSC
- : Context->getConstantExprSIToFP(RHSInt, RHSC->getType()) == RHSC;
+ ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
+ : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
if (!Equal) {
// If we had a comparison against a fractional value, we have to adjust
// the compare predicate and sometimes the value. RHSC is rounded towards
// zero at this point.
switch (Pred) {
- default: assert(0 && "Unexpected integer comparison!");
+ default: llvm_unreachable("Unexpected integer comparison!");
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_ULE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> false
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_SLE:
// (float)int <= 4.4 --> int <= 4
@@ -5795,7 +5801,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int < -4.4 --> false
// (float)int < 4.4 --> int <= 4
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
Pred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_SLT:
@@ -5808,7 +5814,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> true
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
break;
case ICmpInst::ICMP_SGT:
// (float)int > 4.4 --> int > 4
@@ -5820,7 +5826,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int >= -4.4 --> true
// (float)int >= 4.4 --> int > 4
if (!RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
Pred = ICmpInst::ICMP_UGT;
break;
case ICmpInst::ICMP_SGE:
@@ -5844,22 +5850,22 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// Fold trivial predicates.
if (I.getPredicate() == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
if (I.getPredicate() == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
// Simplify 'fcmp pred X, X'
if (Op0 == Op1) {
switch (I.getPredicate()) {
- default: assert(0 && "Unknown predicate!");
+ default: llvm_unreachable("Unknown predicate!");
case FCmpInst::FCMP_UEQ: // True if unordered or equal
case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
case FCmpInst::FCMP_OGT: // True if ordered and greater than
case FCmpInst::FCMP_OLT: // True if ordered and less than
case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
case FCmpInst::FCMP_ULT: // True if unordered or less than
@@ -5867,7 +5873,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_UNE: // True if unordered or not equal
// Canonicalize these to be 'fcmp uno %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_UNO);
- I.setOperand(1, Context->getNullValue(Op0->getType()));
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
@@ -5876,13 +5882,13 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
// Canonicalize these to be 'fcmp ord %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_ORD);
- I.setOperand(1, Context->getNullValue(Op0->getType()));
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
}
}
if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
- return ReplaceInstUsesWith(I, Context->getUndef(Type::Int1Ty));
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
@@ -5890,11 +5896,11 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
if (CFP->getValueAPF().isNaN()) {
if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
assert(FCmpInst::isUnordered(I.getPredicate()) &&
"Comparison must be either ordered or unordered!");
// True if unordered.
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
}
}
@@ -5905,7 +5911,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (Instruction *NV = FoldOpIntoPhi(I, true))
return NV;
break;
case Instruction::SIToFP:
@@ -5921,18 +5927,16 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
- Op1 = Context->getConstantExprCompare(I.getPredicate(), C, RHSC);
+ Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
- Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
- LHSI->getOperand(2), RHSC,
- I.getName()), I);
+ Op2 = Builder->CreateFCmp(I.getPredicate(),
+ LHSI->getOperand(2), RHSC, I.getName());
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
- Op2 = Context->getConstantExprCompare(I.getPredicate(), C, RHSC);
+ Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
- Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
- LHSI->getOperand(1), RHSC,
- I.getName()), I);
+ Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
}
}
@@ -5952,28 +5956,27 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// icmp X, X
if (Op0 == Op1)
- return ReplaceInstUsesWith(I, Context->getConstantInt(Type::Int1Ty,
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(),
I.isTrueWhenEqual()));
if (isa<UndefValue>(Op1)) // X icmp undef -> undef
- return ReplaceInstUsesWith(I, Context->getUndef(Type::Int1Ty));
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
// icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
// addresses never equal each other! We already know that Op0 != Op1.
- if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
+ if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
isa<ConstantPointerNull>(Op0)) &&
- (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
+ (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
isa<ConstantPointerNull>(Op1)))
- return ReplaceInstUsesWith(I, Context->getConstantInt(Type::Int1Ty,
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::getInt1Ty(*Context),
!I.isTrueWhenEqual()));
// icmp's with boolean values can always be turned into bitwise operations
- if (Ty == Type::Int1Ty) {
+ if (Ty == Type::getInt1Ty(*Context)) {
switch (I.getPredicate()) {
- default: assert(0 && "Invalid icmp instruction!");
+ default: llvm_unreachable("Invalid icmp instruction!");
case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
- Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
- InsertNewInstBefore(Xor, I);
+ Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
return BinaryOperator::CreateNot(Xor);
}
case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
@@ -5983,32 +5986,28 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
// FALL THROUGH
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
- Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
// FALL THROUGH
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
- Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
// FALL THROUGH
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
- Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
// FALL THROUGH
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
- Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op0);
}
}
@@ -6040,20 +6039,24 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
default: break;
case ICmpInst::ICMP_ULE:
if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
+ AddOne(CI));
case ICmpInst::ICMP_SLE:
if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+ AddOne(CI));
case ICmpInst::ICMP_UGE:
if (CI->isMinValue(false)) // A >=u MIN -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
+ SubOne(CI));
case ICmpInst::ICMP_SGE:
if (CI->isMinValue(true)) // A >=s MIN -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+ SubOne(CI));
}
// If this comparison is a normal comparison, it demands all
@@ -6100,110 +6103,114 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// that code below can assume that Min != Max.
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
return new ICmpInst(I.getPredicate(),
- Context->getConstantInt(Op0Min), Op1);
+ ConstantInt::get(*Context, Op0Min), Op1);
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
- return new ICmpInst(I.getPredicate(), Op0,
- Context->getConstantInt(Op1Min));
+ return new ICmpInst(I.getPredicate(), Op0,
+ ConstantInt::get(*Context, Op1Min));
// Based on the range information we know about the LHS, see if we can
// simplify this comparison. For example, (x&4) < 8 is always true.
switch (I.getPredicate()) {
- default: assert(0 && "Unknown icmp opcode!");
+ default: llvm_unreachable("Unknown icmp opcode!");
case ICmpInst::ICMP_EQ:
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_NE:
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
break;
case ICmpInst::ICMP_ULT:
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ SubOne(CI));
// (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
if (CI->isMinValue(true))
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Context->getConstantIntAllOnesValue(Op0->getType()));
+ Constant::getAllOnesValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_UGT:
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ AddOne(CI));
// (x >u 2147483647) -> (x <s 0) -> true if sign bit set
if (CI->isMaxValue(true))
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Context->getNullValue(Op0->getType()));
+ Constant::getNullValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_SLT:
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ SubOne(CI));
}
break;
case ICmpInst::ICMP_SGT:
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ AddOne(CI));
}
break;
case ICmpInst::ICMP_SGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_SLE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_UGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_ULE:
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
}
@@ -6255,16 +6262,16 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
if (isAllZeros)
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Context->getNullValue(LHSI->getOperand(0)->getType()));
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
}
break;
case Instruction::PHI:
- // Only fold icmp into the PHI if the phi and fcmp are in the same
+ // Only fold icmp into the PHI if the phi and icmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (Instruction *NV = FoldOpIntoPhi(I, true))
return NV;
break;
case Instruction::Select: {
@@ -6275,18 +6282,16 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
- Op1 = Context->getConstantExprICmp(I.getPredicate(), C, RHSC);
+ Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
// Insert a new ICmp of the other select operand.
- Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
- LHSI->getOperand(2), RHSC,
- I.getName()), I);
+ Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
+ RHSC, I.getName());
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
- Op2 = Context->getConstantExprICmp(I.getPredicate(), C, RHSC);
+ Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
// Insert a new ICmp of the other select operand.
- Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
- LHSI->getOperand(1), RHSC,
- I.getName()), I);
+ Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
}
}
@@ -6298,19 +6303,31 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// If we have (malloc != null), and if the malloc has a single use, we
// can assume it is successful and remove the malloc.
if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
- AddToWorkList(LHSI);
- return ReplaceInstUsesWith(I, Context->getConstantInt(Type::Int1Ty,
- !I.isTrueWhenEqual()));
+ Worklist.Add(LHSI);
+ return ReplaceInstUsesWith(I,
+ ConstantInt::get(Type::getInt1Ty(*Context),
+ !I.isTrueWhenEqual()));
+ }
+ break;
+ case Instruction::Call:
+ // If we have (malloc != null), and if the malloc has a single use, we
+ // can assume it is successful and remove the malloc.
+ if (isMalloc(LHSI) && LHSI->hasOneUse() &&
+ isa<ConstantPointerNull>(RHSC)) {
+ Worklist.Add(LHSI);
+ return ReplaceInstUsesWith(I,
+ ConstantInt::get(Type::getInt1Ty(*Context),
+ !I.isTrueWhenEqual()));
}
break;
}
}
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
- if (User *GEP = dyn_castGetElementPtr(Op0))
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
return NI;
- if (User *GEP = dyn_castGetElementPtr(Op1))
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
if (Instruction *NI = FoldGEPICmp(GEP, Op0,
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
return NI;
@@ -6333,10 +6350,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// If Op1 is a constant, we can fold the cast into the constant.
if (Op0->getType() != Op1->getType()) {
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- Op1 = Context->getConstantExprBitCast(Op1C, Op0->getType());
+ Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
} else {
// Otherwise, cast the RHS right before the icmp
- Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
+ Op1 = Builder->CreateBitCast(Op1, Op0->getType());
}
}
return new ICmpInst(I.getPredicate(), Op0, Op1);
@@ -6397,16 +6414,12 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// Mask = -1 >> count-trailing-zeros(Cst).
if (!CI->isZero() && !CI->isOne()) {
const APInt &AP = CI->getValue();
- ConstantInt *Mask = Context->getConstantInt(
+ ConstantInt *Mask = ConstantInt::get(*Context,
APInt::getLowBitsSet(AP.getBitWidth(),
AP.getBitWidth() -
AP.countTrailingZeros()));
- Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
- Mask);
- Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
- Mask);
- InsertNewInstBefore(And1, I);
- InsertNewInstBefore(And2, I);
+ Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
+ Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
return new ICmpInst(I.getPredicate(), And1, And2);
}
}
@@ -6435,7 +6448,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
Value *OtherVal = A == Op1 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
- Context->getNullValue(A->getType()));
+ Constant::getNullValue(A->getType()));
}
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
@@ -6444,10 +6457,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (match(B, m_ConstantInt(C1)) &&
match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
Constant *NC =
- Context->getConstantInt(C1->getValue() ^ C2->getValue());
- Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
- return new ICmpInst(I.getPredicate(), A,
- InsertNewInstBefore(Xor, I));
+ ConstantInt::get(*Context, C1->getValue() ^ C2->getValue());
+ Value *Xor = Builder->CreateXor(C, NC, "tmp");
+ return new ICmpInst(I.getPredicate(), A, Xor);
}
// A^B == A^D -> B == D
@@ -6463,18 +6475,18 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// A == (A^B) -> B == 0
Value *OtherVal = A == Op0 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
- Context->getNullValue(A->getType()));
+ Constant::getNullValue(A->getType()));
}
// (A-B) == A -> B == 0
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
return new ICmpInst(I.getPredicate(), B,
- Context->getNullValue(B->getType()));
+ Constant::getNullValue(B->getType()));
// A == (A-B) -> B == 0
if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
return new ICmpInst(I.getPredicate(), B,
- Context->getNullValue(B->getType()));
+ Constant::getNullValue(B->getType()));
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
if (Op0->hasOneUse() && Op1->hasOneUse() &&
@@ -6493,10 +6505,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
if (X) { // Build (X^Y) & Z
- Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
- Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
+ Op1 = Builder->CreateXor(X, Y, "tmp");
+ Op1 = Builder->CreateAnd(Op1, Z, "tmp");
I.setOperand(0, Op1);
- I.setOperand(1, Context->getNullValue(Op1->getType()));
+ I.setOperand(1, Constant::getNullValue(Op1->getType()));
return &I;
}
}
@@ -6535,13 +6547,13 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
// of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
// C2 (CI). By solving for X we can turn this into a range check
// instead of computing a divide.
- Constant *Prod = Context->getConstantExprMul(CmpRHS, DivRHS);
+ Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
// Determine if the product overflows by seeing if the product is
// not equal to the divide. Make sure we do the same kind of divide
// as in the LHS instruction that we're folding.
- bool ProdOV = (DivIsSigned ? Context->getConstantExprSDiv(Prod, DivRHS) :
- Context->getConstantExprUDiv(Prod, DivRHS)) != CmpRHS;
+ bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
+ ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
// Get the ICmp opcode
ICmpInst::Predicate Pred = ICI.getPredicate();
@@ -6565,8 +6577,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
} else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
if (CmpRHSV == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
- LoBound = cast<ConstantInt>(Context->getConstantExprNeg(SubOne(DivRHS,
- Context)));
+ LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
HiBound = DivRHS;
} else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
@@ -6575,11 +6586,11 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, Context, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
- HiBound = AddOne(Prod, Context);
+ HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
ConstantInt* DivNeg =
- cast<ConstantInt>(Context->getConstantExprNeg(DivRHS));
+ cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, Context,
true) ? -1 : 0;
}
@@ -6587,15 +6598,15 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
} else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
if (CmpRHSV == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
- LoBound = AddOne(DivRHS, Context);
- HiBound = cast<ConstantInt>(Context->getConstantExprNeg(DivRHS));
+ LoBound = AddOne(DivRHS);
+ HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
}
} else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
// e.g. X/-5 op 3 --> [-19, -14)
- HiBound = AddOne(Prod, Context);
+ HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
LoOverflow = AddWithOverflow(LoBound, HiBound,
@@ -6613,42 +6624,42 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
Value *X = DivI->getOperand(0);
switch (Pred) {
- default: assert(0 && "Unhandled icmp opcode!");
+ default: llvm_unreachable("Unhandled icmp opcode!");
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
else if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
else if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
else
return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
else if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
else if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
else
return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
if (LoOverflow == -1) // Low bound is less than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
return new ICmpInst(Pred, X, LoBound);
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
else if (HiOverflow == -1) // High bound less than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
else
@@ -6682,7 +6693,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
NewRHS.zext(SrcBits);
NewRHS |= KnownOne;
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- Context->getConstantInt(NewRHS));
+ ConstantInt::get(*Context, NewRHS));
}
}
break;
@@ -6699,7 +6710,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// the operation, just stop using the Xor.
if (!XorCST->getValue().isNegative()) {
ICI.setOperand(0, CompareVal);
- AddToWorkList(LHSI);
+ Worklist.Add(LHSI);
return &ICI;
}
@@ -6711,10 +6722,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (isTrueIfPositive)
return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
- SubOne(RHS, Context));
+ SubOne(RHS));
else
return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
- AddOne(RHS, Context));
+ AddOne(RHS));
}
if (LHSI->hasOneUse()) {
@@ -6725,7 +6736,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
? ICI.getUnsignedPredicate()
: ICI.getSignedPredicate();
return new ICmpInst(Pred, LHSI->getOperand(0),
- Context->getConstantInt(RHSV ^ SignBit));
+ ConstantInt::get(*Context, RHSV ^ SignBit));
}
// (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
@@ -6736,7 +6747,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
: ICI.getSignedPredicate();
Pred = ICI.getSwappedPredicate(Pred);
return new ICmpInst(Pred, LHSI->getOperand(0),
- Context->getConstantInt(RHSV ^ NotSignBit));
+ ConstantInt::get(*Context, RHSV ^ NotSignBit));
}
}
}
@@ -6763,12 +6774,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
NewCST.zext(BitWidth);
APInt NewCI = RHSV;
NewCI.zext(BitWidth);
- Instruction *NewAnd =
- BinaryOperator::CreateAnd(Cast->getOperand(0),
- Context->getConstantInt(NewCST),LHSI->getName());
- InsertNewInstBefore(NewAnd, ICI);
+ Value *NewAnd =
+ Builder->CreateAnd(Cast->getOperand(0),
+ ConstantInt::get(*Context, NewCST), LHSI->getName());
return new ICmpInst(ICI.getPredicate(), NewAnd,
- Context->getConstantInt(NewCI));
+ ConstantInt::get(*Context, NewCI));
}
}
@@ -6805,32 +6815,31 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (CanFold) {
Constant *NewCst;
if (Shift->getOpcode() == Instruction::Shl)
- NewCst = Context->getConstantExprLShr(RHS, ShAmt);
+ NewCst = ConstantExpr::getLShr(RHS, ShAmt);
else
- NewCst = Context->getConstantExprShl(RHS, ShAmt);
+ NewCst = ConstantExpr::getShl(RHS, ShAmt);
// Check to see if we are shifting out any of the bits being
// compared.
- if (Context->getConstantExpr(Shift->getOpcode(),
+ if (ConstantExpr::get(Shift->getOpcode(),
NewCst, ShAmt) != RHS) {
// If we shifted bits out, the fold is not going to work out.
// As a special case, check to see if this means that the
// result is always true or false now.
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
} else {
ICI.setOperand(1, NewCst);
Constant *NewAndCST;
if (Shift->getOpcode() == Instruction::Shl)
- NewAndCST = Context->getConstantExprLShr(AndCST, ShAmt);
+ NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
else
- NewAndCST = Context->getConstantExprShl(AndCST, ShAmt);
+ NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
LHSI->setOperand(1, NewAndCST);
LHSI->setOperand(0, Shift->getOperand(0));
- AddToWorkList(Shift); // Shift is dead.
- AddUsesToWorkList(ICI);
+ Worklist.Add(Shift); // Shift is dead.
return &ICI;
}
}
@@ -6845,19 +6854,15 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// Compute C << Y.
Value *NS;
if (Shift->getOpcode() == Instruction::LShr) {
- NS = BinaryOperator::CreateShl(AndCST,
- Shift->getOperand(1), "tmp");
+ NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
} else {
// Insert a logical shift.
- NS = BinaryOperator::CreateLShr(AndCST,
- Shift->getOperand(1), "tmp");
+ NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
}
- InsertNewInstBefore(cast<Instruction>(NS), ICI);
// Compute X & (C << Y).
- Instruction *NewAnd =
- BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
- InsertNewInstBefore(NewAnd, ICI);
+ Value *NewAnd =
+ Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
ICI.setOperand(0, NewAnd);
return &ICI;
@@ -6881,11 +6886,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
Constant *Comp =
- Context->getConstantExprShl(Context->getConstantExprLShr(RHS, ShAmt),
+ ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
ShAmt);
if (Comp != RHS) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Context->getConstantInt(Type::Int1Ty, IsICMP_NE);
+ Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
@@ -6893,15 +6898,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Constant *Mask =
- Context->getConstantInt(APInt::getLowBitsSet(TypeBits,
+ ConstantInt::get(*Context, APInt::getLowBitsSet(TypeBits,
TypeBits-ShAmtVal));
- Instruction *AndI =
- BinaryOperator::CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- Value *And = InsertNewInstBefore(AndI, ICI);
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
- Context->getConstantInt(RHSV.lshr(ShAmtVal)));
+ ConstantInt::get(*Context, RHSV.lshr(ShAmtVal)));
}
}
@@ -6910,15 +6913,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (LHSI->hasOneUse() &&
isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
// (X << 31) <s 0 --> (X&1) != 0
- Constant *Mask = Context->getConstantInt(APInt(TypeBits, 1) <<
+ Constant *Mask = ConstantInt::get(*Context, APInt(TypeBits, 1) <<
(TypeBits-ShAmt->getZExtValue()-1));
- Instruction *AndI =
- BinaryOperator::CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- Value *And = InsertNewInstBefore(AndI, ICI);
-
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Context->getNullValue(And->getType()));
+ And, Constant::getNullValue(And->getType()));
}
break;
}
@@ -6948,7 +6948,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (Comp != RHSV) { // Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Context->getConstantInt(Type::Int1Ty, IsICMP_NE);
+ Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
@@ -6959,20 +6959,18 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
MaskedValueIsZero(LHSI->getOperand(0),
APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- Context->getConstantExprShl(RHS, ShAmt));
+ ConstantExpr::getShl(RHS, ShAmt));
}
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = Context->getConstantInt(Val);
+ Constant *Mask = ConstantInt::get(*Context, Val);
- Instruction *AndI =
- BinaryOperator::CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- Value *And = InsertNewInstBefore(AndI, ICI);
+ Value *And = Builder->CreateAnd(LHSI->getOperand(0),
+ Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
- Context->getConstantExprShl(RHS, ShAmt));
+ ConstantExpr::getShl(RHS, ShAmt));
}
break;
}
@@ -7005,18 +7003,18 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (ICI.isSignedPredicate()) {
if (CR.getLower().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
- Context->getConstantInt(CR.getUpper()));
+ ConstantInt::get(*Context, CR.getUpper()));
} else if (CR.getUpper().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
- Context->getConstantInt(CR.getLower()));
+ ConstantInt::get(*Context, CR.getLower()));
}
} else {
if (CR.getLower().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
- Context->getConstantInt(CR.getUpper()));
+ ConstantInt::get(*Context, CR.getUpper()));
} else if (CR.getUpper().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
- Context->getConstantInt(CR.getLower()));
+ ConstantInt::get(*Context, CR.getLower()));
}
}
}
@@ -7036,12 +7034,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
- Instruction *NewRem =
- BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
- BO->getName());
- InsertNewInstBefore(NewRem, ICI);
- return new ICmpInst(ICI.getPredicate(), NewRem,
- Context->getNullValue(BO->getType()));
+ Value *NewRem =
+ Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
+ BO->getName());
+ return new ICmpInst(ICI.getPredicate(), NewRem,
+ Constant::getNullValue(BO->getType()));
}
}
break;
@@ -7050,19 +7047,18 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- Context->getConstantExprSub(RHS, BOp1C));
+ ConstantExpr::getSub(RHS, BOp1C));
} else if (RHSV == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
- if (Value *NegVal = dyn_castNegVal(BOp1, Context))
+ if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
- else if (Value *NegVal = dyn_castNegVal(BOp0, Context))
+ else if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
else if (BO->hasOneUse()) {
- Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
- InsertNewInstBefore(Neg, ICI);
+ Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
}
@@ -7073,7 +7069,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// the explicit xor.
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- Context->getConstantExprXor(RHS, BOC));
+ ConstantExpr::getXor(RHS, BOC));
// FALLTHROUGH
case Instruction::Sub:
@@ -7087,10 +7083,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
- Constant *NotCI = Context->getConstantExprNot(RHS);
- if (!Context->getConstantExprAnd(BOC, NotCI)->isNullValue())
+ Constant *NotCI = ConstantExpr::getNot(RHS);
+ if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return ReplaceInstUsesWith(ICI,
- Context->getConstantInt(Type::Int1Ty,
+ ConstantInt::get(Type::getInt1Ty(*Context),
isICMP_NE));
}
break;
@@ -7101,19 +7097,19 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
return ReplaceInstUsesWith(ICI,
- Context->getConstantInt(Type::Int1Ty,
+ ConstantInt::get(Type::getInt1Ty(*Context),
isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
ICmpInst::ICMP_NE, LHSI,
- Context->getNullValue(RHS->getType()));
+ Constant::getNullValue(RHS->getType()));
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->getValue().isSignBit()) {
Value *X = BO->getOperand(0);
- Constant *Zero = Context->getNullValue(X->getType());
+ Constant *Zero = Constant::getNullValue(X->getType());
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(pred, X, Zero);
@@ -7122,7 +7118,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// ((X & ~7) == 0) --> X < 8
if (RHSV == 0 && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
- Constant *NegX = Context->getConstantExprNeg(BOC);
+ Constant *NegX = ConstantExpr::getNeg(BOC);
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(pred, X, NegX);
@@ -7133,9 +7129,9 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
// Handle icmp {eq|ne} <intrinsic>, intcst.
if (II->getIntrinsicID() == Intrinsic::bswap) {
- AddToWorkList(II);
+ Worklist.Add(II);
ICI.setOperand(0, II->getOperand(1));
- ICI.setOperand(1, Context->getConstantInt(RHSV.byteSwap()));
+ ICI.setOperand(1, ConstantInt::get(*Context, RHSV.byteSwap()));
return &ICI;
}
}
@@ -7155,17 +7151,17 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
// integer type is the same size as the pointer type.
- if (LHSCI->getOpcode() == Instruction::PtrToInt &&
- getTargetData().getPointerSizeInBits() ==
+ if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
+ TD->getPointerSizeInBits() ==
cast<IntegerType>(DestTy)->getBitWidth()) {
Value *RHSOp = 0;
if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
- RHSOp = Context->getConstantExprIntToPtr(RHSC, SrcTy);
+ RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
} else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
RHSOp = RHSC->getOperand(0);
// If the pointer types don't match, insert a bitcast.
if (LHSCIOp->getType() != RHSOp->getType())
- RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
+ RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
}
if (RHSOp)
@@ -7212,8 +7208,8 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// Compute the constant that would happen if we truncated to SrcTy then
// reextended to DestTy.
- Constant *Res1 = Context->getConstantExprTrunc(CI, SrcTy);
- Constant *Res2 = Context->getConstantExprCast(LHSCI->getOpcode(),
+ Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
+ Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
Res1, DestTy);
// If the re-extended constant didn't change...
@@ -7239,9 +7235,9 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// First, handle some easy cases. We know the result cannot be equal at this
// point so handle the ICI.isEquality() cases
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
// should have been folded away previously and not enter in here.
@@ -7249,20 +7245,19 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
if (isSignedCmp) {
// We're performing a signed comparison.
if (cast<ConstantInt>(CI)->getValue().isNegative())
- Result = Context->getConstantIntFalse(); // X < (small) --> false
+ Result = ConstantInt::getFalse(*Context); // X < (small) --> false
else
- Result = Context->getConstantIntTrue(); // X < (large) --> true
+ Result = ConstantInt::getTrue(*Context); // X < (large) --> true
} else {
// We're performing an unsigned comparison.
if (isSignedExt) {
// We're performing an unsigned comp with a sign extended value.
// This is true if the input is >= 0. [aka >s -1]
- Constant *NegOne = Context->getConstantIntAllOnesValue(SrcTy);
- Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
- NegOne, ICI.getName()), ICI);
+ Constant *NegOne = Constant::getAllOnesValue(SrcTy);
+ Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
} else {
// Unsigned extend & unsigned compare -> always true.
- Result = Context->getConstantIntTrue();
+ Result = ConstantInt::getTrue(*Context);
}
}
@@ -7275,7 +7270,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
"ICmp should be folded!");
if (Constant *CI = dyn_cast<Constant>(Result))
- return ReplaceInstUsesWith(ICI, Context->getConstantExprNot(CI));
+ return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
return BinaryOperator::CreateNot(Result);
}
@@ -7317,21 +7312,21 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
// shl X, 0 == X and shr X, 0 == X
// shl 0, X == 0 and shr 0, X == 0
- if (Op1 == Context->getNullValue(Op1->getType()) ||
- Op0 == Context->getNullValue(Op0->getType()))
+ if (Op1 == Constant::getNullValue(Op1->getType()) ||
+ Op0 == Constant::getNullValue(Op0->getType()))
return ReplaceInstUsesWith(I, Op0);
if (isa<UndefValue>(Op0)) {
if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
return ReplaceInstUsesWith(I, Op0);
else // undef << X -> 0, undef >>u X -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (isa<UndefValue>(Op1)) {
if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
return ReplaceInstUsesWith(I, Op0);
else // X << undef, X >>u undef -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
// See if we can fold away this shift.
@@ -7363,9 +7358,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
//
if (Op1->uge(TypeBits)) {
if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Context->getNullValue(Op0->getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
else {
- I.setOperand(1, Context->getConstantInt(I.getType(), TypeBits-1));
+ I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
return &I;
}
}
@@ -7375,7 +7370,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (BO->getOpcode() == Instruction::Mul && isLeftShift)
if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::CreateMul(BO->getOperand(0),
- Context->getConstantExprShl(BOOp, Op1));
+ ConstantExpr::getShl(BOOp, Op1));
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
@@ -7396,10 +7391,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
isa<ConstantInt>(TrOp->getOperand(1))) {
// Okay, we'll do this xform. Make the shift of shift.
- Constant *ShAmt = Context->getConstantExprZExt(Op1, TrOp->getType());
- Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
- I.getName());
- InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
+ Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
+ // (shift2 (shift1 & 0x00FF), c2)
+ Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
// For logical shifts, the truncation has the effect of making the high
// part of the register be zeros. Emulate this by inserting an AND to
@@ -7420,10 +7414,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
MaskV = MaskV.lshr(Op1->getZExtValue());
}
- Instruction *And =
- BinaryOperator::CreateAnd(NSh, Context->getConstantInt(MaskV),
- TI->getName());
- InsertNewInstBefore(And, I); // shift1 & 0x00FF
+ // shift1 & 0x00FF
+ Value *And = Builder->CreateAnd(NSh, ConstantInt::get(*Context, MaskV),
+ TI->getName());
// Return the value truncated to the interesting size.
return new TruncInst(And, I.getType());
@@ -7444,17 +7437,15 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// These operators commute.
// Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
- match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(0), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *X =
- BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
- Op0BO->getOperand(1)->getName());
- InsertNewInstBefore(X, I); // (X + (Y << C))
+ match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
+ Op0BO->getOperand(1)->getName());
uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
@@ -7465,16 +7456,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
m_ConstantInt(CC))) &&
cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(0), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *XM =
- BinaryOperator::CreateAnd(V1,
- Context->getConstantExprShl(CC, Op1),
- V1->getName()+".mask");
- InsertNewInstBefore(XM, I); // X & (CC << C)
-
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(0), Op1,
+ Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
}
}
@@ -7483,17 +7470,15 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
case Instruction::Sub: {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(1), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *X =
- BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
- Op0BO->getOperand(0)->getName());
- InsertNewInstBefore(X, I); // (X + (Y << C))
+ match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
+ Op0BO->getOperand(0)->getName());
uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
@@ -7504,15 +7489,11 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
m_ConstantInt(CC))) && V2 == Op1 &&
cast<BinaryOperator>(Op0BO->getOperand(0))
->getOperand(0)->hasOneUse()) {
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(1), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *XM =
- BinaryOperator::CreateAnd(V1,
- Context->getConstantExprShl(CC, Op1),
- V1->getName()+".mask");
- InsertNewInstBefore(XM, I); // X & (CC << C)
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
}
@@ -7552,11 +7533,10 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
if (isValid) {
- Constant *NewRHS = Context->getConstantExpr(I.getOpcode(), Op0C, Op1);
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
- Instruction *NewShift =
- BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
- InsertNewInstBefore(NewShift, I);
+ Value *NewShift =
+ Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
NewShift->takeName(Op0BO);
return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
@@ -7589,31 +7569,33 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// saturates.
if (AmtSum >= TypeBits) {
if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
}
return BinaryOperator::Create(I.getOpcode(), X,
- Context->getConstantInt(Ty, AmtSum));
- } else if (ShiftOp->getOpcode() == Instruction::LShr &&
- I.getOpcode() == Instruction::AShr) {
+ ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (ShiftOp->getOpcode() == Instruction::LShr &&
+ I.getOpcode() == Instruction::AShr) {
if (AmtSum >= TypeBits)
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
- return BinaryOperator::CreateLShr(X, Context->getConstantInt(Ty, AmtSum));
- } else if (ShiftOp->getOpcode() == Instruction::AShr &&
- I.getOpcode() == Instruction::LShr) {
+ return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (ShiftOp->getOpcode() == Instruction::AShr &&
+ I.getOpcode() == Instruction::LShr) {
// ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
if (AmtSum >= TypeBits)
AmtSum = TypeBits-1;
- Instruction *Shift =
- BinaryOperator::CreateAShr(X, Context->getConstantInt(Ty, AmtSum));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift, ConstantInt::get(*Context, Mask));
}
// Okay, if we get here, one shift must be left, and the other shift must be
@@ -7622,12 +7604,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// If we have ((X >>? C) << C), turn this into X & (-1 << C).
if (I.getOpcode() == Instruction::Shl) {
APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
}
// If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
if (I.getOpcode() == Instruction::LShr) {
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
}
// We can simplify ((X << C) >>s C) into a trunc + sext.
// NOTE: we could do this for any C, but that would make 'unusual' integer
@@ -7641,15 +7623,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
case 32 :
case 64 :
case 128:
- SExtType = Context->getIntegerType(Ty->getBitWidth() - ShiftAmt1);
+ SExtType = IntegerType::get(*Context, Ty->getBitWidth() - ShiftAmt1);
break;
default: break;
}
- if (SExtType) {
- Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
- InsertNewInstBefore(NewTrunc, I);
- return new SExtInst(NewTrunc, Ty);
- }
+ if (SExtType)
+ return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty);
// Otherwise, we can't handle it yet.
} else if (ShiftAmt1 < ShiftAmt2) {
uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
@@ -7658,23 +7637,21 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (I.getOpcode() == Instruction::Shl) {
assert(ShiftOp->getOpcode() == Instruction::LShr ||
ShiftOp->getOpcode() == Instruction::AShr);
- Instruction *Shift =
- BinaryOperator::CreateShl(X, Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
if (I.getOpcode() == Instruction::LShr) {
assert(ShiftOp->getOpcode() == Instruction::Shl);
- Instruction *Shift =
- BinaryOperator::CreateLShr(X, Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
@@ -7686,24 +7663,22 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (I.getOpcode() == Instruction::Shl) {
assert(ShiftOp->getOpcode() == Instruction::LShr ||
ShiftOp->getOpcode() == Instruction::AShr);
- Instruction *Shift =
- BinaryOperator::Create(ShiftOp->getOpcode(), X,
- Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
+ ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
if (I.getOpcode() == Instruction::LShr) {
assert(ShiftOp->getOpcode() == Instruction::Shl);
- Instruction *Shift =
- BinaryOperator::CreateShl(X, Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
@@ -7718,12 +7693,13 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
/// X*Scale+Offset.
///
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
- int &Offset, LLVMContext* Context) {
- assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
+ int &Offset, LLVMContext *Context) {
+ assert(Val->getType() == Type::getInt32Ty(*Context) &&
+ "Unexpected allocation size type!");
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Offset = CI->getZExtValue();
Scale = 0;
- return Context->getConstantInt(Type::Int32Ty, 0);
+ return ConstantInt::get(Type::getInt32Ty(*Context), 0);
} else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (I->getOpcode() == Instruction::Shl) {
@@ -7763,6 +7739,9 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocationInst &AI) {
const PointerType *PTy = cast<PointerType>(CI.getType());
+ BuilderTy AllocaBuilder(*Builder);
+ AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
+
// Remove any uses of AI that are dead.
assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
@@ -7773,11 +7752,14 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
++UI; // If this instruction uses AI more than once, don't break UI.
++NumDeadInst;
- DOUT << "IC: DCE: " << *User;
+ DEBUG(errs() << "IC: DCE: " << *User << '\n');
EraseInstFromFunction(*User);
}
}
-
+
+ // This requires TargetData to get the alloca alignment and size information.
+ if (!TD) return 0;
+
// Get the type really allocated and the type casted to.
const Type *AllocElTy = AI.getAllocatedType();
const Type *CastElTy = PTy->getElementType();
@@ -7816,30 +7798,22 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
if (Scale == 1) {
Amt = NumElements;
} else {
- // If the allocation size is constant, form a constant mul expression
- Amt = Context->getConstantInt(Type::Int32Ty, Scale);
- if (isa<ConstantInt>(NumElements))
- Amt = Context->getConstantExprMul(cast<ConstantInt>(NumElements),
- cast<ConstantInt>(Amt));
- // otherwise multiply the amount and the number of elements
- else {
- Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
- Amt = InsertNewInstBefore(Tmp, AI);
- }
+ Amt = ConstantInt::get(Type::getInt32Ty(*Context), Scale);
+ // Insert before the alloca, not before the cast.
+ Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
}
if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
- Value *Off = Context->getConstantInt(Type::Int32Ty, Offset, true);
- Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
- Amt = InsertNewInstBefore(Tmp, AI);
+ Value *Off = ConstantInt::get(Type::getInt32Ty(*Context), Offset, true);
+ Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
}
AllocationInst *New;
if (isa<MallocInst>(AI))
- New = new MallocInst(CastElTy, Amt, AI.getAlignment());
+ New = AllocaBuilder.CreateMalloc(CastElTy, Amt);
else
- New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
- InsertNewInstBefore(New, AI);
+ New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
+ New->setAlignment(AI.getAlignment());
New->takeName(&AI);
// If the allocation has one real use plus a dbg.declare, just remove the
@@ -7851,11 +7825,9 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
else if (!AI.hasOneUse()) {
- AddUsesToWorkList(AI);
// New is the allocation instruction, pointer typed. AI is the original
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
- CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
- InsertNewInstBefore(NewCast, AI);
+ Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
AI.replaceAllUsesWith(NewCast);
}
return ReplaceInstUsesWith(CI, New);
@@ -7923,6 +7895,23 @@ bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
NumCastsRemoved);
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // UDiv and URem can be truncated if all the truncated bits are zero.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (BitWidth < OrigBitWidth) {
+ APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
+ if (MaskedValueIsZero(I->getOperand(0), Mask) &&
+ MaskedValueIsZero(I->getOperand(1), Mask)) {
+ return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
+ NumCastsRemoved) &&
+ CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
+ NumCastsRemoved);
+ }
+ }
+ break;
+ }
case Instruction::Shl:
// If we are truncating the result of this SHL, and if it's a shift of a
// constant amount, we can always perform a SHL in a smaller type.
@@ -7993,7 +7982,7 @@ bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V))
- return Context->getConstantExprIntegerCast(C, Ty,
+ return ConstantExpr::getIntegerCast(C, Ty,
isSigned /*Sext or ZExt*/);
// Otherwise, it must be an instruction.
@@ -8009,7 +7998,9 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
case Instruction::Xor:
case Instruction::AShr:
case Instruction::LShr:
- case Instruction::Shl: {
+ case Instruction::Shl:
+ case Instruction::UDiv:
+ case Instruction::URem: {
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
@@ -8046,7 +8037,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
}
default:
// TODO: Can handle more cases here.
- assert(0 && "Unreachable!");
+ llvm_unreachable("Unreachable!");
break;
}
@@ -8089,13 +8080,14 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices,
const TargetData *TD,
- LLVMContext* Context) {
+ LLVMContext *Context) {
+ if (!TD) return 0;
if (!Ty->isSized()) return 0;
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- const Type *IntPtrTy = TD->getIntPtrType();
+ const Type *IntPtrTy = TD->getIntPtrType(*Context);
int64_t FirstIdx = 0;
if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
@@ -8110,7 +8102,7 @@ static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
}
- NewIndices.push_back(Context->getConstantInt(IntPtrTy, FirstIdx));
+ NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
@@ -8124,14 +8116,14 @@ static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
"Offset must stay within the indexed type");
unsigned Elt = SL->getElementContainingOffset(Offset);
- NewIndices.push_back(Context->getConstantInt(Type::Int32Ty, Elt));
+ NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Elt));
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
- NewIndices.push_back(Context->getConstantInt(IntPtrTy,Offset/EltSize));
+ NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Offset %= EltSize;
Ty = AT->getElementType();
} else {
@@ -8154,7 +8146,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
- AddToWorkList(GEP);
+ Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
@@ -8163,7 +8155,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
- if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
+ if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
if (GEP->hasAllConstantIndices()) {
// We are guaranteed to get a constant from EmitGEPOffset.
ConstantInt *OffsetV =
@@ -8179,10 +8171,10 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
- Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
- NewIndices.begin(),
- NewIndices.end(), "");
- InsertNewInstBefore(NGEP, CI);
+ Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(OrigBase,
+ NewIndices.begin(), NewIndices.end()) :
+ Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
NGEP->takeName(GEP);
if (isa<BitCastInst>(CI))
@@ -8214,10 +8206,8 @@ static bool isSafeIntegerType(const Type *Ty) {
}
}
-/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
-/// integer types. This function implements the common transforms for all those
-/// cases.
-/// @brief Implement the transforms common to CastInst with integer operands
+/// commonIntCastTransforms - This function implements the common transforms
+/// for trunc, zext, and sext.
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
@@ -8241,11 +8231,10 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
// Attempt to propagate the cast into the instruction for int->int casts.
int NumCastsRemoved = 0;
- if (!isa<BitCastInst>(CI) &&
- // Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- (isSafeIntegerType(DestTy->getScalarType()) ||
+ // Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((isSafeIntegerType(DestTy->getScalarType()) ||
!isSafeIntegerType(SrcI->getType()->getScalarType())) &&
CanEvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode(), NumCastsRemoved)) {
@@ -8261,7 +8250,7 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
default:
// All the others use floating point so we shouldn't actually
// get here because of the check above.
- assert(0 && "Unknown cast type");
+ llvm_unreachable("Unknown cast type");
case Instruction::Trunc:
DoXForm = true;
break;
@@ -8307,8 +8296,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
}
if (DoXForm) {
- DOUT << "ICE: EvaluateInDifferentType converting expression type to avoid"
- << " cast: " << CI;
+ DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid cast: " << CI);
Value *Res = EvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode() == Instruction::SExt);
if (JustReplace)
@@ -8317,9 +8306,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
assert(Res->getType() == DestTy);
switch (CI.getOpcode()) {
- default: assert(0 && "Unknown cast type!");
+ default: llvm_unreachable("Unknown cast type!");
case Instruction::Trunc:
- case Instruction::BitCast:
// Just replace this cast with the result.
return ReplaceInstUsesWith(CI, Res);
case Instruction::ZExt: {
@@ -8332,8 +8320,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
- Constant *C = Context->getConstantInt(APInt::getLowBitsSet(DestBitSize,
- SrcBitSize));
+ Constant *C = ConstantInt::get(*Context,
+ APInt::getLowBitsSet(DestBitSize, SrcBitSize));
return BinaryOperator::CreateAnd(Res, C);
}
case Instruction::SExt: {
@@ -8344,9 +8332,7 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
return ReplaceInstUsesWith(CI, Res);
// We need to emit a cast to truncate, then a cast to sext.
- return CastInst::Create(Instruction::SExt,
- InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
- CI), DestTy);
+ return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
}
}
}
@@ -8362,16 +8348,12 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
case Instruction::Or:
case Instruction::Xor:
// If we are discarding information, rewrite.
- if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
- // Don't insert two casts if they cannot be eliminated. We allow
- // two casts to be inserted if the sizes are the same. This could
- // only be converting signedness, which is a noop.
- if (DestBitSize == SrcBitSize ||
- !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
+ if (DestBitSize < SrcBitSize && DestBitSize != 1) {
+ // Don't insert two casts unless at least one can be eliminated.
+ if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
!ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
- Instruction::CastOps opcode = CI.getOpcode();
- Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
- Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
+ Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
+ Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::Create(
cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
}
@@ -8380,62 +8362,25 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
// cast (xor bool X, true) to int --> xor (cast bool X to int), 1
if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
SrcI->getOpcode() == Instruction::Xor &&
- Op1 == Context->getConstantIntTrue() &&
+ Op1 == ConstantInt::getTrue(*Context) &&
(!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
- Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
+ Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
return BinaryOperator::CreateXor(New,
- Context->getConstantInt(CI.getType(), 1));
- }
- break;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- // If we are just changing the sign, rewrite.
- if (DestBitSize == SrcBitSize) {
- // Don't insert two casts if they cannot be eliminated. We allow
- // two casts to be inserted if the sizes are the same. This could
- // only be converting signedness, which is a noop.
- if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
- !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
- Value *Op0c = InsertCastBefore(Instruction::BitCast,
- Op0, DestTy, *SrcI);
- Value *Op1c = InsertCastBefore(Instruction::BitCast,
- Op1, DestTy, *SrcI);
- return BinaryOperator::Create(
- cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
- }
+ ConstantInt::get(CI.getType(), 1));
}
break;
- case Instruction::Shl:
- // Allow changing the sign of the source operand. Do not allow
- // changing the size of the shift, UNLESS the shift amount is a
- // constant. We must not change variable sized shifts to a smaller
- // size, because it is undefined to shift more bits out than exist
- // in the value.
- if (DestBitSize == SrcBitSize ||
- (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
- Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
- Instruction::BitCast : Instruction::Trunc);
- Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
- Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
+ case Instruction::Shl: {
+ // Canonicalize trunc inside shl, if we can.
+ ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
+ if (CI && DestBitSize < SrcBitSize &&
+ CI->getLimitedValue(DestBitSize) < DestBitSize) {
+ Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
+ Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::CreateShl(Op0c, Op1c);
}
break;
- case Instruction::AShr:
- // If this is a signed shr, and if all bits shifted in are about to be
- // truncated off, turn it into an unsigned shr to allow greater
- // simplifications.
- if (DestBitSize < SrcBitSize &&
- isa<ConstantInt>(Op1)) {
- uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
- if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
- // Insert the new logical shift right.
- return BinaryOperator::CreateLShr(Op0, Op1);
- }
- }
- break;
+ }
}
return 0;
}
@@ -8450,11 +8395,10 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
- if (DestBitWidth == 1 &&
- isa<VectorType>(Ty) == isa<VectorType>(Src->getType())) {
- Constant *One = Context->getConstantInt(Src->getType(), 1);
- Src = InsertNewInstBefore(BinaryOperator::CreateAnd(Src, One, "tmp"), CI);
- Value *Zero = Context->getNullValue(Src->getType());
+ if (DestBitWidth == 1) {
+ Constant *One = ConstantInt::get(Src->getType(), 1);
+ Src = Builder->CreateAnd(Src, One, "tmp");
+ Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
@@ -8469,12 +8413,12 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
if (MaskedValueIsZero(ShiftOp, Mask)) {
if (ShAmt >= DestBitWidth) // All zeros.
- return ReplaceInstUsesWith(CI, Context->getNullValue(Ty));
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
// Okay, we can shrink this. Truncate the input, then return a new
// shift.
- Value *V1 = InsertCastBefore(Instruction::Trunc, ShiftOp, Ty, CI);
- Value *V2 = Context->getConstantExprTrunc(ShAmtV, Ty);
+ Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
+ Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
return BinaryOperator::CreateLShr(V1, V2);
}
}
@@ -8499,20 +8443,15 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
if (!DoXform) return ICI;
Value *In = ICI->getOperand(0);
- Value *Sh = Context->getConstantInt(In->getType(),
+ Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
- In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
- In->getName()+".lobit"),
- CI);
+ In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
if (In->getType() != CI.getType())
- In = CastInst::CreateIntegerCast(In, CI.getType(),
- false/*ZExt*/, "tmp", &CI);
+ In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
- Constant *One = Context->getConstantInt(In->getType(), 1);
- In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
- In->getName()+".not"),
- CI);
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, In->getName()+".not");
}
return ReplaceInstUsesWith(CI, In);
@@ -8545,8 +8484,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
- Constant *Res = Context->getConstantInt(Type::Int1Ty, isNE);
- Res = Context->getConstantExprZExt(Res, CI.getType());
+ Constant *Res = ConstantInt::get(Type::getInt1Ty(*Context), isNE);
+ Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
@@ -8555,15 +8494,13 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
if (ShiftAmt) {
// Perform a logical shr by shiftamt.
// Insert the shift to put the result in the low bit.
- In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
- Context->getConstantInt(In->getType(), ShiftAmt),
- In->getName()+".lobit"), CI);
+ In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
+ In->getName()+".lobit");
}
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
- Constant *One = Context->getConstantInt(In->getType(), 1);
- In = BinaryOperator::CreateXor(In, One, "tmp");
- InsertNewInstBefore(cast<Instruction>(In), CI);
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, "tmp");
}
if (CI.getType() == In->getType())
@@ -8600,21 +8537,21 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// SrcSize > DstSize: trunc(a) & mask
if (SrcSize < DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- Constant *AndConst = Context->getConstantInt(A->getType(), AndValue);
- Instruction *And =
- BinaryOperator::CreateAnd(A, AndConst, CSrc->getName()+".mask");
- InsertNewInstBefore(And, CI);
+ Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
+ Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
- } else if (SrcSize == DstSize) {
+ }
+
+ if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- return BinaryOperator::CreateAnd(A, Context->getConstantInt(A->getType(),
+ return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
AndValue));
- } else if (SrcSize > DstSize) {
- Instruction *Trunc = new TruncInst(A, CI.getType(), "tmp");
- InsertNewInstBefore(Trunc, CI);
+ }
+ if (SrcSize > DstSize) {
+ Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
return BinaryOperator::CreateAnd(Trunc,
- Context->getConstantInt(Trunc->getType(),
+ ConstantInt::get(Trunc->getType(),
AndValue));
}
}
@@ -8631,8 +8568,8 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
(transformZExtICmp(LHS, CI, false) ||
transformZExtICmp(RHS, CI, false))) {
- Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
- Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
+ Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
+ Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
}
}
@@ -8645,7 +8582,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (TI0->getType() == CI.getType())
return
BinaryOperator::CreateAnd(TI0,
- Context->getConstantExprZExt(C, CI.getType()));
+ ConstantExpr::getZExt(C, CI.getType()));
}
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
@@ -8657,9 +8594,8 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType()) {
- Constant *ZC = Context->getConstantExprZExt(C, CI.getType());
- Instruction *NewAnd = BinaryOperator::CreateAnd(TI0, ZC, "tmp");
- InsertNewInstBefore(NewAnd, *And);
+ Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+ Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
return BinaryOperator::CreateXor(NewAnd, ZC);
}
}
@@ -8674,14 +8610,14 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Value *Src = CI.getOperand(0);
// Canonicalize sign-extend from i1 to a select.
- if (Src->getType() == Type::Int1Ty)
+ if (Src->getType() == Type::getInt1Ty(*Context))
return SelectInst::Create(Src,
- Context->getConstantIntAllOnesValue(CI.getType()),
- Context->getNullValue(CI.getType()));
+ Constant::getAllOnesValue(CI.getType()),
+ Constant::getNullValue(CI.getType()));
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
- if (getOpcode(Src) == Instruction::Trunc) {
+ if (Operator::getOpcode(Src) == Instruction::Trunc) {
Value *Op = cast<User>(Src)->getOperand(0);
unsigned OpBits = Op->getType()->getScalarSizeInBits();
unsigned MidBits = Src->getType()->getScalarSizeInBits();
@@ -8729,9 +8665,8 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
unsigned MidSize = Src->getType()->getScalarSizeInBits();
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
- Constant *ShAmtV = Context->getConstantInt(CI.getType(), ShAmt);
- I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
- CI.getName()), CI);
+ Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
+ I = Builder->CreateShl(I, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(I, ShAmtV);
}
}
@@ -8742,18 +8677,18 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
/// in the specified FP type without changing its value.
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem,
- LLVMContext* Context) {
+ LLVMContext *Context) {
bool losesInfo;
APFloat F = CFP->getValueAPF();
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
if (!losesInfo)
- return Context->getConstantFP(F);
+ return ConstantFP::get(*Context, F);
return 0;
}
/// LookThroughFPExtensions - If this is an fp extension instruction, look
/// through it until we get the source value.
-static Value *LookThroughFPExtensions(Value *V, LLVMContext* Context) {
+static Value *LookThroughFPExtensions(Value *V, LLVMContext *Context) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0), Context);
@@ -8762,12 +8697,12 @@ static Value *LookThroughFPExtensions(Value *V, LLVMContext* Context) {
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType() == Type::PPC_FP128Ty)
+ if (CFP->getType() == Type::getPPC_FP128Ty(*Context))
return V; // No constant folding of this.
// See if the value can be truncated to float and then reextended.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle, Context))
return V;
- if (CFP->getType() == Type::DoubleTy)
+ if (CFP->getType() == Type::getDoubleTy(*Context))
return V; // Won't shrink.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble, Context))
return V;
@@ -8804,10 +8739,8 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// the cast, do this xform.
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
- LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
- CI.getType(), CI);
- RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
- CI.getType(), CI);
+ LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
+ RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
@@ -8875,10 +8808,11 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// trunc to be exposed to other transforms. Don't do this for extending
// ptrtoint's, because we don't know if the target sign or zero extends its
// pointers.
- if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
- Value *P = InsertNewInstBefore(new PtrToIntInst(CI.getOperand(0),
- TD->getIntPtrType(),
- "tmp"), CI);
+ if (TD &&
+ CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
+ Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
+ TD->getIntPtrType(CI.getContext()),
+ "tmp");
return new TruncInst(P, CI.getType());
}
@@ -8891,65 +8825,16 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// allows the trunc to be exposed to other transforms. Don't do this for
// extending inttoptr's, because we don't know if the target sign or zero
// extends to pointers.
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
+ if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
TD->getPointerSizeInBits()) {
- Value *P = InsertNewInstBefore(new TruncInst(CI.getOperand(0),
- TD->getIntPtrType(),
- "tmp"), CI);
+ Value *P = Builder->CreateTrunc(CI.getOperand(0),
+ TD->getIntPtrType(CI.getContext()), "tmp");
return new IntToPtrInst(P, CI.getType());
}
if (Instruction *I = commonCastTransforms(CI))
return I;
-
- const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
- if (!DestPointee->isSized()) return 0;
-
- // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
- ConstantInt *Cst;
- Value *X;
- if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
- m_ConstantInt(Cst)))) {
- // If the source and destination operands have the same type, see if this
- // is a single-index GEP.
- if (X->getType() == CI.getType()) {
- // Get the size of the pointee type.
- uint64_t Size = TD->getTypeAllocSize(DestPointee);
-
- // Convert the constant to intptr type.
- APInt Offset = Cst->getValue();
- Offset.sextOrTrunc(TD->getPointerSizeInBits());
-
- // If Offset is evenly divisible by Size, we can do this xform.
- if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
- Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
- return GetElementPtrInst::Create(X, Context->getConstantInt(Offset));
- }
- }
- // TODO: Could handle other cases, e.g. where add is indexing into field of
- // struct etc.
- } else if (CI.getOperand(0)->hasOneUse() &&
- match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
- // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
- // "inttoptr+GEP" instead of "add+intptr".
-
- // Get the size of the pointee type.
- uint64_t Size = TD->getTypeAllocSize(DestPointee);
-
- // Convert the constant to intptr type.
- APInt Offset = Cst->getValue();
- Offset.sextOrTrunc(TD->getPointerSizeInBits());
-
- // If Offset is evenly divisible by Size, we can do this xform.
- if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
- Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
-
- Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
- "tmp"), CI);
- return GetElementPtrInst::Create(P,
- Context->getConstantInt(Offset), "tmp");
- }
- }
+
return 0;
}
@@ -8960,10 +8845,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
- if (SrcTy->isInteger() && DestTy->isInteger()) {
- if (Instruction *Result = commonIntCastTransforms(CI))
- return Result;
- } else if (isa<PointerType>(SrcTy)) {
+ if (isa<PointerType>(SrcTy)) {
if (Instruction *I = commonPointerCastTransforms(CI))
return I;
} else {
@@ -8987,8 +8869,10 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
- // If we are casting a malloc or alloca to a pointer to a type of the same
+ // If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
+ // There is no need to modify malloc calls because it is their bitcast that
+ // needs to be cleaned up.
if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
@@ -8996,7 +8880,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
- Constant *ZeroUInt = Context->getNullValue(Type::Int32Ty);
+ Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(*Context));
unsigned NumZeros = 0;
while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
@@ -9008,8 +8892,30 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
- return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
- ((Instruction*) NULL));
+ return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "",
+ ((Instruction*) NULL));
+ }
+ }
+
+ if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+ if (DestVTy->getNumElements() == 1) {
+ if (!isa<VectorType>(SrcTy)) {
+ Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
+ return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
+ Constant::getNullValue(Type::getInt32Ty(*Context)));
+ }
+ // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
+ }
+ }
+
+ if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
+ if (SrcVTy->getNumElements() == 1) {
+ if (!isa<VectorType>(DestTy)) {
+ Value *Elem =
+ Builder->CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(*Context)));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
}
}
@@ -9030,10 +8936,8 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Tmp->getOperand(0)->getType() == DestTy) ||
((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = InsertCastBefore(Instruction::BitCast,
- SVI->getOperand(0), DestTy, CI);
- Value *RHS = InsertCastBefore(Instruction::BitCast,
- SVI->getOperand(1), DestTy, CI);
+ Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
+ Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
// Return a new shuffle vector. Use the same element ID's, as we
// know the vector types match #elts.
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
@@ -9076,9 +8980,9 @@ static unsigned GetSelectFoldableOperands(Instruction *I) {
/// GetSelectFoldableConstant - For the same transformation as the previous
/// function, return the identity constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I,
- LLVMContext* Context) {
+ LLVMContext *Context) {
switch (I->getOpcode()) {
- default: assert(0 && "This cannot happen!"); abort();
+ default: llvm_unreachable("This cannot happen!");
case Instruction::Add:
case Instruction::Sub:
case Instruction::Or:
@@ -9086,11 +8990,11 @@ static Constant *GetSelectFoldableConstant(Instruction *I,
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
- return Context->getNullValue(I->getType());
+ return Constant::getNullValue(I->getType());
case Instruction::And:
- return Context->getAllOnesValue(I->getType());
+ return Constant::getAllOnesValue(I->getType());
case Instruction::Mul:
- return Context->getConstantInt(I->getType(), 1);
+ return ConstantInt::get(I->getType(), 1);
}
}
@@ -9110,7 +9014,7 @@ Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
// Fold this by inserting a select from the input values.
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
- FI->getOperand(0), SI.getName()+".v");
+ FI->getOperand(0), SI.getName()+".v");
InsertNewInstBefore(NewSI, SI);
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
TI->getType());
@@ -9160,7 +9064,7 @@ Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
else
return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
}
- assert(0 && "Shouldn't get here");
+ llvm_unreachable("Shouldn't get here");
return 0;
}
@@ -9202,7 +9106,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
NewSel->takeName(TVI);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
- assert(0 && "Unknown instruction!!");
+ llvm_unreachable("Unknown instruction!!");
}
}
}
@@ -9231,7 +9135,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
NewSel->takeName(FVI);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
- assert(0 && "Unknown instruction!!");
+ llvm_unreachable("Unknown instruction!!");
}
}
}
@@ -9266,7 +9170,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
return ReplaceInstUsesWith(SI, FalseVal);
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
- Constant *AdjustedRHS = SubOne(CI, Context);
+ Constant *AdjustedRHS = SubOne(CI);
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
Pred = ICmpInst::getSwappedPredicate(Pred);
@@ -9286,7 +9190,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
return ReplaceInstUsesWith(SI, FalseVal);
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
- Constant *AdjustedRHS = AddOne(CI, Context);
+ Constant *AdjustedRHS = AddOne(CI);
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
Pred = ICmpInst::getSwappedPredicate(Pred);
@@ -9323,10 +9227,10 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
(Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Value *In = ICI->getOperand(0);
- Value *Sh = Context->getConstantInt(In->getType(),
+ Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
- In->getName()+".lobit"),
+ In->getName()+".lobit"),
*ICI);
if (In->getType() != SI.getType())
In = CastInst::CreateIntegerCast(In, SI.getType(),
@@ -9365,6 +9269,14 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
return Changed ? &SI : 0;
}
+/// isDefinedInBB - Return true if the value is an instruction defined in the
+/// specified basicblock.
+static bool isDefinedInBB(const Value *V, const BasicBlock *BB) {
+ const Instruction *I = dyn_cast<Instruction>(V);
+ return I != 0 && I->getParent() == BB;
+}
+
+
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *CondVal = SI.getCondition();
Value *TrueVal = SI.getTrueValue();
@@ -9390,7 +9302,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
return ReplaceInstUsesWith(SI, FalseVal);
}
- if (SI.getType() == Type::Int1Ty) {
+ if (SI.getType() == Type::getInt1Ty(*Context)) {
if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
if (C->getZExtValue()) {
// Change: A = select B, true, C --> A = or B, C
@@ -9438,26 +9350,6 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
-
- // (x <s 0) ? -1 : 0 -> ashr x, 31
- if (TrueValC->isAllOnesValue() && FalseValC->isZero())
- if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
- if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
- // The comparison constant and the result are not neccessarily the
- // same width. Make an all-ones value by inserting a AShr.
- Value *X = IC->getOperand(0);
- uint32_t Bits = X->getType()->getScalarSizeInBits();
- Constant *ShAmt = Context->getConstantInt(X->getType(), Bits-1);
- Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
- ShAmt, "ones");
- InsertNewInstBefore(SRA, SI);
-
- // Then cast to the appropriate width.
- return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
- }
- }
-
-
// If one of the constants is zero (we know they can't both be) and we
// have an icmp instruction with zero, and we have an 'and' with the
// non-constant value, eliminate this whole mess. This corresponds to
@@ -9568,10 +9460,11 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
// select C, (add X, Y), (sub X, Z)
Value *NegVal; // Compute -Z
if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
- NegVal = Context->getConstantExprNeg(C);
+ NegVal = ConstantExpr::getNeg(C);
} else {
NegVal = InsertNewInstBefore(
- BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
+ BinaryOperator::CreateNeg(SubOp->getOperand(1),
+ "tmp"), SI);
}
Value *NewTrueOp = OtherAddOp;
@@ -9595,6 +9488,17 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
return FoldI;
}
+ // See if we can fold the select into a phi node. The true/false values have
+ // to be live in the predecessor blocks. If they are instructions in SI's
+ // block, we can't map to the predecessor.
+ if (isa<PHINode>(SI.getCondition()) &&
+ (!isDefinedInBB(SI.getTrueValue(), SI.getParent()) ||
+ isa<PHINode>(SI.getTrueValue())) &&
+ (!isDefinedInBB(SI.getFalseValue(), SI.getParent()) ||
+ isa<PHINode>(SI.getFalseValue())))
+ if (Instruction *NV = FoldOpIntoPhi(SI))
+ return NV;
+
if (BinaryOperator::isNot(CondVal)) {
SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
SI.setOperand(1, FalseVal);
@@ -9617,7 +9521,7 @@ static unsigned EnforceKnownAlignment(Value *V,
User *U = dyn_cast<User>(V);
if (!U) return Align;
- switch (getOpcode(U)) {
+ switch (Operator::getOpcode(U)) {
default: break;
case Instruction::BitCast:
return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
@@ -9650,16 +9554,13 @@ static unsigned EnforceKnownAlignment(Value *V,
Align = PrefAlign;
}
}
- } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
- // If there is a requested alignment and if this is an alloca, round up. We
- // don't do this for malloc, because some systems can't respect the request.
- if (isa<AllocaInst>(AI)) {
- if (AI->getAlignment() >= PrefAlign)
- Align = AI->getAlignment();
- else {
- AI->setAlignment(PrefAlign);
- Align = PrefAlign;
- }
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ // If there is a requested alignment and if this is an alloca, round up.
+ if (AI->getAlignment() >= PrefAlign)
+ Align = AI->getAlignment();
+ else {
+ AI->setAlignment(PrefAlign);
+ Align = PrefAlign;
}
}
@@ -9694,7 +9595,8 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned CopyAlign = MI->getAlignment();
if (CopyAlign < MinAlign) {
- MI->setAlignment(MinAlign);
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ MinAlign, false));
return MI;
}
@@ -9715,7 +9617,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// Use an integer load+store unless we can find something better.
Type *NewPtrTy =
- Context->getPointerTypeUnqual(Context->getIntegerType(Size<<3));
+ PointerType::getUnqual(IntegerType::get(*Context, Size<<3));
// Memcpy forces the use of i8* for the source and destination. That means
// that if you're using memcpy to move one double around, you'll get a cast
@@ -9725,7 +9627,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// integer datatype.
if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
- if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+ if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
while (!SrcETy->isSingleValueType()) {
@@ -9744,7 +9646,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
}
if (SrcETy->isSingleValueType())
- NewPtrTy = Context->getPointerTypeUnqual(SrcETy);
+ NewPtrTy = PointerType::getUnqual(SrcETy);
}
}
@@ -9754,28 +9656,29 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
SrcAlign = std::max(SrcAlign, CopyAlign);
DstAlign = std::max(DstAlign, CopyAlign);
- Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
- Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
+ Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
+ Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
InsertNewInstBefore(L, *MI);
InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setOperand(3, Context->getNullValue(MemOpLength->getType()));
+ MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
return MI;
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
if (MI->getAlignment() < Alignment) {
- MI->setAlignment(Alignment);
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ Alignment, false));
return MI;
}
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
- if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
+ if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(*Context))
return 0;
uint64_t Len = LenC->getZExtValue();
Alignment = MI->getAlignment();
@@ -9785,21 +9688,21 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- const Type *ITy = Context->getIntegerType(Len*8); // n=1 -> i8.
+ const Type *ITy = IntegerType::get(*Context, Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
- Dest = InsertBitCastBefore(Dest, Context->getPointerTypeUnqual(ITy), *MI);
+ Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
// Extract the fill value and store.
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
- InsertNewInstBefore(new StoreInst(Context->getConstantInt(ITy, Fill),
+ InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
Dest, false, Alignment), *MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Context->getNullValue(LenC->getType()));
+ MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
}
@@ -9820,8 +9723,6 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return &CI;
}
-
-
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallSite(&CI);
@@ -9891,9 +9792,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Turn PPC lvx -> load if the pointer is known aligned.
// Turn X86 loadups -> load if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
- Value *Ptr = InsertBitCastBefore(II->getOperand(1),
- Context->getPointerTypeUnqual(II->getType()),
- CI);
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
+ PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr);
}
break;
@@ -9902,8 +9802,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Turn stvx -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
const Type *OpPtrTy =
- Context->getPointerTypeUnqual(II->getOperand(1)->getType());
- Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
+ PointerType::getUnqual(II->getOperand(1)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
return new StoreInst(II->getOperand(1), Ptr);
}
break;
@@ -9913,8 +9813,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Turn X86 storeu -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
const Type *OpPtrTy =
- Context->getPointerTypeUnqual(II->getOperand(2)->getType());
- Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
+ PointerType::getUnqual(II->getOperand(2)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
return new StoreInst(II->getOperand(2), Ptr);
}
break;
@@ -9951,9 +9851,9 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (AllEltsOk) {
// Cast the input vectors to byte vectors.
- Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
- Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
- Value *Result = Context->getUndef(Op0->getType());
+ Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
+ Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
+ Value *Result = UndefValue::get(Op0->getType());
// Only extract each element once.
Value *ExtractedElts[32];
@@ -9966,16 +9866,16 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Idx &= 31; // Match the hardware behavior.
if (ExtractedElts[Idx] == 0) {
- Instruction *Elt =
- new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
- InsertNewInstBefore(Elt, CI);
- ExtractedElts[Idx] = Elt;
+ ExtractedElts[Idx] =
+ Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
+ ConstantInt::get(Type::getInt32Ty(*Context), Idx&15, false),
+ "tmp");
}
// Insert this value into the result vector.
- Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
- i, "tmp");
- InsertNewInstBefore(cast<Instruction>(Result), CI);
+ Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
+ ConstantInt::get(Type::getInt32Ty(*Context), i, false),
+ "tmp");
}
return CastInst::Create(Instruction::BitCast, Result, CI.getType());
}
@@ -9999,7 +9899,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
TerminatorInst *TI = II->getParent()->getTerminator();
bool CannotRemove = false;
for (++BI; &*BI != TI; ++BI) {
- if (isa<AllocaInst>(BI)) {
+ if (isa<AllocaInst>(BI) || isMalloc(BI)) {
CannotRemove = true;
break;
}
@@ -10055,7 +9955,7 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
- if (TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+ if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
return false;
return true;
}
@@ -10076,11 +9976,13 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
Instruction *OldCall = CS.getInstruction();
// If the call and callee calling conventions don't match, this call must
// be unreachable, as the call is undefined.
- new StoreInst(Context->getConstantIntTrue(),
- Context->getUndef(Context->getPointerTypeUnqual(Type::Int1Ty)),
+ new StoreInst(ConstantInt::getTrue(*Context),
+ UndefValue::get(Type::getInt1PtrTy(*Context)),
OldCall);
- if (!OldCall->use_empty())
- OldCall->replaceAllUsesWith(Context->getUndef(OldCall->getType()));
+ // If OldCall dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!OldCall->getType()->isVoidTy())
+ OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
return EraseInstFromFunction(*OldCall);
return 0;
@@ -10090,18 +9992,20 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
// This instruction is not reachable, just remove it. We insert a store to
// undef so that we know that this code is not reachable, despite the fact
// that we can't modify the CFG here.
- new StoreInst(Context->getConstantIntTrue(),
- Context->getUndef(Context->getPointerTypeUnqual(Type::Int1Ty)),
+ new StoreInst(ConstantInt::getTrue(*Context),
+ UndefValue::get(Type::getInt1PtrTy(*Context)),
CS.getInstruction());
- if (!CS.getInstruction()->use_empty())
+ // If CS dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!CS.getInstruction()->getType()->isVoidTy())
CS.getInstruction()->
- replaceAllUsesWith(Context->getUndef(CS.getInstruction()->getType()));
+ replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
// Don't break the CFG, insert a dummy cond branch.
BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
- Context->getConstantIntTrue(), II);
+ ConstantInt::getTrue(*Context), II);
}
return EraseInstFromFunction(*CS.getInstruction());
}
@@ -10165,13 +10069,15 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (Callee->isDeclaration() &&
// Conversion is ok if changing from one pointer type to another or from
// a pointer to an integer of the same size.
- !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
- (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
+ !((isa<PointerType>(OldRetTy) || !TD ||
+ OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(NewRetTy) || !TD ||
+ NewRetTy == TD->getIntPtrType(Caller->getContext()))))
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
// void -> non-void is handled specially
- NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
+ !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
return false; // Cannot transform this return value.
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
@@ -10212,8 +10118,10 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Converting from one pointer type to another or between a pointer and an
// integer of the same size is safe even if we do not have a body.
bool isConvertible = ActTy == ParamTy ||
- ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
- (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
+ (TD && ((isa<PointerType>(ParamTy) ||
+ ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(ActTy) ||
+ ActTy == TD->getIntPtrType(Caller->getContext()))));
if (Callee->isDeclaration() && !isConvertible) return false;
}
@@ -10260,8 +10168,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
} else {
Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
false, ParamTy, false);
- CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
- Args.push_back(InsertNewInstBefore(NewCast, *Caller));
+ Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
}
// Add any parameter attributes.
@@ -10270,26 +10177,24 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// If the function takes more arguments than the call was taking, add them
- // now...
+ // now.
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
- Args.push_back(Context->getNullValue(FT->getParamType(i)));
+ Args.push_back(Constant::getNullValue(FT->getParamType(i)));
- // If we are removing arguments to the function, emit an obnoxious warning...
+ // If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
if (!FT->isVarArg()) {
- cerr << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
+ errs() << "WARNING: While resolving call to function '"
+ << Callee->getName() << "' arguments were dropped!\n";
} else {
- // Add all of the arguments in their promoted form to the arg list...
+ // Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
const Type *PTy = getPromotedType((*AI)->getType());
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
- Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
- PTy, false);
- Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
- InsertNewInstBefore(Cast, *Caller);
- Args.push_back(Cast);
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(*AI, false, PTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
} else {
Args.push_back(*AI);
}
@@ -10304,10 +10209,11 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (Attributes FnAttrs = CallerPAL.getFnAttributes())
attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
- if (NewRetTy == Type::VoidTy)
+ if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
- const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
+ const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
+ attrVec.end());
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
@@ -10329,7 +10235,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Insert a cast of the return type as necessary.
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
- if (NV->getType() != Type::VoidTy) {
+ if (!NV->getType()->isVoidTy()) {
Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
OldRetTy, false);
NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
@@ -10343,16 +10249,17 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Otherwise, it's a call, just insert cast right after the call instr
InsertNewInstBefore(NC, *Caller);
}
- AddUsersToWorkList(*Caller);
+ Worklist.AddUsersToWorkList(*Caller);
} else {
- NV = Context->getUndef(Caller->getType());
+ NV = UndefValue::get(Caller->getType());
}
}
- if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
+
+ if (!Caller->use_empty())
Caller->replaceAllUsesWith(NV);
- Caller->eraseFromParent();
- RemoveFromWorkList(Caller);
+
+ EraseInstFromFunction(*Caller);
return true;
}
@@ -10469,14 +10376,14 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
- FunctionType *NewFTy =
- Context->getFunctionType(FTy->getReturnType(), NewTypes,
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
- NestF->getType() == Context->getPointerTypeUnqual(NewFTy) ?
- NestF : Context->getConstantExprBitCast(NestF,
- Context->getPointerTypeUnqual(NewFTy));
- const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
+ NestF->getType() == PointerType::getUnqual(NewFTy) ?
+ NestF : ConstantExpr::getBitCast(NestF,
+ PointerType::getUnqual(NewFTy));
+ const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
+ NewAttrs.end());
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
@@ -10495,10 +10402,10 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
setCallingConv(cast<CallInst>(Caller)->getCallingConv());
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
}
- if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
+ if (!Caller->getType()->isVoidTy())
Caller->replaceAllUsesWith(NewCaller);
Caller->eraseFromParent();
- RemoveFromWorkList(Caller);
+ Worklist.Remove(Caller);
return 0;
}
}
@@ -10508,13 +10415,13 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
// code sort out any function type mismatches.
Constant *NewCallee =
NestF->getType() == PTy ? NestF :
- Context->getConstantExprBitCast(NestF, PTy);
+ ConstantExpr::getBitCast(NestF, PTy);
CS.setCalledFunction(NewCallee);
return CS.getInstruction();
}
-/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
-/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
+/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
+/// and if a/b/c and the add's all have a single use, turn this into a phi
/// and a single binop.
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
@@ -10526,8 +10433,7 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
const Type *LHSType = LHSVal->getType();
const Type *RHSType = RHSVal->getType();
- // Scan to see if all operands are the same opcode, all have one use, and all
- // kill their operands (i.e. the operands have one use).
+ // Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
@@ -10547,6 +10453,13 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
if (I->getOperand(0) != LHSVal) LHSVal = 0;
if (I->getOperand(1) != RHSVal) RHSVal = 0;
}
+
+ // If both LHS and RHS would need a PHI, don't do this transformation,
+ // because it would increase the number of PHIs entering the block,
+ // which leads to higher register pressure. This is especially
+ // bad when the PHIs are in the header of a loop.
+ if (!LHSVal && !RHSVal)
+ return 0;
// Otherwise, this is safe to transform!
@@ -10589,8 +10502,8 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
CmpInst *CIOp = cast<CmpInst>(FirstInst);
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
- RHSVal);
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ LHSVal, RHSVal);
}
Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
@@ -10601,9 +10514,13 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
// This is true if all GEP bases are allocas and if all indices into them are
// constants.
bool AllBasePointersAreAllocas = true;
+
+ // We don't want to replace this phi if the replacement would require
+ // more than one phi, which leads to higher register pressure. This is
+ // especially bad when the PHIs are in the header of a loop.
+ bool NeededPhi = false;
- // Scan to see if all operands are the same opcode, all have one use, and all
- // kill their operands (i.e. the operands have one use).
+ // Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
@@ -10632,7 +10549,16 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
return 0;
+
+ // If we already needed a PHI for an earlier operand, and another operand
+ // also requires a PHI, we'd be introducing more PHIs than we're
+ // eliminating, which increases register pressure on entry to the PHI's
+ // block.
+ if (NeededPhi)
+ return 0;
+
FixedOperands[op] = 0; // Needs a PHI.
+ NeededPhi = true;
}
}
@@ -10678,8 +10604,11 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
}
Value *Base = FixedOperands[0];
- return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
- FixedOperands.end());
+ return cast<GEPOperator>(FirstInst)->isInBounds() ?
+ GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
+ FixedOperands.end()) :
+ GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
+ FixedOperands.end());
}
@@ -10836,7 +10765,7 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
PhiVal, ConstantOp);
assert(isa<LoadInst>(FirstInst) && "Unknown operation");
@@ -10929,7 +10858,7 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
PotentiallyDeadPHIs.insert(&PN);
if (DeadPHICycle(PU, PotentiallyDeadPHIs))
- return ReplaceInstUsesWith(PN, Context->getUndef(PN.getType()));
+ return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
}
// If this phi has a single use, and if that use just computes a value for
@@ -10941,7 +10870,7 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
if (PHIUser->hasOneUse() &&
(isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
PHIUser->use_back() == &PN) {
- return ReplaceInstUsesWith(PN, Context->getUndef(PN.getType()));
+ return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
}
}
@@ -10982,30 +10911,14 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
return 0;
}
-static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
- Instruction *InsertPoint,
- InstCombiner *IC) {
- unsigned PtrSize = DTy->getScalarSizeInBits();
- unsigned VTySize = V->getType()->getScalarSizeInBits();
- // We must cast correctly to the pointer type. Ensure that we
- // sign extend the integer value if it is smaller as this is
- // used for address computation.
- Instruction::CastOps opcode =
- (VTySize < PtrSize ? Instruction::SExt :
- (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
- return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
-}
-
-
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *PtrOp = GEP.getOperand(0);
- // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
- // If so, eliminate the noop.
+ // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops.
if (GEP.getNumOperands() == 1)
return ReplaceInstUsesWith(GEP, PtrOp);
if (isa<UndefValue>(GEP.getOperand(0)))
- return ReplaceInstUsesWith(GEP, Context->getUndef(GEP.getType()));
+ return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
bool HasZeroPointerIndex = false;
if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
@@ -11015,78 +10928,48 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
return ReplaceInstUsesWith(GEP, PtrOp);
// Eliminate unneeded casts for indices.
- bool MadeChange = false;
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
- i != e; ++i, ++GTI) {
- if (isa<SequentialType>(*GTI)) {
- if (CastInst *CI = dyn_cast<CastInst>(*i)) {
- if (CI->getOpcode() == Instruction::ZExt ||
- CI->getOpcode() == Instruction::SExt) {
- const Type *SrcTy = CI->getOperand(0)->getType();
- // We can eliminate a cast from i32 to i64 iff the target
- // is a 32-bit pointer target.
- if (SrcTy->getScalarSizeInBits() >= TD->getPointerSizeInBits()) {
- MadeChange = true;
- *i = CI->getOperand(0);
- }
- }
- }
+ if (TD) {
+ bool MadeChange = false;
+ unsigned PtrSize = TD->getPointerSizeInBits();
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
+ I != E; ++I, ++GTI) {
+ if (!isa<SequentialType>(*GTI)) continue;
+
// If we are using a wider index than needed for this platform, shrink it
- // to what we need. If narrower, sign-extend it to what we need.
- // If the incoming value needs a cast instruction,
- // insert it. This explicit cast can make subsequent optimizations more
- // obvious.
- Value *Op = *i;
- if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
- if (Constant *C = dyn_cast<Constant>(Op)) {
- *i = Context->getConstantExprTrunc(C, TD->getIntPtrType());
- MadeChange = true;
- } else {
- Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
- GEP);
- *i = Op;
- MadeChange = true;
- }
- } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
- if (Constant *C = dyn_cast<Constant>(Op)) {
- *i = Context->getConstantExprSExt(C, TD->getIntPtrType());
- MadeChange = true;
- } else {
- Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
- GEP);
- *i = Op;
- MadeChange = true;
- }
- }
+ // to what we need. If narrower, sign-extend it to what we need. This
+ // explicit cast can make subsequent optimizations more obvious.
+ unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
+ if (OpBits == PtrSize)
+ continue;
+
+ *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
+ MadeChange = true;
}
+ if (MadeChange) return &GEP;
}
- if (MadeChange) return &GEP;
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
//
- SmallVector<Value*, 8> SrcGEPOperands;
- if (User *Src = dyn_castGetElementPtr(PtrOp))
- SrcGEPOperands.append(Src->op_begin(), Src->op_end());
-
- if (!SrcGEPOperands.empty()) {
+ if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
// Note that if our source is a gep chain itself that we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
//
- if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
- cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
- return 0; // Wait until our source is folded to completion.
+ if (GetElementPtrInst *SrcGEP =
+ dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
+ if (SrcGEP->getNumOperands() == 2)
+ return 0; // Wait until our source is folded to completion.
SmallVector<Value*, 8> Indices;
// Find out whether the last index in the source GEP is a sequential idx.
bool EndsWithSequential = false;
- for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
- E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
+ for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+ I != E; ++I)
EndsWithSequential = !isa<StructType>(*I);
// Can we combine the two pointer arithmetics offsets?
@@ -11094,98 +10977,68 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Replace: gep (gep %P, long B), long A, ...
// With: T = long A+B; gep %P, T, ...
//
- Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
- if (SO1 == Context->getNullValue(SO1->getType())) {
+ Value *Sum;
+ Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+ Value *GO1 = GEP.getOperand(1);
+ if (SO1 == Constant::getNullValue(SO1->getType())) {
Sum = GO1;
- } else if (GO1 == Context->getNullValue(GO1->getType())) {
+ } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Sum = SO1;
} else {
- // If they aren't the same type, convert both to an integer of the
- // target's pointer size.
- if (SO1->getType() != GO1->getType()) {
- if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
- SO1 =
- Context->getConstantExprIntegerCast(SO1C, GO1->getType(), true);
- } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
- GO1 =
- Context->getConstantExprIntegerCast(GO1C, SO1->getType(), true);
- } else {
- unsigned PS = TD->getPointerSizeInBits();
- if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
- // Convert GO1 to SO1's type.
- GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
-
- } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
- // Convert SO1 to GO1's type.
- SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
- } else {
- const Type *PT = TD->getIntPtrType();
- SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
- GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
- }
- }
- }
- if (isa<Constant>(SO1) && isa<Constant>(GO1))
- Sum = Context->getConstantExprAdd(cast<Constant>(SO1),
- cast<Constant>(GO1));
- else {
- Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
- InsertNewInstBefore(cast<Instruction>(Sum), GEP);
- }
+ // If they aren't the same type, then the input hasn't been processed
+ // by the loop above yet (which canonicalizes sequential index types to
+ // intptr_t). Just avoid transforming this until the input has been
+ // normalized.
+ if (SO1->getType() != GO1->getType())
+ return 0;
+ Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
}
- // Recycle the GEP we already have if possible.
- if (SrcGEPOperands.size() == 2) {
- GEP.setOperand(0, SrcGEPOperands[0]);
+ // Update the GEP in place if possible.
+ if (Src->getNumOperands() == 2) {
+ GEP.setOperand(0, Src->getOperand(0));
GEP.setOperand(1, Sum);
return &GEP;
- } else {
- Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
- SrcGEPOperands.end()-1);
- Indices.push_back(Sum);
- Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
}
+ Indices.append(Src->op_begin()+1, Src->op_end()-1);
+ Indices.push_back(Sum);
+ Indices.append(GEP.op_begin()+2, GEP.op_end());
} else if (isa<Constant>(*GEP.idx_begin()) &&
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
- SrcGEPOperands.size() != 1) {
+ Src->getNumOperands() != 1) {
// Otherwise we can do the fold if the first index of the GEP is a zero
- Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
- SrcGEPOperands.end());
- Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
+ Indices.append(Src->op_begin()+1, Src->op_end());
+ Indices.append(GEP.idx_begin()+1, GEP.idx_end());
}
if (!Indices.empty())
- return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
- Indices.end(), GEP.getName());
-
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
- // GEP of global variable. If all of the indices for this GEP are
- // constants, we can promote this to a constexpr instead of an instruction.
-
- // Scan for nonconstants...
- SmallVector<Constant*, 8> Indices;
- User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
- for (; I != E && isa<Constant>(*I); ++I)
- Indices.push_back(cast<Constant>(*I));
-
- if (I == E) { // If they are all constants...
- Constant *CE = Context->getConstantExprGetElementPtr(GV,
- &Indices[0],Indices.size());
-
- // Replace all uses of the GEP with the new constexpr...
- return ReplaceInstUsesWith(GEP, CE);
- }
- } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
- if (!isa<PointerType>(X->getType())) {
- // Not interesting. Source pointer must be a cast from pointer.
- } else if (HasZeroPointerIndex) {
- // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
- // into : GEP [10 x i8]* X, i32 0, ...
- //
- // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
- // into : GEP i8* X, ...
- //
- // This occurs when the program declares an array extern like "int X[];"
+ return (cast<GEPOperator>(&GEP)->isInBounds() &&
+ Src->isInBounds()) ?
+ GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
+ Indices.end(), GEP.getName()) :
+ GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
+ Indices.end(), GEP.getName());
+ }
+
+ // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+ if (Value *X = getBitCastOperand(PtrOp)) {
+ assert(isa<PointerType>(X->getType()) && "Must be cast from pointer");
+
+ // If the input bitcast is actually "bitcast(bitcast(x))", then we don't
+ // want to change the gep until the bitcasts are eliminated.
+ if (getBitCastOperand(X)) {
+ Worklist.AddValue(PtrOp);
+ return 0;
+ }
+
+ // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+ // into : GEP [10 x i8]* X, i32 0, ...
+ //
+ // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+ // into : GEP i8* X, ...
+ //
+ // This occurs when the program declares an array extern like "int X[];"
+ if (HasZeroPointerIndex) {
const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
const PointerType *XTy = cast<PointerType>(X->getType());
if (const ArrayType *CATy =
@@ -11194,10 +11047,14 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (CATy->getElementType() == XTy->getElementType()) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
- return GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
- GEP.getName());
- } else if (const ArrayType *XATy =
- dyn_cast<ArrayType>(XTy->getElementType())) {
+ return cast<GEPOperator>(&GEP)->isInBounds() ?
+ GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
+ GEP.getName()) :
+ GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
+ GEP.getName());
+ }
+
+ if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
// -> GEP [10 x i8]* X, i32 0, ...
@@ -11216,16 +11073,17 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
- if (isa<ArrayType>(SrcElTy) &&
+ if (TD && isa<ArrayType>(SrcElTy) &&
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
TD->getTypeAllocSize(ResElTy)) {
Value *Idx[2];
- Idx[0] = Context->getNullValue(Type::Int32Ty);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
Idx[1] = GEP.getOperand(1);
- Value *V = InsertNewInstBefore(
- GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
+ Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
+ Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
// V and GEP are both pointer types --> BitCast
- return new BitCastInst(V, GEP.getType());
+ return new BitCastInst(NewGEP, GEP.getType());
}
// Transform things like:
@@ -11233,7 +11091,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
+ if (TD && isa<ArrayType>(SrcElTy) && ResElTy == Type::getInt8Ty(*Context)) {
uint64_t ArrayEltSize =
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
@@ -11243,17 +11101,16 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
ConstantInt *Scale = 0;
if (ArrayEltSize == 1) {
NewIdx = GEP.getOperand(1);
- Scale =
- Context->getConstantInt(cast<IntegerType>(NewIdx->getType()), 1);
+ Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
- NewIdx = Context->getConstantInt(CI->getType(), 1);
+ NewIdx = ConstantInt::get(CI->getType(), 1);
Scale = CI;
} else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
if (Inst->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(Inst->getOperand(1))) {
ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
- Scale = Context->getConstantInt(cast<IntegerType>(Inst->getType()),
+ Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1ULL << ShAmtVal);
NewIdx = Inst->getOperand(0);
} else if (Inst->getOpcode() == Instruction::Mul &&
@@ -11269,23 +11126,21 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// operation after making sure Scale doesn't have the sign bit set.
if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
Scale->getZExtValue() % ArrayEltSize == 0) {
- Scale = Context->getConstantInt(Scale->getType(),
+ Scale = ConstantInt::get(Scale->getType(),
Scale->getZExtValue() / ArrayEltSize);
if (Scale->getZExtValue() != 1) {
- Constant *C =
- Context->getConstantExprIntegerCast(Scale, NewIdx->getType(),
+ Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
false /*ZExt*/);
- Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
- NewIdx = InsertNewInstBefore(Sc, GEP);
+ NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
}
// Insert the new GEP instruction.
Value *Idx[2];
- Idx[0] = Context->getNullValue(Type::Int32Ty);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
Idx[1] = NewIdx;
- Instruction *NewGEP =
- GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
- NewGEP = InsertNewInstBefore(NewGEP, GEP);
+ Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
+ Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
@@ -11294,12 +11149,13 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
/// See if we can simplify:
- /// X = bitcast A to B*
+ /// X = bitcast A* to B*
/// Y = gep X, <...constant indices...>
/// into a gep of the original struct. This is important for SROA and alias
/// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
- if (!isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
+ if (TD &&
+ !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
// Determine how much the GEP moves the pointer. We are guaranteed to get
// a constant back from EmitGEPOffset.
ConstantInt *OffsetV =
@@ -11311,7 +11167,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (Offset == 0) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
- if (isa<AllocationInst>(BCI->getOperand(0))) {
+ if (isa<AllocationInst>(BCI->getOperand(0)) ||
+ isMalloc(BCI->getOperand(0))) {
// See if the bitcast simplifies, if so, don't nuke this GEP yet.
if (Instruction *I = visitBitCast(*BCI)) {
if (I != BCI) {
@@ -11332,11 +11189,14 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
const Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) {
- Instruction *NGEP =
- GetElementPtrInst::Create(BCI->getOperand(0), NewIndices.begin(),
- NewIndices.end());
- if (NGEP->getType() == GEP.getType()) return NGEP;
- InsertNewInstBefore(NGEP, GEP);
+ Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
+ NewIndices.end()) :
+ Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
+ NewIndices.end());
+
+ if (NGEP->getType() == GEP.getType())
+ return ReplaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
return new BitCastInst(NGEP, GEP.getType());
}
@@ -11351,18 +11211,17 @@ Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
if (AI.isArrayAllocation()) { // Check C != 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
const Type *NewTy =
- Context->getArrayType(AI.getAllocatedType(), C->getZExtValue());
+ ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
AllocationInst *New = 0;
// Create and insert the replacement instruction...
if (isa<MallocInst>(AI))
- New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
+ New = Builder->CreateMalloc(NewTy, 0, AI.getName());
else {
assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
- New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
+ New = Builder->CreateAlloca(NewTy, 0, AI.getName());
}
-
- InsertNewInstBefore(New, AI);
+ New->setAlignment(AI.getAlignment());
// Scan to the end of the allocation instructions, to skip over a block of
// allocas if possible...also skip interleaved debug info
@@ -11373,27 +11232,27 @@ Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
- Value *NullIdx = Context->getNullValue(Type::Int32Ty);
+ Value *NullIdx = Constant::getNullValue(Type::getInt32Ty(*Context));
Value *Idx[2];
Idx[0] = NullIdx;
Idx[1] = NullIdx;
- Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
- New->getName()+".sub", It);
+ Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
+ New->getName()+".sub", It);
// Now make everything use the getelementptr instead of the original
// allocation.
return ReplaceInstUsesWith(AI, V);
} else if (isa<UndefValue>(AI.getArraySize())) {
- return ReplaceInstUsesWith(AI, Context->getNullValue(AI.getType()));
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
}
}
- if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
+ if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
// If alloca'ing a zero byte object, replace the alloca with a null pointer.
// Note that we only do this for alloca's, because malloc should allocate
// and return a unique pointer, even for a zero byte allocation.
if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
- return ReplaceInstUsesWith(AI, Context->getNullValue(AI.getType()));
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
// If the alignment is 0 (unspecified), assign it the preferred alignment.
if (AI.getAlignment() == 0)
@@ -11409,8 +11268,8 @@ Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
// free undef -> unreachable.
if (isa<UndefValue>(Op)) {
// Insert a new store to null because we cannot modify the CFG here.
- new StoreInst(Context->getConstantIntTrue(),
- Context->getUndef(Context->getPointerTypeUnqual(Type::Int1Ty)), &FI);
+ new StoreInst(ConstantInt::getTrue(*Context),
+ UndefValue::get(Type::getInt1PtrTy(*Context)), &FI);
return EraseInstFromFunction(FI);
}
@@ -11428,7 +11287,7 @@ Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
// Change free (gep X, 0,0,0,0) into free(X)
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
if (GEPI->hasAllZeroIndices()) {
- AddToWorkList(GEPI);
+ Worklist.Add(GEPI);
FI.setOperand(0, GEPI->getOperand(0));
return &FI;
}
@@ -11440,6 +11299,21 @@ Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
EraseInstFromFunction(FI);
return EraseInstFromFunction(*MI);
}
+ if (isMalloc(Op)) {
+ if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
+ if (Op->hasOneUse() && CI->hasOneUse()) {
+ EraseInstFromFunction(FI);
+ EraseInstFromFunction(*CI);
+ return EraseInstFromFunction(*cast<Instruction>(Op));
+ }
+ } else {
+ // Op is a call to malloc
+ if (Op->hasOneUse()) {
+ EraseInstFromFunction(FI);
+ return EraseInstFromFunction(*cast<Instruction>(Op));
+ }
+ }
+ }
return 0;
}
@@ -11450,7 +11324,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
const TargetData *TD) {
User *CI = cast<User>(LI.getOperand(0));
Value *CastOp = CI->getOperand(0);
- LLVMContext* Context = IC.getContext();
+ LLVMContext *Context = IC.getContext();
if (TD) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
@@ -11479,7 +11353,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
- Value *NL = Context->getConstantInt(StrVal);
+ Value *NL = ConstantInt::get(*Context, StrVal);
return IC.ReplaceInstUsesWith(LI, NL);
}
}
@@ -11505,26 +11379,26 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
if (Constant *CSrc = dyn_cast<Constant>(CastOp))
if (ASrcTy->getNumElements() != 0) {
Value *Idxs[2];
- Idxs[0] = Idxs[1] = Context->getNullValue(Type::Int32Ty);
- CastOp = Context->getConstantExprGetElementPtr(CSrc, Idxs, 2);
+ Idxs[0] = Idxs[1] = Constant::getNullValue(Type::getInt32Ty(*Context));
+ CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
SrcTy = cast<PointerType>(CastOp->getType());
SrcPTy = SrcTy->getElementType();
}
- if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
+ if (IC.getTargetData() &&
+ (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
isa<VectorType>(SrcPTy)) &&
// Do not allow turning this into a load of an integer, which is then
// casted to a pointer, this pessimizes pointer analysis a lot.
(isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
- IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
- IC.getTargetData().getTypeSizeInBits(DestPTy)) {
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
+ IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before the load, cast
// the result of the loaded value.
- Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
- CI->getName(),
- LI.isVolatile()),LI);
+ Value *NewLoad =
+ IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
// Now cast the result of the load.
return new BitCastInst(NewLoad, LI.getType());
}
@@ -11537,14 +11411,16 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
// Attempt to improve the alignment.
- unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
- if (KnownAlign >
- (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
- LI.getAlignment()))
- LI.setAlignment(KnownAlign);
-
- // load (cast X) --> cast (load X) iff safe
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
+ if (KnownAlign >
+ (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
+ LI.getAlignment()))
+ LI.setAlignment(KnownAlign);
+ }
+
+ // load (cast X) --> cast (load X) iff safe.
if (isa<CastInst>(Op))
if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
return Res;
@@ -11562,29 +11438,28 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
const Value *GEPI0 = GEPI->getOperand(0);
// TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<ConstantPointerNull>(GEPI0) &&
- cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
+ if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
// Insert a new store to null instruction before the load to indicate
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
- new StoreInst(Context->getUndef(LI.getType()),
- Context->getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
}
if (Constant *C = dyn_cast<Constant>(Op)) {
// load null/undef -> undef
// TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<UndefValue>(C) || (C->isNullValue() &&
- cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
+ if (isa<UndefValue>(C) ||
+ (C->isNullValue() && LI.getPointerAddressSpace() == 0)) {
// Insert a new store to null instruction before the load to indicate that
// this code is not reachable. We do this instead of inserting an
// unreachable instruction directly because we cannot modify the CFG.
- new StoreInst(Context->getUndef(LI.getType()),
- Context->getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
// Instcombine load (constant global) into the value loaded.
@@ -11605,9 +11480,9 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
- new StoreInst(Context->getUndef(LI.getType()),
- Context->getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
} else if (CE->isCast()) {
@@ -11622,9 +11497,9 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (GV->getInitializer()->isNullValue())
- return ReplaceInstUsesWith(LI, Context->getNullValue(LI.getType()));
+ return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
else if (isa<UndefValue>(GV->getInitializer()))
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
}
@@ -11643,10 +11518,10 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
- Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
- SI->getOperand(1)->getName()+".val"), LI);
- Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
- SI->getOperand(2)->getName()+".val"), LI);
+ Value *V1 = Builder->CreateLoad(SI->getOperand(1),
+ SI->getOperand(1)->getName()+".val");
+ Value *V2 = Builder->CreateLoad(SI->getOperand(2),
+ SI->getOperand(2)->getName()+".val");
return SelectInst::Create(SI->getCondition(), V1, V2);
}
@@ -11674,7 +11549,6 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
User *CI = cast<User>(SI.getOperand(1));
Value *CastOp = CI->getOperand(0);
- LLVMContext* Context = IC.getContext();
const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
@@ -11696,7 +11570,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// constants.
if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
// Index through pointer.
- Constant *Zero = Context->getNullValue(Type::Int32Ty);
+ Constant *Zero = Constant::getNullValue(Type::getInt32Ty(*IC.getContext()));
NewGEPIndices.push_back(Zero);
while (1) {
@@ -11713,7 +11587,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
}
}
- SrcTy = Context->getPointerType(SrcPTy, SrcTy->getAddressSpace());
+ SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
}
if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
@@ -11721,10 +11595,11 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// If the pointers point into different address spaces or if they point to
// values with different sizes, we can't do the transformation.
- if (SrcTy->getAddressSpace() !=
+ if (!IC.getTargetData() ||
+ SrcTy->getAddressSpace() !=
cast<PointerType>(CI->getType())->getAddressSpace() ||
- IC.getTargetData().getTypeSizeInBits(SrcPTy) !=
- IC.getTargetData().getTypeSizeInBits(DestPTy))
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
+ IC.getTargetData()->getTypeSizeInBits(DestPTy))
return 0;
// Okay, we are casting from one integer or pointer type to another of
@@ -11745,22 +11620,12 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// SIOp0 is a pointer to aggregate and this is a store to the first field,
// emit a GEP to index into its first field.
- if (!NewGEPIndices.empty()) {
- if (Constant *C = dyn_cast<Constant>(CastOp))
- CastOp = Context->getConstantExprGetElementPtr(C, &NewGEPIndices[0],
- NewGEPIndices.size());
- else
- CastOp = IC.InsertNewInstBefore(
- GetElementPtrInst::Create(CastOp, NewGEPIndices.begin(),
- NewGEPIndices.end()), SI);
- }
+ if (!NewGEPIndices.empty())
+ CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
+ NewGEPIndices.end());
- if (Constant *C = dyn_cast<Constant>(SIOp0))
- NewCast = Context->getConstantExprCast(opcode, C, CastDstTy);
- else
- NewCast = IC.InsertNewInstBefore(
- CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
- SI);
+ NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
+ SIOp0->getName()+".c");
return new StoreInst(NewCast, CastOp);
}
@@ -11777,12 +11642,16 @@ static bool equivalentAddressValues(Value *A, Value *B) {
if (A == B) return true;
// Test if the values come form identical arithmetic instructions.
+ // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
+ // its only used to compare two uses within the same basic block, which
+ // means that they'll always either have the same value or one of them
+ // will have an undefined value.
if (isa<BinaryOperator>(A) ||
isa<CastInst>(A) ||
isa<PHINode>(A) ||
isa<GetElementPtrInst>(A))
if (Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalTo(BI))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
@@ -11854,12 +11723,14 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
}
// Attempt to improve the alignment.
- unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
- if (KnownAlign >
- (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
- SI.getAlignment()))
- SI.setAlignment(KnownAlign);
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
+ if (KnownAlign >
+ (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
+ SI.getAlignment()))
+ SI.setAlignment(KnownAlign);
+ }
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
@@ -11914,12 +11785,11 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (SI.isVolatile()) return 0; // Don't hack volatile stores.
// store X, null -> turns into 'unreachable' in SimplifyCFG
- if (isa<ConstantPointerNull>(Ptr) &&
- cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
+ if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
- SI.setOperand(0, Context->getUndef(Val->getType()));
+ SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))
- AddToWorkList(U); // Dropped a use.
+ Worklist.Add(U); // Dropped a use.
++NumCombined;
}
return 0; // Do not modify these!
@@ -12096,41 +11966,34 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
// Cannonicalize fcmp_one -> fcmp_oeq
FCmpInst::Predicate FPred; Value *Y;
if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)))
- if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
- FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
- FCmpInst *I = cast<FCmpInst>(BI.getCondition());
- FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
- Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
- NewSCC->takeName(I);
- // Swap Destinations and condition...
- BI.setCondition(NewSCC);
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
+ FPred == FCmpInst::FCMP_OGE) {
+ FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
+ Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
+
+ // Swap Destinations and condition.
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
- RemoveFromWorkList(I);
- I->eraseFromParent();
- AddToWorkList(NewSCC);
+ Worklist.Add(Cond);
return &BI;
}
// Cannonicalize icmp_ne -> icmp_eq
ICmpInst::Predicate IPred;
if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)))
- if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
- IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
- IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
- ICmpInst *I = cast<ICmpInst>(BI.getCondition());
- ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
- Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
- NewSCC->takeName(I);
- // Swap Destinations and condition...
- BI.setCondition(NewSCC);
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
+ IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
+ IPred == ICmpInst::ICMP_SGE) {
+ ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
+ Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
+ // Swap Destinations and condition.
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
- RemoveFromWorkList(I);
- I->eraseFromParent();;
- AddToWorkList(NewSCC);
+ Worklist.Add(Cond);
return &BI;
}
@@ -12145,10 +12008,10 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
// change 'switch (X+4) case 1:' into 'switch (X) case -3'
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
SI.setOperand(i,
- Context->getConstantExprSub(cast<Constant>(SI.getOperand(i)),
+ ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
AddRHS));
SI.setOperand(0, I->getOperand(0));
- AddToWorkList(I);
+ Worklist.Add(I);
return &SI;
}
}
@@ -12163,10 +12026,10 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
if (Constant *C = dyn_cast<Constant>(Agg)) {
if (isa<UndefValue>(C))
- return ReplaceInstUsesWith(EV, Context->getUndef(EV.getType()));
+ return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
if (isa<ConstantAggregateZero>(C))
- return ReplaceInstUsesWith(EV, Context->getNullValue(EV.getType()));
+ return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
// Extract the element indexed by the first index out of the constant
@@ -12214,10 +12077,8 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
// %E = insertvalue { i32 } %X, i32 42, 0
// by switching the order of the insert and extract (though the
// insertvalue should be left in, since it may have other uses).
- Value *NewEV = InsertNewInstBefore(
- ExtractValueInst::Create(IV->getAggregateOperand(),
- EV.idx_begin(), EV.idx_end()),
- EV);
+ Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
+ EV.idx_begin(), EV.idx_end());
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
insi, inse);
}
@@ -12303,17 +12164,17 @@ static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
/// value is already around as a register, for example if it were inserted then
/// extracted from the vector.
static Value *FindScalarElement(Value *V, unsigned EltNo,
- LLVMContext* Context) {
+ LLVMContext *Context) {
assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
const VectorType *PTy = cast<VectorType>(V->getType());
unsigned Width = PTy->getNumElements();
if (EltNo >= Width) // Out of range access.
- return Context->getUndef(PTy->getElementType());
+ return UndefValue::get(PTy->getElementType());
if (isa<UndefValue>(V))
- return Context->getUndef(PTy->getElementType());
+ return UndefValue::get(PTy->getElementType());
else if (isa<ConstantAggregateZero>(V))
- return Context->getNullValue(PTy->getElementType());
+ return Constant::getNullValue(PTy->getElementType());
else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
return CP->getOperand(EltNo);
else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
@@ -12339,7 +12200,7 @@ static Value *FindScalarElement(Value *V, unsigned EltNo,
else if (InEl < LHSWidth*2)
return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth, Context);
else
- return Context->getUndef(PTy->getElementType());
+ return UndefValue::get(PTy->getElementType());
}
// Otherwise, we don't know.
@@ -12349,18 +12210,18 @@ static Value *FindScalarElement(Value *V, unsigned EltNo,
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// If vector val is undef, replace extract with scalar undef.
if (isa<UndefValue>(EI.getOperand(0)))
- return ReplaceInstUsesWith(EI, Context->getUndef(EI.getType()));
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
// If vector val is constant 0, replace extract with scalar 0.
if (isa<ConstantAggregateZero>(EI.getOperand(0)))
- return ReplaceInstUsesWith(EI, Context->getNullValue(EI.getType()));
+ return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
// If vector val is constant with all elements the same, replace EI with
// that element. When the elements are not identical, we cannot replace yet
// (we do that below, but only when the index is constant).
Constant *op0 = C->getOperand(0);
- for (unsigned i = 1; i < C->getNumOperands(); ++i)
+ for (unsigned i = 1; i != C->getNumOperands(); ++i)
if (C->getOperand(i) != op0) {
op0 = 0;
break;
@@ -12373,13 +12234,12 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// find a previously computed scalar that was inserted into the vector.
if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
unsigned IndexVal = IdxC->getZExtValue();
- unsigned VectorWidth =
- cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
+ unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
// If this is extracting an invalid index, turn this into undef, to avoid
// crashing the code below.
if (IndexVal >= VectorWidth)
- return ReplaceInstUsesWith(EI, Context->getUndef(EI.getType()));
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
// This instruction only demands the single element from the input vector.
// If the input vector has a single use, simplify it based on this use
@@ -12411,42 +12271,27 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
}
if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
- if (I->hasOneUse()) {
- // Push extractelement into predecessor operation if legal and
- // profitable to do so
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
- bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
- if (CheapToScalarize(BO, isConstantElt)) {
- ExtractElementInst *newEI0 =
- new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
- EI.getName()+".lhs");
- ExtractElementInst *newEI1 =
- new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
- EI.getName()+".rhs");
- InsertNewInstBefore(newEI0, EI);
- InsertNewInstBefore(newEI1, EI);
- return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
- }
- } else if (isa<LoadInst>(I)) {
- unsigned AS =
- cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
- Value *Ptr = InsertBitCastBefore(I->getOperand(0),
- Context->getPointerType(EI.getType(), AS),EI);
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
- InsertNewInstBefore(GEP, EI);
- return new LoadInst(GEP);
- }
- }
- if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
+ // Push extractelement into predecessor operation if legal and
+ // profitable to do so
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ if (I->hasOneUse() &&
+ CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
+ Value *newEI0 =
+ Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
+ EI.getName()+".lhs");
+ Value *newEI1 =
+ Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
+ EI.getName()+".rhs");
+ return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
+ }
+ } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
// Extracting the inserted element?
if (IE->getOperand(2) == EI.getOperand(1))
return ReplaceInstUsesWith(EI, IE->getOperand(1));
// If the inserted and extracted elements are constants, they must not
// be the same value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) &&
- isa<Constant>(EI.getOperand(1))) {
- AddUsesToWorkList(EI);
+ if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
+ Worklist.AddValue(EI.getOperand(0));
EI.setOperand(0, IE->getOperand(0));
return &EI;
}
@@ -12465,11 +12310,14 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
} else {
- return ReplaceInstUsesWith(EI, Context->getUndef(EI.getType()));
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
}
- return new ExtractElementInst(Src, SrcIdx);
+ return ExtractElementInst::Create(Src,
+ ConstantInt::get(Type::getInt32Ty(*Context), SrcIdx,
+ false));
}
}
+ // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
}
return 0;
}
@@ -12479,21 +12327,21 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
/// Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
std::vector<Constant*> &Mask,
- LLVMContext* Context) {
+ LLVMContext *Context) {
assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
"Invalid CollectSingleShuffleElements");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, Context->getUndef(Type::Int32Ty));
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
return true;
} else if (V == LHS) {
for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(Context->getConstantInt(Type::Int32Ty, i));
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
return true;
} else if (V == RHS) {
for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(Context->getConstantInt(Type::Int32Ty, i+NumElts));
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i+NumElts));
return true;
} else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
@@ -12510,7 +12358,7 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
// transitively ok.
if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
// If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = Context->getUndef(Type::Int32Ty);
+ Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(*Context));
return true;
}
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
@@ -12527,11 +12375,11 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
// If so, update the mask to reflect the inserted value.
if (EI->getOperand(0) == LHS) {
Mask[InsertedIdx % NumElts] =
- Context->getConstantInt(Type::Int32Ty, ExtractedIdx);
+ ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
} else {
assert(EI->getOperand(0) == RHS);
Mask[InsertedIdx % NumElts] =
- Context->getConstantInt(Type::Int32Ty, ExtractedIdx+NumElts);
+ ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx+NumElts);
}
return true;
@@ -12549,17 +12397,17 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
/// that computes V and the LHS value of the shuffle.
static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
- Value *&RHS, LLVMContext* Context) {
+ Value *&RHS, LLVMContext *Context) {
assert(isa<VectorType>(V->getType()) &&
(RHS == 0 || V->getType() == RHS->getType()) &&
"Invalid shuffle!");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, Context->getUndef(Type::Int32Ty));
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
return V;
} else if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, Context->getConstantInt(Type::Int32Ty, 0));
+ Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(*Context), 0));
return V;
} else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
@@ -12580,7 +12428,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
RHS = EI->getOperand(0);
Value *V = CollectShuffleElements(VecOp, Mask, RHS, Context);
Mask[InsertedIdx % NumElts] =
- Context->getConstantInt(Type::Int32Ty, NumElts+ExtractedIdx);
+ ConstantInt::get(Type::getInt32Ty(*Context), NumElts+ExtractedIdx);
return V;
}
@@ -12590,7 +12438,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
// Everything but the extracted element is replaced with the RHS.
for (unsigned i = 0; i != NumElts; ++i) {
if (i != InsertedIdx)
- Mask[i] = Context->getConstantInt(Type::Int32Ty, NumElts+i);
+ Mask[i] = ConstantInt::get(Type::getInt32Ty(*Context), NumElts+i);
}
return V;
}
@@ -12608,7 +12456,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
// Otherwise, can't do anything fancy. Return an identity vector.
for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(Context->getConstantInt(Type::Int32Ty, i));
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
return V;
}
@@ -12635,45 +12483,23 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
return ReplaceInstUsesWith(IE, VecOp);
if (InsertedIdx >= NumVectorElts) // Out of range insert.
- return ReplaceInstUsesWith(IE, Context->getUndef(IE.getType()));
+ return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
// If we are extracting a value from a vector, then inserting it right
// back into the same place, just use the input vector.
if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
return ReplaceInstUsesWith(IE, VecOp);
- // We could theoretically do this for ANY input. However, doing so could
- // turn chains of insertelement instructions into a chain of shufflevector
- // instructions, and right now we do not merge shufflevectors. As such,
- // only do this in a situation where it is clear that there is benefit.
- if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
- // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
- // the values of VecOp, except then one read from EIOp0.
- // Build a new shuffle mask.
- std::vector<Constant*> Mask;
- if (isa<UndefValue>(VecOp))
- Mask.assign(NumVectorElts, Context->getUndef(Type::Int32Ty));
- else {
- assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
- Mask.assign(NumVectorElts, Context->getConstantInt(Type::Int32Ty,
- NumVectorElts));
- }
- Mask[InsertedIdx] =
- Context->getConstantInt(Type::Int32Ty, ExtractedIdx);
- return new ShuffleVectorInst(EI->getOperand(0), VecOp,
- Context->getConstantVector(Mask));
- }
-
// If this insertelement isn't used by some other insertelement, turn it
// (and any insertelements it points to), into one big shuffle.
if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
std::vector<Constant*> Mask;
Value *RHS = 0;
Value *LHS = CollectShuffleElements(&IE, Mask, RHS, Context);
- if (RHS == 0) RHS = Context->getUndef(LHS->getType());
+ if (RHS == 0) RHS = UndefValue::get(LHS->getType());
// We now have a shuffle of LHS, RHS, Mask.
return new ShuffleVectorInst(LHS, RHS,
- Context->getConstantVector(Mask));
+ ConstantVector::get(Mask));
}
}
}
@@ -12697,7 +12523,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(SVI.getOperand(2)))
- return ReplaceInstUsesWith(SVI, Context->getUndef(SVI.getType()));
+ return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
@@ -12724,21 +12550,21 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
std::vector<Constant*> Elts;
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] >= 2*e)
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
else {
if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
(Mask[i] < e && isa<UndefValue>(LHS))) {
Mask[i] = 2*e; // Turn into undef.
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
} else {
Mask[i] = Mask[i] % e; // Force to LHS.
- Elts.push_back(Context->getConstantInt(Type::Int32Ty, Mask[i]));
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Mask[i]));
}
}
}
SVI.setOperand(0, SVI.getOperand(1));
- SVI.setOperand(1, Context->getUndef(RHS->getType()));
- SVI.setOperand(2, Context->getConstantVector(Elts));
+ SVI.setOperand(1, UndefValue::get(RHS->getType()));
+ SVI.setOperand(2, ConstantVector::get(Elts));
LHS = SVI.getOperand(0);
RHS = SVI.getOperand(1);
MadeChange = true;
@@ -12788,14 +12614,14 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
std::vector<Constant*> Elts;
for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
if (NewMask[i] >= LHSInNElts*2) {
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
} else {
- Elts.push_back(Context->getConstantInt(Type::Int32Ty, NewMask[i]));
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), NewMask[i]));
}
}
return new ShuffleVectorInst(LHSSVI->getOperand(0),
LHSSVI->getOperand(1),
- Context->getConstantVector(Elts));
+ ConstantVector::get(Elts));
}
}
}
@@ -12855,6 +12681,9 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
const TargetData *TD) {
SmallVector<BasicBlock*, 256> Worklist;
Worklist.push_back(BB);
+
+ std::vector<Instruction*> InstrsForInstCombineWorklist;
+ InstrsForInstCombineWorklist.reserve(128);
while (!Worklist.empty()) {
BB = Worklist.back();
@@ -12863,44 +12692,28 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
// We have now visited this block! If we've already been here, ignore it.
if (!Visited.insert(BB)) continue;
- DbgInfoIntrinsic *DBI_Prev = NULL;
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *Inst = BBI++;
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst)) {
++NumDeadInst;
- DOUT << "IC: DCE: " << *Inst;
+ DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
Inst->eraseFromParent();
continue;
}
// ConstantProp instruction if trivially constant.
- if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
- DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
+ if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
+ << *Inst << '\n');
Inst->replaceAllUsesWith(C);
++NumConstProp;
Inst->eraseFromParent();
continue;
}
-
- // If there are two consecutive llvm.dbg.stoppoint calls then
- // it is likely that the optimizer deleted code in between these
- // two intrinsics.
- DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
- if (DBI_Next) {
- if (DBI_Prev
- && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
- && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
- IC.RemoveFromWorkList(DBI_Prev);
- DBI_Prev->eraseFromParent();
- }
- DBI_Prev = DBI_Next;
- } else {
- DBI_Prev = 0;
- }
- IC.AddToWorkList(Inst);
+ InstrsForInstCombineWorklist.push_back(Inst);
}
// Recursively visit successors. If this is a branch or switch on a
@@ -12932,14 +12745,22 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Worklist.push_back(TI->getSuccessor(i));
}
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
+ InstrsForInstCombineWorklist.size());
}
bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
- bool Changed = false;
- TD = &getAnalysis<TargetData>();
+ MadeIRChange = false;
+ TD = getAnalysisIfAvailable<TargetData>();
- DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getNameStr() << "\n");
+ DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getNameStr() << "\n");
{
// Do a depth-first traversal of the function, populate the worklist with
@@ -12957,71 +12778,73 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
while (Term != BB->begin()) { // Remove instrs bottom-up
BasicBlock::iterator I = Term; --I;
- DOUT << "IC: DCE: " << *I;
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
// A debug intrinsic shouldn't force another iteration if we weren't
// going to do one without it.
if (!isa<DbgInfoIntrinsic>(I)) {
++NumDeadInst;
- Changed = true;
+ MadeIRChange = true;
}
- if (!I->use_empty())
- I->replaceAllUsesWith(Context->getUndef(I->getType()));
+
+
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I->getType()->isVoidTy())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
}
}
- while (!Worklist.empty()) {
- Instruction *I = RemoveOneFromWorkList();
+ while (!Worklist.isEmpty()) {
+ Instruction *I = Worklist.RemoveOne();
if (I == 0) continue; // skip null values.
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I)) {
- // Add operands to the worklist.
- if (I->getNumOperands() < 4)
- AddUsesToWorkList(*I);
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
+ EraseInstFromFunction(*I);
++NumDeadInst;
-
- DOUT << "IC: DCE: " << *I;
-
- I->eraseFromParent();
- RemoveFromWorkList(I);
- Changed = true;
+ MadeIRChange = true;
continue;
}
// Instruction isn't dead, see if we can constant propagate it.
- if (Constant *C = ConstantFoldInstruction(I, TD)) {
- DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
+ if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
// Add operands to the worklist.
- AddUsesToWorkList(*I);
ReplaceInstUsesWith(*I, C);
-
++NumConstProp;
- I->eraseFromParent();
- RemoveFromWorkList(I);
- Changed = true;
+ EraseInstFromFunction(*I);
+ MadeIRChange = true;
continue;
}
- if (TD &&
- (I->getType()->getTypeID() == Type::VoidTyID ||
- I->isTrapping())) {
+ if (TD) {
// See if we can constant fold its operands.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i))
- if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
+ if (Constant *NewC = ConstantFoldConstantExpression(CE,
+ F.getContext(), TD))
if (NewC != CE) {
- i->set(NewC);
- Changed = true;
+ *i = NewC;
+ MadeIRChange = true;
}
}
// See if we can trivially sink this instruction to a successor basic block.
if (I->hasOneUse()) {
BasicBlock *BB = I->getParent();
- BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
+ Instruction *UserInst = cast<Instruction>(I->use_back());
+ BasicBlock *UserParent;
+
+ // Get the block the use occurs in.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+ UserParent = PN->getIncomingBlock(I->use_begin().getUse());
+ else
+ UserParent = UserInst->getParent();
+
if (UserParent != BB) {
bool UserIsSuccessor = false;
// See if the user is one of our successors.
@@ -13034,31 +12857,34 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
// If the user is one of our immediate successors, and if that successor
// only has us as a predecessors (we'd have to split the critical edge
// otherwise), we can keep going.
- if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
- next(pred_begin(UserParent)) == pred_end(UserParent))
+ if (UserIsSuccessor && UserParent->getSinglePredecessor())
// Okay, the CFG is simple enough, try to sink this instruction.
- Changed |= TryToSinkInstruction(I, UserParent);
+ MadeIRChange |= TryToSinkInstruction(I, UserParent);
}
}
- // Now that we have an instruction, try combining it to simplify it...
+ // Now that we have an instruction, try combining it to simplify it.
+ Builder->SetInsertPoint(I->getParent(), I);
+
#ifndef NDEBUG
std::string OrigI;
#endif
- DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
+ DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
+
if (Instruction *Result = visit(*I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
- DOUT << "IC: Old = " << *I
- << " New = " << *Result;
+ DEBUG(errs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
// Push the new instruction and any users onto the worklist.
- AddToWorkList(Result);
- AddUsersToWorkList(*Result);
+ Worklist.Add(Result);
+ Worklist.AddUsersToWorkList(*Result);
// Move the name to the new instruction first.
Result->takeName(I);
@@ -13073,52 +12899,42 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
InstParent->getInstList().insert(InsertPos, Result);
- // Make sure that we reprocess all operands now that we reduced their
- // use counts.
- AddUsesToWorkList(*I);
-
- // Instructions can end up on the worklist more than once. Make sure
- // we do not process an instruction that has been deleted.
- RemoveFromWorkList(I);
-
- // Erase the old instruction.
- InstParent->getInstList().erase(I);
+ EraseInstFromFunction(*I);
} else {
#ifndef NDEBUG
- DOUT << "IC: Mod = " << OrigI
- << " New = " << *I;
+ DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
#endif
// If the instruction was modified, it's possible that it is now dead.
// if so, remove it.
if (isInstructionTriviallyDead(I)) {
- // Make sure we process all operands now that we are reducing their
- // use counts.
- AddUsesToWorkList(*I);
-
- // Instructions may end up in the worklist more than once. Erase all
- // occurrences of this instruction.
- RemoveFromWorkList(I);
- I->eraseFromParent();
+ EraseInstFromFunction(*I);
} else {
- AddToWorkList(I);
- AddUsersToWorkList(*I);
+ Worklist.Add(I);
+ Worklist.AddUsersToWorkList(*I);
}
}
- Changed = true;
+ MadeIRChange = true;
}
}
- assert(WorklistMap.empty() && "Worklist empty, but map not?");
-
- // Do an explicit clear, this shrinks the map if needed.
- WorklistMap.clear();
- return Changed;
+ Worklist.Zap();
+ return MadeIRChange;
}
bool InstCombiner::runOnFunction(Function &F) {
MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+ Context = &F.getContext();
+
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ IRBuilder<true, ConstantFolder, InstCombineIRInserter>
+ TheBuilder(F.getContext(), ConstantFolder(F.getContext()),
+ InstCombineIRInserter(Worklist));
+ Builder = &TheBuilder;
bool EverMadeChange = false;
@@ -13126,6 +12942,8 @@ bool InstCombiner::runOnFunction(Function &F) {
unsigned Iteration = 0;
while (DoOneIteration(F, Iteration++))
EverMadeChange = true;
+
+ Builder = 0;
return EverMadeChange;
}
OpenPOWER on IntegriCloud